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Abstract 

The aim of this study is to compare the mathematics questions in the Transition System to High 

Schools (LGS), which is one of the central exams for transition to secondary education institutions, with 

the questions in the 8th grade mathematics textbook distributed by the Ministry of National Education 

and the alternative textbook of a private publishing house, which is frequently used by teachers, revealing 

their similarities and differences. For this purpose, the questions discussed were analyzed within the 

framework of 'connection skills' in order to determine what type and how often they contain connections. 

Document analysis method was used as the research model. The data source of the research is LGS 

questions, the 8th grade textbook of the Ministry of National Education (MEB) publications, and the unit 

evaluation questions in the alternative textbook of a private publishing house. According to the data 

obtained from the study, the types of connection skills were included at a higher rate in the questions 

belonging to the private publishing house, and it was seen that they were similar to the LGS questions. 

Less correlations were found in the textbook of MEB publications compared to the others. In all three 

cases, it was determined that the most connection was 'connection with real life', while the least 

connection was 'connection with different disciplines'. While the category of 'connection with different 

disciplines' was not found in LGS, connections were included in all categories in both textbooks. While 

connection skills were observed in each question in the textbook of the private publishing house, no 

connection skill was found in only 1 of 47 questions in LGS and in 43 of 104 questions in the textbook of 

MEB publications. As a result, the findings reveal that LGS and the textbook belonging to the private 

publisher (B) are at a similar level in terms of connection frequency, but the textbook (A) of the MEB 

publisher is insufficient. 

  

 

 

Keywords:Mathematical connection, connection skills, high school transition system (LGS), mathematics 

textbooks. 
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1. Introduction 

 

The ability to make connections plays an important role in students' permanent and meaningful 

learning, applying what they have learned, and increasing the quality of teaching, which affects the 

academic success of students in terms of mathematics learning and teaching. For this reason, the ability to 

make connections for effective mathematics learning and use is among the basic skills that are aimed to 

be developed in students (MEB, 2009a; 2009b and 2013). The knowledge of mathematics itself is used to 

make connections or bridges between mathematical ideas (Eli, 2009). Connection in the standards of the 

National Board of Mathematics Teachers ( NCTM, 2000); express the relationships within and between 

mathematical ideas. It includes associating mathematics with life and other disciplines. With the adoption 

of the constructivist approach in our country, the linking skill has started to be conceptually included in 

the secondary school mathematics teaching programs implemented since 2005. Especially in the 2005 

program, more detailed explanations are included along with sample linking activities on the basis of 

topics related to linking. In the literature, it is seen that connection skills are generally examined in four 

categories (Bingölbali & Coşkun, 2016; Mumcu, 2018; Leikin & Levav-Waynberg, 2007; Eli, 2009): i) 

associating with real life (Kurtuluş Kayan, 2019; Özgeldi & Osmanoğlu, 2017; Koyunkaya). et al., 2018), 

ii) connection between different representations of the concept (Duval, 1998; Kaput, 1987; Lesh, Post, & 

Behr, 1987; Janvier, 1987; Vil1egas, 2009; Mesquita, 1998), iii) connection between concepts ( 

Businskas, 2008; Lockwood, 2011; Leikin & Levav-Waynberg, 2007) and iv) linking with different 

disciplines (Özgen, 2017; Yıldırım, 1996; Bodner, 2007; Matthews, Adams, & Goos, 2009). These four 

connection frameworks are also emphasized in the primary school mathematics curriculum (MSLC). 

According to Özsoy and İkikardeş (2004), the main source of classroom practices is the curriculum, and 

the resources used in classroom environments are shaped within the framework of the curriculum. 

Mathematics textbooks are the primary sources used in teaching mathematics. The course book and the 

lecture notes kept in the course are the only source of many students' experiences in mathematics (Özsoy 

& İkikardeş, 2004). Unit evaluation questions in the textbooks allow students to evaluate as a result of 

what they have learned. However, the use of textbooks among teachers occurs in two different ways: the 

textbook distributed by the Ministry of National Education (MEB) and a special resource. In addition to 

the textbook distributed by the Ministry of National Education, teachers often use additional special 
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resources that are preferred. Özmantar et al. (2017) determined that the use of source books other than 

textbooks by mathematics teachers is 80%. 

Using the questions in the textbooks, the students also prepare for the national exams with the 

experience they have gained from these questions. In our country, since 2018, changes have been made in 

the questions of the transition system to high schools (LGS), and it is called new generation questions or 

skill-based questions in the exam, which can not be solved only with the use of information, where 

beyond the knowledge, knowing the essence of the subject and reasoning about the subject and between 

the subjects, as much as possible, with examples from real life. created questions began to take place . In 

the Ministry of National Education Transition to Secondary Education directive prepared by the Ministry 

of National Education, it is stated that the exam questions are prepared in a way to measure the student's 

reading comprehension, problem solving, interpretation, analysis, critical thinking, inference, scientific 

process skills and similar skills (MEB, 2018a). However, while questions containing high-level thinking 

skills are asked in the exam, it is understood that textbooks are not very sufficient to prepare students to 

answer these questions (Kızkapan & Nacaroğlu, 2019). 

Comparing the LGS questions with the questions in the textbooks in terms of associating skills 

was deemed worthy of research in terms of whether the questions were compatible or not. In this context, 

it is thought that this study, in which the unit evaluation questions in the mathematics textbooks and the 

high school transition system (LGS) mathematics questions of the last 3 years will be classified according 

to the connection skills, will contribute to the literature. 

Bingölbali and Coşkun (2016), Dilegelen (2018); In these two studies, the conceptual framework 

was examined, and some arrangements suitable for our study were deemed necessary. The conceptual 

framework used in this context consists of four categories: 1) associating between concepts, 2) associating 

between different representations of the concept, 3) associating with real life, and 4) associating with 

different disciplines. 

In line with the purpose of the research, the following three main research questions and sub-questions 

will be answered. 

1. What kind of "connection skills" are included in the question roots of the 2018-2019-2020 LGS 

mathematics questions? 

3
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1.1.How often was the connection with real life included in LGS math questions for the years 

2018-2019-2020? 

1.2.How often was the connection between different representations of the concept included in the 

2018-2019-2020 LGS math questions? 

1.3.How often was the connection between concepts included in LGS math questions for the years 

2018-2019-2020? 

1.4.How often was the connection with different disciplines included in LGS mathematics 

questions for the years 2018-2019-2020? 

2. What kind of "connection skills" are included in the question roots of the evaluation questions of 

the subjects in the 8th grade A and B mathematics textbooks? 

2.1.How often is the connection with real life included in the evaluation questions of the subjects 

in the 8th grade A and B mathematics textbooks? 

2.2.How often is the connection between different representations of the concept included in the 

evaluation questions of the subjects in the 8th grade A and B mathematics textbooks? 

2.3.How often is the connection between concepts included in the evaluation questions of the 

subjects in the 8th grade A and B mathematics textbooks? 

2.4.How often is the relationship between different disciplines included in the evaluation 

questions of the subjects in the 8th grade A and B mathematics textbooks? 

3. What are the similarities and differences between the LGS mathematics questions and the 

evaluation questions of the subjects in the 8th grade A and B mathematics textbooks in terms of 

the types of connections made? 

 

2. Method 

Model of the Research 

In this study, the document analysis method, which is included in the qualitative research design, 

was used. Qualitative research is the process of revealing events and perceptions in their natural 

environment in a holistic way without going beyond their reality, in which methods such as interview, 

document analysis and observation are used to collect data. In qualitative research, data is generally 

collected through observation, interview and document analysis (Yıldırım & Şimşek, 2016, p. 189). 
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Document analysis is the process of coding and examining according to a certain norm or system by 

bringing together the existing records and documents related to a work to be done (Çepni, 2010). In this 

study, document analysis was used as a method. Mathematics questions in LGS exams and 8th grade 

mathematics textbooks unit evaluation questions were analyzed according to sub-learning areas, and the 

classification was finalized by taking expert opinions. The research data analyzed as a result of the 

examination are presented in tables and the data obtained are given numerically. Thus, in this study, 

which has a qualitative structure, quantitative methods were also used. 

Universe-sample (Reviewed Documents) 

The universe of the study; The mathematics questions in the 2018-2019-2020 LGS exams, the 8th 

grade mathematics textbook distributed by the Ministry of National Education for use in public schools, 

and alternatively, the mathematics textbook questions of a private publishing house that are frequently 

used by teachers. The mathematics questions of the central exam held under the name of 2018-2019-2020 

LGS were accessed from the relevant website of the Education Information Network (EBA). The 

examined book A is the 8th grade mathematics textbook published by the Ministry of National Education 

(MEB, 2019). The examined book B is an 8th grade mathematics textbook belonging to a private 

publishing house (Varışlı & Demir, 2020). 

Data Collection Tools 

In this study, two different mathematics textbooks used in 8th grade and LGS mathematics 

questions were used as data collection tools. 104 questions in book A were taken from the unit evaluation 

questions, and 80 questions in book B were taken from the skill-based questions section. A total of 231 

questions, together with 47 questions in LGS, were examined according to the components of associating 

skills. 4 of the 5 learning areas in the secondary school mathematics curriculum were selected and the 

content of the questions belonging to 8 sub-learning areas was used as a data collection tool. 5 learning 

areas in mathematics; numbers and operations, data manipulation, probability, algebra, geometry, and 

measurement. Geometry, by its nature, has a separate structure in itself, apart from other learning areas. In 

this learning area, there may be connections with the sub-concepts of the concept. Therefore, geometry 

and measurement learning area is excluded because it is more limited and does not provide rich data 

compared to the types of connection seen in other learning areas. It should also be noted that the 

expression "sub-learning area" is also used as the word "subject" in other parts of the study. 

5
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Table 1. Learning areas and sub-learning areas examined in LGS and 8th grade mathematics textbooks 

A. Numbers and 

Operations 

B. Data 

processi

ng 

C. Possibility D. Algebra 

Factors and Multiples Data analysis 

 

Probability of Simple 

Events 

 

Algebraic 

Expressions and 

Identities 

Exponential 

Expressions 
  Linear Equations 

Square Root 

Expressions 
  Inequalities 

 

Table 2. The number of examined questions belonging to sub-learning domains 

Sub-Learning Areas 

Book A 

Number of 

Questions 

Book B Number 

of Questions 

Number of LGS 

Questions 

Factors and Multiples 13 10 5 

Exponential 

Expressions 
13 10 7 

Square Root 

Expressions 
20 10 10 

Data analysis 6 10 4 

Probability of Simple 

Events 
11 10 6 

Algebraic Expressions 

and Identities 
15 10 6 

Linear Equations 14 10 6 

Inequalities 12 10 3 

 

The distribution of LGS questions belonging to sub-learning domains by years is given in the table 

below. The units were examined in the order included in the secondary school mathematics curriculum. 

The contents of the units in the A and B textbooks are the same. 

Analysis of Data 

In this section, the stages in the analysis process of the data obtained in the research will be 

mentioned. The connections analyzed in LGS and textbook questions were evaluated within the 
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framework of four categories. These are: i.) associating between concepts, ii.) associating between 

different representations of the concept, iii.) associating with real life and iv.) associating with different 

disciplines. These categories were determined by considering the study of Bingölbali and Coşkun (2016). 

Within the scope of Dilegelen's (2018) study, a new sub-category was added to the findings obtained 

within the framework of these categories and sub-categories: real-life object use. The subcategories of 

connection between different representations of the concept were arranged in accordance with the 

content of our study. A new category has been opened for questions that are not associated. 

 Linking Concepts 

In this study axis, interconceptual connection takes place as a component of the connection skill 

and there are two sub-categories of this component. (Bingölbali and Coşkun, 2016). 

 Establishing a relationship between the concept and other concepts 

 Establishing a relationship between the concept and its sub-concepts and the sub-concepts 

themselves 

However, the component of 'establishing a relationship between the concept and its sub-concepts 

and between the sub-concepts' is not included in this study since it naturally exists in the content of the 

questions. Therefore, only the sub-category of 'relationship between the concept and other concepts' was 

discussed. 

Establishing a relationship between the concept and other concepts 

It is the connection of a mathematical expression or concept with different expressions/concepts 

(Bingölbali & Coşkun, 2016). In this component, it may be possible to make connections between the 

same learning areas or different learning areas. 

In the question given below, the solution of decimal representations of numbers using integer 

powers of 10 is handled with the help of exponential expressions. A correlation has been made between 

exponential expressions and decimal notation. In this respect, it has been determined that the question has 

the ability to establish a relationship between the concept, which is a sub-category of the category of 

connection between concepts, and other concepts. 
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Writing a decimal notation as a sum of place values is called decimal notation analysis. The 

analyzed figure of the heights of five players in a basketball team is given in the table below. 

 

The coach of the team will play one of the players shorter than 185 centimeters tall as the 

quarterback. How many players can play as playmaker among the given players? 

A)4 B)3 C)2 D)1 

Figure 1. Example of a question belonging to the 2020 LGS exponential expressions sub-learning domain 

(Booklet A, P.3) 

 

Associating Different Representations of the Concept 

Representation is a mathematical expression/concept or the presentation of a mathematical 

relationship in a certain way (NCTM, 2000). The concept of mathematical notation is generally expressed 

in the form of representations in the international literature. 

In this study, the notation styles that are frequently used in the literature and the connections 

between them are taken as basis. The main titles are taken from the study of Bingölbali and Coşkun 

(2016). The main headings that shape the subcategories are as follows, and the transformations between 

the display formats will be given in detail in the conceptual framework table. 

 Verbal expression: It is the connection of a given verbal expression with other forms of 

representation. 

 Concrete object: Number stamps, fraction bars, real models, mockups, etc. establishing a 

relationship between objects and other representations. 

 Picture/diagram: Number line, area model, etc. using images and establishing relationships with 

other display formats. 

8



 

6thINTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 

21-24 June 2022, Istanbul, Turkey 

 

 

ICOM 2022 

ISTANBUL / TURKEY 

 Written symbols: It is the connection between symbols such as fraction notation, algebraic 

expression, and other representations. 

 Table: Establishing a relationship between a frequency table or a table containing any 

mathematical idea and other display formats. 

 Graph: It is the establishment of a relationship between display formats such as column graph, 

line graph, circle graph and other display formats. 

 Equation: Establishing a relationship between the structure of the equation and other forms of 

representation. 

 Figure: It is the establishment of a relationship between figures containing mathematical ideas 

(triangle, quadrilateral, circle, etc.) and other representations. 

The sub-categories, LGS questions and textbooks unit evaluation questions that emerged with the help 

of the above titles and the study of Dilegelen (2018) were reviewed and revised in accordance with the 

content of this study. 

In the question given below, the net numbers according to the courses are given as a column chart. 

In order to determine the information about the graphic, questions containing verbal expressions are 

given. Therefore, the question was evaluated as a graphic-verbal expression as a sub-category of the 

category of connection between different representations of the concept. 

 

Column showing the nets that Beste made in Turkish, mathematics and science courses in a 

practice exam graph is given on the side. According to this: 

a) Which course did he make the most clear? 

b) How many nets did he make in all three courses? 

c) By how many times is the net number in the science lesson more than the net number in the 

mathematics lesson? 
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Figure 2. Example of a question belonging to the data analysis sub-learning domain of book A (p.98, 

question 12) 

 

Connection with real life 

Today's world, with its changing and developing structure, also changes its expectations from 

people and the world of education. While education is a part of life, its connection with daily life has been 

inevitable. It is expected that the problem situations encountered will be associated with daily life and 

awareness will be raised in this direction. The connection between real life and mathematics, which has 

an important place in the learning-teaching process of mathematics, is frequently emphasized in the 

relevant literature. 

This type of connection is covered under three sub-components in this study: 

 Considering the concept in a context 

 Giving real-life verbal examples 

 Use of real-life objects 

Considering the concept in a context 

The Turkish Language Connection (TDK) defines the concept of context as situations, events, 

relationships, or connection in any case. Context, with its educational aspect, is the connection of the 

phenomenon, event or technology that an individual encounters in real life with the course content (MEB, 

2012). 
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In the question given below, it is seen that the concept of probability is built on the choice of bus 

seats and associated with social and social space from daily life. Therefore, the question was evaluated in 

the subcategory of taking the concept in a context, which is the subcategory of the category of associating 

with real life. 

 

 

 

In the figure above, the seats of a bus are shown with occupied and empty seats. 

• The probability that the ticket Ahmet bought is by the window is x. 

• The probability that Fatih's ticket is on the aisle side is y. 

• Fatih bought his ticket after Ahmet bought it. 

Based on this, which of the following is true? 

Figure 3. Example of question belonging to book B probability sub-learning domain (p.181,1st question) 

 

Verbal example from daily life 

Verbal expression of real-life contexts is the only verbal use of real-life relationships when 

teaching a mathematical concept. (Bingölbali and Coşkun, 2016). 

In the statements given in the question below, it is desired to distinguish between true and false. 

For example, in the 3rd expression, the inequality is given in accordance with the verbal expression that is 

associated with real life. Since the concept's use of verbal expression is in question, the question was 

evaluated in the subcategory of giving verbal examples from real life. 
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Write (T) next to the statements in the table that are true and (F) next to the ones that are incorrect. Write 

the correct ones for the incorrect statements. 

 

Figure 4. Example of a question belonging to the inequality sub-learning domain of book A (p.186,1st 

question) 

 

Use of real-life objects 

It is the construction of mathematical expressions and concepts over an object that will make it 

easier to understand that concept from any daily life. The use of the surfaces of medicine boxes can be 

evaluated within the framework of this sub-category while exploring the surface areas of the rectangular 

prism. 

Apart from the study of Bingölbali and Coşkun (2016), this component was found appropriate to 

be included as a sub-category by examining Özgen's (2018) study. 

The following question explains the steps of setting up and solving equations with the help of 

folding traces using cardboard material. Thus, the question was evaluated in the real-life object use sub-

category. 

Orange and green colored K and L folded rectangular papers are fully unfolded as shown below. 

The short side of L when folded is 1 cm more than half of the short side of K. 
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When fully opened rectangles are placed along their short sides without any gaps as above, a distance 

equal to the specified length is formed. What is the short side of the orange rectangle that is fully 

extended? 

A) 4   B) 8    C) 16       D) 24 

Figure 5. Example of a question belonging to the linear equations sub-learning field in book B 

(p.230,5.question) 

 

Linking with different disciplines 

According to the Turkish Language Institution, discipline; It is defined as the whole of knowledge 

that is or may be the subject of teaching, that is, a branch of science. Within the framework of this 

component, it is seen that studies are mostly carried out on the interdisciplinary teaching (disciplinary) 

approach in the literature. According to Yıldırım (1996), if it is thought that disciplinary teaching is 

teaching within the framework of a certain subject area (Science, Mathematics, History, etc.), 

interdisciplinary teaching can be expressed as bringing together subject areas in a meaningful way around 

certain concepts. 

The category of connection with different disciplines is examined in two subcomponents 

(Bingölbali & Coşkun, 2016). 

 Considering the concept in a different disciplinary context 

 Expressing the connection with different disciplines with verbal examples 
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Considering the concept in a different disciplinary context. 

Teaching a mathematical concept or expression through the context of a different discipline is 

evaluated within the framework of this sub-component. 

a 12-unit string length into different lengths, Pythagoras obtained notes of different thickness and 

fineness. 16/15 of the length of a string that makes the sound of the note Don gives the sound of Si, and 

6/5 makes the sound La, 4/3 the Sol sound, 3/2 the Fa sound, 8/5 the Fa sound. 8/5 of them give the Mi 

sound and 16/9 of them give the Re sound (Orhan, 1995). Pythagoras' studies in this direction formed 

the basis of the relationship between mathematics and music. Thus, the use of fractions in the discipline 

of music can be shown as an example of this component. 

In the question given below, the concept of inequality in mathematics was tried to be expressed 

with a subject belonging to science by using temperature values. Thus, the question was evaluated in the 

subcategory of considering the concept in a different disciplinary context. 

 

A broken thermometer can show the temperature in the environment up to 3 °C higher or up to 4 

°C less than the actual temperature. The actual temperature of an environment where this thermometer 

shows 18 °C is a degree Celsius. Which of the following inequalities is the largest interval that a can 

take? 

 

Figure 6. Example of a question belonging to the data analysis sub-learning domain of book A 

(p.187,12.question) 

 

Expressing the connection with different disciplines with verbal examples. 

In this component, it includes only verbal connection of a mathematical concept/expression or 

subject with other disciplines (Bingölbali & Coşkun, 2016). In the teaching of negative numbers included 

in integers, verbal use of the concepts of temperature and thermometer belonging to science while giving 

examples of numbers is a situation evaluated in this sub-category. 

For example; In the question given below, “In the census in a province, it would be more 

appropriate to show the number of people according to the districts with a circle graph.” In the statement, 
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the use of a circle graph belonging to the data analysis sub-learning domain has been associated with 

social sciences, which is a different subject area. Thus, the question was evaluated in the subcategory of 

expressing the connection with different disciplines with verbal examples. 

 

Write (T) next to the statements in the table that are true and (F) next to the ones that are incorrect. 

Write the correct ones for the incorrect statements. 

 

Figure 7. Example of a question belonging to the data analysis sub-learning domain of book A (p.96, 1st 

question) 

 

No connection 

If any correlation could not be established between mathematical concepts and expressions, they 

were evaluated in this category. 

For example; In the question on the subject of EBOB (25, 125) = 25 (greatest common divisor) 

multipliers and multiples given below, only the greatest common divisor of two numbers, which is a 

mathematical term, is given. It is expected that the statement is false/true to be determined numerically. 

Therefore, the question was not evaluated in any connection category. 

 

Write (T) next to the statements in the table that are true and (F) next to the ones that are incorrect. 

Write the correct ones for the incorrect statements. 
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Figure 8. Example of a question belonging to the factor and multiples sub-learning domain of book A 

(p.53,1st question) 

 

3. Results 

General evaluation of the connection between concepts 

In this category, 33 connections (70%) were found in 47 questions in LGS, 23 (22%) connections 

were found in 104 questions in book A, and 49 (61%) connection skills were found in 80 questions in 

book B. 

 

Figure 9. General assessment of the connection between concepts 

In the chart above, the connections related to the sub-categories are given collectively in order to 

provide an overview. For example; While 'relationship between the concept and other concepts' was seen 

in LGS questions and book B at a similar rate, it was determined as almost half in book A. 

General assessment of the connection between different representations of the concept 

In this category, 24 connections (51%) were found in 47 questions in LGS, 21 connections were 

found in 104 questions in book A (20%), and 23 connection skills were found in 80 questions in book B 

(28%). 

1a: relate the concept to other concepts

LGS

book A

book B
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Figure 10. General assessment of the connection between different representations of the concept 

In the chart above, the connections related to the sub-categories are given collectively in order to 

provide an overview. When we look at the sub-categories of 'Connection between different 

representations of the concept', it is seen more in most of the LGS exams than in the others. The most 

common sub-category was picture/diagram-written symbols (2j). 2c, 2g and 2k categories were found 

only in one of the three. 

General assessment of real-life connection 

In this category, 44 connections (93%) were found in 47 questions in LGS, 28 connections (27%) 

in 104 questions in book A, and 79 (98%) connection skills in 80 questions in book B. 

 

Figure 11. General assessment of real-life connection 

LGS

book A

book B

3a:consider the
concept in

context

3b:real-life
verbal example

3c:use of real-life
objects

LGS

book A

book B

17



 

6thINTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 

21-24 June 2022, Istanbul, Turkey 

 

 

ICOM 2022 

ISTANBUL / TURKEY 

In the chart above, the connections related to the sub-categories are given collectively in order to 

provide an overview. Considering the sub-categories of 'relationship with real life', it was seen that the 

concept was mostly handled in a context (3a). While LGS and book B are at a similar level, book A lags 

behind them. 

General assessment of linking with different disciplines 

In this category, 5 connections (5%) were found in 104 questions in book A, and 1 (1%) in 80 

questions in book B. 

 

Figure 12. General assessment of linking with different disciplines 

In the chart above, the connections related to the sub-categories are given collectively in order to 

provide an overview. It is seen that there are no sub-categories of 'connection with different disciplines' in 

LGS. It was found in book A at a higher rate than the others. 

General assessment of unrelated questions 

In this category, one (2%) out of 47 questions in LGS and 43 (41%) out of 104 questions in book 

A were found to be unrelated questions. 

 

4a:considering the
concept in a different
disciplinary context

4b:expressing the
association with different

disciplines with verbal
examples

LGS

book A

book B

LGS book A book B

İY:no association
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Figure 13. General assessment of unrelated questions 

In the chart above, the connections related to the sub-categories are given collectively in order to provide 

an overview. While it was seen that there were a higher rate of unrelated questions in book A than in the 

others, this situation was never encountered in book B. 

 

4. Discussion, Conclusion 

Of connection between concepts was the second most common connection skill for LGS, book A 

and book B for all three. For the connection between concepts, 8 sub-learning areas belonging to 4 

learning areas (numbers and operations, data processing, probability and algebra) were examined. When 

viewed proportionally, the highest number of connections are seen in LGS questions in the category of 

'connection between concepts', followed by book B and then book A. In this respect, while LGS and the B 

book belonging to a private publishing house are similar in terms of connection frequency, it is seen that 

half of them have connections in the A book belonging to the Ministry of National Education 

publications. In addition to how often the connection is given, the quality of the connection is also 

important. In this respect, the connections made in LGS and book B are more complex and usually made 

between more than two concepts, while the connections made in book A are simpler and usually between 

two concepts at most. For example, with square root expressions; While the concept of area and length 

can be associated at the same time, square root expressions in book A are only associated with the 

concept of length. 

In general, in the literature and in this study, the correlation of mathematics within itself has the 

result that it is at a sufficient level compared to other types of connection. In Dilegelen's (2018) analysis 

of the activities in the textbooks in terms of the types of connection skills, the most connection was seen 

as the connection between concepts, and it can be said that although it is not the most common connection 

in our study, it is at a high level. In Yorulmaz and Çokçalışkan's (2017) study of pre-service teachers' 

views on mathematical connection, it was seen that the relation within mathematics itself came to the 

fore. Many concepts in mathematics are related to each other and the previous concept facilitates the 

learning of the next concept. For example; during the analysis of decimal representations, exponential 

expressions are used by using integer powers of 10 and both concepts are associated with each other. 
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Therefore, due to the nature of mathematics, it is inevitable to include connections within themselves 

while writing or explaining the concepts. 

The connection category LGS between different representations of the concept was the 3rd most 

common skill out of the 4 categories examined for both book A and book B. 8 sub-learning domains 

belonging to 4 learning domains (numbers and operations, data processing, probability and algebra) were 

examined to make connections between different representations of the concept. When viewed 

proportionally, the highest number of connections were found in LGS in the category of 'connection 

between different representations of the concept'. It is seen that there is a similar ratio in book A and book 

B and at half the level of LGS. While LGS and B book are similar in the categories of associating 

between concepts and associating with real life, books A and B are similar here and lag behind LGS. But 

it should be noted that; While the notation style used in book A is seen with 1 connection in 1 question, 

other types of connections have been encountered in addition to 1 connection seen in 1 question in this 

category in book B. The situation stated for book B is similarly valid for LGS questions. Students can 

focus on the forms of representation they frequently encounter in books and expect in that direction. In 

this respect, different forms of representation should be frequently included in the books and in practice in 

accordance with the structure of the subject. 

In the study of Gürbüz and Birgin (2008), the comparison of the ability of students at different 

education levels to perform operations with different representations of rational numbers was examined. 

As the education level of the students increased, their ability to operate with rational numbers using 

geometric models, algebraic expressions and number line representations increased; However, it was 

determined that the skills of making operations using algebraic expressions increased more than other 

notation formats. In our study, algebraic expressions were evaluated in the 'written symbol' category, for 

example, connection of algebraic expressions using the area model (picture/diagram) was frequently seen. 

The fact that the subject of algebraic expressions can be used frequently in many different subjects, 

especially in problem posing and solving, has made it inevitable to develop and use this skill. In addition, 

algebraic representations are mostly included in mathematics textbooks in different studies (Baştürk, 

2007, 2010). 

Associating with real life LGS, book A and book B was the most frequently encountered skill out 

of the 4 categories examined for all three. For the ability to relate to real life, 8 sub-learning domains 
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belonging to 4 learning domains (numbers and operations, data processing, probability and algebra) were 

examined. 

When viewed proportionally, the highest number of connections in the 'relationship with real life' 

category were found in book B. It is seen that there are similar correlations in LGS and book B. While 

LGS and B book are similar in the categories of associating between concepts and associating with real 

life, book A lags behind them here. Students preparing for the exam using book A may have difficulties if 

they take the exam by being familiar with the questions that are not associated. 

It is seen that similar connection processes take place in advanced mathematics subjects as well. 

Mumcu (2018), in his study, investigated the extent to which pre-service teachers can use their connection 

skills for the concept of derivative, and found that pre-service teachers use real-life connection the most. 

The high level of connection used supports our research. 

In addition, Lee (2012) investigated the real-life perspectives of pre-service classroom teachers. In one of 

the research findings, approximately 47% of pre-service teachers believed that almost any mathematical 

concept could be connected to something in the real world. The remaining 53% said that there are more 

appropriate concepts for real-life connection. The explanation of one participant, “For all kinds of 

mathematical concepts, if there is a mathematical concept that we cannot associate with the real world, 

why do we need to learn it?” is remarkable. From this point of view, it can be thought that most of the 

subjects, concepts and mathematical expressions can be associated with daily life. In our study, it was 

inevitable that 'connection with daily life' was the most common component in connection skill. 

Associating with different disciplines category LGS, book A and book B were the least common 

linking skills for all three. 8 sub-learning domains belonging to 4 learning domains (numbers and 

operations, data processing, probability and algebra) were examined for associating with different 

disciplines. While no connection was found in this category in LGS questions, the interesting thing is that 

while the least connection was seen in book A in other categories, the highest number of connections 

were found in book A here. Associating with different disciplines is frequently emphasized in the related 

literature and it is generally recommended to teach with an interdisciplinary approach (Drake & Burns, 

2004; Klein, 1990; Lattuca, 2001; MEB, 2009; Özgen, 2016; Yıldırım, 1996; Bodner, 2007). However, 

this approach reveals that although it is an important point in teaching, it is not given enough importance 

in question writing. 
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Dilegelen (2018) has never encountered the ability to associate with different disciplines in the 

activities included in the 5th grade textbooks. Özdiner (2021), in his research on the connection skills of 

activities in primary and secondary school textbooks, found the ability to associate with different 

disciplines in 2% of the activities. Coşkun (2013)'s research findings show that mathematics and 

classroom teachers hardly establish any relationship between mathematics and other disciplines in the 

classroom. Similarly, in our study, this component was found very rarely in the questions in the 

textbooks, and surprisingly, the component of associating with different disciplines was not found in 

LGS. This shows that both the questions in the textbooks and the LGS questions do not attach importance 

to associating them with different disciplines. On the contrary, the importance of establishing 

relationships with different disciplines in mathematics teaching programs in MEB (2013 and 2018) 

mathematics curriculum was emphasized. 

General evaluation 

As a result of this research, book A of the Ministry of National Education publications distributed 

in public schools falls far behind the LGS exam in terms of connection frequency. In this respect, the 

frequency of associating skills in a book B belonging to a private publishing house, which is frequently 

used by teachers, was found to be worth investigating, and it was seen that it was similar or even higher 

than the connections in the questions of the LGS exam. The difference between the questions in book A 

and the questions in the LGS exam in terms of the frequency of connection skills may affect students' 

perceptions and increase their anxiety about the exam. Güler et al. (2019) received the opinions of 

teachers regarding the LGS exam, the students' achievements in LGS were generally defined as 

insufficient, and another result reached is that while the teachers found the new exam system questions 

positive in terms of quality, they stated that the existing infrastructure was insufficient, reducing the 

difficulty level of the questions. They suggested that the exam time should be increased. 

When the connection rates are examined, it is seen that in all three of the LGS, book A and book 

B, 'connection with real life', then 'connection between concepts', then 'connection between different 

representations of the concept' and 'connection with different disciplines' at least. Although they are 

similar in this direction, LGS and B book have closer results in terms of connection frequencies. In book 

A, the connection frequencies are insufficient compared to the others. In the 'Connection between 
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different representations of the concept' component, this situation differs, and both book A and book B 

lag behind the frequency of connection in LGS questions. 

There are no connections with different disciplines in LGS questions and it is seen that this 

component is not taken into account sufficiently in the textbooks. It is a shortcoming that this component 

is not found in LGS questions. In the literature, making connections with different disciplines in the MEB 

(2009a; 2009b; 2013) and NCTM (2000) standards is among the competencies that should be acquired by 

students. 

Although it is seen that more connections are made in 'relationship with real life' and 'connection 

between concepts', it is necessary to determine whether these relations are really qualified. For example; 

The real-life context in book A The expressions in the real-life context in book B are not qualitatively 

similar. While simpler and shorter expressions are used in the questions in the book A, long expressions 

with more than one connection are used in the questions in the LGS and book B. As a result of the results 

of this study, it is thought that it will make important contributions to the literature in terms of showing 

how and to what extent correlation is included in the exam questions, in the textbook (A) of the Ministry 

of National Education publications and in the alternative textbook (B) of a private publisher. 

 

5. Suggestions 

In this study, the type and frequency of connections in the questions in the LGS exam and in the 

textbooks were investigated. Studies on LGS generally focus on teacher and student opinions (Kızkapan 

& Nacaroğlu, 2019; Güler et al., 2019; Kablan & Bozkus, 2021; Şıvkın et al., 2020; Karakaya et al., 

2020). There are also studies that include comparisons with international exams (Küçükgençay et al., 

2021; Aktaş, 2022; Batur & Beyret, 2019). It is important for the transition to secondary education 

institutions that LGS is primarily adopted by the students in the national framework and that they achieve 

success in this exam. In addition to examining written sources, it may be suggested to conduct studies that 

examine classroom practices in terms of connection types of LGS questions. The main source of 

classroom practices is textbooks. There are researches within the framework of associating skills in the 

activities in the textbooks (Dilegelen, 2018; Özdiner, 2021). The use and benefit of the developed 

conceptual framework in the writing of textbooks and the development of curricula can be subject to 

further research. Most importantly, it is a necessity to revise the inadequacy in the textbooks and raise 
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them to the current LGS level. In this regard, cooperation can be made with the Ministry of Education 

Board of Education and Discipline, which examines the textbooks distributed for use in public schools. If 

the types and frequencies of connections in the questions in the textbooks are increased, both the 

relational understanding and the working principle for the exam will be provided. It should be noted here 

that although the ability to relate is emphasized in the curriculum, it is understood that the question 

content of the textbook distributed by the Ministry of National Education is insufficient in this regard. 

In addition to all connection skills, individual connection types can be examined in LGS 

questions. For example, only the real-life component can be focused on. 

For the connection component between the different representations of the few concepts, the 

content of the questions should be presented, which includes bidirectional conversion between the 

representation formats. For example; There should be a transition not only from the verbal expression 

representation to the equation representation, but also from the equation representation form to the verbal 

expression. Question contents that adopt an interdisciplinary approach should be produced for associating 

with a small number of different disciplines. In the literature, it is common to associate mathematics with 

the disciplines of science and technology (Karakuş et al., 2017; Çelikler et al., 2018; Bülbül et al., 2019; 

Kızılay and Kırmızıgül, 2019; Güder and Gürbüz, 2018; Bakırcı and Kutlu, 2018). In addition to these, 

studies can be carried out in which mathematics is associated with other different disciplines (music, 

painting, art, social sciences, history, etc.). Question contents can be produced in this direction. 
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Abstract 
The ST-segment elevation myocardial infarction- cardiogenic shock (STEMI-CS) is one of the 

strongest factors in patient mortality within hospitals. This paper presents a hybrid machine learning 
based approach for predicting the risk of mortality in patients with STEMI-CS. The proposed method 
combines an efficient evolutionary differential search algorithm (DSA) with support vector machine 
(SVM) in risk prediction phase. The incentive mechanism of using DSA is to optimally tune the 
parameters of SVM to improve its prediction ability. With a test on a real-world benchmark dataset, 
the proposed DSA-SVM is confirmed to have significant improvement compared with multiple 
machine learning models.   

 
 Keywords: Myocardial infarction, cardiogenic shock, STEMI-CS, risk prediction, SVM, DSA. 
 

1. Introduction 
Cardiogenic shock (CS) is the leading cause of within-hospital morality in patients with ST-segment 
elevation myocardial infarction (STEMI), and occurs in about 5-10% of patients [1]. Studies indicate that 
the admission rates for cases of STEMI has increased about 4-fold and even more in recent years [2].  
Machine learning (ML) is a multidisciplinary data analysis technique that automates the construction of 
analytical models. ML is an important branch of artificial intelligence developed according to the idea 
that computers can learn from data, recognize patterns, and make decisions with minimal human 
intervention. 

In recent years, researchers have been used various machine learning methods to predict the risk 
of morality in STEMI-CS patients. Bai et al. [1] used machine learning algorithms to establish an accurate 
and easy method for predicting the occurrence of STEMI. They showed that least absolute shrinkage and 
selection operator (LASSO) model has better predictive performance compared with other methods. The 
limitation of their work is that all possible factors that influence STEMI-CS are not considered in risk 
prediction phase. Deng et al. [3] used machine learning algorithms to establish an optimal model to 
predict the within-hospital death that occurred in STEMI-CS patients who underwent primary 
percutaneous coronary intervention. They proved that the random forest algorithm outperformed other 
ML algorithms in morality risk prediction process. Wu et al. [4] developed three deep learning models for 
enhancing the effectiveness of the STEMI diagnosis. Their prediction models are convolutional neural 
network (CNN), long short-term memory (LSTM), and hybrid CNN-LSTM. With a test on 883 STEMI 
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patients, the CNN-LSTM model performed better than LSTM and CNN, and even doctors in predicting 
STEMI. Shetty el al. [5] show the effectiveness of the ML models in the morality detection of STEMI 
patients. They proved that the ML models overcome the limitations of the traditional logistic regression 
based models. Their results showed that the random forest and multiple perceptron models outperformed 
counterparts in terms of accuracy measure. Lee et al. [6] used logistic regression with regularization, 
random forest, extreme gradient boosting (EGB), and SVM models to predict the short- and long-term 
mortality of STEMI patients. Their comparison showed that the ML-based models outperformed other 
algorithms in terms of solution quality. Al-Zaiti et al. [7] developed some classifiers for the prediction of 
underlying acute myocardial ischemia in patients with chest pain. Their proposed method outperformed 
the doctors and commercial interpretation software. Liu et al. [8] developed a deep learning model as a 
diagnostic support tool based on a 12-lead electrocardiogram. The objective was to improve the diagnosis 
of STEMI disease.  

A review of related work shows that promising results have been made in diagnosing and 
determining the risk of mortality in STEMI-CS patients. However, the performance of existing methods is 
not ideal and more effort is needed in this area. In this research, we proposed DSA-SVM algorithm to 
predict the risk of morality in STEMI-CS patients. The proposed model takes as input the admission 
features of patients, analysis them and groups them in one of the high-risk or low-risk classes. The reason 
for using the DSA algorithm together with the SVM is to optimally adjust the parameters of the SVM to 
improve its grouping performance. The proposed model is compared with standard support vector 
machine (SVM), least absolute shrinkage and selection operator (LASSO), and adaptive neuro fuzzy 
inference system (ANFIS) model. The models were evaluated on 300 and 100 STEMI-CS patients in the 
training and test datasets, respectively. Models were compared based on the precision, recall, and F1-
measure criteria. The results justify that the proposed DSA-SVM model showed best predictive 
performance and outperformed other models in terms of performance measures.  

2. Support vector regression  
SVM is a supervised machine learning method equipped with association learning algorithms [9], [10], 

[11]. For a dataset  , N
i i i

D O y


 , where N indicates the number of data objects, { ,  ,  ...,  }i i i imO o o o 1 2  is 
a m-dimensional data object defined, and iy is the label that assigned to iO . In the SVM algorithm, each 
data object iO D is considered as a point in m-dimensional space. The goal is to create a prediction 
model using some training data to separate data objects through finding a hyperplane that differentiates 
the data objects into some separate groups. This hyperplane is calculated based on a few data points, 
known as support vectors. In other words, SVM aims to maximize the minimum distance of data points 
from a separator hyperplane by solving the following equation: 

*( ) ( ) ( ,  )
N

i i i
i

f o K o o b 


          (1)  

where ( , )iK o o denotes the kernel function, that is computed by multiplying the two inner vectors 
o  and io  in the feature space ( )o and ( )io , respectively. Three well-known kernel functions are 
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radial basis function (RBF), sigmoid, and polynomial basis function. We use the RBF kernel function in 
SVM due to its high performance and easy configuration compared to other kernel functions. The precise 
tuning of C, γ and ε is an important task to increase the prediction performance of the SVM with RBF 
kernel. To optimize these parameters, we used DSA algorithm, which is described in the next section.  

3. Differential search algorithm 
Figure 1 shows the working principle of differential search algorithm (DSA). The DSA begins its work 
with a randomly distributed population P, known as superorganism. Each member, iP  in the 
superorganism is defined as follows: 

, .( )       1,  2,  ...,  

                                                         1,  2,  ...,  
i j j j jP rand up low low i N

j D
   


             (1) 

where N indicates the population size and D indicates the problem dimension.  jup  and jlow  are 

the upper and lower bond of the value that each variable of iP  can posses. After initialization, stopover 
vectors are generated between the organisms. Searching for a stopover site at the areas can be described 
by a Brownian-like random walk model. The following equation is defined to calculate the stopover 
vector iS  

 .i i i iS P O P                    (2) 

iO O  is the ith individual in the historical superorganism O, and   is the scale factor, which 
controls the amplitude of the search-direction matrix i iO P . Historical superorganism helps the DSA to 
uses its experiences from previous generations. O is defined as follows: 

 O F P                   (3) 

The function F is a transformation function that converts superorganism P into superorganism O 
according to a transformation strategy. Standard DSA has four different transformation strategy including 
bijective, surjective, elitist-1 and elitist-2. The philosophy behind bijective method is to evolve the 
superorganism towards to "permutated superorganism", i.e. random directions. In surjective method, the 
superorganism go to some of the random top-best solutions. The elitist-1 method evolves the 
superorganism towards to "one of the random top-best" solution. In elitist-2 method, the superorganism 
go towards to "the best" solution. The value of scale factor W is generated by a gamma random number 
generator controlled by a uniform distribution random number between 0 and 1. W is defined as follows: 

 1 2 3[2. ]g r r r                     (4) 
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where g is a random number produced using a gamma random number generator, 1r , 2r   and 3r  are 
random numbers generated in the range of [0, 1]. The formula used for computation of   allows the 
superorganism to radically change direction in the habitat. The stopover vector iS  that will participate in 
producing the population at next generation is calculated as follows: 

i'

i

if  r =0
if  r =1

i
i

i

S
S

P


 


                 (5) 

ir  is an integer number either 0 or 1. After computation of stopover vectors, selection operator is 
used to choose the next population between the stopovers and the population. For each member iP  the 
selection operator operates as follows: 

   
   

' '

1

'

if  

if  

i i it
i

i i i

S f S f P
P

P f S f P


  


              (6) 

1t
iP   is the member at generation t+1,  '

if S  and  if P  are the fitness of stopover '
iS  and 

member iP , respectively. Some members of the superorganism obtained at the end of DSA’s process can 
overflow the allowed search space limits. The individuals beyond the search-space limits are regenerated 
using Eq. (1). At the end, the best member is introduced as a final solution to the problem. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. The working principle of the DSA algorithm 
 
4. DSA-SVM 
Figure 2 shows the working principle of the DSA-SVM algorithm for predicting the morality risk of 
STEMI-CS patients. The proposed approach includes two phase: model construction and model usage. In 

1. Initialization 
Set the value of limits, and the maximum iteration number 

repeat  
2. Compute the stopover vectors 
3. Compute the historical organisms 
4. Compute the next generation population 
5. Control the limit of stopover site 

until stopping conditions are met 
Return the best solution  
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the former phase, the system creates a classification model using the training data, and identifies the most 
important features that improve the classification performance. In the latter phase, the system applies the 
constructed model on the unseen test data to classify the data objects. The main tasks of model 
construction are tuning SVM parameters and feature selection. The DSA algorithm is used to tune 
optimal values for three SVM's parameters C,  , and  . The algorithm also identifies an optimal subset 
of demographic characteristics, medical history, risk factors, clinical symptoms, and treatment strategies 
that have the maximum influence on the morality risk prediction. In the model construction phase, the 
algorithm creates a population of solutions. Each solution iX  is composed of several patient features 
permutation and SVM's parameters combination, as follows: 

1 2 3 1 2 6{ , , , , ,..., }iX p p p f f f           (7) 

where 1 2 3, ,p p p  are float numbers, which are candidate values for the three parameters C,   and 

 . These values are generated randomly. The boundary of values for 1p  is [0, 100], and for 2p  and 3p  is 
[0, 1]. Each feature jf  is a binary variable with value 1 when the candidate feature jf  is considered for 

model construction, and 0 when the feature is ignored. 

The fitness of individuals is measured using the mean squared error (MSE) of 10-fold cross-
validation for SVM. The fitness function is defined as 

2

1

1 ( )
n

i i
i

MSE X X
n 

 


           (8) 

where iX


 indicates the predicted value, iX  indicates the observed value, and n indicates the 
number of all data objects in the dataset. The individual with a smaller value of MSE is more preferable.  

Until termination conditions are met, the algorithm iteratively updates the population. Finally, the 
best solution is identified and returned, which is composed of the most important patient's features and 
the optimum values for SVM parameters.   
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Figure 2. Flowchart of the proposed DSA-SVM algorithm 

 
5. Numerical results and discussion  
To evaluate the proposed model a benchmark data set including 400 records of STEMI-CS patients is 
used. The dataset is about patients admitted due to STEMI-CS complication in Shahid Madani Hospital of 
Tabriz University of Medical Sciences. The collected data are related to a 10-year period from 2009 to 
2018. This dataset includes five main features: demographic characteristics, type of myocardial infarction, 
risk factors, clinical symptoms, and type of treatment used. The patient's demographic characteristics 
include age and gender. The age of patients is in the range of 20 to 99 years. Risk factors include diabetes, 
high blood pressure, kidney failure, smoking, history of myocardial infarction, and history of coronary 
artery bypass surgery. Chest pain, symptoms of shortness of breath and disturbance of consciousness are 
among the clinical symptoms of the patient. Therapeutic strategies used include thrombolytics, 
mechanical ventilation, non-thrombolytic drug therapy, glycoprotein IIb/IIIa inhibitors, inotropes, 
percutaneous vascular interventions, coronary artery bypass graft surgery, balloon pump and complete 
vein revascularization. It should be noted that 80% of the data set records are considered as training set, 
and 20% of the records are considered as test set. 
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The proposed DSA-SVM method is compared with three well-known methods including the 
standard SVM model, LASSO regression, and ANFIS. The parameters of these algorithms are configured 
based on the values specified by the authors in the original publications. In order to determine the most 
effective factors in predicting the morality risk of STEMI-CS patients, the proposed DSA-SVM model is 
trained with different combinations of patient admission features and treatment strategies. Then the best 
combination of features that provide the highest prediction performance is considered as the best 
combination. To select the most effective features, first all the features are considered to train the SVM 
model, then the remaining features are ignored one by one and the model is trained with the same 
structure. 

Figures 3 and 4 show the results generated by the predictive models on the training and test 
datasets, respectively. The results show that the proposed DSA-SVM model is more efficient than other 
models. The DSA-SVM model has reached 83.47% precision on the training dataset and 81.67% 
precision on the test dataset. The LASSO and ANFIS models have almost the same performance. 
Comparing SVM and DSA-SVM models, it can be easily seen that the using DSA in optimizing the SVM 
parameters has worked well and has improved its performance. 

 

 
Figure 3. Comparison of the performance of predictive models on training dataset 
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Figure 4. Comparison of the performance of predictive models on test dataset 

Figures 5 and 6 respectively show the improvement rate of the proposed DSA-SVM algorithm 
compared with its counterpart methods on training and test datasets in terms of F1-measure. The 
improvement rate of DSA-SVM model in comparison with LASSO, ANFIS, and SVM models on the 
training dataset is equal to 2.49%, 1.29%, and 1.07%, respectively. On the test dataset, the improvement 
rate of DSA-SVM model compared to LASSO, ANFIS and SVM models is 2.76%, 0.22%, and 1.73%. 

 
 

 

Figure 5. Improvement rate of DSA-SVM compared with its counterparts on training 
dataset 
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Figure 6. Improvement rate of DSA-SVM compared with its counterparts on test dataset 

6. Conclusion 
In this study, we introduce a hybrid data mining method in order to predict the morality risk of STEMI-
CS patients. The proposed method is based on differntial search algorithm and support vecttor regression. 
The DSA algoithm is used to find the optimal subset of patient features that have the highest effect on 
risk prediction and also configure the parameters of SVM. The present method are applied on a collection 
of STEMI-CS ptients. the results are shown by figures and table. The method has significant perfrmance 
compared with counterpart methods. One of the interesting work is to apply the proposed method for 
further problems and assess its application at interdiciplinary area. 
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Abstract 

The path traveling salesman problem is one the most well-known NP-complete problem, 

where it is restricted to traverse all the nodes exactly ones between two prespecified the source and 

the destination nodes. So, one the most discussed challenges for this kind of a hard problem is to find 

a good solution by some. There are some approximate algorithms with tight approximation ratio in 

the version of the problem that the arc cost values satisfy the triangle inequality. The simulated 

annealing algorithm is a local search method, which is based on the Markov chain formulation and it 

discovers a nearby optimal solution. The simulated annealing algorithm produces a solution state 

space and the Markov chain Monte Carlo search method improves the produced state space. The 

Metropolis algorithm and Boltzmann distribution function have the critical role to accept or reject the 

produced solution. The simulated annealing algorithm starts with a relatively high temperature and 

then the most of the solutions are accepted; however, it is cooled gradually, and at end of the 

annealing process the temperature is so low that the most of the energy increasing solutions (for a 

minimizing objective function) are rejected. The Markov chain Monte Carlo method produces some 

samples around the accepted and the rejected states for the possibly improving directions in the 

solution state space. 

  

 

          Keywords: Simulated annealing, Markov chain Monte Carlo, Metropolis algorithm, Traveling 

salesman problem, Sampling methods, Local search methods. 

 

1. Introduction 

 

In the stochastic network optimization problems, decisions are made over some statistical information 

of the parameters of the network. Kalaia and Vempala [1] picked a path from a given source toward a 

given destination, and then the times on the all arcs are revealed. Polychronopoulos and Tsitsiklis [2] 

assumed the deterministic unknown arc costs. Provan [3] considered the stochastic traversal costs of arcs 

those become known upon arrival at the tail of arcs. Ardakani and Sun [4] assumed the stochastic 
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realization of the arc costs. György et al. [5] considered adversarial changes of arc weights in a directed 

acyclic graph.  Awerbuch and Kleinberg [6] assumed a network with unknown arc delays varying 

adversarially over time. Also, there are some online versions of TSP applying some advanced statistical 

information [7]-[12]. 

The symmetric travelling salesman problem (S-TSP) is known as NP-hard problem [13]. However, 

there are some approximation algorithms where the arc costs satisfy the triangle inequality (see [14] and 

[15]). In our considered model of the S-TSP the costs of arcs are not revealed until the end of the 

optimization process. Instead, we use the expected values as the given advanced information. We 

establish a discrete time Markov chain (DTMC) in undirected networks according to the uniform 

distribution of the transition probabilities. The states of DTMC are feasible tours and they traverse every 

node of the network exactly once. Then, the simulated annealing (SA) is applied to obtain a good 

improvement of the initial approximated solution. However, the local optimality is one of the critical 

challenges for SA, and we apply the Markov chain Monte Carlo (MCMC) sampling method for the 

rejected solutions (states) by SA. 

 

2. Preliminaries 

 

We assume a complete undirected network G=(N,A) with node set N and arc set A. For any (i,j)∈A, 

the cost from node i toward j, c_ij, is equal to the cost from node j toward i, c_ji (symmetry), also 

cij≤cik+ckj for any (i,j)∈A and k∈N (triangle inequality). In our model there is some advanced statistical 

information according to the expected values of the costs. The triangle inequality is an essential 

assumption to approximate the solution of TSP (see [13] and [16]). 

 

 
Figure 1. The instance network berlin52 with Euclidean distances. 
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Figure 2. The minimum spanning tree for the instance network berlin52. 

 

For example, the instance network berlin52 is shown in figure 1 according to the node coordination set 

and two-dimensional Euclidean distance function presented by TSPLIB [24].  

Initially, an approximated solution is created by Christofides algorithm [14] which is applied to the 

TSP with triangle inequality assumption on the arc costs. It must be decided to move from the current 

node toward the next node starting from the given source node and return to it finally after traversing all 

the nodes exactly once. The decisions are made according to the obtained limiting probabilities and the 

expected costs. Figure 2 shows the minimum spanning tree of the instance network berlin52, thus it is 

transformed into an 1.5-approximate solution as shown in figure 3. 

Kalaia and Vempala [1] defined some periods for online made decisions and in each period they chose 

the decision which has done best so far. Polychronopoulos and Tsitsiklis [2] followed a policy that leads 

to a path with minimum expected cost. Ausiello et al. [13] and Wen et al. [12] assumed to traverse a 

number of nodes and not all the nodes. Ausiello et al. [9] and Zhang et al. [11] considered it is possible to 

visit a node more than once. Jaillet and Lu [8] considered some penalties for not served online made 

requests and tried to minimize the time of accepted requests and the penalties of rejected ones. In our 

proposed model, it is restricted to traverse any node exactly once and to return to the source node finally. 

The initial ρ-approximated solution is used to establish a DTMC on the network. The minimum spanning 

tree implies a 2-approximation solution (see [16]) and Christofides [14] produced a 3/2-approximation 

solution. After producing an expected ρ-approximation of the optimal solution, next possible online 

decisions are considered as the created state by the current state with the uniformly distributed transition 

probabilities. 
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Figure 3. The obtained 1.5-approximate solution for the instance network berlin52. 

 

3. The established discrete time Markov chain 

 

A DTMC is established at any iteration as introduced by Shirdel and Abdolhosseinzadeh [27]; so, by 

transition from the current state toward a new state exactly one arc is traversed. The process is started and 

ended in the given source node when all the nodes are traversed exactly once. State St,k, t=1,…,n-2 and 

k=1,2,…,n-(t+1) contains a set of nodes those are created some tour. The initial state contains the pre-

obtained approximated solution and its first node is fixed (the source node), and a fixed node is defined as 

the node which was traversed previously. We suppose one node is allowed to be fixed at any time t$. The 

next state $St+1,j is created only by single permutation of the unfixed nodes of the current decided state 

S*t,i. So, if vk-1 is the last fixed node of state S*t,i={1=v̄1,v̄2,…,v̄k-1,vk,vk+1,…,vn,1} then state St+1j is 

created by permutation node vk with unfixed nodes vk+1, vk+2,…,v_n (|N|=n). So, the total size of the 

general search space for network G with n nodes is (n-2)(n-1)/2+1. The initial state S0,1 contains the pre-

obtained approximated solution and its first node is fixed. There is not any repeated state among those are 

created by an unfixed index. Clearly, any state could be accounted in its opposite direction and both are 

the same. The source node is the first and the last node of the created states, so the permutation is a 

circular permutation. Where, there are at least two fixed indices, the permutation does not cause a 

repeated state because it is not possible double (or more) permutation and just a single node allowed to 

permute. To determine the repeated states consider the created states starting from the initial state. The 

repeated state cannot occur after index 2n-5 (double permutation is not possible), however, it may be 

occurred before in following way:  the initial state could be repeated in index n-2, so vn-1=v3 then [27]  
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{1= v̄_1,v2,v3,…,vn-1,vn,1}≡{1=v̄1,vn,v3,…,vn-1,v2,1}⇒ n-1=3⇒n=4. 

 

The state of index n-2 (where vk2 is unfixed) could be repeated through the states from n-1 to 2n-5 

(where v̄k2 is fixed). Suppose index r is a repeated state  

{1=v1,vn,v3,…,vn-1,v2,1}≡{1=v̄l 1,v̄l2,vl 3,…,vl n-2,vl n-1},vl n,1} 

then v̄l 1=v1=1,vl n-1=v3 and vl n=v2, so if v4=Æ then vl n-2=Æ and n=5, otherwise if v4≠Æ then vl n-2=v4 and 

n=6. 

The arc costs realizations were done by Provan [3], and then the states of their considered Markov 

process are created. Polychronopoulos and Tsitsiklis [2] considered pairs of the location and the 

information sets for the states of a Markov chain. In this paper the established DTMC applies the 

expected improvement of the initial approximate solution. 

 

4. The simulated annealing heuristic 

 

Markov decision problems are solved in polynomial time [17], however the computations for the state 

space creation grow exponentially in practice [18]. So, for the large size networks, we apply a Markov 

chain form of the SA over the created states by DTMC 

The Markov chain formulation of the SA presented by [19]. Suppose 𝐶�̅�𝑡,𝑗
(𝑇) is the expected cost of 

state 𝑆𝑡,𝑗 when the temperature is T, then ∆𝐶�̅�,𝑗(𝑇) = 𝐶�̅�𝑡+1,𝑗
(𝑇) − 𝐶�̅�𝑡,𝑖

∗ (𝑇) is the expected cost difference 

of the transition from state 𝑆𝑡,𝑖
∗  toward state 𝑆𝑡+1,𝑗. The acceptance probability 𝐴𝑖,𝑗(𝑇) is the probability of 

the accepting 𝑆𝑡+1,𝑗, when the online policy determined to be in 𝑆𝑡,𝑖
∗  previously. By Metropolis rule the 

acceptance probabilities are defined as following 

𝐴𝑖,𝑗(𝑇) = { 𝑒
−∆�̅�𝑖,𝑗(𝑇)

𝑇   , if ∆𝐶�̅�,𝑗(𝑇) > 0

1               , if ∆𝐶�̅�,𝑗(𝑇) ≤ 0.
  

In the case ∆𝐶�̅�,𝑗(𝑇) > 0, state 𝑆𝑡+1,𝑗 is accepted if by producing a random number r, then it satisfies 

𝑟 ≤ 𝑒−∆�̅�𝑖,𝑗(𝑇) 𝑇⁄ . 

 For the SA the transition probability 𝑀𝑖,𝑗(𝑇)  form state 𝑆𝑡,𝑖
∗  toward state 𝑆𝑡+1,𝑗  is obtained as 

following 

𝑀𝑖,𝑗(𝑇) = {
𝑝𝑖,𝑗𝐴𝑖,𝑗(𝑇)                      , if 𝑖 ≠ 𝑗

1 − ∑ 𝑝𝑖,𝑘𝐴𝑘,𝑗(𝑇)𝑘≠𝑖    , if 𝑖 = 𝑗.
  

If the online policy decided to be in 𝑆𝑡,𝑖
∗  previously, then the static probability 𝑞𝑖,𝑗(𝑇) represents the 

probability that the online policy decides to be in state 𝑆𝑡+1,𝑗, when the static condition is reached (the 

static probabilities are equivalent to the limiting-state probabilities that show the steady state analysis for 

the established DTMC, for example see [20]).  

So, for the instance network berlin52 the improved solution by the SA algorithm is shown in figure 4. 
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Figure 4. The improved solution from the initial 1.5-approximate solution for the instance network 

berlin52. 

 
Figure 4. The improved solution from the initial 1.5-approximate solution for the instance network 

berlin52. 
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5. The Markov chain Monte Carlo sampling method 

 

In the SA, it is not explored around the rejected solutions to avoid possibly the local optimality. So, we 

apply the sampling method based on the limiting state distribution, and some states are produced for a 

rejected state so the state space is explored for the nearby optimal solution. The goal distribution for 

producing the sample by MCMC is Boltzmann distribution function Aij(T) [28]. One of the produced 

samples according to a rejected solution by the SA is shown in figure 5; the axis values determine the 

absolute differences of the produced sample costs from the rejected solution cost. So, figure 5 shows the 

explored solutions from the rejected states by the SA for the instance network berlin52. 

 

 

Figure 5. The explored solutions from the rejected solutions by the SA for the instance network berlin52. 

 

By improvement of the initial approximate solution and the exploration around the rejected solutions 

the optimal solution of the instance network berlin52 is shown in figure 6. 

 

 

The rejected solutions 

The initial approximate solution 

The explored solutions 
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Figure 6. The optimal solution for the instance network berlin52. 

 

 

6. Conclusion 

 

The Christofides’ approximation algorithm is applied to obtain a good 1.5-approximate 

solution, while the arc cost values satisfy the triangle inequality. So, the simulated annealing 

algorithm is implemented based on the Markov chain formulation on the local optimal solution and it 

is improved as 1.3-approximate solution. The simulated annealing algorithm produces a solution state 

space and the Markov chain Monte Carlo sampling method explores the state space around the 

rejected states. Then, the proposed method could improve the initial local optimal solution into a 

nearby optimal solution. 
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Abstract 

In the globalizing economy, supply chain and logistics management has an important place in 

the transportation of the processed raw material from the production center to the enterprises and 

from the enterprises to the end customers. Vehicle routing problems (VRP), which is the last stage of 

supply chain and logistics management, stand out as increasing demands, changing roads, different 

optimization problems in a limited time. Vehicle routing problem is defined as providing the 

necessary service to customers located in different geographical locations from the center, defined as 

the warehouse, with more than one vehicle at the shortest distance and returning the vehicles to the 

warehouse after providing the service. Mathematically, vehicle routing problems are modeled 

stochastically due to some uncertainties arising from parameters such as time, route, service and 

demand. Stochastic demand vehicle routing problems (SDVRP) are modeled as problems where 

customer demands are not known precisely beforehand and the service vehicle is known exactly after 

reaching the customer location.  

In this study, the chance-constrained SDVRP model was considered and the near-optimal 

solutions of the problem were calculated with the meta-heuristic algorithm, Simulation Annealing 

(SA). 

 

          Keywords: Optimization, Stochastic Vehicle Routing, Simulation Annealing  

1. Introduction 

 

Vehicle routing problem (VRP) is one of the problems that requires finding the most suitable routes with 

minimum cost in order to serve customers in different geographical locations with one or more vehicles 

from one or more warehouses. VRP is a combinatorial (discrete) optimization problem used to design an 

optimum route for a fleet of vehicles to serve a range of customers, given a number of constraints [1]. 

Combinatorial vehicle routing problem is one of the NP-Hard (Nondeterministic polynomial) problems in 

its simplest form [2]. In VRP, it is generally defined as minimizing the total route distance, keeping 

transportation costs to a minimum, minimizing the auxiliary action (penalty) costs and the number of 

vehicles that will meet the demand, as a result of the distribution of the demands piece by piece, taking 

into account the purpose functions, vehicle capacity and service time. [3] and [4]. In VRP, the problems 

in which the parameters are known beforehand are known as deterministic. Problems involving 

probabilistic information where the parameters are not known beforehand are called stochastic vehicle 

49



 

6th INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 

21-24 June 2022, Istanbul, Turkey 

 

 

ICOM 2022 

ISTANBUL / TURKEY 

routing problems (SVRP). The mathematical model for SVRP is problems in which some or all 

parameters of the routing problem are random. Typically, these problems are modeled when customer 

demands, travel times, customers, and service times are stochastic. Such situations occur in real life, in 

problems where precise determination of parameters is difficult. The basic idea in the solution of 

stochastic VRP is to transform the probabilistic structure of the problem into its equivalent, deterministic 

model. SVRP is modeled in two ways in the literature: chance-constrained stochastic programming and 

auxiliary-action (recourse) stochastic programming [5].  

The first study in VRP started in 1959 when Dantzig and Ramser created an optimum route between a 

fleet of gasoline delivery trucks and service stations [6]. In 1964, Clarke and Wright conducted the study 

that required choosing the most appropriate possible route for a fleet of trucks from a central warehouse 

to multiple delivery points located at different locations [7]. 

 In 1992, Bertsimas proposed a heuristic method for the stochastic model of customer demands in 

capacity VRP and showed that probabilistic analysis techniques and results are a powerful and useful 

alternative to the re-optimization strategy [8]. In 1992, Teodorovic and Pavkovic developed a stochastic 

programming model with auxiliary action for SDVRP. In the problem, they assumed that the customer 

demands came from a uniform distribution and used the annealing simulation algorithm to solve the 

problem [9]. In 2003, Hu et al. discussed SDVRP and extended it with real-time information for the 

dynamic vehicle routing problem. They modeled the problem with chance constraint and solved it in 

CPLEX with branch-and-bound techniques [10].  

In 2006 Tavakkoli-Moghaddam et al solved the model in their study with hybrid SA based on nearest 

neighbor. The proposed model enabled the creation of routes that will serve all customers with the 

minimum number of vehicles and maximum capacity [11]. In 2020, İlhan used the SA algorithm for 

capacity VRP in his study. He used three different route development operators of the algorithm, namely 

the change, addition and inversion operator [12]. 

 

2. Material and Method 

 In this study, a data set consisting of 1 warehouse, 20 customers, customer coordinates and 5 daily 

requests was randomly generated in Matlab. A SDVRP model has been created, which ensures that the 

stochastic demands with %95 probability obtained from the data set are met. The model was modeled as 

chance constrained and converted to its equivalent, deterministic integer mathematical model. The 

deterministic model is solved with a meta-heuristic annealing simulation algorithm. 
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Branches X  Y  Demand1 Demand2 Demand3 Demand4 Demand5 Average Variance 

1 9 130 40 35 40 25 25 33 57,5 
2 70 36 50 45 65 30 90 56 517,5 
3 94 44 40 50 50 20 55 43 195 
4 20 47 35 40 25 20 50 34 142,5 
5 56 15 45 35 45 35 45 41 30 
6 84 97 60 50 50 35 50 49 80 
7 9 163 55 50 55 45 50 51 17,5 
8 94 190 65 60 60 55 50 58 32,5 
9 39 166 80 75 70 55 50 66 167,5 
10 23 20 90 95 90 80 70 85 100 
11 60 164 25 30 25 25 35 28 20 
12 39 110 65 60 50 45 40 52 107,5 
13 37 197 45 50 55 45 50 49 17,5 
14 33 117 80 85 70 70 75 76 42,5 
15 73 59 60 60 55 50 55 56 17,5 
16 64 163 75 70 60 65 60 66 42,5 
17 38 156 60 65 60 65 65 63 7,5 
18 95 142 120 125 110 100 120 115 100 
19 51 44 65 60 60 55 60 60 12,5 
20 51 145 50 60 60 50 50 54 30 

Total 1205 1200 1155 970 1145 1135  

Table1: Customer coordinates, demands, mean and variance 

 

Table 1 contains the data set consisting of customer coordinates, 5-day customer demands, mean 

and variance. 

In this study, it is assumed that customer demands come from a normal distribution with 𝜇𝑖mean 

and 𝜎𝑖
2variance. Based on this assumption, the stochastic demand quantities obtained from the mean and 

variances of the 5-day demands for each data group were calculated from the expression 𝜇𝑗 + 𝑧1−𝛼 𝜎𝑗 

with the help of the standard normal table (Z) specified in the model. Here, the 𝑧1−𝛼value is an upper 

bound value on the right side of the standard normal table. 

 

No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Demand 45 93 66 54 50 64 58 67 87 101 35 69 56 87 63 77 68 131 66 63 

Table2: Customer demands with 95% probability 

With %95 probability, total customer demands are taken as 1400 and 𝛼 =0.05, 𝑧1−𝛼 =1.645  and 

given in Table 2. 

Stochastic mathematical modeling tries to find solutions for cases where some parameters of the 

problem are random variables. These random situations are often seen in real life problems where it is 

difficult to determine the parameters precisely. The basic idea in stochastic mathematical modeling is to 
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transform the probabilistic nature of the problem into the deterministic state, which is the equivalent of 

the problem. In this study, chance-constrained mathematical modeling technique will be discussed. The 

near-optimal solution is obtained by transforming the chance-constrained model into a deterministic 

model. The name of the chance constraint comes from the fact that the constraint occurs with a minimum 

probability of 1 − 𝛼 [13]. 

 

3. Mathematical Model for Chance Constrained ARP with Stochastic Demand 

The STARP problem is defined on the undirected graph 𝐺 = (𝑉, 𝐸) , 𝑉 = {𝑣0, … , 𝑣𝑛}  set of 

vertices (customers), 𝐸 = {(𝑣𝑖, 𝑣𝑗): 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉, 𝑖 < 𝑗}  edge ( springs) set. Repository is represented by 

𝑣0and customers are represented by {𝑣1, … , 𝑣𝑛}. The travel cost (distance) of each (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸 edge is 𝑐𝑖𝑗. 

There are 𝑘 vehicles in the warehouse, each with a capacity of 𝐶. It is assumed that customer claims are 

distributed uniformly and independently. Each customer has a demand for 𝑑𝑖 from a stochastic, known 

probability distribution (normal distribution) with 𝜇𝑖 mean and 𝜎𝑖
2 variance. Vehicle routes planned in the 

first place should start and end at the warehouse. Each customer should be visited once with a single 

vehicle [14]. 

The closed form of the chance-constrained model for SDVRP is as follows [15]. 

 

MinZ = ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗𝑘      

𝑖,𝑗𝑘

                                                                                                                     (1) 

𝑃 [∑ 𝑑𝑖𝑥𝑖𝑗𝑘 ≤ 𝐶

𝑖,𝑗

] ≥ 1 − 𝛼,                                                              𝑘 = 1, … , 𝐾              (2) 

𝑥 = {𝑥𝑖𝑗𝑘} ∈ 𝑆𝑘                                                                                                                         ( 3) 

In the closed model, the Eq (1) objective function ensures that the total distance traveled is 

minimized. Eq (2) is a constraint of chance. 

Here, 

𝑐𝑖𝑗  ∶ the distance from node i to node j, 

𝑥𝑖𝑗𝑘:1 if vehicle k is going from i to j, 0 otherwise. 
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𝐾   ∶ Number of vehicles available, 

𝑆𝑘   ∶ All possible solution sets of the K-traveling salesman problem, 

𝑑𝑖    ∶ Random variable representing the demand of customer i, 𝑑𝑖~𝑁(𝜇𝑖, 𝜎𝑖
2), 

𝛼   ∶ İs the maximum breakage probability allowed for course break. 

𝐶   ∶ Vehicle capacity, 

 

4. A Chance Constrained Integer Programming Model for Stochastic Demand VRP 

The purpose of chance constrained integer programming is to ensure that the total demands of 

customers on a route do not exceed the vehicle capacity 𝐶’yi, and the minimum route length (𝑃𝑟 ≤ 𝛼) is 

below the specified limit or probability level (𝛼). It is accepted that the demands expressing the stochastic 

situation in the model provide a normal distribution [15]. 

If demand 𝑑𝑖 ,is 𝑑𝑖~𝑁(𝜇𝑖, 𝜎𝑖) while 𝑋 = ∑ 𝑑𝑖
𝑛𝑘
𝑖=1 , is taken as the sum of the demands of customers on a 

route, 

𝑋~𝑁(∑ 𝜇𝑖 , √∑ 𝜎2
𝑖)                 𝑧 =

𝑋−∑ 𝜇𝑖

√∑ 𝜎2
𝑖

       with the transformation 𝑧~𝑁(0,1) becomes.                    (4)  

Since the probability that the total demands on the route will exceed the vehicle capacity will be 𝛼 at 

most, 𝑃(𝑋 > 𝐶) ≤ 𝛼 can be written. 

If necessary adjustments are made, it becomes 1 − 𝑃(𝑋 ≤ 𝐶) ≤  𝛼 or 𝑃(𝑋 ≤ 𝐶) ≥ 1 − 𝛼. 

 

If 𝑧 transform is done from here, 

𝑃 (𝑧 ≤
𝐶 − ∑ 𝜇𝑖

√∑ 𝜎2
𝑖

) ≥ 1 − 𝛼                                                                                                     (5) 

𝑃(𝑧 ≤ 𝑧1−𝛼) = 1 − 𝛼                                                                                                              (6) 
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𝑧1−𝛼 ≤
𝐶 − ∑ 𝜇𝑖

√∑ 𝜎2
𝑖

                                                                                                                       (7) 

∑ 𝜇𝑖 + 𝑧1−𝛼√∑ 𝜎2
𝑖 ≤ 𝐶                                                                                                     (8) 

Adding the variable 𝑥𝑖𝑗𝑘, 0-1 to the above equation results in the following new capacity constraint. 

∑ 𝜇𝑖𝑥𝑖𝑗𝑘 + 𝑧1−𝛼√∑ 𝜎2
𝑖𝑥𝑖𝑗𝑘 ≤ 𝐶,                                                    𝑗 = 1,2, … , 𝑛         (9) 

∑ ∑ 𝜇𝑗𝑥𝑖𝑗𝑘 +

𝑁

𝑖=0
𝑖≠𝑗

𝑁

𝑗=1

𝑧1−𝛼 ∑ ∑ √𝜎2
𝑗𝑥𝑖𝑗𝑘 ≤ 𝐶,                                            ∀𝑘

𝑁

𝑖=0
𝑖≠𝑗

𝑁

𝑗=1

  için         (10) 

Eq (10) is a non-linear constraint, so we can obtain the new linear Eq (12) constraint by using Eq 

(11) [15] and [16]. 

 

√∑ 𝑎𝑖
2

𝑛

𝑖=1

≤ ∑ 𝑎𝑖

𝑛

𝑖=1

,                                                                                             𝑎𝑖 ∈ ℜ+       (11) 

∑ ∑ 𝜇𝑗𝑥𝑖𝑗𝑘 +

𝑁

𝑖=0
𝑖≠𝑗

𝑁

𝑗=1

𝑧1−𝛼 ∑ ∑ 𝜎𝑗𝑥𝑖𝑗𝑘 ≤ 𝐶                                                                           (12)

𝑁

𝑖=0
𝑖≠𝑗

𝑁

𝑗=1

 

Thus, the nonlinear constraint for the model is linearized. 

5. Proposed Linear Approximation Model for Chance Constrained VRP with Stochastic Demand 

MinZ = ∑ ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗𝑘

𝐾

𝑘=1

𝑁

𝑗=0

𝑁

𝑖=0

                                                                                                   (13) 

Constraints: 
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∑ ∑ 𝑥𝑖𝑗𝑘

𝐾

𝑘=1

𝑁

𝑗=1

≤ 𝐾,                             𝑖 = 0     depodan çıkışların kontrolü için,          (14) 

∑ 𝑥𝑖𝑗𝑘 −
𝑖

𝑖≠𝑗

∑ 𝑥𝑗𝑖𝑘 = 0,             
𝑗

𝑗≠𝑖

                                                           ∀𝑗,𝑘        için           (15) 

∑ ∑ 𝑥𝑖𝑗𝑘 = 1,                                                    𝑖 ≠ 𝑗   𝑎𝑛𝑑   𝑖 ≠ 0 ,   ∀ 𝑖   için           (16)

𝐾

𝑘=1

𝑁

𝑗=0

 

∑ ∑ 𝑥𝑖𝑗𝑘 = 1,                                                                          𝑗 ≠ 𝑖   𝑎𝑛𝑑   𝑗 ≠ 0           (17)

𝐾

𝑘=1

𝑁

𝑖=0

 

∑ ∑ 𝜇𝑗𝑥𝑖𝑗𝑘 +

𝑁

𝑖=0
𝑖≠𝑗

𝑁

𝑗=1

𝑧1−𝛼 ∑ ∑ 𝜎𝑗𝑥𝑖𝑗𝑘 ≤ 𝐶                                                                           (18)

𝑁

𝑖=0
𝑖≠𝑗

𝑁

𝑗=1

 

𝑈𝑖𝑘 − 𝑈𝑗𝑘 + 𝑁 ∗ 𝑥𝑖𝑗𝑘 ≤ 𝑁 − 1,                                             𝑖 ≠ 0, 𝑗 ≠ 0                    (19) 

𝑥𝑖𝑗𝑘 =0 or 1,                                                                                                                                (20) 

𝑈𝑖𝑘 ∶ An arbitrary number greater than 0, 𝑖 ≠ 0 

Eq (13) objective function in the model minimizes the total distance. Eq (14) constraint shows that 

the number of vehicles leaving the warehouse should be at most K. Eq (15) ensures that the number of 

arcs exiting and entering a node is equal. Eq (16) and Eq (17) constraints ensure that a node is visited by 

only one tool. The Eq (18) constraint represents the capacity constraint with the linear approach. The Eq 

(19) constraint is the sub-round elimination constraint set [17]. Eq 20) are decision variables. 

6. Simulation Annealing Algorithm 

Simulation Annealing (SA) algorithm, first developed by Metropolis in 1953, is a stochastic 

search algorithm that simulates energy changes in a cooling system until it converges to an equilibrium 

state (freezing state) [18]. SA is a probability-based optimization algorithm generally used for discrete 

optimization problems, inspired by the slow cooling of solids after heating until crystallization [19]. It is 
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used in the SA algorithm to scan the solution area and to select a better solution than the previous one in 

each round. According to this simulation, the temperature value is used to determine the probability of 

accepting solutions worse than the best solution found. In application problems, the SA algorithm is 

defined as a random local search method in which the change in the current solution is accepted with a 

probability that causes an increase in the solution cost. 

The algorithm is started with a sufficiently high temperature and at each step a certain number of 

solutions are obtained before the temperature is lowered. New solutions are either accepted or rejected 

according to established criteria. Each decrease in temperature affects the probability of leaving the 

obtained solution and switching to a new solution. The algorithm is terminated when the temperature 

reaches the lowest value or when the TB algorithm runs for the desired number of repetitions [20].  

In the context of combinatorial optimization, a solution corresponds to the specific state of the 

physical system and the solution cost value corresponds to the energy of the system. At each iteration, the 

current solution is modified by choosing a random move from a certain transform class (which defines the 

neighbors of the solutions). If the new solution provides an improvement, it is automatically accepted and 

the new existing solution is considered. Otherwise, the new solution is, 

P = 𝑒(−
∆

𝑘𝑇
)                                                                                                                              (21) 

The Eq (21) is accepted according to the Metropolis probability criterion. Here; ∆, is the change in 

the Objective (Energy) function, T is the Temperature parameter, k is the Boltzmann constant.  

Based on the stated criteria, a move with a high temperature and low cost increase seems more 

likely to be accepted. The temperature parameter is gradually reduced according to some predefined 

cooling program, and a certain number of iterations are performed at each temperature level. At 

sufficiently low values of temperature, only improvement movements are accepted and the process stops 

at a local optimum. Unlike most meta-heuristics, this method converges asymptotically to the global 

optimum (assuming an infinite number of iterations) [21]. 

The purpose of the SA algorithm; is to find a solution x that will optimize a function f(x) defined 

in a subset of all possible solution points (S). The SA algorithm starts searching with a randomly chosen 

initial solution. Then, with a suitable method, it chooses a solution adjacent to this solution and calculates 

the change in f(x). If the change is in the desired direction, it takes the neighboring solution as the current 

solution. If there is no change in the desired direction, the SA algorithm accepts the solution according to 

the Metropolis probability criterion. The acceptance of the solution, which causes a change in the 

opposite direction in the objective function, with a certain probability value, ensures that the SA 

algorithm gets rid of the local optimum points. When the T temperature value is higher than the Eq (21) 

probability value, most of the increases in the objective function will be accepted. As the T temperature 

decreases, the amount of acceptance will also decrease. For this reason, the initial temperature value 
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should be chosen high enough to avoid getting stuck at local points in the SA algorithm, and it should be 

reduced gradually [22]. 

 

Figure1: Model created in Matlab 

 

In Figure 1, I is the number of customers, j is the number of vehicles, c is the vehicle capacities, r is 

stochastic demands, x and y is the customer coordinates, x0 and y0 is the warehouse coordinate, d is the 

distance matrix between customers, d0 is the distance matrix between the warehouse and customers. 

 

Figure 2: Routes of 3 vehicles calculated in Matlab 

Figure 2: It shows the circulation shape of the 3 routes obtained with Matlab in the coordinate axis. 
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Table1: Routing results where demands are met with % 95 probability 

Method Routes Route distance Route 

request 

Total distance 

SA R1 : 0-15-3-2-5-10-4-19-0 244,0781 493 749,7366 

R2 : 0-6-18-8-16-11-20-0 247,7904 437 

R3 : 0-14-1-7-13-9-17-12-0 257,8681 470 

 

The table shows the routes and results that start at the warehouse and end again at the warehouse. 

7. Conclusion 

In this study, a chance-constrained model was created for the stochastic demand vehicle routing 

problem with 20 customers and 3 vehicles with a capacity of 600. The problem solution of the created 

model was obtained with the Simulation Annealing algorithm in Matlab, and a near-optimal result was 

obtained. The demands of each customer were met without exceeding the vehicle capacities from the 

shortest routes obtained from the solution of the problem. Total customer demands were met with 3 

different routes at optimum distance. 
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Abstract 
The aim of  this paper is to generalize a  known theorem on absolute Riesz summability for  the 

; kA    summability method by using a quasi  -power increasing sequence. 

Keywords:  Absolute matrix summability, summability factors, quasi  -power increasing 
sequences, infinite series. 
 
 
1. Introduction 
 
Let na  be an infinite  series with is partial sums  ns . Let  nvA a  be a normal matrix, i.e., a lower 

triangular matrix of nonzero diagonal entries. Let  n  be any sequence of positive real numbers. The 

series na  is said to be summable ; kA   , 1,k   0  , if [1] 
                              

1
1

1

( ) ( ) kk k
n n n

n
A s A s


 




                                                 

 
where   

0

( )
n

n nv v
v

A s a s


  ,  0,1, ...n   

Let ( )np  be a sequence of positive numbers such that  

     
0

n

n v
v

P p


    as  ( )n , ( 0,i iP p   1i  ). 

For  n
n

n

P
p

    and  0  , ; kA   summability reduces to , n kA p  summability [2]. Also, for  

,n
n

n

P
p

  0   and v
nv

n

pa
P

 , we get , n k
N p  summability [3].  A positive sequence ( )nX X  is said to 

be a quasi  - power increasing sequence if there exists a constant ( , ) 1K K X   such that 

n mKn X m X   holds for all 1n m  .  
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Every almost increasing sequence is a quasi  - power increasing sequence for any nonnegative  , but 
the converse need not be true as can be seen by taking an example, say nX n   for  >0 [4]. A 
sequence ( )n BV  , if 1n n n         . 
 
Theorem 1.1 ([5]). Let ( )nX  be a quasi  - power increasing sequence for some 0 1   and let there 
be sequences ( )n  and ( )n  such that  

                                                   n n   ,                                                     (1) 
  
           0n      as  n ,             (2) 
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n n
n
n X





   ,                       (3) 

   
  (1)n nX O    as     n .                                                                   (4) 
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n n n
n
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   ,                                   (6) 

 

  
1

( )
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n
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n n

s
O X
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    as m                  (7) 

 
are satisfied,  then the series n na   is summable   , n k

N p , 1k  . 

 
2. Main Result 
 
There are some papers on quasi  - power increasing sequences, see ([6-15]). Before stating our main 
theorem, we must first introduce some further notations. Given a normal matrix ( )nvA a , two lower 

semimatrices  ( )nvA a  and � ( )nvA a  are defined as follows: 
 

                           
n

nv ni
i v

a a


                   , 0,1, 2,...n v                                    (8) 

 
         00 00 00 ,a a a      1,nv nv n va a a       1, 2,...n                  (9) 
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Theorem 2.1. Let ( )nvA a  be a positive normal matrix which satisfies the following conditions 
 

    0 1na  ,   0,1,  n                                                                           (12) 
 
    1,n v nva a    for    1,n v                                                               (13) 
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                                          (14) 

Let  ( )n BV  . Let  ( )nX   be a a quasi  -power increasing sequence for some 0 1   and 
( )n n np O P  . If conditions (1)-(4), (6)  of  Theorem 1.1 and  
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are satisfied,  then the series  n na   is summable  ; kA    1k    and  0 1/ k  . 
 
We need the following lemmas for the proof of  Theorem 2.1. 
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Lemma 2.1 ([4]). Under the conditions on ( )nX , ( n )  and ( n ) as taken in the statement of Theorem 2.1, 
we have  
         (1)n nnX O    as n ,           (19) 
 

          
1

n n
n

X




  .                         (20) 

Lemma 2.2 ([5]). Under the conditions (2) and (6),  we have  
  

(1)n n nP X O   as n ,         (21) 
 

         
1

.n n n
n
p X 





              (22) 

 
where  ( nX ) is a quasi  - power increasing sequence for some 0 1  . 
 
3. Proof of Theorem 2.1 
 
Let ( )nM  denotes  A- transform of the series n na  . Then,  (10) and (11) imply that 
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 By using Abel’s transformation, we get  
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For the proof of Theorem 2.1, we have prove  
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First, by  using Abel’s transformation, we have  
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by virtue of the hypotheses of  Theorem 2.1 and Lemma 2.1. 
 
 By using Hölder’s inequality, we achieve  
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Here, from (8) and (9), we have  
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Using the fact that   , 1n v nna a  ,  ( )n BV  ,  and using the condition (1), we have 
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Abstract 
 
ST-segment elevation myocardial infarction-cardiogenic shock (STEMI-CS) is one of the 

important cardiovascular diseases, with a high rate of mortality. A timely diagnosis of STEMI is 
important to guide treatment and reduce sudden cardiac death. Recently, machine learning (ML) 
methods were developed to establish predictive models to identify the in-hospital mortality risk of 
STEMI-CS patients. The experimental results reported in the literature showed that the ML methods 
obtain relatively high performance on benchmark STEMI-CS datasets. To determine how the ML 
methods were developed in the past years, this paper surveys recent machine learning methods 
developed for STEMI-CS risk prediction. The existing methods are examined through a comparison 
framework. After discussing the development of the field in recent years, some open problems and 
new emerging trends are identified.  

 
 Keywords: Artificial intellience, machine learning, data mining, cardiogenic shock, STEMI-CS, 

risk prediction. 
 

1. Introduction 
According to the report released by WHO in 2019, myocardial infarction has been an 

important cause of death globally in the last two decades [1]. Cardiogenic shock (CS) is the most 
important cause of in-hospital death in patients with ST-segment elevation myocardial infarction 
(STEMI) [2], [3], [4]. Despite using different therapeutic approaches, early mortality of STEMI-CS 
patients is still high, ranging from 30% to 50% [3]. CS and its related complications need a huge 
financial and medical burden. Some researchers stated that high mortality and complication rates of 
STEMI-CS patients are associated with the lack of effective early preventive treatments [5]. Given 
the risk of CS and the different risk factors associated with it, accurate clinical risk prediction tools 
need to be developed to accurately predict the onset of CS. 

Machine learning (ML) is an important branch of artificial intelligence that allows a 
computational machine to automatically learn and progress without explicit programming. The main 
objective is the development of computer programs that can access data and use it for their own 
learning. ML creates automated predictive models to automatically learn and adjust its behavior 
accordingly, without human intervention. ML method can incorporate more features and analyze 
more sophisticated mathematical problems compared with traditional statistical models. 
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In recent years, researchers have suggested ML methods to improve the performance of the CS 
risk prediction models. ML models can overcome the limitations of regression-based risk prediction 
systems, such as parametric assumptions, reliance on linearity, and limited capability in evaluating 
the higher order. 

As an element of STEMI-CS research, this paper reviews the development of mortality risk 
prediction methods in STEMI-CS through a literature survey and the categorization of papers, with 
the range 2012 to 2022. This survey includes the following objectives: 

 Describing the STEMI-CS and its related topics 
 Proposing a comparison framework to survey the state-of-the-art methods, from 2012 to 2022 

according to the proposed comparison framework 
 Giving an overview of new trends and open problems 

After this short introduction, Section 2 presents the theoretical background. Section 3 
describes the proposed comparison framework for surveying mortality risk prediction in STEMI-CS 
patients. Section 4 reviews the state-of-the-art methods. Section 5 discusses the methods, open 
challenges, and some future directions in the field. Finally, Section 6 concludes the paper.  

 
2. Background 
2.1. Problem definition  

Cardiogenic shock (CS) is defined as a state of critical end-organ hypoxia and hypoperfusion 
because of primary cardiac disorders [4]. Acute myocardial infarction (AMI) causing left ventricular 
dysfunction is the most important cause of CS and accounts for 80% of cases. CS associated with 
STEMI is a potentially life-limiting condition. Figure 1 shows how a coronary artery blockage causes 
a STEMI heart attack. CS is the most important cause of in-hospital death in STEMI patients. Early 
diagnosis of STEMI-CS risk is crucial in the proper treatment of the patients. Physicians examine the 
patient's symptoms at admission and determine whether the patient is at high risk based on the 
patient's symptoms and treatment history. Determining the most important features that have the 
greatest impact on the mortality of STEMI-CS patients is one of the major challenges. 

 
2.2. Building blocks of mortality risk prediction system 

Figure 2 illustrates the general structure of a typical risk prediction system. The goal of the 
risk prediction system is to predict the risk score of the STEMI-CS. The system takes as input the 
characteristics of patients, pre-process the input data, extracts the important features that affect the 
risk prediction performance, trains the predictive model, and finally uses the constructed model to 
predict the risk score of unseen patients.  
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Figure 1. A big picture of STEMI heart attack1 

 
 

 

 

 

 

 

Figure 2. The general structure of a typical ML-based STEMI-CS risk prediction system  

3. Comparison framework 
Several papers have been published in international scientific journals and conferences to 

investigate the mortality risk prediction in the STEMI-CS issue. The mortality risk prediction systems 
differ in several important respects, including the evaluation metrics and datasets, the prediction 
features, the prediction method, and the scale. These are the key factors that make up the comparison 
framework. Figure 3 shows the proposed comparison framework. 

 
3.1. Risk prediction technique 

Researchers have used different prediction models to predict the mortality risk of STEMI-CS 
patients. The existing approaches for risk prediction range from those using only statistical methods 
[6] and regression-based methods at one end of the spectrum, to those that are based on data mining 
and machine learning methods [5] at the other side of the spectrum. In addition, hybrid methods, which 
are a combination of approaches, are developed. 
                                                        
1 [https://my.clevelandclinic.org/health/diseases/22068-stemi-heart-attack, last access 12 Jun 2022] 
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Figure 3. The proposed comparison framework 

The main limitation of regression-based methods is low quality and high computational 
complexity in the risk prediction phase. The risk scores generated by regression-based methods may 
cause a delay in calculating the risk while awaiting the results. Statistical and regression-based methods 
mainly focused on using univariate and multivariate regression analysis to identify the independent 
variables in predicting mortality risk, which leads to low performance [7]. This issue can be easily 
resolved by data mining and ML methods. Data mining and ML can create automated data-driven 
predictive models and program complex problems with many factors through statistical tools [7]. 

ML and data mining methods are considered the best solution for mortality risk prediction in 
STEMI-CS patients because they can handle information overload, data source noise, data redundancy, 
and uncertainty. These methods achieve promising results and have high domain adaptability. However, 
these methods present many challenges that impede applications in the mortality risk prediction scope, 
such as the need for large datasets and annotated data to train and develop predictive models. Some 
popular ML and data mining methods used in the literature for the mortality risk prediction in STEMI-CS 
patients are support vector machine (SVM) [1], [8], logistic regression (LR) [5], Naïve Bayes (NB) [8], 
least absolute shrinkage and selection operator (LASSO) [5], extreme gradient boosting (XGBoost) [5], 
light gradient boosting machine (LightGBM) [5], adaptive neuro-fuzzy inference system (ANFIS), 
random forest algorithm (RF) [7], artificial neural networks (ANNs) [9], [10], [11], convolutional neural 
network (CNN) [12], recurrent neural networks (RNNs) [12],  [13]. Figure 4 shows the timeline of the 
ML and DM-based mortality risk prediction in STEMI-CS patients. 
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Figure 4. The timeline of the ML and DM based mortality risk prediction in STEMI-CS 

patients from 2012 to 2022 

Green et al. [10] compared the ANN models with LR in predicting acute coronary syndrome in the 
emergency room. They found that the ANN approach outperforms LR models in terms of performance 
metrics and calibration assessments. Arif et al. [14] proposed an automatic model for the detection and 
localization of myocardial infarction using a KNN classifier. The objective is to categorize normal 
individuals without myocardial infarction and individuals suffering from myocardial infarction. Berikol et 
al. [8] used SVM algorithm to diagnose acute coronary syndrome and assisting the medical doctor with 
his decision to discharge or to hospitalize STEMI patients. Their approach relies on age, sex, threat 
factors, and cardiac enzymes of patients. 

Acharya et al. [12] employed deep CNN model for automated detection of myocardial infarction 
using ECG signals. The main advantage of their work is that no feature extraction is performed, and can 
accurately identify the unknown ECG signals even with noise. Sharma et al. [15] developed a risk 
prediction model using SVM with both linear and radial basis function kernel and KNN. They proved that 
the proposed technique can successfully detect the myocardial infarction. Sharma et al. [16] proposed an 
automated system for classifying MI and regular ECG signals using a single-channel ECG database. The 
KNN classifier was used to classify both noisy and clean MI-ECG signals. In other work, Sharma and 
Sunkaria [17] used SVM and KNN to classify between subjects admitted for health control and patients 
suffering from inferior myocardial infarction.  

Strodthoff et al. [18] proposed an ensemble of fully (CNNs) for the detection of myocardial 
infarction that operates directly on ECG data without any preprocessing efforts. The proposed classifier 
achieves 93.3% sensitivity and computed using 10-fold cross-validation with sampling based on patients. 
Goto et al. [19] proposed a machine learning model to predict needs for urgent revascularization from 12-
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leads electrocardiography in emergency patients recorded in the emergency room at Keio University 
Hospital. Wu et al. [20] presented an ANN model to predict none STEMI patients. They proved that ANN 
is able to determine the most important features and predict none STEMI and unstable chest pain with 
higher accuracy. Lui and Chow [13] presented an myocardial infarction classifier that combines both 
CNN and RNNs. They develop multiclass classification to discriminate the myocardial infarction from 
those of patients with existing chronic heart conditions and healthy individuals. Baloglu et al. [21] 
proposed a deep CNN model that provides automatic recognition of myocardial infarction (MI). Their 
approach provides a powerful classifier without any handcrafted feature extraction. Cosentino et al. [3] 
discussed the long-term mortality in STEMI-CS patients and developed a risk scoring system based on 
the logistic regression model to measure the risk of death. Their findings show that the long-term 
mortality of STEMI-CS patients remains high after hospital discharge. 

Bai et al. [5] used five prominent ML algorithms for in-hospital STEMI-CS prediction. The 
employed ML algorithms are LR, LASSO, SVM, LightGBM, and XGBoost. They showed that LASSO 
model has better predictive performance compared with other methods. The limitation of their work is 
that all possible factors that have impact on STEMI-CS are not considered in risk prediction phase. Deng 
et al. [7] used machine learning algorithms to establish an optimal model to predict the within-hospital 
death that occurred in STEMI-CS patients who underwent primary percutaneous coronary intervention. 
With a test on 854 STEMI patients they proved that the random forest algorithm outperformed other ML 
algorithms in mortality risk prediction process. 

Wu et al. [22] developed three deep learning models for enhancing the effectiveness of the STEMI 
diagnosis. Their prediction models are convolutional neural network (CNN), long short-term memory 
(LSTM), and hybrid CNN-LSTM. With an evaluation on 883 STEMI patients, the CNN-LSTM model 
performed better than LSTM and CNN, and even doctors in predicting STEMI. In other work, Cao et al. 
[23] proposed a multi-scale deep learning model combined with a residual network and attention 
mechanism for the detection and localization of MI. They showed that the proposed ECGNet model 
outperforms traditional machine learning methods including CNNs and RNNs in terms of diagnostic 
performance and performance metrics. Lee et al. [24] used logistic regression with regularization, random 
forest, extreme gradient boosting (EGB), and SVM models to predict the short- and long-term mortality 
of STEMI patients. Their comparison showed that the ML-based models outperformed other algorithms 
in terms of solution quality.  

Shetty et al. [25] show the effectiveness of the ML models in the mortality prediction of STEMI 
patients. They proved that the ML models overcome the limitations of the traditional logistic regression-
based models. Their results showed that the random forest and multiple perceptron models outperformed 
counterpart models in terms of accuracy metric. Al-Zaiti et al. [26] developed some large-scale classifiers 
for the prediction of underlying acute myocardial ischemia in patients with chest pain. Their considered 
classifiers are gradient boosting machine (GBM), LR, and ANN. Their proposed method outperformed 
the doctors and commercial interpretation software. Liu et al. [27] developed a deep learning model as a 
diagnostic support tool based on a 12-lead electrocardiogram. The objective was to improve the diagnosis 
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of STEMI disease. Kavak et al. [28] examine the application of CNN for the detection and localization of 
STEMI Using 12-lead ECG images. They employed the gradient-weighted class activation mapping 
(Grad-CAM) method to localize the STEMI signals in the ECG images. With a test on 537 ECG testing 
images, the proposed method achieved 96.3% accuracy. 

 
3.2. Scale 

This dimension is focused on the operation domain of the risk prediction system. According to the 
performance and adaptability measures, the risk prediction systems can be divided into three categories, 
small, medium, and large scales. Systems with high complexity and low adaptability were categorized as 
small. Medium systems have medium-sized performance and work with medium-sized data. Finally, the 
risk prediction systems are categorized as large if they are scalable and can work with high dimension 
data. The majority of data mining and machine learning methods are usually large-scale. Statistical 
methods usually have a good ability on a medium scale data. Hand-crafted and rule-based methods are 
considered small scale. Large-scale systems are preferable compared with other methods. 
 
3.3. Evaluation Method 

Three observations need to be considered when evaluating a mortality risk prediction system. To 
facilitate evaluation, the expected output of the system must first be accurately determined. Second, we 
need to identify the purpose of the evaluation. Third, we need to answer the question, "what are the 
appropriate datasets and evaluation metrics to evaluate the performance of the risk prediction system?"   

Datasets and evaluation measures should appropriate to evaluate the system’s soundness, 
accuracy, completeness, etc. Researchers have been used various benchmark datasets of different size. 
Table 1 lists the datasets used to evaluate the risk prediction systems. In Table 1, the "Name" column 
represents the name of the dataset. The "Literature" column provides a reference to the work, including 
the author and year of publication. A total of 20 datasets have been reviewed in this work. The largest 
dataset is the D2 dataset, which includes 20,000 ECG beats of normal and different types of myocardial 
infarction. The smallest dataset is the D9 dataset, which includes only 21 STEMI-CS patients.  

Performance measures need for evaluating the performance of the risk prediction systems, should 
be suitable for evaluating system's accuracy, completeness, soundness, and so on. Each prediction model 
needs a specific evaluation measures. Some well-known evaluation measures are precision (P), recall (R), 
F1-measure, accuracy (A), area under precision-recall curve (AUC), area under receiver operating 
characteristics (ROC) [10]. For more detail about these metrics refer to [1]. These measures indicate the 
basic metrics for evaluating the performance of risk prediction system. In ideal state, a prediction system 
should score CS risks with high precision, recall, F1-measure, and AUC. In addition to the mentioned 
metrics, researchers have been developed other specific metrics to assess the performance of prediction 
systems.  

A risk prediction machine consists of a set of components. Obviously, the performance of each 
component influences the overall performance of the subsequent components of the predictive system. 
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We believe, for the sake of comparing risk predictive systems comprehensively, evaluation process must 
be carried out at two levels: the component level and the system level. At the component level evaluation, 
the components of system are evaluated one at a time to discover the potential and weakness of them. At 
the system-level evaluation, the end-to-end overall performance of the system are evaluated. When as 
compared to the component-level evaluation, system-level evaluation has received much interest for 
comparing mortality risk prediction systems. 

Currently, the state-of-the-art mortality risk prediction systems achieve around 90% of F-1 measure on 
some datasets. However, the existing systems cannot reach to the ideal performance. This shows that a lot 
of effort is needed in this area to improve the performance. Because different benchmark datasets and 
performance metrics have been used to evaluate systems, the generated performances cannot be directly 
compared. It is clear that after changing the dataset and scope, the performance of predictive systems 
decreases substantially. An open challenge is to evaluate the different systems under a unified 
benchmarking approach to identify the potentials and weaknesses of systems and pick out the most 
powerful structures for a certain application. 

 
Table 1. Overview of the datasets used to evaluate the performance of mortality risk prediction in 

STEMI-CS patients 
Name Description  Year  Literature 
D1 634 patients 2006 [10] 
D2 20,000 ECG beats of normal and 

different types of myocardial infarction 
2012 [14] 

D3 1074 myocardial infarction ECG frames 2015 [15] 
D4 228 patients  2016 [8] 
D5 200 patients  2017 [12] 
D6 50728 ECG epochs taken from 200 patients 2018 [16] 
D7 200 patients  2018 [17] 
D8 549 patients  2018 [13] 
D9 21 patients  2019 [18] 
D10 268 chest pain patients 2019 [20] 
D11 52 normal patients and 148 MI patients 2019 [21] 
D12 362 patients required urgent revascularization  2019 [19] 
D13 737 patients 2021 [27] 
D14 2282 STEMI patients 2021 [5] 
D15 854 STEMI patients 2022 [7] 
D16 506 control and 377 STEMI patients 2022 [22] 
D17 3,635 STEMI patients 2022 [25] 
D18 1244 patients 2022 [26] 
D19 540 ECG images 2022 [28] 
D20 52 normal cases and 148 MI patients 2022 [23]  

 
  

75



 
6th INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 
21-24 June 2022, Istanbul, Turkey 

 

 
ICOM 2022 

ISTANBUL / TURKEY 

4. Discussions 
Literature reviews of current state-of-the-art techniques have been conducted to provide insights 

into the different methods of mortality risk prediction in STEMI-CS patients. This section discusses 20 
risk prediction models. Table 2 lists 20 ML and DM-based mortality risk prediction methods. In Table 2, 
the methods are categorized based on the dimensions of the comparison framework.  

Figure 5 shows the distribution of papers according to the risk prediction model. As shown in the 
figure, the majority of the methods are deep learning-based strategies, especially the CNN model. The 
second rank belongs to SVM and ANNs are in third place. This ranking shows the high capability of DM 
and ML methods in the risk prediction field. 

 
Table 2. The list of STEMI-CS's mortality risk prediction systems addressed in this paper 

Literature  Prediction model Scale  
Green et al. [10] ANNs M 
Arif et al. [14] KNN M 
Sharma et al. [15] SVM M 
Berikol et al. [8] SVM M 
Acharya et al. [12] CNN L 
Sharma et al. [16] KNN M 
Sharma and Sunkaria [17] SVM M 
Lui and Chow [13] CNN-LSTM L 
Strodthoff et al. [18] Resnet L 
Wu et al. [20] ANN M 
Baloglu et al. [21] CNN L 
Goto et al. [19] LSTM L 
Liu et al. [27] DLM L 
Bai et al. [5] LASSO M 
Deng et al. [7] RF M 
Wu et al. [22] CNN L 
Shetty el al. [25] Extra Tree ML L 
Al-Zaiti et al. [26] ANN M 
Kavak et al. [28] CNN L 
Cao et al. [23]  ECGNet L 
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Figure 5. The number of papers reviewd in terms of risk prediction method 

Figure 6 shows the distribution of reviewed articles in terms of the risk prediction method and 
scale dimension. The majority of methods are able to work on large-scale datasets. CNN, LSTM and 
CNN-LSTM methods are capable to work on large-scale data, because they can cope with noise, data 
loss, and data update. Since KNN, RF, LASSO and ANN have medium computational complexity, they 
can often operate on medium-scale data.  

 

Figure 56 The number of papers reviewd in terms of scale dimension and risk prediction 
method 

Table 3 shows the performance obtained by the risk prediction systems on different benchmark 
datasets given in Table 1. It is important to notice that because of restrained space, in Table 3, we only 
provide best results generated by the risk prediction system for every dataset. 
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Table 3. Performances of risk prediction systems on different datasets listed in Table 1 in terms of 
evaluation measures 
Literature  Prediction model Dataset  Performance  
Green et al. [10] ANNs D-2 ROC=0.81 
Arif et al. [14] KNN D17 A=0.98 
Sharma et al. [15] SVM D16 A=0.96 
Berikol et al. [8] SVM D00 A=0.99 
Acharya et al. [12] CNN D-1 A=0.95 
Sharma et al. [16] KNN D13 A=0.99 
Sharma and Sunkaria [17] SVM D14 A=0.99 
Lui and Chow [13] CNN-LSTM D08 F1=0.95 
Strodthoff et al. [18] Resnet D15 P=0.94 
Wu et al. [20] ANN D07 A=0.93 
Baloglu et al. [21] CNN D09 A=0.99 
Goto et al. [19] LSTM D10 A=0.83 
Liu et al. [27] DLM D06 AUC=0.98 
Bai et al. [5] LASSO D01 AUC=0.82 
Deng et al. [7] RF D02 AUC= 0.789 
Wu et al. [22] CNN D03 AUC=0.99 
Shetty el al. [25] Extra Tree ML D04 AUC=0.80 
Al-Zaiti et al. [26] ANN D05 AUC=0.78 
Kavak et al. [28] CNN D11 A=0.96 
Cao et al. [23]  ECGNet D12 A=0.99 

 
A review of performance generated by the risk prediction models shows that promising results 

have been made in diagnosing and determining the risk of mortality in STEMI-CS patients. However, the 
performance of existing methods is not ideal and there is a room for more effort in this domain. 

One of the main challenges in evaluating mortality risk prediction models is to evaluate existing 
methods with unified datasets and the same performance criteria to identify the strengths and weaknesses 
of the methods. Another challenge is to improve the performance of existing models and even combine 
them with other prominent methods to be able to work in real-world hospital environments. Another 
challenge is the need for large data sets to train the risk predictive model. Methods need to be considered 
that have the ability of predicting mortality risk scores without the need for huge training data. 

5. Conclusion 
Widespread interest in mortality risk prediction of STEMI-CS patients has resulted in the 

development of different machine learning-based predictive models. To identify how risk prediction 
models have developed, during the last years, this research surveys risk prediction models through a 
review of related work and the categorization of publications based on a comparison framework, from 
2012 to 2022. Among all machine learning-based risk prediction models, a total of 20 representative 
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models were reviewed and examined. After surveying the risk prediction models, some open issues, new 
trends, and several promising directions for future research are discussed. This survey confirms that the 
research in the field is still an open problem and there is room for more efforts. 
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Abstract 
In this study, statistical region-time analyses of current earthquake activity in the Lake Van and 

its adjacent area are performed by considering the Relative Intensity (RI), Pattern Informatics (PI), 
combined forecast model (RIPI) and Coulomb stress variations. The relations between these variables 
are used to evaluate the recent earthquake hazard and to make earthquake forecasting in and around the 
Lake Van. These types of techniques are well-known and have been used in earthquake statistics, 
especially in statistical seismology. The results show that the areas especially having great stressed 
distributions at the beginning of 2022 and hotspot locations from combined forecast map between 2022 
and 2032 are detected in several same parts of the study area including Erciş and Yeniköşk faults, Van 
and Saray fault zones between Muradiye, Özalp, Erçek, Van and Gevaş. As a remarkable fact, all 
anomaly areas of estimated parameters are observed in the same parts of the study region and therefore, 
these anomaly areas estimated at the beginning of 2022 and also between 2022 and 2032 may be 
considered as one of the most likely zones for the next strong/large earthquakes. Thus, the 
interrelationships between these variables may supply more accurate and more reliable interpretations 
for earthquake forecasting and hazard assessment in this part of Turkey.  

 
          Keywords: The Lake Van, Coulomb stress, combined forecast, earthquake hazard. 

1. Introduction 
 

Statistical studies on the region-time distributions of earthquake activity are one of the most 
significant process in the determination of earthquake potential. Many authors have used different variables, 
scaling laws, measurements and approaches for seismicity analyses of different parts of the world, such as 
magnitude-frequency b-value, fractal dimension Dc-value, seismic quiescence Z-value, earthquake 
probability, recurrence time, Relative Intensity (RI), Pattern Informatics (PI), VAN method, Region-Time-
Length (RTL) algorithm, M8 and CN algorithms, Coulomb stress change, moment and energy releases [1]-
[5]. Thus, if the earthquake forecasting can be attributed to a statistical basis, statistical behaviors of 
earthquake occurrences become very important in the earthquake hazard and for the forecasting of possible 
future earthquakes [6].  

The static stress changes caused by a previous earthquake can change the current stress state and 
trigger the future earthquake occurrence on a fault and its adjacent zones. Literature studies show that 
earthquakes produce stress perturbations in the crust and this process can significantly advance or delay the 
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earthquakes on nearby faults [7], [8]. It is suggested that tectonic stress throughout the faults may increase 
during the loading cycle for large events and quickly decrease after a strong rupture in and around the 
earthquake area. From this point of view, the possible locations of the future earthquakes may be related to 
the stress situations uploaded by the previous events and current seismotectonic conditions. In recent years, 
another approach to forecast the earthquakes has been proposed [3], [6]. This method is named as Pattern 
Informatics (PI) and is based on the strong region-time relations of earthquake activity. Relative intensity 
(RI) is the other statistics to forecast earthquakes and may specify the locations of the largest seismic 
activity of earthquakes with the smallest magnitude. Significant developments have been obtained from 
recent advances in the PI technique, especially after combining the results from RI analyses. The results of 
these forecasting techniques provide a map of regions in a seismogenic area in which earthquakes are 
considered to occur in a future time interval, generally five to ten years [9]. 

The Lake Van region is located in the southeast of Karlıova Triple Junction (~125 km) and ~100 
km to the north of the promontory thrust of the Bitlis-Zagros Thrust Zone [10]. The Lake Van consists of 
three deep sub-basins (Northern basin, Tatvan basin and Deveboynu basin) and basement-ridges (e.g. 
Northern, Ahlat) in the present time. This region is characterized by oblique-slip boundary faults, N-S 
shortened and domal morphological structure [11]. Main tectonics in and around the Lake Van are plotted 
in Fig. 1 [12]. Active faults and fault zones in the study area can be given as Erciş fault, Çaldıran fault, 
Süphan fault, Nemrut fault, Nazik Gölü fault, Malazgirt fault, Yeniköşk fault, Saray fault zone and Van 
fault zone. Erciş, Çaldıran, Nazik Gölü faults and Saray fault zone show the right-lateral strike-slip 
mechanism, whereas Süphan and Malazgirt faults are major left-lateral strike-slip faults. On the contrary, 
Yeniköşk fault and Van fault zone are the reverse or thrust fault mechanisms typically E-W trending, while 
Nemrut and Tendürek faults extension fissures show the normal fault mechanisms.  

 

 

Figure 1. Main tectonic structures from [12] and city locations in the Lake Van and its adjacent area.  
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Some destructive earthquakes occurred in and around Van in the past and recent years such as; April 
29, 1903 Malazgirt (Ms=6.7, surface wave magnitude), November 24, 1976 Muradiye-Van (Ms=7.5) and 
October 23, 2011 Van (Ms=7.5) (Bogazici University, Kandilli Observatory and Research Institute, 
KOERI). Although many statistical studies with different contents have been made to reveal the earthquake 
potential for the Lake Van and its adjacent area, these types of hazard assessments and earthquake 
forecasting studies are relatively rare for this part of the Turkey. In this context, Coulomb stress changes 
are realized and the applicability of the RI and PI methods with their combination are firstly performed to 
forecast the strong/large earthquakes in the intermediate-term in and around the Lake Van region of Turkey.  
 
2. Earthquake Catalog and Analysis Methods 
 

A part of data was taken from Öztürk [13] for the time period from 1970 to 2006. This catalog is 
homogeneous for duration magnitude, Md, and contains 392 events. Also, the earthquakes between 2006 
and 2022 were provided from KOERI, and there are 13,786 events in this time period. The shallow 
earthquakes (depth<70 km) were used to achieve the statistical analyses since the seismogenic depth is 
given between 40 and 45 km for this part of the East Anatolian Region (EAR) [14]. Thus, a database 
consisting of 14,178 earthquakes from November 28, 1970 to December 31, 2021, with a magnitude range 

of 1.0Md6.6 was obtained. Epicenter distributions of the catalog were plotted in Fig. 2. Also, to determine 
the Coulomb stress changes, 66 events (moment magnitude, Mw≥4.5, moment magnitude) that occurred in 
the Lake Van and its surrounding area from 2011 to 2021 were used. Detailed earthquake information (dip, 
strike, rake, etc.) was taken from the Disaster and Emergency Management Authority (AFAD). 

 

 

Figure 2. Epicenter distributions of the 14,178 earthquakes with Md≥1.0 between 1970 and 2022. The 
fault plane solution shows the focal mechanism of the October 2011 Van earthquake. 
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Relative Intensity (RI), Pattern Informatics (PI) and Combined Forecasting Method  
 

RI and PI techniques using the statistical behaviors of earthquake occurrences do not predict the 
earthquakes, but they forecast the seismogenic regions (hot spots) in which earthquakes are most likely to 
occur in the future 5 to 10-year time interval. RI and PI algorithms can be found in many studies [9], [15]-
[17] and RI forecast can briefly be given in the following steps (for details see [16]):  
i. The study region is binned into boxes with a linear dimension x. 
ii. The number of events having a magnitude M equal to or larger than a smaller Mc-value in box j is 

estimated for the time period between tS and tE, beginning and ending times of catalog, respectively. 
This number is the average to determine the number of events per day, defined by nj(tS,tE). 

iii. The relative value of this number is named as RI score. This score is given in the form nj(tS,tE)/nMAX, 
where nMAX is the highest value of nj(tS,tE). The RI score varies from 0 to 1.  

iv. Considering a threshold value w between zero and one (0w1), the next large events are expected only 
in boxes of RI scores higher than this w-value. The boxes of RI score lower than the threshold w-value 
are the regions where the next large events are forecasted not to occur. 

v. Thus, according to the RI forecast framework, great events are considered most likely to occur in regions 
with higher earthquake activity.  
    PI method and its modification consist of the following steps (for details see [16]): 

i. As in the RI forecast, the study region is binned into boxes with a linear dimension x. 
ii. All earthquakes in the region with M≥ Mc-value since the time defined by t0 are included. 
iii. Three-time intervals are taken into consideration: 

a) A reference time interval between tb and t1. 

b) A second-time interval between tb and t2 (t2 t1). The change period over which seismic activity 
variations are computed is then from t1 to t2. The time tb is chosen from t0 to t1. The aim is to 
determine anomalous earthquake activity in the change period between t1 to t2 relative to the 
reference interval from tb and t1. 

c) The forecast time period from t2 to t3 is the period for which the forecast is valid. The change and 
forecast periods must have the same length.  

iv. The earthquake intensity of a box for a time period is the average number of an earthquake with M≥Mc-
value that occurred during the time period. The earthquake intensity of box j over the reference period 
tb to t1, nj(tb,t1), is the average earthquakes number between tb and t1. The earthquake intensity of box j 
over the period from tb to t2, nj(tb,t2), is the average earthquakes number between tb to t2. 

v. To compare the intensities from two different time periods, they are required to have the same statistical 
features. Therefore, the earthquake intensities are normalized by subtracting the mean earthquake 
activity of all boxes and dividing by the standard deviation of the earthquake activity in all boxes. These 
normalized intensities are defined by nj

⁎(tb,t1) and nj
⁎(tb,t2). 

vi. Anomalous seismicity measure in box j is the difference between the two normalized earthquake 

intensities, nj
⁎(tb,t1,t2) = nj

⁎(tb,t2)-nj
⁎(tb,t1). 
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vii. To reduce the relative importance of random fluctuations in earthquake activity, the average change 

nj
⁎(tb,t1,t2) is computed over all possible initial times tb from t0 to t1. The result is nj

⁎(t0,t1,t2). 
viii. The probability of a future earthquake in box j, Pj(t0,t1,t2), is defined as the square of the average 

intensity change, Pj(t0,t1,t2) =nj
⁎(t0,t1,t2)2. 

ix. In order to denote anomalous areas, it is necessary to compute the change in the probability Pj(t0,t1,t2) 

relative to the background so that the mean probability is subtracted over all boxes <Pj(t0,t1,t2). This 

variation in the probability is defined by P'j(t0,t1,t2) = Pj(t0,t1,t2) - <Pj(t0,t1,t2). 
x. The relative value of the variation in the probability is named as PI score. This score is given in the form 

P'j(t0,t1,t2)/PMAX, where PMAX is the greatest value of P'j(t0,t1,t2). Because it is interested in seismic 
activation/ quiescence relative to the background, if boxes have PI scores smaller than zero, these scores 
are replaced by zero. PI score is between 0 and 1. 

xi. If a threshold w-value is considered in the interval between 0 and 1, next large earthquakes are expected 
likely in boxes of PI scores larger than this w-value. The boxes of PI scores smaller than the threshold 
w-value are the regions where future large earthquakes are forecasted not to occur. 

xii. Thus, according to the PI forecast framework, great earthquakes are considered likely to occur in 
regions with higher earthquake activity or quiescence. 

In the last step, PI and RI maps are combined to create a forecast map. This map is then renormalized 
to unit probability over the future 5 to 10-year period. The details of the algorithm can be given in the 
following steps (for details see [17]):   
a. In the first stage, a relative intensity map is created for all areas. Then, relative values larger than 10-1 

are adjusted to 10-1 and nonzero values smaller than 10-4 are adjusted to 10-4. Finally, every box with 
zero historic earthquake activity is set to 10-5.  

b. A pattern informatics calculation is performed over the top 10% of most active sites of the study region. 
The times t0, t1, and t2 are defined for the calculations. Since future earthquakes are expected to occur in 
hot spots, they are given in a probability value of unity. 

c. In the last stage, a combined forecast map is created by superimposing the PI map and its Moore 
neighborhood (the pixel + its eight adjacent neighbors) on top of the RI map. Entire hot spot pixels have 
a probability of 1, and all other pixels have probabilities that change between 10-5 and 10-1. 
 

Coulomb Stress Analysis  
 

One of the best-known methods to evaluate the stress situations under which a failure occurs in the 
source fault is the Coulomb failure stress (Δσcfs) and it is calculated with following formula: 

'' nscfs                                                                                                                   (1) 

where,  ∆𝜏௦ indicates the shear stress variation associated with the positive direction of receiver fault 
slip, ∆𝜎ᇲ is the normal stress change along the fault plane and 𝜇ᇱ is the effective friction coefficient on the 
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fault [18]. The effective coefficient of friction 𝜇ᇱ in Eq. 1 means to include the effects of pore-pressure 
changes and varies between 0 and 1. For this analysis, we considered 0.4 in an elastic half-space with 
uniform isotropic elastic properties. Dimensionless Poisson’s ratio (v) is assumed as 0.25 and Young 
modulus (E) is accepted as 8×105 bars. The positive Coulomb stress change indicates the loading stress, 
pushing the fault toward brittle failure, whereas the negative Coulomb stress change corresponds to the 
unloading stress, obstructing the earthquake rupture [7], [8], [18].  

 
3. Results and Discussions 
 

For the determination of minimum magnitude in region-time analyses of seismicity, determination 
of the magnitude completeness, Mc-value, must be the first step since Mc-value changes in time. Time 
variations in Mc-value can be estimated with a moving time window. In this work, time changes in Mc-
value were plotted with its standard deviation for every 250 samples per window and all 14,718 earthquakes 
were used. Time variation of Mc-value was plotted in Fig. 3. Mc-value is between 2.8 and 3.3, relatively 
large, until 2011. Then, it decreases to about 2.5 at the beginning of 2012, and it shows a variation from 2.0 
to 2.5 after 2012. Thus, temporal changes in Mc-value are not stable and there exists a clear variation 
between 2.0 and 3.3 from 1970 to 2022. It can be stated that Mc=2.5 is suitable and consistent with the 
literature researches covering the study area. 

 

 

Figure 3. Temporal variation of Mc-value. The standard deviation, δMc-value, was also given. 
 

The forecast map in and around the Lake Van region was created by combining the RI (Fig. 4a) and 

PI maps (Fig. 4b). The study area was divided into rectangular cells spacing of 0.020.02 in latitude and 

longitude (x = 0.02), and Mc-value was taken as 2.5. Then, the large events during the forecast interval 
were described by the total number of Md≥5.0 events expected over the future ten-year period. In the last 
stage, the times (tS, tE, t0, t1, t2, t3) and time intervals were described. The forecast period is selected between 
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January 1, 2022 and January 1, 2032. The change interval is considered from January 1, 2012 to January 1, 
2022. Thus, the times can be given as t3 = January 1, 2032, tE = t2 = January 1, 2022, t1 = January 1, 2012, 
and tS = t0 = November 28, 1970 (the initial time is t0 = 1970, the change period is from t1 = 2012 to t2 = 
2022, and the forecast period is from t2 = 2022 to t3 = 2032). Previous studies suggest that the length of the 
change interval must be equal to the length of the forecast interval [15], [17]. Using these input values, 
region-time forecasting of strong earthquakes expected in the Lake Van and its adjacent region in the 
intermediate-term (t3 - t2 = 10 years) was made for the time period between January 1, 2022 and January 1, 
2032. A composite forecast map obtained by combining the RI map with the PI map was plotted in Fig. 4c. 
As seen in Fig. 4c, hotspot regions were defined more clearly on the composite map created by combining 
RI and PI maps. In the framework of these methods, great earthquakes are considered most probably to 
occur with higher seismic activity or quiescence. As seen from seismicity map in Fig. 2, the regions with 
higher earthquake activity and the areas having strong earthquakes greater than 5.0 have complied with the 
earthquake zones expected in the future on the RI, PI, and combined forecast maps. Also, there exist some 
regions that are the forecast hotspots for the occurrence of Md≥5.0 earthquakes during the period between 
2022 and 2032. These regions were observed in and around Bulanık, in the south of the Lake Van including 
Gevaş and its surrounding areas, in the east part of the Lake Van including some parts of Erciş fault, among 
Muradiye-Çaldıran-Van-Erçek in and around Yeniköşk fault, Van fault zone, and Saray fault zone. Thus, 
these methods aim to limit the times and regions in which earthquakes are most likely to occur in the next 
and to forecast the earthquakes in the intermediate-term.  

The Coulomb stress changes were plotted for the depths of 10 km using a grid size of 0.1 by 0.1 km 
on the maps (Fig. 5). Increases and decreases in the stress changes were presented with red and blue colors, 
respectively. As shown in Fig. 5, there are two high-stress lobes along the northwest-southeast direction 
and two low-stress lobes along the northeast-southwest direction. It is also seen that the Coulomb stress 
could not be transferred to the western part of the Lake Van. In the Coulomb stress change map, it can be 
stated that the eastern part of the Lake Van, Erciş fault and Saray fault zone are high stressed. Around the 
Çaldıran, another important observation is that a mostly low-stress change for all depths appears. Also, it 
can be observed that small and great earthquakes occurred along the positive stress regions on the NE-SW 
direction after recent seismic activity since 2011.  

As mentioned above, there exist some anomaly regions having hotspot points from created forecast 
map and high stressed distributions in the same parts of the study area. High-stress distribution and 
forecasted hotspot locations were estimated between Muradiye, Özalp, Erçek, Van and Gevaş covering 
Erciş and Yeniköşk faults, Van and Saray fault zones. It is accepted that high-stress distribution may indicte 
the areas in which the next possible earthquake will occur. Also, the combined forecast map based on 
analyzing the region-time patterns of past events may indicate the possible locations of future occurrence 
of Md≥5.0 events that can be expected to occur between 2022 and 2032. As a remarkable fact, almost all 
the anomaly regions of estimated parameters were observed in the same regions and therefore, special 
emphasis needs to be paid to these anomaly areas. 
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Figure 4. (a) RI map, (b) PI map and (c) Combined forecast map. 

 

Figure 5. Coulomb stress variation for the Lake Van and its surrounding region. 
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4. Conclusions 
 
In this study, RI and PI techniques and their combination with the Coulomb stress changes are 

evaluated for a reliable seismic hazard and more persuasive forecasting of the strong/large earthquakes in 
and around the Lake Van region of Turkey. For this purpose, we use a homogeneous catalog including 
14,178 shallow events (depth<70 km) with 1.0≤Md≤ 6.6 from November 28, 1970 to December 31, 2021. 
We perform our analyses in a rectangular area covered by coordinates 38.0°N and 39.5°N in latitude and 
42.0°E and 44.0°E in longitude. For the mapping of Coulomb stress changes, 66 events with Mw≥4.5 that 
occurred in and around the Lake Van region between 2011 and 2021 are used. The anomaly regions with 
hotspot points from combined forecast map and high Coulomb stress changes cover Erciş and Yeniköşk 
faults, Van and Saray fault zones consisting of Muradiye, Özalp, Erçek, Van and Gevaş. It is well known 
that the regions with high-stress distribution are considered to be the most likely places where the future 
expected strong/large earthquakes will occur. The forecast of where the next earthquakes with Md≥5.0 are 
expected to occur during a future time interval of ten years between 2022 and 2032 shows that the possible 
locations of future earthquake occurrences are compatible with the anomaly regions obtained from stress 
analysis. Thus, almost all the anomaly regions of estimated parameters are found in the same regions and 
seismic hazard in these regions is high. 

 
Acknowledgement: Some figures were drawn with ZMAP and GMT [19], [20]. The maps of Coulomb 
stress changes were plotted with the Coulomb 3.4 package [18]. The authors would like to thank Dr. 
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Abstract 

In this work, every ring is associative with identitiy and every module is an unital left module. Let 

M be an R-module and U≤M. If for every V≤M such that M=U+V, U has a weak supplement X in M with 

X≤V, then we say U has ample weak supplements in M. If every cofinite essential submodule of M has 

ample weak supplements in M, then M is called an amply cofinitely weak e-supplemented module. In this 

work, some properties of these modules are investigated. 
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1. INTRODUCTION 

    In this paper all rings are associative with identity and all modules are unital left modules. 

    Let R be a ring and M be an R-module. It is denoted a submodule N of M by N≤M. Let M be an R-

module and N≤M. If L=M for every submodule L of M with M=N+L, then N is called a small (or 

superfluous) submodule of M and denoted by N≪M. A submodule N of an R-module M is called an 

essential submodule of M and denoted by NM if K∩N≠0 for every submodule K≠0, or equvalently, 

N∩L=0 for L≤M implies that L=0. N is called a cofinite submodule of M if M/N is finitely generated. Let 

M be an R-module and U,V≤M. If M=U+V and V is minimal with respect to this property, or equivalently, 

M=U+V and U∩V≪V, then V is called a supplement of U in M. M is said to be supplemented if every 

submodule of M has a supplement in M. M is said to be essential supplemented (or briefly, e-

supplemented) if every essential submodule of M has a supplement in M. M is called a cofinitely 

supplemented module if every cofinite submodule of M has a supplement in M. If every cofinite essential 

submodule of M has a supplement in M, then M is called a cofinitely essential supplemented (or briefly, 

cofinitely e-supplemented) module. Let M be an R-module and U≤M. If for every V≤M such that M=U+V, 

U has a supplement V′ with V′≤V, we say U has ample supplements in M. If every submodule of M has 

ample supplements in M, then M is called an amply supplemented module. M is said to be amply essential 

supplemented (or briefly, amply e-supplemented) if every essential submodule of M has ample 

supplements in M. If every cofinite submodule of M has ample supplements in M, then M is called an 

amply cofinitely supplemented module. If every cofinite essential submodule of M has ample supplements 

in M, then M is called an amply cofinitely essential supplemented (or briefly, amply ce-supplemented) 
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module. Let M be an R-module and U,V≤M. If M=U+V and U∩V≪M, then V is called a weak supplement 

of U in M. M is said to be weakly supplemented if every submodule of M has a weak supplement in M. M 

is said to be weakly essential supplemented (or briefly, weakly e-supplemented) if every essential 

submodule of M has a weak supplement in M. M is called a cofinitely weak supplemented module if every 

cofinite submodule of M has a weak supplement in M. M is said to be cofinitely weak essential 

supplemented (briefly, cwe-supplemented) if every cofinite essential submodule of M has a weak 

supplement in M. Let M be an R-module and U≤M. If for every V≤M such that M=U+V, U has a weak 

supplement V′ with V′≤V, we say U has ample weak supplements in M. If every submodule of M has 

ample weak supplements in M, then M is called an amply weak supplemented module. M is said to be 

amply weak essential supplemented (or briefly, amply weak e-supplemented) if every essential submodule 

of M has ample weak supplements in M.The intersection of maximal submodules of an R-module M is 

called the radical of M and denoted by RadM. If M have no maximal submodules, then we denote 

RadM=M. 

    Some properties of (amply) supplemented modules are in [1] and [12]. Some informations about 

(amply) cofinitely supplemented modules are in [1]. The definition of essential supplemented module and 

some properties of this module are in [10]. Some properties of amply essential supplemented modules are 

in [11]. More informations about (amply) cofinitely essential supplemented modules are in [6] and [7]. 

More informations about weakly supplemented modules are in [3] and [8]. More informations about 

cofinitely weak supplemented modules are in [2]. More results about weakly (amply weak) essential 

supplemented modules are in [5] and [9]. More results about cofinitely weak essential supplemented 

modules are in [4]. 

 

2. AMPLY COFINITELY WEAK e-SUPPLEMENTED MODULES 

Definition 2.1. Let M be an R-module. If every cofinite essential submodule of M has ample weak 

supplements in M, then M is called an amply cofinitely weak e-supplemented (or briefly, amply cwe-

supplemented) module. 

 

Proposition 2.2. Let M be an amply weak e-supplemented module. Then M is amply cwe-supplemented. 

Proof. Clear from definitions. 

 

Proposition 2.3. Let M be a finitely generated R-module. If M is amply cwe-supplemented, then M is 

amply weak e-supplemented. 

Proof. Let U≤M. Since M is finitely generated, M/U is also finitely generated. Then U is a cofinite 

submodule of M and since M is amply cwe-supplemented, U has ample weak supplements in M. Hence M 

is amply weak e-supplemented, as desired. 

 

Proposition 2.4. Let M be an amply cwe-supplemented R-module. Then M is cwe-supplemented. 

Proof. Clear from definitions. 
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Proposition 2.5. Let M be an amply cwe-supplemented R-module. Then M/RadM have no proper cofinite 

essential submodules. 

Proof. Since M is amply cwe-supplemented, by Proposition 2.4, M is cwe-supplemented. Then by [4, 

Proposition 1], M/RadM have no proper cofinite essential submodules. 

 

Proposition 2.6. Let M be an amply cwe-supplemented R-module and K be a proper cofinite essential 

submodule of M with RadM≤K. Then K/RadM is not essential in M/RadM. 

Proof. Since M is amply cwe-supplemented, by Proposition 2.4, M is cwe-supplemented. Then by [4, 

Proposition 2], K/RadM is not essential in M/RadM. 

 

Proposition 2.7. Let M be an R-module, U be a cofinite essential submodule of M and M1≤M. If M1+U 

has a weak supplement in M and M1 is amply cwe-supplemented, then U has a weak supplement in M. 

Proof. Since M1 is amply cwe-supplemented, by Proposition 2.4, M1 is cwe-supplemented. Then by [4, 

Lemma 2], U has a weak supplement in M. 

 

Proposition 2.8. Let M be an R-module, U be a cofinite essential submodule of M and Mi≤M for 

i=1,2,...,n. If M1+M2+...+Mn+U has a weak supplement in M and Mi is amply cwe-supplemented for every 

i=1,2,...,n, then U has a weak supplement in M. 

Proof. Since Mi is amply cwe-supplemented for every i=1,2,...,n, by Proposition 2.4, Mi is cwe-

supplemented. Then by [4, Corollary 1], U has a weak supplement in M. 

 

Proposition 2.9. Let M be the sum of the family {Mi}iI. If Mi is amply cwe-supplemented for every iI, 

then M is cwe-supplemented. 

Proof. Since Mi is amply cwe-supplemented for every iI, by Proposition 2.4, Mi is cwe-supplemented. 

Then by [4, Lemma 3], M is cwe-supplemented, as desired. 

 

Corollary 2.10. Let M be an amply cwe-supplemented R-module. Then M
()

 is cwe-supplemented for 

every index set . 

Proof. Clear from Proposition 2.9. 

 

Proposition 2.11. Let M be an amply cwe-supplemented R-module. Then every factor module of M is 

cwe-supplemented.  

Proof.  Since M is amply cwe-supplemented, by Proposition 2.4, M is cwe-supplemented. Then by [4, 

Lemma 4], every factor module of M is cwe-supplemented, as desired. 

 

Corollary 2.12. Every homomorphic image of an amply cwe-supplemented module is cwe-

supplemented. 
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Proof. Clear from Proposition 2.11. 
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Abstract 

In this work, all lattices are complete modular lattices with the greatest element 1 and the smallest 

element 0. Let L be a lattice. If every essential element of L has ample supplements in L, then L is called 

an amply e-supplemented lattice. In this work, some properties of these lattices are investigated. 
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1. INTRODUCTION 

 

    In this paper, every lattice is complete modular lattice with the smallest element 0 and the greatest 

element 1. Let L be a lattice, x,y∈L and x≤y. A sublattice {a∈L|x≤a≤y} is called a quotient sublattice and 

denoted by y/x. An element a of a lattice L is called a complement of b in L if a∨b=1 and a∧b=0, in this 

case we denote 1=a⊕b (here we also call a and b are direct summands of L). L is said to be 

complemented if each element has at least one complement in L. An element x of L is said to be small or 

superfluous and denoted by x≪L if y=1 for every y∈L such that x∨y=1. Let L be a lattice and k∈L. If t=0 

for every t∈L with k∧t=0, then k is called an essential element of L and denoted by kL. The meet of all 

maximal (≠1) elements of a lattice L is called the radical of L and denoted by r(L). If a≪L, then a≤r(L) 

holds. An element a of L is called a supplement of b in L if it is minimal for 1=b∨a. a is a supplement of b 

in a lattice L if and only if 1=b∨a and b∧a≪a/0. A lattice L is said to be supplemented if every element of 

L has a supplement in L. If every essential element of L has a supplement in L, then L is called an 

essential supplemented (briefly, e-supplemented) lattice. We say that an element y of L lies above an 

element x of L if x≤y and y≪1/x. Let L be a lattice. L is said to be hollow if every element distinct from 1 

is superfluous in L. If every essential element of L with distinct from 1 is small in L or L have no essential 

elements with distinct from 1, then L is called an e-hollow lattice. L is said to be local if L has the greatest 

element (≠1). If L has an essential element c≠1 such that k≤c for every 1≠kL, then L is called an e-local 

lattice (here k is called the greatest essential element (≠1)) of L. We say an element x∈L has ample 

supplements in L if for every y∈L with x∨y=1, x has a supplement z in L with z≤y. L is said to be amply 
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supplemented if every element of L has ample supplements in L. Let L be a lattice. It is defined β* 

relation on the elements of L by aβ*b with a,b∈L if and only if for each t∈L such that a∨t=1 then b∨t=1 

and for each k∈L such that b∨k=1 then a∨k=1. 

    More informations about (amply) supplemented lattices are in [1], [2], [4] and [5]. More results about 

(amply) supplemented modules are in [10]. More informations about essential supplemented lattices are 

in [9]. More informations about (amply) essential supplemented modules are in [7] and [8]. The definition 

of β* relation on lattices and some properties of this relation are in [6]. This relation is a generalization of 

β* relation on modules. The definition of β* relation on modules and some properties of this relation are 

in [3]. 

 

Lemma 1.1. Let L be a lattice and a,b,c,d∈L. Then the followings are hold. 

(i) If a≤b and b≪L, then a≪L. 

(ii) Let a≤b. If aL and b1/a, then bL. 

(iii) If a≪b/0, then a≪t/0 for every t∈L with b≤t. 

(iv) Let a≤b and b be a direct summand of L. Then ab/0 if and only if aL. 

(v) If ab/0, then ac(bc)/c. 

(vi) If a≪L, then a∨b≪1/b. 

(vii) If a≪b/0 and c≪d/0, then a∨c≪(b∨d)/0. 

(viii) If aL and bL, then abL. 

Proof. See [4]. 

 

2. AMPLY e-SUPPLEMENTED LATTICES 

Definition 2.1. Let L be a lattice. If every essential element of L has ample supplements in L, then L is 

called an amply essential supplemented (briefly, amply e-supplemented) lattice. 

 

Proposition 2.2. Every amply e-supplemented lattice is essential supplemented. 

Proof. Clear from definitions. 

 

Proposition 2.3. Let L be an amply e-supplemented lattice. If every element with distinct from 0 is 

essential in L, then L is amply supplemented. 

Proof. Let aL. If a=0, then a has ample supplements in L. Let a≠0. Then by hypothesis aL. Since L is 

amply e-supplemented, a has ample supplements in L. Hence every element of L has ample supplements 

in L and L is amply supplemented. 
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Proposition 2.4. Let L be an amply e-supplemented lattice. Then 1/r(L) have no essential elements with 

distinct from 1. 

Proof. Since L is amply e-supplemented, by Proposition 2.2, L is essential supplemented. Then by [9, 

Proposition 4], 1/r(L) have no essential elements with distinct from 1. 

 

Proposition 2.5. Let L be a lattice, xL and aL. If ax has a supplement in L and a/0 amply e-

supplemented, then x has a supplement in L. 

Proof. Since a/0 is amply e-supplemented, by Proposition 2.2, a/0 essential supplemented. Then by [9, 

Lemma 3], x has a supplement in L. 

 

Corollary 2.6. Let L be a lattice, xL and a1,a2,...,anL. If a1a2...anx has a supplement in L and ai/0 

amply e-supplemented for every i=1,2,...,n, then x has a supplement in L. 

Proof. Clear from Proposition 2.5. 

 

Proposition 2.7. Let L be a lattice and a,bL. If a/0 and b/0 are amply e-supplemented, then (ab)/0 is 

essential supplemented. 

Proof. Since a/0 and b/0 are amply e-supplemented, by Proposition 2.2, a/0 and b/0 is essential 

supplemented. Then by [9, Lemma 4], (ab)/0 is essential supplemented, as desired. 

 

Corollary 2.8. Let L be a lattice, a,bL and 1=ab. If a/0 and b/0 are amply e-supplemented, then L is 

essential supplemented. 

Proof. Clear from Proposition 2.7. 

 

Corollary 2.9. Let L be a lattice, a1,a2,...,anL and 1=a1a2...an. If ai/0 is amply e-supplemented, then 

L is essential supplemented. 

Proof. Clear from Proposition 2.7. 

 

Proposition 2.10. Let L be an amply e-supplemented lattice and aL. Then the quotient sublattice 1/a is 

essential supplemented. 

Proof. Since L is amply e-supplemented, by Proposition 2.2, L is essential supplemented. Then by [9, 

Lemma 5], 1/a is essential supplemented, as desired. 

 

Proposition 2.11. Let L be an amply e-supplemented lattice. Then a/0 is essential supplemented for every 

direct summand a of L. 
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Proof. Since a is a direct summand of L, there exists an element b of L such that 1=ab. Since L is amply 

e-supplemented, by Proposition 2.11, 1/b is essential supplemented. Then by 1/b=(ab)/ba/(ab)=a/0, 

a/0 is essential supplemented. 

 

Proposition 2.12. Every hollow lattice is amply e-supplemented. 

Proof. Clear from definitions. 

 

Proposition 2.13. Every e-hollow lattice is amply e-supplemented. 

Proof. Clear from definitions. 

 

Proposition 2.14. Every local lattice is amply e-supplemented. 

Proof. Clear from definitions. 
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Abstract 
MATLAB is a software that is easy to use, gives accurate and reliable results and is the most 

popular one in literature. Therefore it is usually preferred to solve nonlinear equation sets in literature. 
In this study, Mathematica, an alternative simulation program, is also used to solve nonlinear 
differential equations. Mathematica is mostly used to make scientific mathematical computations. In 
this paper, the chaotic dynamics and the chaotic attractor illustrations of a hyperjerk system with 
exponential nonlinear equation [1] which are obtained from Mathematica are presented.  

 
Keywords: Mathematica, hyperjerk system, analysis. 

 
1. Introduction 
 
Chaos theorem is a very important area in literature as it allows to study interdisciplinary such as 
physic, engineering, biology, mathematic, etc [2-3]. If a system is autonomous, this system must have 
at least three differential equations to exhibit chaotic behavior [2, 4]. Jerk systems which are presented 
by Sprott in literature are very attractive among autonomous chaotic systems [5-7]. The jerk systems 
have 3th-order differential equations which are derivative of each other. The hyperjerk systems have 

4th-order differential equations in the form 𝑑𝑑
4𝑥𝑥
𝑑𝑑𝑑𝑑4

= 𝐽𝐽 �𝑑𝑑
3𝑥𝑥
𝑑𝑑𝑑𝑑3

, 𝑑𝑑
2𝑥𝑥
𝑑𝑑𝑑𝑑2

, 𝑑𝑑𝑥𝑥
𝑑𝑑𝑑𝑑

, 𝑥𝑥�. While the studies in literature are 
generally about jerk systems, there are very few studies on hyperjerk systems in literature [1, 8-11]. Those 
studies were investigated while realizing numerical analysis and MATLAB have been generally preferred 
as a tool in literature.  
Mathematica is an alternative analysis tool of MATLAB to solve differential equations. Mathematica was 
developed by Stephen Wolfram and improved by Wolfram Research [12-14]. Wolfram language is used as 
the programming language in Mathematica [15]. Mathematica is a computer program that can perform all 
kinds of symbolic and numerical calculations and plot 2D and 3D graphics. 
In this study the hyperjerk system which proposed to literature by Dalkiran and Sprott [1] was analyzed 
numerically in Mathematica. 
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2. Analysis of Chaotic Hyperjerk System in Mathematica 
 
The differential equation set of the hyperjerk system which is investigated in this study is given below 
[1].  
 

�̇�𝑥 = 𝑦𝑦 
�̇�𝑦 = 𝑧𝑧            (1) 
�̇�𝑧 = 𝑤𝑤 
�̇�𝑤 = −𝑎𝑎𝑤𝑤 + 𝑓𝑓(𝑧𝑧) − 𝑏𝑏𝑦𝑦 − 𝑐𝑐𝑥𝑥 

 
where f(z) is an exponential nonlinear function and plays an important role on the hyperjerk system 
entering into chaos. The equation of f(z) is given in Eq. (2). 
 

𝑓𝑓(𝑧𝑧) = −𝑒𝑒𝑥𝑥𝑒𝑒 (𝑧𝑧)          (2) 
 
The parameters a, b and c in Eq. (1) are the system parameters and values of the those are 1, 3 and 1, 
respectively. 
 
In this study the differential equations described in Eq. (1) and (2) were numerically analyzed in 
Mathematica. Hence NDSolve command was used in Mathematica to solve those equations [15]. It is seen 
that how to write the differential equations and the initial conditions of those equations in Fig. 1. The 
commands in Fig. 2 were used to plot attractor in (x-y) plane.  
 

 
 

Figure 1. NDSolve command was used to solve differential equations in Mathematica. 
 
The chaotic attractor illustrations which are obtained by numerical analysis of the chaotic hyperjerk 
system in Mathematica are shown in Fig. 3.  
 

 
 

Figure 2. The command in Mathematica was used for plotting attractor. 
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(a)        (b) 

   
(c) 

Figure 3. Analysis results of the chaotic hyperjerk system in Mathematica, (a) in plane (x-y), (b) in 
plane (z-w), (c) in plane (x-w), (d) in plane (z-w). 
 
3D plotting can be realized in Mathematica as well as in MATLAB. While the command which is used 
to plot the attractor of the hyperjerk system in 3D is given in Fig. 4, three dimensional analysis result 
is shown in Fig. 5.  
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Figure 4. The command in Mathematica was used for 3D plotting. 

 

 
Figure 5. Three dimensional analysis result of the chaotic hyperjerk system. 

 
The chaotic dynamics of the hyperjerk system are drawing using plot command in Mathematica given 
in Fig. 6. It the same with MATLAB. Those dynamics were graphed on the interval [0, 400]. The 
analysis results of the chaotic dynamics varies according to time domain were shown in Fig. 7.  
 

 
 

Figure 6. The command was used to plot the chaotic dynamics in Mathematica. 
 
3. Conclusion 

In conclusion, the numerical analysis of the chaotic hyperjerk system is presented using 
Mathematica. The analysis results of that system obtained using Mathematica have been plotted as 
chaotic dynamics, chaotic attractors and 3D plotting. In this study it is clearly seen that the analysis 
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results which are obtained using both Mathematica and MATLAB are matched each other. Therefore 
Mathematica can be considered as an alternative to MATLAB to solve the differential equations. 
 

   
(a)       (b) 

   
(c)       (d) 

Figure 7. The chaotic dynamics of the hyperjerk system which obtained using Mathematica, (a) in 
plane (t-x), (b) in plane (t-y), (c) in plane (t-z), (d) in plane (t-w). 
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Abstract 
We study univalence properties for certain subclasses of univalent functions. These subclasses are 
associated with a generalized differential operator. The extended Becker-typed univalence criteria will be 
studied for these subclasses. 
 
 Keywords: Univalence, Becker’s Univalence Criteria, Differential operator. 
 
1. Introduction and Preliminaries  

Let A  denote the class of analytic functions f in the open unit disk { }: 1U z z= <  normalized by 

( ) ( )0 0 1 0f f ′= − = . Thus, each f A∈  has a Taylor series represantation        

                                                         ( )
3

k
k

k
f z z a z

∞

=

= +∑                                                                         (1) 

Let 2A  be the subclass of A  consisting of functions of the form  

                                                       ( )
3

k
k

k
f z z a z

∞

=

= +∑                                                                             (2) 

Let ℜ  be the univalent subclass of A  which satisfies 

                                                       ( )
( )( )

2

2 1 1
z f z

f z
µ

′
− < <       z U∈                                                         (3) 

Let 2ℜ  be the subclass of ℜ  for which ( )0 0f ′′ = . Let 2,µℜ  be the subclass of 2ℜ  consisting of functions 

of the form (2) which  satisfy 

106



 
6th INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 
21-24 June 2022, Istanbul, Turkey 

 

 
ICOM 2022 

ISTANBUL / TURKEY 

                                                       ( )
( )( )

2

2 1
z f z

f z
µ

′
− < ,       0 1µ< ≤ ,   z U∈ .  (4) 

Next, we a subclass ( )S p  of A  consisting of all functions ( )f z  that satisfy  

                                                       ( )( )
z p

f z

′′ 
≤  

 
,    0 2p< ≤ ,    z U∈ .                                           (5) 

In [7] (see, also [8]), Deniz and Özkan defined the differential operator mDλ  (say: Deniz-Özkan differential 
operator) as follows: 

For the parametres 0λ ≥  and { }0 0m N N∈ = ∪  the differential operatör mDλ  on A  defined by  

0 ( ) ( )D f z f zλ =  

1 3 2( ) ( ) (2 1) ( ) ( )D f z z f z z f z zf zλ λ λ′′′ ′′ ′= + + +  

1( ) ( ( )m mD f z D D f zλ λ
−=  

for z U∈ . 

For a function  f  in A , from the definition of the differential operatör mDλ , we can easily see that                                                                                                                                                                                             

2

2
( ) ( ( 1) 1) .m m m n

n
n

D f z z n n a zλ λ
∞

=

= + − +∑  

Also, ( ) .mD f z Aλ ∈  For the special cases of 0,1λ =  we obtain Salagean differential operator (see [15]). 

In this study, we consider that the integral operator 

( ) ( )
1

1

1

0
1

, , , ;
i

İ

mnz i

i

D f t
n m z t dt

t

ρ
γ

λρ
γ ρ λ ρ −

=

   ϒ =   
   

∏∫ ,      if A∈                       (6) 
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which generalize many integral operators. In fact, if we choose suitable values of parameters in this type 

of operator, we get the some interesting operators (see [3,4,9,10]) 

For our main result,we need the following lemmas. 

Lemma 1.1  (see[1,2]). Let c  be complex number, 1, 1c c≤ ≠ − . ( ) 2
2If f z z a z= + + is analytic 

function in U  and  

                                              ( ) ( )
( )

2 21 1
zf z

c z z
f z
′′

+ − ≤
′

,      z U∀ ∈ ,                                                  (7) 

then the function f is univalent in U . 

Lemma 1.2  (Schwarz Lemma). Let the function ( )f z  be analytic in the disk { }:RU z z R= ∈ <  with 

( )f z M< .If ( )f z  has one zero with multiply m≥  for 0z = , then 

                                                ( ) ,m
Rm

Mf z z z U
R

≤ ∀ ∈ ,                                                                 (8) 

and aquality holds only ( ) ( )/ mi mIf f z e M R zθ= , where θ  is constant. 

Lemma 1.3  (see[12]). Let δ  be c  complex number with 0eR δ >  such that , 1, 1.c c c∈ ≤ ≠ −  If 

f A∈  satisfies the condition 

                                                        ( ) ( )
( )

2 21 1,
zf z

c z z z U
f z

δ δ

δ
′′

+ − ≤ ∀ ∈
′

                                          (9) 

then the function 

                                                        ( ) ( ){ }
1

1

0

z
F z t f t dt

δδ
δ δ − ′= ∫                                                           (10)  

Lemma 1.4  (see[16]). If ( )f S ρ∈ , then 

                                                        ( )
( )( )

2
2

2 1
z f z

z
f z

ρ
′

− ≤ ,           z U∀ ∈ .                                             (11) 
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2. Univalence Properties 

In this section, we will discuss the univalence properties of the new family of integral operators 

mentioned above.  

Teorem 2.1. Let c  be complex number ( ) , 1m
i i iD f z M Mλ ≤ ≥ ,   and ( )  if S p∈  for  { }1, 2,3,i =   such 

that  

                                       ( ) ( )( )
( )1

1 2 1
Re , 1

1
i i i

i
i i i

M p M
M

M
ρ

γ

∞

=

− + −
≥ ≥

−∑                                   (12) 

where ρ , iγ  are complex numbers. If 

                                           
( )
11c

R ρ
≤ −  ( )( )

( )1

1 2 1
, 1

1
i i i

i
i i i

M p M
M

Mγ

∞

=

− + −
≥

−∑ ,                            (13) 

then the family ( ), , , ;
İ

n m zγ ρ λϒ  is univalent. 

Proof. Since ( )m
i iD f z Mλ ≤ , so by Lemma 1.4, we have  

                                                  
( )( )

( )( )

2
2

2 1
m

i
im

i

z D f z
p z

D f z
λ

λ

′
− ≤ ,        z U∀ ∈  .                                 (14) 

Now, by using hypotheis, we have 

                                                     ( )m
i iD f z Mλ ≤ ,                                                                (15) 

so by Lemma 1.3, we get  

                                                   ( ) .m
i iD f z M zλ ≤                                                              (16) 

Since 
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( ) 0

mD f z
z

λ ≠
                                                                (17) 

for 0z =  we have 

( ) ( ) ( )
1 1 1

1

1

1.
i i mm m mm

i m

i

D f z D f z D f z
z z z

γ γ γ
λ λ λ

=

     
= =     

     
∏                     (18) 

Let 

             ( ) ( ) ( )1
1 1

1
mm m

mD f z D f z
F z

z z

γ γ
λ λ

     ′ =         
 ,                                         (19)   

which implies that   

     
( )
( )

( )( )
( )

( )( )
( )

1

1 1

1 11 1
m m

m
m m

m m

z D f z z D f zzF z
F z D f z D f z

λ λ

λ λγ γ

   ′ ′′′    = − + + −   ′    
   

 ,                                (20) 

and 

                                 
( )
( )

( )( )
( )( )1

1 1 .
m

i

m
i i i

z D f zzF z
F z D f z

λ

λγ

∞

=

 ′′′  ≤ + ′  
 

∑                         (21)  

This implies that 

                             
( )
( )

( )( )
( )( )

( )( )
2

1

1 1
m m

i i

mi i i

z D f z D f zzF z
F z zD f z

λ λ

λ
γ

∞

=

 ′′′  ≤ + ′  
 

∑ ,                                   (22) 

or 

                                          
( )
( )

( )( )
( )( )2

1

1 1
m

i
imi i i

z D f zzF z
M

F z D f z
λ

λ
γ

∞

=

 ′′′  ≤ + ′  
 

∑ . (23) 
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Using (16), we get 

                                 
( )
( )

( )( )
( )( )2

1

1 1 1
m

i
i İmi i i

z D f zzF z
M M

F z D f z
λ

λ
γ

∞

=

 ′′′  ≤ − + + ′  
 

∑  .                           (24) 

This implies that 

                                                     
( )
( ) ( )2

1

1 1i i i
i i

zF z
z M M

F z
ρ

γ

∞

=

′′
≤ + +

′ ∑ .                                              (25) 

By using (14),  we get 

                                          
( )
( ) ( )( )2 3

1

1 1i i i i i
i i

zF z
M M M M

F z
ρ

γ

∞

=

′′
≤ + + + +

′ ∑  ,                               (26) 

which implies that  

                                                      
( )
( ) ( )( )2 3

1

1 1i i i i i
i i

zF z
M M M M

F z
ρ

γ

∞

=

′′
≤ + + + +

′ ∑  ,                             (27) 

and the condition 2 3, , , 1i i iM M M ≥  implies that  

( )
( ) 1 ; 1

2 11 11
1 1

i i
i i i i

i ii i i i

zF z M Mp M p M
F z M Mγ γ

∞ ∞

= =

   ′′    −
≤ + + = +         ′ − −      
∑ ∑ , 

( )
( )

( )2

1 1

2 12 11 1
1 1

i i i ii i i i i

i ii i i i

zF z p M p Mp M p M M
F z M Mγ γ

∞ ∞

= =

  ′′ − + −  − + −
≤ ≤         ′ − −      
∑ ∑ , 

                                                 ( )
( )

( )( )
1

1 2 11
1

i i i

i i i

M p MzF z
F z Mγ

∞

=

  − + −′′
 ≤    ′ −  

∑ .                                  (28) 

Now, we calculate 
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                          ( ) ( )
( )

( )
( ) ( )

( )
( )

2 2 1 11
Re

p p zF z zF Z zF z
c z z c c

F z F z F zρ ρ ρ
′′ ′′ ′′

+ − ≤ + ≤ +
′ ′ ′

.   (29) 

This implies that  

                           ( ) ( )
( ) ( )

( )( )2 2

1

1 2 11 11 .
Re 1

p p i i i

i i i

M p MzF z
c z z c

F z Mρ ρ γ

∞

=

  − + −′′
 + − < +    ′ −  

∑              (30) 

By using (57), we conlude that  

                                                    ( ) ( )
( )

( )
( )

2 2 11 1.p p zF z zF Z
c z z c

F z F zρ ρ
′′ ′′

+ − ≤ + ≤
′ ′

                              (31) 

Hence, by Lemma 1.3, the family of integral operators ( ), , , ;
İ

n m zγ ρ λϒ  is univalent. 

Corollary 2.2 Let c  be complex number,  ( )m
iD f z Mλ ≤ , 1M ≥  and  ( ) ( )m

i iD f z S pλ ∈ , 1iM M= ≥  for 

all { } 1, 2,3,i =   such that  

                                ( ) ( )( )
( )1

1 2 1
Re

1
i

i i

M p M
M

ρ
γ

∞

=

− + −
≥

−∑ ,                                                (32) 

where ρ , iγ  are complex numbers, If 

                                              
( )

( )( )
( )1

1 2 111
Re 1

i

i i

M p M
c

Mρ γ

∞

=

− + −
≤ −

−∑ ,   1M ≥ ,                                   (33) 

then the family  ( ), , , ;
İ

n m zγ ρ λϒ  is univalent. 

Corolary 2.3  Let c  be complex number,  ( )m
iD f z Mλ ≤ , 1M ≥  and the family ( ) ( )m

i iD f z S pλ ∈ , 

1iM M= ≥ ,  iγ γ= , for all { } 1, 2,3,i =   such that  

                                                             ( ) ( )( )
( )1

1 2 1
Re

1
i

i

M p M
M

ρ
γ

∞

=

− + −
≥

−∑ ,                                          (34) 

where ρ , iγ  are complex numbers. If 

112



 
6th INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 
21-24 June 2022, Istanbul, Turkey 

 

 
ICOM 2022 

ISTANBUL / TURKEY 

                                          
( )

( )( )
( )1

1 2 111
Re 1

i

i

M p M
c

Mρ γ

∞

=

− + −
≤ −

−∑ ,    1M ≥ ,                                    (35) 

then the family ( ), , , ;
İ

n m zγ ρ λϒ  is  univalent. 

Using the method given in the proof of Theorem 2.1, one can prove the following results. 

Theorem 2.4   Let c  be complex number,  ( )m
i iD f z Mλ ≤ , 1iM ≥  for all { } 1, 2,3,i =  and the family 

( ) ( )m
i iD f z S pλ ∈  for { } 1, 2,3,i =  and such that  

                                                            ( ) ( )
1

1 1
Re i i i

i i i i

p M M
p M

ρ
γ

∞

=

− +
≥∑ ,                                                      (36) 

where ρ , iγ  are complex numbers. If 

 

                                                  
( )

( )
( )1

1 111
Re

i i i

i i i i

p M M
c

p Mρ γ

∞

=

− +
≤ − ∑ ,    1iM ≥ ,                                      (37) 

then the family ( ), , , ;
İ

n m zγ ρ λϒ  is  univalent. 

Theorem 2.5   Let c  be complex number,  ( )m
i iD f z Mλ ≤ , 1iM ≥  for all { } 1, 2,3,i =  and the family 

( ) ( )m
i iD f z S pλ ∈  for { } 1, 2,3,i =  and such that  

                                                 ( )
( )( )

( )1

1 2 1
Re

1

nn
i i i i

i i i

p M M M
M

ρ
γ=

− + − +
≥

−∑ ,                                      (38) 

where ρ , iγ  are complex numbers. If 

                           ( )
( )( )

( )1

1 2 111
Re 1

nn
i i i i

i i i

p M M M
c

Mρ γ=

− + − +
≤ −

−∑ ,  1iM ≥ ,                            (39) 

then the family ( ), , , ;
İ

n m zγ ρ λϒ  is  univalent. 

113



 
6th INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 
21-24 June 2022, Istanbul, Turkey 

 

 
ICOM 2022 

ISTANBUL / TURKEY 

Theorem 2.6   Let c  be complex number,  ( )m
i iD f z Mλ ≤ , 1iM ≥  for all { } 1, 2,3,i =  and the family 

( ) ( )m
i iD f z S pλ ∈  for { } 1, 2,3,i =  and such that 

                                                          ( )
( )( )( )

1

1 / 2 1
Re

n
i i

i i

p n n M
ρ

γ=

+ + −
≥∑ ,                                       (40) 

where ρ , iγ  are complex numbers. If 

                                             ( )
( )( )( )

1

1 / 2 111
Re

i i

i i

p n n M
c

ρ γ

∞

=

+ + −
≤ − ∑ ,     1iM ≥                           (41) 

then the family ( ), , , ;
İ

n m zγ ρ λϒ  is  univalent. 

Theorem 2.7 Let c  be complex number,  ( )m
i iD f z Mλ ≤ , 1iM ≥  for all { } 1, 2,3,i =  and the family 

( ) 2, i

m
iD f zλ µ∈ℜ , for { } 1, 2,3,i =   such that   

                                                          ( ) ( )( )
1

1
Re

n
i i

i i

n n Mµ
ρ

γ=

+ +
≥∑ ,                                                 (42) 

where ρ , iγ  are complex numbers. If 

                                       
( )

( )( )
1

111
Re

n
i i

i i

n n M
c

µ
ρ γ=

+ +
≤ − ∑ ,    1iM ≥                                   (43) 

then the family ( ), , , ;
İ

n m zγ ρ λϒ  is  univalent. 

Proof.  Using the proof of Theorem 2.1, we have 

                          
( )
( )

( )( )
( )( )2

1

1 1 1
m

i
imi i i

z D f zzF z
M

F z D f z
λ

λ
γ

∞

=

 ′′′  ≤ − + ′  
 

∑ .                                   (44) 

Since ( ) 2, i

m
iD f zλ µ∈ℜ , so by using (4), we get 
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( )( )

( )( )

2

2 1
m

i
im

i

z D f z

D f z
λ

λ

µ
′
− ≤ ,       0 1, .z Uµ< ≤ ∈                                 (45) 

So from (44), we get 

                          
( )
( )

( )( )
( )( )2

1

1 1 1
m

i
i İmi i i

z D f zzF z
M M

F z D f z
λ

λ
γ

∞

=

 ′′′  ≤ − + + ′  
 

∑ ,                               (46) 

or  

( )
( ) ( )

1

1 2i i i
i i

zF z
M M

F z
µ

γ

∞

=

′′
≤ +

′ ∑ ,     1iM > , 

                                
( )
( ) ( )

1

1 2 4i i i i
i i

zF z
M M M n times

F z
µ

γ

∞

=

′′
≤ + + + + −

′ ∑  ,      1iM >                  (47) 

( )
( ) ( )( )

1

1 1i i i
i i

zF z
M n n M

F z
µ

γ

∞

=

′′
≤ + +

′ ∑ ,       1.iM >  

Now, we evaluate the expession  

( ) ( )
( )

( )
( ) ( )

( )
( )

2 2 1 11
Re

p p zF z zF z zF z
c z z c c

F z F z F zρ ρ ρ
′′ ′′ ′′

+ − ≤ + ≤ +
′ ′ ′

, 

                                 ( ) ( )
( ) ( ) ( )( )2 2

1

1 11 1
Re

p p
i i i

i i

zF z
c z z c M n n M

F z
µ

ρ ρ γ

∞

=

′′
+ − < + + +

′ ∑ .                     (48) 

Using (46) and (47), we conclude that 

                                            ( ) ( )
( )

2 21 1p p zF z
c z z

F zρ
′′

+ − ≤
′

.                                                (49) 

Hence by using Lemma 1.3, the family ( ), , , ;
İ

n m zγ ρ λϒ  is  univalent. 
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Corollary 2.8  Let c  be complex number,  ( )m
i iD f z Mλ ≤ , 1iM ≥  for all { } 1, 2,3,i =  and the family 

( ) 2, i

m
iD f zλ µ∈ℜ , for { } 1, 2,3,i =   such that   

                                                ( ) ( )( )
1

1
Re

n
i

i i

n n Mµ
ρ

γ=

+ +
≥∑ ,                                                 (50) 

where ρ , iγ  are complex numbers. If 

                                
( )

( )( )
1

111
Re

n
i

i i

n n M
c

µ
ρ γ=

+ +
≤ − ∑ ,      1M ≥                                        (51) 

then the family ( ), , , ;
İ

n m zγ ρ λϒ  is  univalent. 

Corollary 2.9  Let c  be complex number,  ( )m
iD f z Mλ ≤ , 1M ≥  for all { } 1, 2,3,i =  and the family 

( ) 2, i

m
iD f zλ µ∈ℜ , for { } 1, 2,3,i =   such that   

                                                           ( ) ( )( )
1

1
Re

n
i

i

n n Mµ
ρ

γ=

+ +
≥∑ ,                                                  (52) 

where ρ , iγ  are complex numbers. If 

                                                       
( )

( )( )
1

111
Re

n
i

i

n n M
c

µ
ρ γ=

+ +
≤ − ∑ ,     1M ≥                                 (53) 

then the family ( ), , , ;
İ

n m zγ ρ λϒ  is  univalent. 

Using a similar method as in the proof of Theorem 2.7, one prove the following results. 

Theorem 2.10   Let c  be complex number,  ( )m
iD f z Mλ ≤ , 1M ≥  for all { } 1, 2,3,i =  and the family 

( ) 2, i

m
iD f zλ µ∈ℜ , for { } 1, 2,3,i =   such that   

                                                       ( ) ( )
( )1

1
Re

1

nn
i i i i i

i i i

M M M M
M

µ
ρ

γ=

− +
≥

−∑ ,                                               (54) 

where ρ , iγ  are complex numbers. If 
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( )

( )
( )1

111
Re 1

nn
i i i i i

i i i

M M M M
c

M
µ

ρ γ=

− +
≤ −

−∑ ,       1M ≥                             (55) 

then the family ( ), , , ;
İ

n m zγ ρ λϒ  is  univalent. 

Theorem 2.11   Let c  be complex number,  ( )m
iD f z Mλ ≤ , 1M ≥  for all { } 1, 2,3,i =  and the family 

( ) 2, i

m
iD f zλ µ∈ℜ , for { } 1, 2,3,i =   such that   

                                       ( ) ( )
( )1

2 1
Re

1

n
i i i i

i i i

M M
M

µ µ
ρ

γ=

− + −
≥

−∑ ,                                               (56) 

where ρ , iγ  are complex numbers. If 

                              
( )

( )
( )1

2 111
Re 1

n
i i i i

i i i

M M
c

M
µ µ

ρ γ=

− + −
≤ −

−∑ ,    1M ≥                                      (57) 

then the family ( ), , , ;
İ

n m zγ ρ λϒ  is  univalent. 

             Note that some other related work involving integral operators regarding univalence criteria can 
ajso be found in [5,6,11,13,14,17]. 
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Abstract 

The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is a multi- 

attribute decision approach that is based on choosing an alternative that has the shortest distance from 

the positive ideal solution (PIS) and the longest distance from the negative ideal solution (NIS).  Since 

this method provides the best and worst alternatives in a more realistic form, the obtained solution is 

thought as more reliable and effective. In this study, we aim to extend the TOPSIS method to the 

generalized spherical fuzzy environment. First, we establish a novel method to solve the multi -attribute 

group decision-making (MAGDM) problems based on TOPSIS by using generalized spherical fuzzy 

data. Then, we exemplify this approach to provide the steps more understandable, and finally, we 

compare the results of the same problem by solving it with the proposed and existing methods. 

          Keywords: Einstein operations, Hamacher operations, Generalized spherical fuzzy sets, multi-

criteria group decision, TOPSIS. 

1. Introduction 

In 1981, TOPSIS was proposed by Hwang and Yoon [1] to determine the best alternative based on 

the concepts of the compromise solution in the decision-making processes. The mentioned compromise 

solution can be considered as choosing the solution with the shortest Euclidean distance from the PIS and 

the farthest Euclidean distance from the NIS. After Zadeh [2] introduced to the fuzzy set theory to handle 

the uncertainty in the real-life problems, TOPSIS was applied to fuzzy environment by Chen [3]. Also, in 

literature, there are different types of set theories which are generalizations of fuzzy set theory such as 

intuitionistic fuzzy set theory (Atanassov [4]), Pythagorean fuzzy set theory (Yager [5]), picture fuzzy set 

theory (Cuong [6]), spherical fuzzy set theory (Kutlu Gündoğdu and Kahraman [7], Ashraf et al. [8]), 

spherical fuzzy soft set theory (Perveen et al. [9]) and etc. Until now, various decision-making methods, 

including TOPSIS, have been developed on the mentioned set theories [10, 11, 12, 13, 14, 15, 16, 17, 

18,19]. Recently, Hague et al. [20] initiated the generalized spherical fuzzy set theory as a generalization 

of the spherical fuzzy set to use when this theory cannot enough to handle the data in the problems 

consisting of uncertain information. Some recent studies on generalized spherical fuzzy set theories and 

decision-making approaches have been done can be found in [21, 22, 23, 24]. 

In this study, we aim to extend the TOPSIS to the generalized spherical fuzzy environment. For this 

aim, we first construct the linguistic table whose elements are generalized spherical fuzzy to use in 

evaluating the alternatives or criteria in the decision-making process. Then, we establish a novel MAGDM 
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approach based on TOPSIS with algebraic, Einstein and Hamacher operations. Then, we give an illustrative 

example to clearly explain the steps of the proposed method by comparing the results. 

 

2. Preliminaries 

In this section, we recall some fundamental definitions which will be used in the main sections. 

Throughout this paper 𝑈 will refer the set of the discourse. 

Definition 2.1. [4, 5] Let 𝜇: 𝑈 → [0,1]  and 𝜈: 𝑈 → [0,1]  be any two mappings. A set 𝐼 = {<
𝑥, 𝜇(𝑥), 𝜈(𝑥) > |𝑥 ∈ 𝑈} is called a/an 

(i) intuitionistic fuzzy set (IFS) if the condition 0 ≤ 𝜇(𝑥) + 𝜈(𝑥) ≤ 1 hold for all 𝑥 ∈ 𝑈. 

(ii) Pythagorean fuzzy set (PyFS) if the condition 0 ≤ 𝜇2(𝑥) + 𝜈2(𝑥) ≤ 1 hold for all 𝑥 ∈ 𝑈. 

The values 𝜇(𝑥), 𝜈(𝑥) ∈ [0,1] describe the pm-d and nm-d of 𝑥 to 𝐼, respectively. 

The pair 𝐼 =< 𝜇, 𝜈 > where 𝜇, 𝜈 ∈ [0,1] and 𝜇 + 𝜈 ≤ 1 (or 𝜇2 + 𝜈2 ≤ 1), is called an intuitionistic fuzzy 

number (IFN) (or Pythagorean fuzzy number (PyFN)).  

Remark 2.2. [4, 5] The set of IFNs is the subset of the set of PyFNs. 

Definition 2.3. [6, 7, 8, 20] Let 𝜇: 𝑈 → [0,1], 𝜄: 𝑈 → [0,1]  and 𝜈: 𝑈 → [0,1]  be three mappings. A set  

𝐺 = {< 𝑥, 𝜇(𝑥), 𝜄(𝑥) 𝜈(𝑥) > |𝑥 ∈ 𝑈} is called a 

(i) picture fuzzy set (PFS) if the condition 0 ≤ 𝜇(𝑥) + 𝜄(𝑥) + 𝜈(𝑥) ≤ 1 hold for all 𝑥 ∈ 𝑈. 

(ii) spherical fuzzy set (SFS) if the condition 0 ≤ 𝜇2(𝑥) + 𝜄2(𝑥) + 𝜈2(𝑥) ≤ 1 hold for all 𝑥 ∈ 𝑈. 

(ii) generalized spherical fuzzy set (GSFS) if the condition 0 ≤ 𝜇2(𝑥) + 𝜄2(𝑥) + 𝜈2(𝑥) ≤ 3  hold for all 

𝑥 ∈ 𝑈. 

The values 𝜇(𝑥), 𝜄(𝑥), 𝜈(𝑥) ∈ [0,1] denote the pm-d, neum-d and nm-d of 𝑥 to 𝐺, respectively. 

The triplet 𝐺 =< 𝜇, 𝜄, 𝜈 >  where 𝜇, 𝜄, 𝜈 ∈ [0,1] and 𝜇2 + 𝜄2 + 𝜈2 ≤ 3   (or 𝜇 + 𝜄 + 𝜈 ≤ 1   and 𝜇2 + 𝜄2 +
𝜈2 ≤ 1 , resp.), is called a generalized spherical fuzzy number (GSFN) (or Picture fuzzy number (PFN) and 

Spherical fuzzy number (SFN), resp.). 

Remark 2.4. [20] (1) The set of SFNs is the subset of the set of GSFNs and the set of PFNs is the subset of 

the set of SFNs. 

(2) In PFN, since the sum of the pm-d, neum-d and nm-d is ≤ 1, this sum is considered as linearly, and this 

represents a plane in space. But in the theories of SFN and GSFN, we take the nonlinear form of 

membership degrees which represents a sphere in space.  

Definition 2.5. [20] Let 𝐺 =< 𝜇, 𝜄, 𝜈 >, 𝐺1 =< 𝜇1, 𝜄1, 𝜈1 >, 𝐺2 =< 𝜇2, 𝜄2, 𝜈2 >  be three GSFNs and 𝑎 ≥
0. Then the algebraic operations between GSFNs are defined as follows: 

(i) 𝐺𝑐 =< 𝜈, 𝜄, 𝜇 >, 

(ii) 𝐺1 ≤ 𝐺2 iff 𝜇1 ≤ 𝜇2, 𝜄1 ≥ 𝜄2 and 𝜈1 ≥ 𝜈2, 

(iii) 𝐺1 = 𝐺2 iff 𝐺1 ≤ 𝐺2 and 𝐺2 ≤ 𝐺1, 

(iv) 𝐺1 ⊕ 𝐺2 =< √𝜇1
2 + 𝜇2

2 − 𝜇1
2𝜇2

2, 𝜄1𝜄2, 𝜈1𝜈2 >, 

(v) 𝐺1 ⊙ 𝐺2 =< 𝜇1𝜇2, 𝜄1𝜄2, √𝜈1
2 + 𝜈2

2 − 𝜈1
2𝜈2

2 >, 
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(vi) 𝑎 × 𝐺 =< √1 − (1 − 𝜇2)𝑎, 𝜄𝑎, 𝜈𝑎 >, 

(vii) 𝐺𝑎 =< 𝜇𝑎, 𝜄𝑎, √1 − (1 − 𝜈2)𝑎 >. 

Definition 2.6. [21] Let 𝐺 =< 𝜇, 𝜄, 𝜈 >, 𝐺1 =< 𝜇1, 𝜄1, 𝜈1 > and 𝐺2 =< 𝜇2, 𝜄2, 𝜈2 >  be three GSFNs and 

𝑎 ≥ 0. Then the Einstein operations are defined over the GSFNs as follow: 

(i) 𝐺1 ⊕𝐸 𝐺2 =< √
𝜇1

2+𝜇2
2

1+𝜇1
2.𝜇2

2,√
𝜄1
2.𝜄2

2

1+(1−𝜄1
2)(1−𝜄2

2)
, √

𝜈1
2.𝜈2

2

1+(1−𝜈1
2)(1−𝜈2

2)
>, 

(ii) 𝐺1 ⊙𝐸 𝐺2 =< √
𝜇1

2.𝜇2
2

1+(1−𝜇1
2)(1−𝜇2

2)
, √

𝜄1
2.𝜄2

2

1+(1−𝜄1
2)(1−𝜄2

2)
, √

𝜈1
2+𝜈2

2

1+𝜈1
2.𝜈2

2 >, 

(iii) 𝑎 ×𝐸 𝐺 =< √
(1+𝜇2)𝑎−(1−𝜇2)𝑎

(1+𝜇2)𝑎+(1−𝜇2)𝑎 , √
2𝜄2𝑎

(2−𝜄2)𝑎+𝜄2𝑎 , √
2𝜈2𝑎

(2−𝜈2)𝑎+𝜈2𝑎 >, 

(iv) 𝐺∧𝐸𝑎 =< √
2𝜇2𝑎

(2−𝜇2)𝑎+𝜇2𝑎
, √

2𝜄2𝑎

(2−𝜄2)𝑎+𝜄2𝑎
, √

(1+𝜈2)𝑎−(1−𝜈2)𝑎

(1+𝜈2)𝑎+(1−𝜈2)𝑎
>. 

Definition 2.7. [22] Let 𝐺 =< 𝜇, 𝜄, 𝜈 >, 𝐺1 =< 𝜇1, 𝜄1, 𝜈1 > and 𝐺2 =< 𝜇2, 𝜄2, 𝜈2 > be three GSFNs, 𝜆 > 0 

and  

𝑎 ≥ 0. Then the Hamacher operations are defined over the GSFNs as follow: 

(i) 𝐺1 ⊕𝐻 𝐺2 =< √
𝜇1

2+𝜇2
2−𝜇1

2𝜇2
2−(1−𝜆)𝜇1

2𝜇2
2

1−(1−𝜆)𝜇1
2.𝜇2

2 , √
𝜄1
2.𝜄2

2

𝜆+(1−𝜆)(𝜄1
2+𝜄2

2−𝜄1
2.𝜄2

2)
, √

𝜈1
2.𝜈2

2

𝜆+(1−𝜆)(𝜈1
2+𝜈2

2−𝜈1
2.𝜈2

2)
>, 

(ii) 𝐺1 ⊙𝐻 𝐺2 =< √
𝜇1

2.𝜇2
2

𝜆+(1−𝜆)(𝜇1
2+𝜇2

2−𝜇1
2.𝜇2

2)
, √

𝜄1
2.𝜄2

2

𝜆+(1−𝜆)(𝜄1
2+𝜄2

2−𝜄1
2.𝜄2

2)
, √

𝜈1
2+𝜈2

2−𝜈1
2𝜈2

2−(1−𝜆)𝜈𝜈2
2

1−(1−𝜆)𝜈1
2.𝜈2

2 >, 

(iii) 𝑎 ×𝐻 𝐺 =< √
(1+(𝜆−1)𝜇2)𝑎−(1−𝜇2)𝑎

(1+(𝜆−1)𝜇2)𝑎+(𝜆−1)(1−𝜇2)𝑎, √
𝜆𝜄2𝑎

(1+(𝜆−1)(1−𝜄2))
𝑎

+(𝜆−1)𝜄2𝑎
, √

𝜆𝜈2𝑎

(1+(𝜆−1)(1−𝜈2))
𝑎

+(𝜆−1)𝜈2𝑎
>, 

(iv) 𝐺∧𝐻𝑎 =< √
𝜆𝜇2𝑎

(1+(𝜆−1)(1−𝜇2))
𝑎

+(𝜆−1)𝜇2𝑎
,√

𝜆𝜄2𝑎

(1+(𝜆−1)(1−𝜄2))
𝑎

+(𝜆−1)𝜄2𝑎
, √

(1+(𝜆−1)𝜈2)𝑎−(1−𝜈2)𝑎

(1+(𝜆−1)𝜈2)𝑎+(𝜆−1)(1−𝜈2)𝑎 >.  

Remark 2.8. [22] We note that the Hamacher operations are coincident with the algebraic operations and 

Einstein operations when 𝜆 = 1 and 𝜆 = 2, respectively. 

Lemma 2.9.  [22] Let 𝛥1 =< 𝜇1, 𝜄1, 𝜈1 >, 𝛥2 =< 𝜇2, 𝜄2, 𝜈2 > be any two GSFNs and 𝑎, 𝑎1, 𝑎2 ≥ 0. Then 

the following assertions are satisfied:  

(i) 𝐺1 ⊕𝐻 𝐺2 = 𝐺2 ⊕𝐻 𝐺1, 

(ii) a ×H (𝐺1 ⊕H 𝐺2) = a ×H 𝐺1 ⊕H a ×H 𝐺2, 

(iii) (𝑎1 + 𝑎2) ×𝐻 𝐺1 = 𝑎1 ×𝐻 𝐺1 ⊕𝐻 𝑎2 ×𝐻 𝐺2, 

(iv) 𝐺1 ⊙𝐻 𝐺2 = 𝐺2 ⊙𝐻 𝐺1, 

(v) (𝐺1 ⊙𝐻 𝐺2)∧𝐻𝑎 = 𝐺1
∧𝐻𝑎

⊙𝐻 𝐺2
∧𝐻𝑎

, 

(vi) 𝐺∧𝐻𝑎1 ⊙𝐻 𝐺∧𝐻𝑎2 = 𝐺∧𝐻(𝑎1+𝑎2), 

(vii) (𝐺1
∧𝐻𝑎1)

∧𝐻𝑎2
= 𝐺1

∧𝐻𝑎1𝑎2. 
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Definition 2.10. [20, 21, 22] Let 𝒢  be a family of all GSFNs and (𝐺1, 𝐺2, … , 𝐺𝑛) ∈ 𝒢 𝓃  where 𝐺𝑖 =<
𝜇𝑖, 𝜄𝑖 , 𝜈𝑖 >  for all 𝑖 = 1,2, . . . , 𝑛 and 𝑤 = (𝑤1, 𝑤2, … , 𝑤𝑛)𝑇  be the weight vector corresponding to (𝐺𝑖)𝑖=1

𝑛   

such that 𝑤𝑖 ≥ 0  for all i and ∑ 𝑤𝑖
𝑛
𝑖=1 = 1.  A mapping 𝐺𝑆𝐸𝑊𝐴𝑤: 𝒢 𝓃 → 𝒢 is called a 

(i) generalized spherical fuzzy weighted averaging (GSWA) operator and defined by 

𝐺𝑆𝑊𝐴𝑤(𝐺1, 𝐺2, … , 𝐺𝑛) = 𝑤1 × 𝐺1 ⊕ 𝑤2 × 𝐺2 ⊕ … 𝑤𝑛 × 𝐺𝑛 =⊕𝑖=1
𝑛 𝑤𝑖 × 𝐺𝑖. 

(ii) generalized spherical fuzzy weighted geometric (GSWG) operator and defined by  

𝐺𝑆𝑊𝐺𝑤(𝐺1, 𝐺2, … , 𝐺𝑛) = 𝐺1
𝑤1 ⊙ 𝐺2

𝑤2 ⊙ … ⊙ 𝐺𝑛
𝑤𝑛 =⊙𝑖=1

𝑛 𝐺𝑖
𝑤𝑖 . 

(iii) generalized spherical fuzzy Einstein weighted averaging (GSEWA) operator and defined by  

𝐺𝑆𝐸𝑊𝐴𝑤(𝐺1, 𝐺2, … , 𝐺𝑛) = 𝑤1 ×𝐸 𝐺1 ⊕𝐸 𝑤2 ×𝐸 𝐺2 ⊕𝐸 … ⊕𝐸 𝑤𝑛 ×𝐸 𝐺𝑛 =⊕E𝑖=1
𝑛 𝑤𝑖 ×𝐸 𝐺𝑖 . 

(iv) generalized spherical fuzzy Einstein weighted geometric (GSEWG) operator and defined by  

𝐺𝑆𝐸𝑊𝐺𝑤(𝐺1, 𝐺2, … , 𝐺𝑛) = 𝐺1
∧𝐸𝑤1 ⊙𝐸 𝐺2

∧𝐸𝑤2 ⊙𝐸 … ⊙𝐸 𝐺𝑛
∧𝐸𝑤𝑛 =⊙𝑖=1

𝑛 𝐺𝑖
∧𝐸𝑤𝑖 . 

(v) generalized spherical fuzzy Hamacher weighted averaging (GSHWA) operator and defined by  

𝐺𝑆𝐻𝑊𝐴𝑤(𝐺1, 𝐺2, … , 𝐺n) = 𝑤1 ×𝐻 𝐺1 ⊕𝐻 𝑤2 ×𝐻 𝐺2 ⊕𝐻 … 𝑤𝑛 ×𝐻 𝐺𝑛 =⊕𝑖=1
𝑛 𝑤𝑖 ×𝐻 𝐺𝑖 . 

(vi) generalized spherical fuzzy Hamacher weighted geometric (GSHWG) operator and defined by  

𝐺𝑆𝐻𝑊𝐺𝑤(𝐺1, 𝐺2, … , 𝐺n) = 𝐺1
∧𝐻𝑤1 ⊙𝐻 𝐺2

∧𝐻𝑤2 ⊙𝐻 … ⊙𝐻 𝐺𝑛
∧𝐻𝑤𝑛 =⊙H𝑖=1

𝑛 𝐺𝑖
∧𝐻𝑤𝑖 . 

Definition 2.11. [20] Let 𝒢  be the family of all GSFNs and 𝐺 ∈ 𝒢  where  𝐺 =< 𝜇, 𝜄, 𝜈 >. 

(i) A score function 𝑆𝐹: 𝒢 → [−1,1] is defined as 𝑆𝐹(𝐺) =
3𝜇2−2𝜄2−𝜈2

3
.  

(ii) An accuracy function 𝐴𝐹: 𝒢 → [0,1] is defined as 𝐴𝐹(𝐺) =
1+3𝜇2−𝜈2

4
. 

Definition 2.12. [20] Let 𝐺1 =< 𝜇1, 𝜄1, 𝜈1 >  and 𝐺2 =< 𝜇2, 𝜄2, 𝜈2 >  be any two GSFNs. Then the ranking 

method (comparison technique) as follows:  

(i) 𝑆𝐹(𝐺1) < 𝑆𝐹(𝐺2) ⇒ 𝐺1 < 𝐺2, 

(ii) 𝑆𝐹(𝐺1) > 𝑆𝐹(𝐺2) ⇒ 𝐺1 > 𝐺2, 

(iii) If 𝑆𝐹(𝐺1) = 𝑆𝐹(𝐺2), then; (a) 𝐴𝐹(𝐺1) < 𝐴𝐹(𝐺2)  ⇒ 𝐺1 < 𝐺2, 

(b) 𝐴𝐹(𝐺1) > 𝐴𝐹(𝐺2)  ⇒ 𝐺1 > 𝐺2, 

(c) 𝐴𝐹(𝐺1) = 𝐴𝐹(𝐺2)  ⇒ 𝐺1 = 𝐺2. 

 

3. A method based on TOPSIS with generalized spherical fuzzy information 

In this section, we construct a method to solve the MAGDM problems based on TOPSIS under the 

generalized spherical fuzzy environment. First, we construct the linguistic table whose elements are GSFNs 

to evaluate alternatives in the decision process. Then, we design an approach consisting of some steps by 

considering the TOPSIS method when the weights of attributes and DMs are completely unknown. Also, 

we give a numerical example to clearly explain the steps of the new method. 
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3.1. Proposed method 

Suppose that 𝐴 = {𝐴1, 𝐴2, … , 𝐴𝑚} is the set of 𝑚 different options and 𝐸 = {𝐸1, 𝐸2, … , 𝐸𝑛} the set 

of 𝑛 different attributes. Also assume that 𝐷 = {𝐷1, 𝐷2, … , 𝐷𝑘} is the set of 𝑘 distinct decision-makers (or 

experts) in a given real-life problem. 

Table 1. Linguistic terms for alternatives and the weights of DMs/attributes. 

Lingusitic terms GSFNs (𝝁, 𝜾, 𝝂) 

Absolutely more importance (AMI) (0.9, 0, 0) 

Very high importance (VHI) (0.71, 0.1, 0.15) 

High importance (HI) (0.59, 0.36, 0.18) 

Slightly more importance (SMI) (0.5, 0.4, 0.4) 

Equally importance (EI) (0.375, 0.325, 0.425) 

Slightly low importance (SLI) (0.39, 0.39, 0.65 ) 

Low importance (LI) (0.33, 0.52, 0.72) 

Very low importance (VLI) (0.22, 0.7, 0.8) 

Absolutely low importance (ALI) (0.01, 0.85, 0.99) 

 

Step I: Construct the decision matrices according to the DMs opinions. 

In this step, each DM establishes decision matrices in which it evaluates alternatives via attributes by taking 

linguistic terms from Table 1. Let us denote the decision matrices by 𝐷(𝑟) where the elements are given as 

𝐷𝑖𝑗
𝑟 =< 𝜇𝑖𝑗

𝑟 , 𝜄𝑖𝑗
𝑟 , 𝜈𝑖𝑗

𝑟 > (𝑖 = 1,2, . . . , 𝑚),(𝑗 = 1,2, . . . , 𝑛), (𝑟 = 1,2, . . . , 𝑘) and the associated decision matrix 

is given as follows in Table 1: 

Table 1. Decision Matrix 𝐷(𝑟). 

Alternatives 

Attributes 

𝐸1 𝐸2 … 𝐸𝑛 

𝐴1 𝐷11
𝑟  𝐷12

𝑟  … 𝐷1𝑛
𝑟  

𝐴2 𝐷21
𝑟  𝐷22

𝑟  … 𝐷2𝑛
𝑟  

…       …       … …       … 

𝐴𝑚 𝐷𝑚1
𝑟  𝐷𝑚2

𝑟  … 𝐷𝑚𝑛
𝑟  

 

Step II: Determine the weights of DMs 𝐷𝑟 for all 𝑟 = 1,2, … , 𝑘. 

In this step, the weights of DMs 𝐷𝑟  for all 𝑟 = 1,2, … , 𝑘 can be given as a real number such that 𝜀 =
(𝜀1, 𝜀2, … , 𝜀𝑘) is the weight vector of the attribute 𝐷𝑟  (𝑟 = 1,2, … , 𝑘) where 𝜀𝑟 ≥ 0 for all 𝑟 = 1,2, … , 𝑘 

and ∑ 𝜀𝑟
𝑘
𝑟=1 = 1.  Or the weights of DMs 𝐷𝑟 for all 𝑟 = 1,2, … , 𝑘 can be chosen as a linguistic term (denote 

𝐺𝑟 =< 𝜇𝑟 , 𝜄𝑟 , 𝜈𝑟 >) given in Table 1 such as “absolutely more importance”, “very high importance” and 

etc. Then, the real value of the weights of DMs (denote by 𝜀𝑟 ≥ 0 for all 𝑟 = 1,2, … , 𝑘) is calculated by 

using the following formula: 

𝜀𝑟 =
|3𝜇𝑟

2 − 2𝜄𝑟
2 − 𝜈𝑟

2|

∑ |3𝜇𝑟
2 − 2𝜄𝑟

2 − 𝜈𝑟
2|𝑘

𝑟=1

. 
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Step III: Aggregate the decision matrices 𝐷(𝑟) according to the weights of DMs 𝜀𝑟 for all 𝑟 = 1,2, … , 𝑘. 

Here, the individual decision matrices 𝐷(𝑟)  are merged into the one decision matrix (denote  �̃� =<
𝜇𝑖𝑗, 𝜄𝑖𝑗, 𝜈𝑖𝑗 >) by using operators GSWA, GSWG, GSEWA, GSEWG, GSHWA or GSHWG given in 

Definition 2.10. So, if we use to collect the matrices the GSWA operator, then we obtain �̃� as follows: 

 �̃� =< 𝜇𝑖𝑗 , 𝜄𝑖𝑗 , 𝜈𝑖𝑗 >= 𝐺𝑆𝑊𝐴𝜀(𝐷(1), 𝐷(2), … , 𝐷(𝑟)) =⊕𝑟=1
𝑘 𝜀𝑟 × 𝐷(𝑟). 

Step IV: Determine the weights of attributes 𝐸𝑖 (weight matrix) for all 𝑖 = 1,2, … , 𝑛.  

In this step, the weights of of attributes 𝐸𝑖 for all 𝑖 = 1,2, … , 𝑛 can be given as a real number such that 𝜔 =
(𝜔1, 𝜔2, … , 𝜔𝑘) is the weight vector of the attribute 𝐸𝑖 (𝑖 = 1,2, … , 𝑛) where 𝜔𝑖 ≥ 0 for all 𝑖 = 1,2, … , 𝑛 

and ∑ 𝜔𝑟
𝑛
𝑖=1 = 1.  Or the weights of attributes 𝐸𝑖 for all 𝑖 = 1,2, … , 𝑛 can be chosen as a linguistic term 

(denote Ω𝑖 =< 𝜇𝑖 , 𝜄𝑖, 𝜈𝑖 >) given in Table 1 such as “absolutely more importance”, “very high importance” 

and etc. Then, the real value of the weights of attributes (denote by 𝜔𝑖 ≥ 0  for all 𝑖 = 1,2, … , 𝑛 ) is 

calculated by using the following formula: 

𝜔𝑖 =
|3𝜇𝑖

2 − 2𝜄𝑖
2 − 𝜈𝑖

2|

∑ |3𝜇𝑖
2 − 2𝜄𝑖

2 − 𝜈𝑖
2|𝑛

𝑖=1

. 

Step V: Calculate the weighted decision matrix by using the weights of attributes. 

Here, we obtain the weighted decision matrix (denote  𝐷∗ = (𝑑𝑖𝑗
∗ ) =< 𝜇𝑖𝑗

∗ , 𝜄𝑖𝑗
∗ , 𝜈𝑖𝑗

∗ >)  ) by multiplying the 

decision matrix �̃� with the weight matrix of attributes using the scalar multiplication given in Definition 

2.5, Definition 2.6 or Definition 2.7. If we use classical scalar multiplication given in Definition 2.5, then 

we obtain 𝐷∗ as follows: 

𝐷∗ = (𝑑𝑖𝑗
∗ ) =< 𝜇𝑖𝑗

∗ , 𝜄𝑖𝑗
∗ , 𝜈𝑖𝑗

∗ >= 𝜔 × �̃�. 

Step VI: Normalize the weighted aggregated decision matrix 𝐷∗.  

If the attribute is benefit type, then this step is skipped. But, if there are some non-benefit type attributes, 

then the weighted decision matrix 𝐷∗ is normalized and obtained the normalized weighted decision matrix 

𝐷′ = (𝑑𝑖𝑗
′ ) =< 𝜇𝑖𝑗

′ , 𝜄𝑖𝑗
′ , 𝜈𝑖𝑗

′ > as follows: 

𝐷′ = (𝑑𝑖𝑗
′ ) =< 𝜇𝑖𝑗

′ , 𝜄𝑖𝑗
′ , 𝜈𝑖𝑗

′ >= {
< 𝜇𝑖𝑗

∗ , 𝜄𝑖𝑗
∗ , 𝜈𝑖𝑗

∗ > ,      𝑖𝑓 𝑡ℎ𝑒 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 𝐸𝑗  𝑖𝑠 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑡𝑦𝑝𝑒               

< 𝜈𝑖𝑗
∗ , 𝜄𝑖𝑗

∗ , 𝜇𝑖𝑗
∗ > ,      𝑖𝑓 𝑡ℎ𝑒 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 𝐸𝑗  𝑖𝑠 𝑛𝑜𝑛 − 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑡𝑦𝑝𝑒 

. 

Step VII: Calculate the positive ideal solution (PIS) and negative ideal solution (NIS) by using score 

function and accuracy function.  Then calculate the distance for each alternative to the PIS and NIS. 

Here, denote PIS and NIS by 𝑆+ and 𝑆−, respectively. 𝑆+ and 𝑆− are computed as follows: 

𝑆+ = (𝑆𝑗
+) = max{𝑆𝐹(𝑑1𝑗

′ ), 𝑆𝐹(𝑑2𝑗
′ ), … , 𝑆𝐹(𝑑𝑚𝑗

′ ): 𝑗 = 1,2 … , 𝑛} 

𝑆− = (𝑆𝑗
−) = min{𝑆𝐹(𝑑1𝑗

′ ), 𝑆𝐹(𝑑2𝑗
′ ), … , 𝑆𝐹(𝑑𝑚𝑗

′ ): 𝑗 = 1,2 … , 𝑛} 

where 𝑆𝐹(𝑑1𝑗
′ ) is the score value of 𝑑1𝑗

′  under the score function. We calculate the for each alternative to 

the PIS and NIS by using Euclidean distance as follows: 

𝑑(𝐴𝑖 , 𝑆+) = √∑(𝑆𝐹(𝑑𝑖𝑗
′ ) − 𝑆𝑗

+)
2

𝑛

𝑗=1

, 𝑑(𝐴𝑖, 𝑆−) = √∑(𝑆𝐹(𝑑𝑖𝑗
′ ) − 𝑆𝑗

−)
2

𝑛

𝑗=1

 

Step VIII: Calculate the relative closeness index 𝑅(𝐴𝑖) for all 𝑖 = 1,2, . . , 𝑚 and rank the alternatives.  

We compute the relative closeness index 𝑅(𝐴𝑖) as follows: 
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𝑅(𝐴𝑖) =
 𝑑(𝐴𝑖, 𝑆−)

max
𝑖

𝑑(𝐴𝑖, 𝑆−)
−

𝑑(𝐴𝑖 , 𝑆+)

min
𝑖

 𝑑(𝐴𝑖, 𝑆+)
 

for all 𝑖 = 1,2, . . , 𝑚. Then, the alternatives are ranked according to the relative closeness index 𝑅(𝐴𝑖) on 

the descending order and the alternative with the biggest value is the best solution.  

3.2. An illustrative example 

Now, we consider the decision-making problem given in [23] to explain the proposed method step 

by step. There is a three-shareholder company in which the rates of share are effective at the decisions to 

be made by shareholders and the sharing of the earnings. Let the shareholders be denoted by 𝐷1, 𝐷2 and 𝐷3.  

The shareholder 𝐷1 has 35% share rate, the shareholder 𝐷2 has 45% share rate and the shareholder 𝐷3 has 

20% share rates.  This company is planning to make an investment in an area where the alternatives are 𝐴1: 

Development of small business, 𝐴2: Information Technology, 𝐴3: Tourism, 𝐴4: Transportation. They are 

taking into consideration the degree of risk, volume of income and investment recovery period when 

making an investment in these areas. Let the degree of risk, volume of income and investment recovery 

period be denoted by 𝐸1, 𝐸2 and 𝐸3, respectively.  A prioritization relationship among the attribute 𝐸𝑖  (𝑖 =
1,2,3)  which satisfies 𝐸2 > 𝐸1 > 𝐸3  was determined according to the shareholder’s preferences. So, 

assume that 𝜔 = (0.3, 0.45, 0.25) is the weight vector of the attribute {𝐸1, 𝐸2, 𝐸3}. In this problem, whereas 

the attributes 𝐸1 and 𝐸3 are non-benefit types, 𝐸2 is benefit type. To choose the optimum investment, the 

shareholder’s 𝐷1, 𝐷2 and 𝐷3 with the decision-makers weight vector is given  𝜀 = (0.35, 0.45, 0.2).  

 

Step I: The decision matrices are given in Table 3, Table 4 and Table 5 as follows: 

Table 3. Decision Matrix 𝐷(1). 

 𝐸1 𝐸2 𝐸3 

𝐴1 <0.6,0.8,0,2> <0.4, 0.3, 0.7> <0.2, 0.7, 0.4> 

𝐴2 <0.55,0.2,0.8> <0.8,0.75,0.65> <0.9, 0.8, 0.2> 

𝐴3 <0.7, 0.4, 0.4> <0.55,0.2,0.45> <0.5, 0.7, 0.8> 

𝐴4 <0.35,0.6,0.5> <0,7, 0.8,0.55> <0.8, 0.6, 0.5> 

Table 4. Decision Matrix 𝐷(2). 

 𝐸1 𝐸2 𝐸3 

𝐴1 <0.85, 0.7,0.8> <0.4, 0.75, 0.8> <0.6, 0.8, 0.5> 

𝐴2 <0.3, 0.4, 0.4> <0.8, 0.2, 0.45> <0.5, 0.6, 0.8> 

𝐴3 <0.9, 0, 8, 0,2> <0.4, 0.8, 0.7> <0.8, 0.7, 0.4> 

𝐴4 <0.75,0.3, 0.5> <0.8, 0.5, 0.45> <0.5, 0.6, 0.8> 

Table 5. Decision Matrix 𝐷(3). 

 𝐸1 𝐸2 𝐸3 

𝐴1 <0.75, 0.4, 0.5> <0.8, 0.8, 0.45> <0.8, 0.6, 0.8> 

𝐴2 <0.9, 0, 6, 0, 4> <0.4, 0.6, 0.9> <0.2, 0.7, 0.4> 

𝐴3 <0.55, 0.5, 0.8> <0.8,0.75,0.85> <0.6, 0.8, 0.2> 

𝐴4 <0.75, 0.4, 0.8> <0.4, 0.8, 0.45> <0.8, 0.6, 0.6> 
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Step II: Since the decision-makers weight vector is given as  𝜀 = (𝜀1, 𝜀2, 𝜀3) = (0.35, 0.45, 0.2), this step 

is skipped. 

Step III: We obtain the aggregated decision matrices �̃� according to the weights of DMs 𝜀𝑟 for all 𝑟 =
1,2,3 by using GSWA operator as follows: 

Table 6. Aggregated Decision Matrix �̃�. 

 𝐹4×1
1  𝐹4×1

2  𝐹4×1
3  

 𝐸1 𝐸2 𝐸3 

𝐴1 <0.7699,0.7091,0.7874>  <0.5394,0.8402,0.7710>  <0.5853,0.8166,0.7001> 

𝐴2 <0.6276,0.5978,0.5512>  <0.7573,0.4376,0.6836>  <0.7160,0.7399,0.7530> 

𝐴3 <0.8074,0.7874,0.4635>  <0.5793,0.8539,0.8245>  <0.6912,0.8145,0.4799>  

𝐴4 <0.6647,0.4843,0.7001>  <0.7199,0.7001,0.5951>  <0.7065,0.7175,0.8166>  

Step IV: Since the weight of attributes is given as  𝜔 = (𝜔1, 𝜔2, 𝜔3) = (0.3, 0.45, 0.25), this step is 

skipped. 

Step V: We calculate the weighted aggregated decision matrix by using the weights of attributes and scalar 

multiplication given in Definition 5. 

Table 7. Weighted Aggregated Decision Matrix 𝐷∗. 

 𝐹4×1
1  𝐹4×1

2  𝐹4×1
3  

 𝐸1 𝐸2 𝐸3 

𝐴1 <0.4485,0.9176,0.940>  <0.3786,0.9247,0.8895>  <0.3439,0.9410,0.8986> 

𝐴2 <0.3430,0.8793,0.8617>  <0.5644,0.6894,0.8427>  <0.4404,0.9136,0.9184> 

𝐴3 <0.4815,0.9420,0.8251>  <0.4100,0.9314,0.9168>  <0.4208,0.9403,0.8023>  

𝐴4 <0.3683,0.8342,0.9147>  <0.5292,0.8518,0.7917>  <0.4328,0.9052,0.9410>  

 

Step VI: We obtain the normalized weighted aggregated decision matrix 𝐷∗ as follows: 

Table 8. Normalized Weighted Aggregated Decision Matrix 𝐷′. 

 𝐹4×1
1  𝐹4×1

2  𝐹4×1
3  

 𝐸1 𝐸2 𝐸3 

𝐴1 <0.3439,0.9410,0.8986> <0.3786,0.9247,0.8895>  <0.4485,0.9176,0.940>  

𝐴2 <0.4404,0.9136,0.9184> <0.5644,0.6894,0.8427>  <0.3430,0.8793,0.8617>  

𝐴3 <0.4208,0.9403,0.8023>  <0.4100,0.9314,0.9168>  <0.4815,0.9420,0.8251>  

𝐴4 <0.4328,0.9052,0.9410>  <0.5292,0.8518,0.7917>  <0.3683,0.8342,0.9147>  

 

Step VII, VIII: We calculate the positive ideal solution (PIS) and negative ideal solution (NIS) by using 

score function and accuracy function as follows: 

Table 9. PIS and NIS Values. 

𝑆+ 0,5382 -0,0766 0,5684 

𝑆− 0,2512 -0,4054 0,3419 
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Also, we obtain the distance for each alternative to the PIS and NIS, relative closeness index and ranking 

as follows: 

Table 10. Distance, Relative Closeness and Ranking. 

Alternatives 𝒅(𝑨𝒊, 𝑺+) 𝒅(𝑨𝒊, 𝑺−) 𝑹(𝑨𝒊) Ranking 

𝐴1 0,3361 0,3099 -0,0074 3 

𝐴2 0,1366 0,4083 0,6942 1 

𝐴3 0,4889 0,0041 -0,9905 4 

𝐴4 0,0941 0,4344 0,0000 2 

 

Therefore, we conclude that the alternative 𝐴4 is the best solution of this problem. 

4. Comparative analyses 

In this section, we solve the same problem by using the GSWG, GSEWA, GSEWG, GSHWA and 

GSWG operators in the related steps of the proposed method. We take the value 𝜆 = 0.5 when calculating 

the steps with GSHWA and GSWG operators. As seen in Table 11, we obtain the same ranking as a result 

of the solutions.  

Table 11. Ranking by solving this problem with the GSWG, GSEWA, GSEWG, GSHWA and GSWG operators. 

Operators 𝐴1 𝐴2 𝐴3 𝐴4 

GSWG 3 1 4 2 

GSEWA 3 1 4 2 

GSEWG 3 1 4 2 

GSHWA 3 1 4 2 

GSHWG 3 1 4 2 

Also, when we compare the solution by using the method given in [21], we get the sama result. So, this 

shows the validity and reliability of the proposed approach. 

5. Conclusion 

In this study, we establish a novel approach to solving the decision-making problems based on the 

TOPSIS method by using algebraic, Einstein and Hamacher operations under the generalized spherical 

fuzzy environment. For future work, we plan to study some traditional methods such as VIKOR, 

ELECTRE, WASPS, AHP and etc. to use in the decision-making process with the generalized spherical 

fuzzy data.   
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Abstract
Some applications of the closure operator on inverse limits of the inverse systems

in the category, whose objects are ditopological plain texture spaces and morphisms
are bicontinuous point functions satisfying a compatibility condition, are discussed
in this study. Specifically, we will be interested in the closure operator taken ac-
cording to the corresponding joint topologies of the ditopologies on the inverse limit
spaces.

Keywords : Joint topology, inverse limit, ditopology, plain texture, directed
set, category

1. Introduction and Preliminaries

The notion of texture was introduced by Lawrence M. Brown as a point-
based setting for the study of complement-free mathematical concepts, be-
sides crisp sets, fuzzy sets, L-valued sets and intuitionistic sets. Accordingly,
if S is a set then by a texturing of S we mean a subset S ⊆ P(S) which is a
point-separating, complete, completely distributive lattice containing S and
∅, and for which meet coincides with intersection and finite join with union.
The pair (S, S) is then called a texture. In particular, if the arbitrary join
coincides with union then (S, S) is called plain texture.

Since a texturing S need not be closed under the operation of taking the
set-complement, the notion of topology is replaced by that of dichotomous
topology or ditopology, namely a pair (τ, κ) of subsets of S, where the set of
open sets τ satisfies the conditions S, ∅ ∈ τ , G1, G2 ∈ τ =⇒ G1 ∩G2 ∈ τ ,
Gi ∈ τ , i ∈ I =⇒

∨
iGi ∈ τ , and the set of closed sets κ satisfies the dual

conditions. A ditopological texture space with respect to a ditopology (τ, κ)
on the texture (S, S) is denoted by (S, S, τ, κ).

An adequate introduction to the theory of ditopological texture spaces
may be obtained from [2,5].

On the other hand, classical theory of inverse systems-limits are impor-
tant in the extension of homology and cohomology theory. An exhaustive
discussion of inverse systems which are in the classical categories of sets,
topological spaces, groups and rings, was presented by [3].

The theory of inverse systems - limits in the context of ditopological tex-
ture spaces is handled in [6] first-time. Accordingly, it is seen that a method
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used to construct a new ditopological space is the theory of ditopological
inverse systems and their limit spaces under the name ditopological inverse
limits as the subspaces of ditopological product spaces described in [2].

A detailed analysis of the theory of ditopological inverse systems and
inverse limits insofar as the category ifPDitop whose objects are the di-
topological texture spaces which have plain texturing and morphisms are
the bicontinuous, special (called w-preserving) point functions, is concerned
in [6].

In this study, some applications of the closure operator on inverse limits
in ifPDitop are discussed. Specifically, as in [4] we will deal with the
closure operator taken according to the corresponding joint topologies for
the ditopologies on the inverse limit spaces.

Incidentally, the reader is referred to [1] for terms from category theory
not defined here.

2. Closing Operator on inverse systems and limits in the cat-
egory ifPDitop

First of all, we will need some notations in order to present a few helpful
lemmas, as follows.

Notation: For the inverse system {(Sα, Sα, τα, κα), ϕαβ}α≥β, constructed
in ifPDitop, over the directed set Λ, the notations (τ∞, κ∞) and (S∞, S∞, τ∞, κ∞)
will be used as inverse limit ditopology and (ditopological) inverse limit space
as in [6, Theorem 4.6], respectively. Here, S∞ = lim

←
{Sα}.

Therefore, with the above notations we have:

Lemma 2.1. U∞ = lim
←
{Uα} ⊆ lim

←
{Sα} = S∞

Proof. By the assumption U∞ = lim
←
{Uα} 6⊆ lim

←
{Sα} = S∞, there exists

s = {sα} ∈
∏
α∈Λ

Sα such that U∞ 6⊆ Qs and Ps 6⊆ S∞. In this case, s ∈
∏
α∈Λ

Uα

and ϕαβ|Uα
(sα) = sβ for every sα ∈ Uα, α, β ∈ Λ such that α ≥ β. Moreover,

we have the equality ϕαβ|Uα
(sα) = ϕαβ(sα) for sα ∈ Uα. Thus, because of

the facts sα ∈ Sα, α ∈ Λ and ϕαβ(sα) = sβ for α ≥ β, the point s = {sα}
becomes an element of S∞, obviously and this gives a contradiction. �

Now we may associate with the ditopology (τ, κ) on a plain texture (S, S)
a topology Jτκ on S, called appropriate joint topology for a ditopology as
given in [6]:

Definition 2.2. Let (S, S, τ, κ) ∈ Ob ifPDitop. We define the joint topol-
ogy on S in terms of its family Jcτκ of closed sets by the condition

W ∈ Jcτκ ⇐⇒ (s ∈ S, G ∈ η(s),K ∈ µ(s) =⇒ G ∩W 6⊆ K) =⇒ s ∈W.
Here η(s) = {N ∈ S | Ps ⊆ G ⊆ N 6⊆ Qs for some G ∈ τ} and

µ(s) = {M ∈ S | Ps 6⊆ M ⊆ K ⊆ Qs for some K ∈ κ}. For the details see
[5,6].
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Clearly Jcτκ satisfies the closed-set axioms and on passing to the comple-
ment this verifies that

(i) {G ⊆ S | G ∈ τ} ∪ {S \K ⊆ S | K ∈ κ} is a subbase, and
(ii) {G ∩ (S \K) ⊆ S | G ∈ τ,K ∈ κ} a base

of open sets for the topology Jτκ on S.

Because of the appropriate joint topology described for a ditopology, the
next lemma arises.

Lemma 2.3. Take the inverse system {(Sα, Sα, τα, κα), ϕαβ}α≥β ∈ Ob InvifPDitop,
over a directed set Λ and (S∞, S∞, τ∞, κ∞) ∈ Ob ifPDitop as the inverse
limit of that system.

If Uα ∈ Jcτακα, α ∈ Λ and lim
←
{Uα} = U∞ for {(Uα, Sα|Uα , τα|Uα , κα|Uα), ϕαβ|Uα}α≥β ∈

Ob InvifPDitop, then U∞ ∈ Jcτ∞κ∞.

Proof. Because of the equality ϕαβ|Uα
(sα) = ϕαβ(sα) for sα ∈ Uα, α ≥ β,

the inclusion U∞ = lim
←
{Uα} ⊆ lim

←
{Sα} = S∞ is immediate, as mentioned

in Lemma 2.1 as well.

We can prove now that U∞ ∈ Jcτ∞κ∞ : If Pa 6⊆ U∞, that is a /∈ U∞ for
a = {aα} ∈ S∞, then a /∈

∏
α∈Λ

Uα due to the equality ϕαβ|Uα
(sα) = ϕαβ(sα)

for sα ∈ Uα, α ≥ β. In this case, there exists α0 ∈ Λ such that aα0 /∈ Uα0 ,
that is Paα0

6⊆ Uα0 . Additionally, the subset µ−1
α0

[Uα0 ] ⊆ S∞ is an element
of Jcτ∞κ∞ since the limiting projection map µα0 : S∞ → Sα0 is continuous
between the corresponding joint topological spaces and Uα0 ∈ Jcτα0κα0

.

Also the statements Pa 6⊆ µ−1
α0

[Uα0 ] and U∞ ⊆ µ−1
α0

[Uα0 ] are trivial.

Now assume that Pa ⊆ µ−1
α0

[Uα0 ]. In this case we have µα0(a) = aα0 ∈ Uα0

which is a contradiction.

In addition, if U∞ 6⊆ µ−1
α0

[Uα0 ] then there exists a point z ∈ S∞ such

that U∞ 6⊆ Qz and Pz 6⊆ µ−1
α0

[Uα0 ]. Hence, µα0(z) = zα0 /∈ Uα0 and so
z = {zα} /∈

∏
α∈Λ

Uα gives the fact that z /∈ U∞ a contradiction. �

By virtue of the last lemma, we have the following theorem:

Theorem 2.4. If U denotes the closure of the subset U ⊆ S∞ with respect
to the joint topology of the limit ditopology (τ∞, κ∞) then

(1) lim
←
{Uα} is jointly closed subspace of S∞

(2) lim
←
{Uα} = U ⊆ S

Proof. (1) If the inclusion lim
←
{Uα} ⊆ S∞ ( S∞ = lim

←
{Sα}) is not true

then there exists a point s = {sα} ∈
∏
α∈Λ

Sα such that lim
←
{Uα} 6⊆ Qs and

Ps 6⊆ S∞. Hence, Uσ 6⊆ Qsσ and sσ ∈ Uσ for every σ ∈ Λ, so we have
ϕαβ(sα) = sβ for α ≥ β.
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On the other hand, it is easy to see that Psσ ⊆ Sσ since the set Uσ is
a subset of Sσ for every σ ∈ Λ, and so Ps =

∏
σ∈Λ

Psσ ⊆
∏
σ∈Λ

Sσ. Also, if

recall the equality ϕαβ(sα) = ϕαβ(sα) for sα ∈ Uα and α ≥ β, then we

have ϕαβ(sα) = sβ due to the fact that ϕαβ(sα) = sβ for sα ∈ Uα and
α ≥ β. Thus, by the definition of inverse limit, s = {sα} ∈ S∞ and it is a
contradiction.

In addition, it is easy to verify that lim
←
{Uα} is a jointly closed subspace

of S∞ with the help of limiting projection map.

Also, the fact that U = lim
←
{Uα} is clear.

(2) Firstly, let us show that U ⊆ lim
←
{Uα}. Conversely, if U 6⊆ lim

←
{Uα},

then there exists b ∈ S∞ = lim
←
{Sα} such that U 6⊆ Qb and Pb 6⊆ lim

←
{Uα}.

Thus Pbα ⊆ Uα as µα(b) ∈ µα(U). Hence Pb =
∏
α∈Λ

Pbα ⊆
∏
α
Uα∈Λ.

On the other hand, note that b ∈
∏
α
Sα∈Λ and ϕαβ(bα) = bβ for α ≥ β,

α, β ∈ Λ. Also, by the definition of ϕαβ for α ≥ β and bα ∈ Uα for every
α ∈ Λ, the equality ϕαβ(bα) = ϕαβ(bα) is satisfied. Hence, ϕαβ(bα) = bβ for

α ≥ β. That is, we obtained that b ∈ lim
←
{Uα} which is a contradiction.

Therefore, from (1) if recall the fact that the space lim
←
{Uα} is jointly

closed with respect to the limit ditopology (τ∞, κ∞) on (S∞, S∞), then the
inclusion U ⊆ lim

←
{Uα} is immediate.

For the other direction, assume lim
←
{Uα} 6⊆ U . Thus, there exists a point

a = {aα} ∈ S∞ such that lim
←
{Uα} 6⊆ Qa and Pa 6⊆ U . By the definition of

joint topology, there exist M ∈ µ(a) and N ∈ η(a) such that U ⊆ N ∩ (S∞ \
M) and so we have the sets G ∈ τ∞ and K ∈ κ∞ such that Pa ⊆ G ⊆ M ,
N ⊆ K ⊆ Qa and U ⊆ K ∩ (S∞ \ G). Hence, there exist α0, α1 ∈ Λ
and Aα0 ∈ τα0 , Bα1 ∈ κα1 such that the conditions Pa ⊆ µ−1

α0
[Aα0 ] ⊆ G

and K ⊆ µ−1
α1

[Bα1 ] ⊆ Qa are satisfied. In this case, the inclusion U ⊆
(S∞\µ−1

α0
[Aα0 ]) ∩ µ−1

α1
[Bα1 ] is trivial. Finally, we obtained α1 ∈ Λ satisfying

the conditions U ⊆ U ⊆ µ−1
α1

[Bα1 ] and Pa 6⊆ µ−1
α1

[Bα1 ]. Thus Uα1 ⊆ Bα1 for

α1 ∈ Λ, because of the inclusions µα1(U) ⊆ µα1(µα1
−1[Bα1 ]) ⊆ Bα1 . If we

consider the closure operator on these sets, it is clear that Uα1 ⊆ Bα1 and
so µα1(Pa) 6⊆ Uα1 by the fact that µα1(a) /∈ Bα1 . Moreover, it is easy to
verify that µα1(Pa) = Paα1

:

µα1(Pa) = {µα1(x) | x ∈ Pa} = {xα1 | x ∈ Pa} = {xα1 | x ∈
∏
α∈Λ

Paα} =

{xα1 | xα ∈ Paα , ∀α} = Paα1
. As a result of these facts, we have Paα1

6⊆ Uα1

and so aα1 /∈ Uα1 for α1 ∈ Λ. This argument gives the fact that a /∈
∏
α
Uα∈Λ,

clearly. It means that a /∈ lim
←
{Uα} and it is a contradiction. �
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According to all the considerations presented above, the next result will
be obvious.

Corollary 2.5. i) U ⊆ lim
←
{Uα}

ii) lim
←
{Uα} ⊆ lim

←
{Uα}

3. Conclusion

As a further aspect of the inverse systems and inverse limits constructed
in the category ifPDitop consisting of ditopological plain texture spaces, in
this study we investigated the effect of closure operator on inverse systems
and limits in ifPDitop, with respect to the joint topologies correspond to
the ditopologies located on those inverse limits. Particularly, we confined our
attention to inverse systems - limits in the context of the category ifPDitop.
It is clear that there are considerable difficulties involved in establishing a
suitable theory of inverse systems and their limits for the general categories
of ditopological spaces.
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Abstract 

In this study, it was intend to present the notions of asymptotical deferred statistical equivalence of 

order 𝛽 and asymptotical deferred Cesàro equivalence of order 𝛽 (0 < 𝛽 ≤ 1) in the Wijsman sense for 

double set sequences, to investigate some properties of these notions and to examine the relationship 

between them.  

 

Keywords: Asymptotical equivalence, deferred statistical convergence, deferred Cesàro 

summability, order 𝛽, Wijsman convergence, double sequences of sets. 

 

1. Introduction 

In Agnew [1] first introduced the notion of deferred Cesàro mean for real (or complex) sequences. 

Long after this, the notion of deferred statistical convergence is presented by Küçükaslan and Yılmaztürk 

[2] and the authors showed the relationship of this notion with the strongly deferred Cesàro summability. 

Using order 𝛼 , similar notions were also studied by Et et al. [3] in metric spaces. Also, for double 

sequences, the notions of deferred statistical convergence and deferred Cesàro summability were 

introduced and studied by Dağadur and Sezgek [4]. Furthermore, using the concept of asymptotical 

equivalence, the notions of asymptotical deferred statistical and asymptotical deferred Cesàro equivalence 

were studied by Koşar et al. [5] for non-negative real sequences. 

For sequences of sets, on the notions of strongly deferred Cesàro summability and deferred 

statistical convergence in the Wijsman sense were studied by Altınok et al. [6]. Using order 𝛼, similar 

notions were also studied by Yılmazer et al. [7]. Also, for double sequences of sets, the notions of 

deferred Cesàro summability and deferred statistical convergence were introduced and studied by Ulusu 

and Gülle [8]. Furthermore, using the concept of asymptotical equivalence, the notions of asymptotical 

deferred equivalence were studied by Altınok et al. [9] for sequences of sets. The similar concepts were 

also carried out by Et et al. [10] using order 𝛼. 

The aim of this work is to introduce some asymptotical deferred equivalence types of order 𝛽 in 

the Wijsman sense for double set sequences and to study on these notions. 

More information on the notions in this study can be found in [11-32]. 
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2. Basic Notions 

Let’s start by recalling some fundamental definitions and notations firstly (See, [8, 33-38]). 

For a metric space (𝒳, 𝜇), 𝑑(𝑥, 𝐸) indicates the distance from 𝑥 to 𝐸 where  

𝑑(𝑥, 𝐸) = inf
𝑒∈𝐸

𝜇(𝑥, 𝑒): = 𝑑𝑥(𝐸) 

for any 𝑥 ∈ 𝒳 and any non-empty 𝐸 ⊆ 𝒳. 

For a non-empty set 𝒳 , let a function ℎ: ℕ → 𝑃(𝒳) is defined by ℎ(𝑗) = 𝐸𝑗 ∈ 𝑃(𝒳) for each       

𝑗 ∈ ℕ. Then, the sequence {𝐸𝑗} = {𝐸1, 𝐸2, … }, which is the codomain elements of ℎ, is called sequences 

of sets. 

Throughout the study, (𝒳, 𝜇) will be considered as a metric space and 𝐸, 𝐸𝑖𝑗 , 𝐹𝑖𝑗 (𝑖, 𝑗 ∈ ℕ) will be 

considered as any non-empty closed subsets of 𝒳. 

The double sequence {𝐸𝑖𝑗} is said to be Wijsman convergent to the set 𝐸 if  

lim
𝑖,𝑗→∞

𝑑𝑥(𝐸𝑖𝑗) = 𝑑𝑥(𝐸), 

for each 𝑥 ∈ 𝒳 and it is denoted by 𝐸𝑖𝑗 ⟶
𝑊2

𝐸. 

The double sequence {𝐸𝑖𝑗} is said to be Wijsman Cesàro summable of order 𝛽 (0 < 𝛽 ≤ 1) to the 

set 𝐸 if  

lim
𝑚,𝑛→∞

1

(𝑚𝑛)𝛽
∑

𝑚

𝑖=1

  ∑

𝑛

𝑗=1

𝑑𝑥(𝐸𝑖𝑗) = 𝑑𝑥(𝐸), 

for each 𝑥 ∈ 𝒳 and it is denoted by 𝐸𝑖𝑗 ⟶
𝑊2(𝐶)𝛽

𝐸. 

The double sequence {𝐸𝑖𝑗} is said to be Wijsman strong Cesàro summable of order 𝛽 (0 < 𝛽 ≤ 1) 

to the set 𝐸 if  

lim
𝑚,𝑛→∞

1

(𝑚𝑛)𝛽
∑

𝑚

𝑖=1

  ∑

𝑛

𝑗=1

|𝑑𝑥(𝐸𝑖𝑗) − 𝑑𝑥(𝐸)| = 0, 

for each 𝑥 ∈ 𝒳 and it is denoted by 𝐸𝑖𝑗 ⟶
𝑊2[𝐶]𝛽

𝐸. 

The double sequence {𝐸𝑖𝑗} is said to be Wijsman statistically convergent of order 𝛽 (0 < 𝛽 ≤ 1) 

to the set 𝐸 if for every 𝜀 > 0  

lim
𝑚,𝑛→∞

1

(𝑚𝑛)𝛽
|{(𝑖, 𝑗): 𝑖 ≤ 𝑚, 𝑗 ≤ 𝑛: |𝑑𝑥(𝐸𝑖𝑗) − 𝑑𝑥(𝐸)| ≥ 𝜀}| = 0, 
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for each 𝑥 ∈ 𝒳 and and it is denoted by 𝐸𝑖𝑗 ⟶
𝑊2(𝑆)𝛽

𝐸. 

The double sequence {𝐸𝑖𝑗} is said to be bounded if sup𝑖,𝑗{𝑑𝑥(𝐸𝑖𝑗)} < ∞ for each 𝑥 ∈ 𝒳. Also,     

𝐿∞
2  denotes the class of all bounded double set sequences. 

The deferred Cesàro mean 𝐷𝜓,𝜙 of a double sequence ℰ = {𝐸𝑖𝑗} is defined by   

(𝐷𝜓,𝜙ℰ)𝑢𝑣 =
1

𝜓𝑢𝜙𝑣
∑

𝑟𝑢

𝑖=𝑝𝑢+1

  ∑

𝑠𝑣

𝑗=𝑞𝑣+1

𝑑𝑥(𝐸𝑖𝑗), 

where [𝑝𝑢], [𝑟𝑢], [𝑞𝑣] and [𝑠𝑣] are sequences of non-negative integers satisfying following conditions:  

𝑝𝑢 < 𝑟𝑢, lim
𝑢→∞

𝑟𝑢 = ∞;    𝑞𝑣 < 𝑠𝑣, lim
𝑣→∞

𝑠𝑣 = ∞                                        (2.1) 

𝑟𝑢 − 𝑝𝑢 = 𝜓𝑢;     𝑠𝑣 − 𝑞𝑣 = 𝜙𝑣.                                                   (2.2) 

Throughout the paper, unless otherwise specified, [𝑝𝑢] , [𝑟𝑢] , [𝑞𝑣]  and [𝑠𝑣]  are considered as 

sequences of non-negative integers satisfying (2.1) and (2.2). 

For any non-empty closed subsets {𝐸𝑖𝑗}, {𝐹𝑖𝑗} ∈ 𝒳  such that 𝑑𝑥(𝐸𝑖𝑗) > 0  and 𝑑𝑥(𝐹𝑖𝑗) > 0  for 

each 𝑥 ∈ 𝒳, the double sequences {𝐸𝑖𝑗} and {𝐹𝑖𝑗} are said to be asymptotically Wijsman equivalent to 

multiple 𝜂 if  

lim
𝑖,𝑗→∞

𝑑𝑥(𝐸𝑖𝑗)

𝑑𝑥(𝐹𝑖𝑗)
: = lim

𝑖,𝑗→∞
𝑑𝑥 (

𝐸𝑖𝑗

𝐹𝑖𝑗
) = 𝜂, 

for each 𝑥 ∈ 𝒳 and it is denoted by 𝐸𝑖𝑗 ∼
𝑊2

𝜂

𝐹𝑖𝑗. 

As an example to this concept, the following sequences of circles in ℝ2 can be given. 

Let 𝒳 = ℝ2 and double sequences {𝐸𝑖𝑗} and {𝐹𝑖𝑗} be defined as following:   

𝐸𝑖𝑗: = {(𝑎, 𝑏) ∈ ℝ2: 𝑎2 + 𝑏2 + 4𝑖𝑗𝑎 = 0}, 

𝐹𝑖𝑗: = {(𝑎, 𝑏) ∈ ℝ2: 𝑎2 + 𝑏2 − 4𝑖𝑗𝑎 = 0}. 

Then, we have  

lim
𝑖,𝑗→∞

𝑑𝑥 (
𝐸𝑖𝑗

𝐹𝑖𝑗
) = 1 

for each 𝑥 ∈ 𝒳, i.e. 𝐸𝑖𝑗 ∼
𝑊2

1

𝐹𝑖𝑗 (𝜂 = 1). 
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3. New Concepts 

In this section, we have presented the notions of asymptotical deferred statistical equivalence of 

order 𝛽 and asymptotical deferred Cesàro equivalence of order 𝛽 (0 < 𝛽 ≤ 1) in the Wijsman sense for 

double set sequences. 

In the following definitions, we will consider that 𝑑𝑥(𝐸𝑖𝑗) > 0 and 𝑑𝑥(𝐹𝑖𝑗) > 0, for each 𝑥 ∈ 𝒳 

and any non-empty closed subsets {𝐸𝑖𝑗}, {𝐹𝑖𝑗} ∈ 𝒳. 

Definition 3.1 The double sequence {𝐸𝑖𝑗}  and {𝐹𝑖𝑗}  are said to be asymptotically Wijsman deferred 

statistical equivalent of order 𝛽 (0 < 𝛽 ≤ 1) to multiple 𝜂 if for every 𝜀 > 0  

lim
𝑢,𝑣→∞

1

(𝜓𝑢𝜙𝑣)𝛽
|{(𝑖, 𝑗): 𝑖 ∈ (𝑝𝑢, 𝑟𝑢], 𝑗 ∈ (𝑞𝑣, 𝑠𝑣], |𝑑𝑥 (

𝐸𝑖𝑗

𝐹𝑖𝑗
) − 𝜂| ≥ 𝜀}| = 0, 

for each 𝑥 ∈ 𝒳. In this case, the notation 𝐸𝑖𝑗 ∼
𝑊2

𝜂
(𝐷𝑆)𝛽

𝐹𝑖𝑗 is used.  

Remark 3.1 The notion of asymptotical Wijsman deferred statistical equivalence of order 𝛽 for double 

set sequences is reduced to;   

 the notion of asymptotical Wijsman deferred statistical equivalence in [39], for 𝛽 = 1. 

 the notion of asymptotical Wijsman statistical equivalence of order 𝛽 in [40], for 𝑝𝑢 = 0, 𝑟𝑢 = 𝑢 

and 𝑞𝑣 = 0, 𝑠𝑣 = 𝑣. 

 the notion of asymptotical Wijsman statistical equivalence in [36], for 𝛽 = 1, and 𝑝𝑢 = 0, 𝑟𝑢 = 𝑢 

and 𝑞𝑣 = 0, 𝑠𝑣 = 𝑣.  

Definition 3.2 The double sequences {𝐸𝑖𝑗} and {𝐹𝑖𝑗} are said to be asymptotically Wijsman deferred 

Cesàro equivalent of order 𝛽 (0 < 𝛽 ≤ 1) to multiple 𝜂 if  

lim
𝑢,𝑣→∞

1

(𝜓𝑢𝜙𝑣)𝛽
∑

𝑟𝑢

𝑖=𝑝𝑢+1

  ∑

𝑠𝑣

𝑗=𝑞𝑣+1

𝑑𝑥 (
𝐸𝑖𝑗

𝐹𝑖𝑗
) = 𝜂, 

for each 𝑥 ∈ 𝒳. In this case, the notation 𝐸𝑖𝑗 ∼
𝑊2

𝜂
(𝐷)𝛽

𝐹𝑖𝑗 is used.  

Definition 3.3 The double sequences {𝐸𝑖𝑗} and {𝐹𝑖𝑗} are said to be asymptotically Wijsman strongly 

deferred Cesàro equivalent of order 𝛽 (0 < 𝛽 ≤ 1) to multiple 𝜂 if  

lim
𝑢,𝑣→∞

1

(𝜓𝑢𝜙𝑣)𝛽
∑

𝑟𝑢

𝑖=𝑝𝑢+1

  ∑

𝑠𝑣

𝑗=𝑞𝑣+1

|𝑑𝑥 (
𝐸𝑖𝑗

𝐹𝑖𝑗
) − 𝜂| = 0, 
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for each 𝑥 ∈ 𝒳. In this case, the notation 𝐸𝑖𝑗 ∼
𝑊2

𝜂
[𝐷]𝛽

𝐹𝑖𝑗 is used.  

Remark 3.2 The notion of asymptotical Wijsman strong deferred Cesàro equivalence of order 𝛽 for 

double set sequences is reduced to;   

 the notion of asymptotical Wijsman strong deferred Cesàro equivalence in [39], for 𝛽 = 1. 

 the notion of asymptotical Wijsman strong Cesàro equivalence of order 𝛽 in [40], for 𝑝𝑢 = 0, 

𝑟𝑢 = 𝑢 and 𝑞𝑣 = 0, 𝑠𝑣 = 𝑣. 

 the notion of asymptotical Wijsman strong Cesàro equivalence in [36], for 𝛽 = 1 , and                

𝑝𝑢 = 0, 𝑟𝑢 = 𝑢 and 𝑞𝑣 = 0, 𝑠𝑣 = 𝑣. 

 

4. Main Results 

In this section, we have investigated some properties of the notions of asymptotical Wijsman 

deferred statistical equivalence of order 𝛽  and asymptotical Wijsman deferred Cesàro equivalence of 

order 𝛽 (0 < 𝛽 ≤ 1) for double set sequences, and have examined the relationship between these notions. 

Theorem 4.1 If 0 < 𝛽 < 𝛾 ≤ 1, then  

𝐸𝑖𝑗 ∼
𝑊2

𝜂
(𝐷𝑆)𝛽

𝐹𝑖𝑗 ⇒ 𝐸𝑖𝑗 ∼
𝑊2

𝜂
(𝐷𝑆)𝛾

𝐹𝑖𝑗 . 

Proof. Let 0 < 𝛽 < 𝛾 ≤ 1 and assume that 𝐸𝑖𝑗 ∼
𝑊2

𝜂
(𝐷𝑆)𝛽

𝐹𝑖𝑗 . For every 𝜀 > 0 and each 𝑥 ∈ 𝒳 , we can 

write   

1

(𝜓𝑢𝜙𝑣)𝛾
|{(𝑖, 𝑗): 𝑖 ∈ (𝑝𝑢, 𝑟𝑢], 𝑗 ∈ (𝑞𝑣, 𝑠𝑣], |𝑑𝑥 (

𝐸𝑖𝑗

𝐹𝑖𝑗
) − 𝜂| ≥ 𝜀}| 

≤
1

(𝜓𝑢𝜙𝑣)𝛽
|{(𝑖, 𝑗): 𝑖 ∈ (𝑝𝑢, 𝑟𝑢], 𝑗 ∈ (𝑞𝑣, 𝑠𝑣], |𝑑𝑥 (

𝐸𝑖𝑗

𝐹𝑖𝑗
) − 𝜂| ≥ 𝜀}|. 

Therefore, by our assumption, we get 𝐸𝑖𝑗 ∼
𝑊2

𝜂
(𝐷𝑆)𝛾

𝐹𝑖𝑗.  

If 𝛾 = 1 is taken in Theorem 4.1, then the following corollary is obtained. 

Corollary 4.1 If double sequences {𝐸𝑖𝑗}  and {𝐹𝑖𝑗}  are 𝑊2
𝜂

(𝐷𝑆)𝛽 -equivalence (0 < 𝛽 ≤ 1 ), then the 

sequences are 𝑊2
𝜂

(𝐷𝑆)-equivalence.  
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Theorem 4.2 If 0 < 𝛽 ≤ 𝛾 ≤ 1, then  

𝐸𝑖𝑗 ∼
𝑊2

𝜂
[𝐷]𝛽

𝐹𝑖𝑗 ⇒ 𝐸𝑖𝑗 ∼
𝑊2

𝜂
[𝐷]𝛾

𝐹𝑖𝑗 . 

Proof. Let 0 < 𝛽 < 𝛾 ≤ 1 and assume that 𝐸𝑖𝑗 ∼
𝑊2

𝜂
[𝐷]𝛽

𝐹𝑖𝑗. For each 𝑥 ∈ 𝒳, we can write  

1

(𝜓𝑢𝜙𝑣)𝛾
∑

𝑟𝑢

𝑖=𝑝𝑢+1

  ∑

𝑠𝑣

𝑗=𝑞𝑣+1

|𝑑𝑥 (
𝐸𝑖𝑗

𝐹𝑖𝑗
) − 𝜂| ≤

1

(𝜓𝑘𝜙𝑗)𝛽
∑

𝑟𝑢

𝑖=𝑝𝑢+1

  ∑

𝑠𝑣

𝑗=𝑞𝑣+1

|𝑑𝑥 (
𝐸𝑖𝑗

𝐹𝑖𝑗
) − 𝜂|. 

Therefore, by our assumption, we get 𝐸𝑖𝑗 ∼
𝑊2

𝜂
[𝐷]𝛾

𝐹𝑖𝑗.  

If 𝛾 = 1 is taken in Theorem 4.2, then the following corollary is obtained. 

Corollary 4.2 If double sequences {𝐸𝑖𝑗}  and {𝐹𝑖𝑗}  are 𝑊2
𝜂

[𝐷]𝛽 -equivalence ( 0 < 𝛽 ≤ 1 ), then the 

sequences are 𝑊2
𝜂

[𝐷]-equivalence.  

Theorem 4.3 Let 0 < 𝛽 ≤ 1 . If double sequences {𝐸𝑖𝑗}  and {𝐹𝑖𝑗}  are 𝑊2
𝜂

[𝐷]𝛽 -equivalence, then the 

sequences are 𝑊2
𝜂

(𝐷𝑆)𝛽-equivalence.  

Proof. Let 0 < 𝛽 ≤ 1 and assume that 𝐸𝑖𝑗 ∼
𝑊2

𝜂
[𝐷]𝛽

𝐹𝑖𝑗. For every 𝜀 > 0 and each 𝑥 ∈ 𝒳, we can write   

∑

𝑟𝑢

𝑖=𝑝𝑢+1

  ∑

𝑠𝑣

𝑗=𝑞𝑣+1

|𝑑𝑥 (
𝐸𝑖𝑗

𝐹𝑖𝑗
) − 𝜂| ≥ ∑

𝑟𝑢

𝑖=𝑝𝑢+1

  ∑

𝑠𝑣

𝑗=𝑞𝑣+1

|𝑑𝑥(
𝐸𝑖𝑗

𝐹𝑖𝑗
)−𝜂|≥𝜀

|𝑑𝑥 (
𝐸𝑖𝑗

𝐹𝑖𝑗
) − 𝜂| 

≥ 𝜀 |{(𝑖, 𝑗): 𝑖 ∈ (𝑝𝑢, 𝑟𝑢], 𝑗 ∈ (𝑞𝑣, 𝑠𝑣], |𝑑𝑥 (
𝐸𝑖𝑗

𝐹𝑖𝑗
) − 𝜂| ≥ 𝜀}|                              

and so   

1

𝜀

1

(𝜓𝑢𝜙𝑣)𝛽
∑

𝑟𝑢

𝑖=𝑝𝑢+1

  ∑

𝑠𝑣

𝑗=𝑞𝑣+1

|𝑑𝑥 (
𝐸𝑖𝑗

𝐹𝑖𝑗
) − 𝜂| 

≥
1

(𝜓𝑢𝜙𝑣)𝛽
|{(𝑖, 𝑗): 𝑖 ∈ (𝑝𝑢, 𝑟𝑢], 𝑗 ∈ (𝑞𝑣, 𝑠𝑣], |𝑑𝑥 (

𝐸𝑖𝑗

𝐹𝑖𝑗
) − 𝜂| ≥ 𝜀}|. 
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Therefore, by our assumption, we get 𝐸𝑖𝑗 ∼
𝑊2

𝜂
(𝐷𝑆)𝛽

𝐹𝑖𝑗.  

Remark 4.1 The converse of Theorem 4.3 is true only in the case 𝛽 = 1 and {𝐸𝑖𝑗}, {𝐹𝑖𝑗} ∈ 𝐿∞
2 , which has 

already been shown in [39]. 
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Abstract 

The Gaussian mixture model is one of the well-known clustering approaches while representing the data 

from different normal distributions with distinct parameters. In inference of the model parameters, various 

methods can be used. Among alternatives, we select the expectation- maximization algorithm as the number 

of parameters is large to perform maximum likelihood estimators with explicit forms. The underlying 

estimation problem becomes serious when the numbers of parameter (p) exceeds the number of 

observations (n). Hence, in this study, we propose to apply the bootstrapping strategy so that the difference 

between n and p can be smaller. In bootstrapping procedure, we implement the Efron’s approach which is 

non-parametric and computationally faster than its alternatives. Then, we evaluate the performance of this 

proposal model with well-known model selection criteria like the Bayesian Information Criterion (BIC) 

and the ones which are designed specifically for high dimensional datasets, namely, Consistent Akaike 

information criterion (CAIC) and Information and Complexity Selection (ICOMP) aproach. In numerical 

examples, we investigate the performance of suggested model with real datasets. By means of this study, 

we aim to improve the accuracy of the Gaussian mixture model in clustering big datasets and to generate 

an alternative model selection criterion in comparison of the results.  

Keywords: Clustering, Bootstrap methods, Gaussian mixture models, Model selection methods  

 

1. Introduction 

 

Gaussian mixture model (GMM) is a popular machine learning algorithm for unsupervised learning 

purpose. Expected maximization (EM) algorithm is a standard procedure to estimate GMM.  But, when the 

number of parameters (p) is more than the number of observations (n), EM algorithm has some limitations 

in convergence. To unreval this problem, the bootstrapping method is suggested and is already inserted in 

the popular R programming package “mclust” by Scrucca et al. (2015). The package can perform both the 

Efron`s bootstrapping idea which is nonparametric (Efron, 1979) and the weighted likelihood bootstrapping 

idea which a generalized version of nonparametric bootstrap (Newton and Raftey,1994). From previous 

analyses, it has been shown that the bootstrap can be useful for the decision of the number of clustering 

when the sample size of variables is limited to get convergent estimates from EM algorithm. The mclust 

package supports Bayesian Information Criterion (BIC), also known as Schwartz criterion (Schwartz, 1978; 

Fraly and Raftery, 1998) and integrated complete data likelihood (ICL) criterion (Biernacki et al., 2000) in 

order to select the best partition of the complete data. But it is known that these criteria can give inconsistent 

145



 

6th INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 

21-24 June 2022, Istanbul, Turkey 

 

 

ICOM 2022 

ISTANBUL / TURKEY 

results, particularly, under n<p conditions. In this study, as the novelty, we insert the Consistent Akaike 

Information Criterion (CAIC) and Information and Complexity selection (ICOMP) in the calculation of 

GMM in order to choose the optimal clustering of the data. CAIC and ICOMP have developed by Bozdoğan 

(1987, 2010) and from previous studies, it has been found that these criteria are successful in the selection 

of the best model under various linear and nonlinear models. Hereby, in this study, we perform both CAIC 

and ICOMP for bootstrapped datasets and compare the findings under BIC, CAIC and ICOMP criteria and 

evaluate which model selection criterion have better performance in GMM. We use real bench-mark 

datasets in our analyses. 

Accordingly, in the organization of the study we present GMM, CAIC and ICOMP in Section 2, we present 

the analysis in Section 3, and finally, in Section 4 we conclude our findings and discuss the future works.  

 

2. Gaussian mixture model (GMM)  

 

Traditionally, the clustering analysis is one of the most important tasks in statistical theory. Moreover, 

Gaussian mixture model (GMM) is a probabilistic model and uses the soft clustering approach for 

distributing the points in different clusters while representing normally distributed subpopulations within 

an overall population. Mixture models, in general, do not require the knowledge of subpopulation which a 

data point belongs to, instead, they allow the model to learn the subpopulations automatically similar to K-

means clustering by Hartigan (1979).    

 

Hence, in  GMM we assume  a (multivariate) Gaussian distribution for each component k whose parameter 

𝜃  , i.e., 𝑓𝑘 
  (x; 𝜃𝑘 

 ) ~ N(𝝁𝑘 
 , 𝛴𝑘 

 ) , while clusters are centered at the mean vector 𝝁𝑘 
 , and with scale 

parameter determined by the covariance matrix 𝛴𝑘 
 .  Paramater estimation of the covariances matrices can 

be obtained by means of an eigen-values of the form, ∑   
𝑘 𝜆 𝑘 

 𝐷𝑘 
 𝐴𝑘 

 
 

 
𝐷𝑘 

𝑇 where 𝜆 𝑘 
  is a scalar value 

controlling the volume of the ellipsoid, 𝐴𝑘 
  is a diagonal matrix specifying the shape of the density contours 

with det(𝐴𝑘 
 ) = 1, and 𝐷𝑘 

  is an orthogonal matrix which determines the orientation of the corresponding 

ellipsoid. Here,  ( . )  
𝑇 denotes the transpose of the given matrix. 

 

GMM is a popular unsupervised learning algorithm whose cluster parameters are estimated by the 

expectation-maximization algorithm via mixtures of Gaussian distributions with iterative approach.  In 

calculation, it is assumed that x = {𝑥1 
 , 𝑥2 

 , ..., 𝑥𝑖 
 , ..., 𝑥𝑛 

  } is a sample of n independent identically 

distributed observations. The distribution of every observation is specified by a probability density function 

through a finite mixture model with G number of mixture components, which takes the following form 

 

f(𝑥𝑖 
 , Ψ)= ∑  𝜋𝑘 

 𝑓 𝑘
 𝐺

𝑘=1 (𝑥𝑖 
 ;  𝜃𝑘 

 ) ,                                                                                                             (1) 

 

where Ψ = {𝜋1 
 , . . ., 𝜋𝐺−1 

 , 𝜃1 
 , . . ., 𝜃𝐺 

 } are the parameters of the mixture model,𝑓𝑘 
 (𝑥𝑖 

 ;  𝜃𝑘 
 )   is the kth 

component density for observations 𝑥𝑖 
  with parameter vector  𝜃𝑘 

 , and (𝜋1 
 , . . ., 𝜋𝐺−1 

 ) are the mixing 

weights or probabilities such that 𝜋𝑘 
  > 0, and  ∑  𝜋𝑘 

 = 1.    
 𝐺

𝑘=1      
 

In the computation, it is accepted  that G is fixed and the parametersof the mixture model are unknown in 

general. Therefore, we need to estimate it with the following likelihood equation  
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(Ψ; 𝑥1 
 , …., 𝑥𝑛 

  )= ∑  log  𝑓 𝑘
 𝑛

𝑖=1 (𝑥𝑖 
 ; 𝛹).                                                                                                 (2) 

 

Direct estimation of the log-likelihood function is very complex, so, the maximum likelihood estimator 

(MLE) of a finite mixture model is usually obtained via the EM algorithm (Dempster et al., 1977; 

McLachlan and Peel, 2000). Expected-maximization (EM) algorithm is a standard procedure to estimate 

GMM. However, when the number of parameter is more than the number of observation, this task can be 

challenging. Therefore, the bootstrap procedure is preferred to infer GMMs with higher accuracy.    

 

2.2. Bootstrap assessment for Gaussian mixture model (GMM) 

 

EM algorithm can have convergent problem in inference of GMM, in particular, when the number of 

parameter (p) exceeds the number of observation (n). For this reason, we propose bootstrap procedure when 

GMM is used to find the best partition of the data as stated beforehand. Because the bootstrap is a  powerful 

statistical tool that can be used to quantify the uncertainty in associated parameter with a given estimator 

or statistical learning method via resampling approach. Thus, the the idea of bootstrapping for GMM can 

be defined as follows: 

   

Step1 : Calculate  𝐹𝑛  which is the empirical distribution function of observations    (𝑥1, … ,   𝑥 𝑛) from 

replacement via  ( 𝑥1
∗, … ,  𝑥 𝑛

∗ ), 

Step2 : Fit GMM to obtained bootstrap samples 𝛹 
∗̂, 

Step3 : Repeat step1-2 ,  say B=50,100 times, to get  𝛹1
∗̂ , 𝛹2

∗̂, … , 𝛹  𝐵
∗̂ estimators frombBootstrap samples. 

Then, bootstrap covariance matrix can be obtained as    𝑐𝑜𝑣𝑏𝑜𝑜𝑡(𝛹 
 ̂) =  

1

𝐵−1
∑  𝐵

𝑗𝑏=1   (𝛹𝑗,
∗̂ − 𝛹 

∗) (𝛹𝑗,
∗̂ −

𝛹 
∗) 

 𝑇     and the mean vector is found via 𝛹 
∗̂ =

1

𝐵−1
∑ 𝛹  𝑗

∗̂𝐵
𝑗=1   

 .  

 

2.3  CAIC and ICOMP Selection Criteria  

There are two classical model selection criteria, namely, Akaike‘s information criterion (AIC) and 

Schwarz‘s Bayesian information criterion that are applicable in different fields. Moreover, different 

classification methods for finite mixture models were suggested by  Göğebakan and Erol (2018, 2019) and 

different selection methods for GMM models have been compared by Akoğul and Erisoğlu (2016).  On the 

other hand, in order to improve the performance of accuracy, Bozdoğan (1987,2010) proposed two 

alternative approaches. The first method is called the consistent AIC selections criterion (CAIC) which 

makes the distance between the true model and the real value as small as possible. In the study of Bozdoğan 

(1987), the smallest distance is computed by the Kullback-Leibler divergence and this criterion has the 

following form:  

𝐶𝐴𝐼𝐶(𝑘) = −2 log 𝐿(𝜃𝑘) + 𝑘[𝑙𝑜𝑔𝑛 + 1]                                                                                                (3)  

in which the likelihood of θ is shown by logL(𝜃𝑘) and k denotes the degrees of freedom of the distribution. 

It is seen that there is a similarity between CAIC(k) and   BIC of (k log n) and k[log n + 1] terms that have 
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a stronger penalty term.     

As an extension of this method, Bozdoğan (2010) also proposed the Information and COMPlexity (ICOMP) 

measure. Basically, ICOMP can penalize the free parameters and the covariance matrix directly with a third 

term. This third term in the loss function has a capability to calculate the distance when the parameter 

estimates are correlated in the model fitting stage. Hence, the expression for ICOMP can be shown as 

below.  

𝐼𝐶𝑂𝑀𝑃 = −2 log 𝐿(𝜃𝑘) + 2𝐶(�̂�  ),                                                                                               (4)                    

where logL(𝜃𝑘) is the log-likelihood, 𝜃𝑘  denotes the maximum likelihood estimate of the parameter vector 

of θk, C expresses a real-valued complexity measure and finally, �̂� = 𝑐𝑜�̂�(𝜃𝑘)  refers to the estimated 

covariance matrix of the parameter vector of the candidate model. This covariance matrix can be obtained 

in different ways. Bozdoğan (2010)` s choice is the computation of the inverse of the Cramer-Rao lower 

bound matrix that is obtained from the estimated inverse Fisher information matrix with the following 

equation.  

 �̂�−1 = {−𝐸 (
𝜕2𝑙𝑜𝑔𝐿(𝜃)

𝜕𝜃𝜕𝜃′ )}
−1

 .                                                                                                         (5) 

In this expression, the (s × s)-dimensional second-order partial derivatives of the log-likelihood function of 

the estimated model is denoted by �̂�−1. As a result, a more general form of ICOMP can be expressed via  

 𝐼𝐶𝑂𝑀𝑃 = −2 log 𝐿(𝜃𝑘) + 2𝐶(�̂�−1)                                                                                            (5)        

when  

𝐶(�̂�−1)=
𝑠

2
log [

𝑡𝑟�̂�−1

𝑠
] −

1

2
log |�̂�−1|.                                                

In this expression, the second term shows the information complexity of the estimated inverse Fisher 

information matrix of the model and 𝑠 = dim (�̂�−1) = 𝑟𝑎𝑛𝑘(�̂�−1) while dim(.) shows the dimension of 

the given matrix.  

3. Data analyses 

We have two datasets to show the efficiency of proposed model selection procedure. The first data set is 

The Hemophilia data set which contains two measured variables on 75 women, belonging to two groups: 

Here, the sample size of groups are denoted by  𝑛1and    𝑛2  where    𝑛1=30 of them are non-carriers (normal 

group) and   𝑛2=45 are known hemophilia carriers (obligatory carriers), respectively. 
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This data set is originally analized in the context of discriminant analysis by Habemma and Hermans (1974). 

The objective is to find a procedure for detecting potential hemophilia A carriers on the basis of two 

measured variables: X1=log10(AHV activity) and X2=log10(AHV-like antigen). The first group of  𝑛1=30 

women consists of known non-carriers (normal group) and the second group of    𝑛2=45 women is selected 

from known hemophilia A carriers (obligatory carriers). This data set was also analyzed by Johnson and 

Wichern (1998), as well as, in the context of robust Linear Discriminant Analysis by Hawkins and 

McLachlan (1997) and Hubert and Van Driessen (2004). 

 

 
Figure 1: The scatter plot of  hemophilia dataset. 

 

In the analysis, first of all,  the Gaussian finite mixture model is fitted by EM algorithm  and the following 

mean terms in each group are computed. 

  

Means Group1 Group2 

AHFactivity  -0.116  -0.366  

AHFantigen  -0.025 -0.045  

Table 1: Means for AHFactivity and AHFantigen for hemophilia dataset. 

 

Furthermoe, the associated estimated covariance-variance matrix of AHFactivity and AHFantigen for 

each group is shown as below: 

�̂�1= [
0.011 0.007
0.007 0.012

] and �̂�2 = [0.016 0.015
0.015 0.032

]. 

Then, in order to increase the number of observations in each group and improve the accuracy of the 

eastimates, we perfrom nonparametric bootstrapping procedure. Accordingly, we use 38 replications in 

each group and calculate the following confidence intervals for estimated means and variances with a 0.05 

significance level:     

Means Group1 Group2 

AHFactivity  (-0.245, -0.078) (-0.444, -0.276) 

AHFantigen  (-0.105, 0.032) (-0.169, 0.094) 

Table 2: Means of 95% bootstrap confidence intervals for hemophilia dataset. 
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Variance  Group1 Group2 

AHFactivity  (0.006, 0.034) (0.004, 0.024) 

AHFantigen  (0.006, 0.019) (0.010, 0.043) 

Table 3: Variances of 95% bootstrap confidence intervals for hemophilia dataset. 

The values of CAIC and  ICOMP with BIC selection criteria for hemophilia data set are listed in Table 4. 

Selection criterion GMM without bootstrap GMM with bootstrap 

BIC 106.565 407.285 

CAIC 95.5647 396.430 

ICOMP 133.097 422.011 

Table 4. Results of selection criteria for hemophilia data set w/o  and w/ bootstrap 

From Table 4, it is seen that CAIC decreases the log-likelihood regarding BIC, but, ICOMP is the worse. 

On the other hand, from the comparison of values without/with bootstrap, it is seen that the bootstrap 

method increases the variance between groups which enables us to better generate the clustering. Figure 2a 

and 2b validate our findings in such a way that the bootstarp data have better separated cluster than without 

bootstrap data set.  

  
                            (a)                                                                          (b) 

Figure 2  Gaussian finite mixture model for classification task (a) without and (b) with bootstrap  for 

hemophilia data set 

 

Our second data set is the diabates data which examine the relationship among blood chemistry measures 

of glucose tolerance and insulin in 145 nonobese adults. Reaven and Miller (1979) used the PRIM9 

system at the Stanford Linear Accelerator Center to visualize the data in 3D, and discovered a peculiar 

pattern that looked like a large blob with two wings in different directions.   
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 Figure3. The scatter plot of diabetes dataset.   

The scatter plots of 3 groups, namely, glucose, insülin and sspg, are shown in Figure 3. In the analyses of 

this data via GMM whose inference is conducted by the EM algorithm, the mixing  probabilities of each 

group are found  as  0.537, 0.265, 0.198, in order, and the estimated means as well as covariance-variance 

matrices are presented as below:  

 Means Group1 Group2 Group3 

glucose 90.962 104.534 229.421 

insulin 357.791 494.826 1098.260 

sspg 163.749 309.558 81.600 

Table5: Estimated mean values for each group for diabates dataset.  

  

�̂�1= [
57.180 75.832 14.732
75.832 2101.766 322.823
14.732 322.823 2416.991

] , �̂�2= [
185.029 1282.340 −509.731

1282.340 14039.283 −2559.025
−509.732 −2559.025 23835.728

]  and 

�̂�3= [
5529.250 20389.09 −2486.208

20389.088 83132.48 −10393.004
−2486.208 −10393.00 2217.533

]  . 

 

In Figure 4, the  GMM classifications of diabates datasets without and with bootstrap can be seen visually.  
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(a)                                                                             (b) 

Figure 4. GMM classifications of diabates datasets (a) without and (b) with bootstrap. 

  

On the other hand, the variance of each group after bootstrap and their 95% confidence intervals are 

shown as follows: 

 

Means  Group1 Group2 Group3 

glucose (89.627, 92.865) (98.973, 113.150) (201.371, 243.072) 

insulin (342.1126, 370.092) (449.721, 548.226) (983.205, 1146.30) 

sspg (146.036, 181.321) (264.278, 389.978) (71.220, 96.781) 

Table 6: 95% confidence interval for means of bootstrapped diabates dataset. 

 

 Variance Group1 Group2 Group3 

glucose (45.765, 76.171) (82.954, 367.743) (4377.933, 7409.077) 

insulin (1293.432, 3327.144) (2985.338, 44335,695) (58913.5, 115432.000) 

sspg (1287.704, 4071.764) (13030.360, 33893.19) (1646.896, 2889.926) 

Table7: 95% confidence interval for variances of bootstrapped diabates dataset. 

 

    Selection criterion GMM without bootstrap GMM with bootstrap 

BIC -4751.316 -3515.975 

CAIC -4780.316 -3545.175 

ICOMP -4818.154 -3537.380 

Table 8: Results of selection criteria for diabates dataset without and with bootstrap. 

Finally, the performances of all model selection criteria are listed in Table 8. The tabulated results indicate 

that similar to hemophilia data set, the bootstrap increases the variances in the groups, but, helps better 
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partition of the augmented data as seen in Figure 4. Moreover it is seen that under without and with 

bootstrap conditions, CAIC and ICOMP have lower loss of information with respect to BIC results. This 

supports our previous findings in the first dataset. 

 

4. Conclusion 

 

We have proposed alternative model selection criteria for Gaussian mixture models with Bozdogan`s CAIC 

and ICOMP selection methods in order to find more consistent selection procedure. When the number of 

paramater is more than the number of observations, EM algorithm can be difficult to compute. For this 

reason, we have used the nonparametric bootstrap method for Gaussian mixture model (GMM) which 

improves the accuracy of the clustering. From the analyses, we have shown that the bootstrap raises the 

variances within each group of data sets and this increase becomes helpful in the partition of the data with 

GMM. Furthermore, we have seen that CAIC and ICOMP can decrease the loss of information with respect 

to BIC values. As a future study, we consider to make more comprehensive analyses based on simulated 

data via distinct scenarios and data types so that we can get more precise conclusion about suitability of 

CAIC and ICOMP in GMM.   
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Abstract 

The vehicle routing problem (VRP), which is the last stage of the logistics systems and supply 

chain in the growing economy market, has gained great importance. Vehicle routing problem is a 

mathematical optimization problem in which minimum cost, shortest distance routes are determined 

for customer demands located in different locations from a central warehouse.  In this study, VRP 

consisting of capacity-constrained, heterogeneous fleet vehicles has been handled, and the 

optimization problem in which the optimum route set is calculated and fuel costs are minimized has 

been examined. The approximate solutions of the problem are calculated with the meta-heuristic 

Simulated Annealing algorithm in Matlab. 

 

          Keywords: Optimization, Vehicle Routing, Simulated Annealing  

 

1. Introduction 

 

Vehicle routing problem is one of the combinatorial optimization problems that deals with finding the 

optimum route as much as the number of vehicles in order to meet the demands of a group of customers 

located in certain places with a vehicle fleet from a central warehouse in a minimum distance and time 

and return to the warehouse (or not return). Combinatorial vehicle routing problem is one of the NP-Hard 

(Nondeterministic polynomial) problems in its simplest form [1]. The work that can be considered the 

first in VRP started in 1959 when Dantzig and Ramser created an optimal route between a fleet of 

gasoline delivery trucks and multiple service stations [2]. In 1964, Clarke and Wright conducted the study 

that requires optimal routing of a fleet of trucks of varying capacities from a central warehouse to a 

number of delivery points, requiring selection from multiple possible routes if the number of delivery 

points is large [3]. In 1953, Metropolis et al. first developed the Simulated Annealing (SA) algorithm [4]. 

In 1983, Kirkpatrick et al. used the algorithm for solving optimization problems [5]. Cerny suggested its 

use in combinatorial problems in 1985 [6]. Osman in 1993 used the SA algorithm in VRP for the first 

time in its hybridization with tabu search to solve the capacity VRP (CVRP) [7]. In 1995, Breedam 

proposed an advanced heuristic based on SA to solve a standard VRP [8]. In their study, Çetin et al. 

proposed a new heuristic algorithm for the solution of simultaneous distribution and aggregation vehicle 

routing problems with heterogeneous vehicle fleets and created a decision support system based on the 

proposed algorithm [9]. In their study, Çetin and Gencer describe the problem of simultaneous 
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distribution-collection vehicle routing with heterogeneous vehicle fleet and precise time window. They 

proposed a mathematical model for the defined problem and Solomon test problems were arranged in 

terms of demand; They have tried for samples with 5,10,15,20 clients [10]. In the study of Alağaş et al., 

the capacity constraint in the transportation of hazardous materials was considered both in terms of 

weight and volume. More than one vehicle with different features is used in the shipments made from a 

central warehouse to the interim warehouses and from the intermediate warehouses to the central 

warehouse. The problem addressed according to these features is the heterogeneous simultaneous ball-

deliver-vehicle routing problem. The problem was solved by modeling with mathematical programming 

[11]. Ahad Furug, in his study, addressed the problem of periodic vehicle routing with capacity 

constraints in order to minimize the transportation distance and cost of vehicles in the collection of 

medical wastes [12]. In the study of Şahin et al., the distribution activities of a company operating as a 

regional distributor were considered as a green vehicle routing problem with a heterogeneous fleet, and it 

was tried to obtain environmentally friendly solutions that provide lower emission values with the 

annealing simulation method [13]. 

 

2. Material and Method 

In this study, a data set consisting of 1 warehouse, 10 node (customer) coordinates and customer 

demands was randomly generated in Matlab. A mathematical model was created for this data set. The 

model is a deterministic capacity ARP problem with a heterogeneous fleet. The minimum route distance 

and fuel cost of the created problem are approximately solved by simulated annealing, which is a meta-

heuristic algorithm.  

3. Suggested Mathematical Model for Vehicle Routing Problem 

The vehicle routing problem (VRP) is defined on a graph 𝐺 = (𝑉, 𝐴) where 𝑉 = {𝑣1, 𝑣2 … , 𝑣𝑛}is a 

set of vertices (nodes) and 𝐴 ⊆ {(𝑣𝑖 , 𝑣𝑗): 𝑖 ≠ 𝑗, 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉} is the set of arcs [14]. Capacity VRP is the 

problem of finding the routes that a company's vehicles with limited capacity from one or more 

warehouses should follow in order to serve their customers with known demands [15]. In a capacity VRP, 

customer demands should not be more than the capacity of the vehicles on the route. For the problem in 

this study, the mathematical model of the capacity and heterogeneous fleet of VRP was created as follows 

[16] and [17]. 

Parameters: 

𝐾 = Number of vehicles, 

𝑓𝑘 = k. fuel cost per km of the vehicle, 

Q𝑘=  Capacity of k vehicle, 

N = Number of customers or stops, 
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qi = i (i > 0)  customer demand quantity, 

𝐶𝑖𝑗 = 𝑖 distance between client i and client j, 

 

Decision variables 

𝑥𝑖𝑗𝑘 = {
1,                if the vehicle is going from customer i to customer j 
0,                                                                                               otherwise)

 

where  i ≠ j,     i, j ∈ {0, … , N}  and 0 warehouses 

Objective function: 

Min ∑ ∑ ∑ 𝑓𝑘𝑐𝑖𝑗𝑥𝑖𝑗𝑘

𝐾

𝑘=1

                                                                                                                  (1)

𝑁

𝑗=0,𝑖≠𝑗

𝑁

𝑖=0

 

 

Constraints: 

∑ ∑ 𝑥𝑖𝑗𝑘

𝑁

𝑗=1

= 𝐾 ,                                                                                                    𝑖 = 0  𝑓𝑜𝑟

𝐾

𝑘=1

             (2) 

∑ ∑ 𝑥𝑖𝑗𝑘

𝑁

𝑖=0,𝑖≠𝑗

= 1 ,                                                                                     ∀𝑗,   𝑗 ∈ {1, … , 𝑁}

𝐾

𝑘=1

          (3) 

∑ ∑ 𝑥𝑖𝑗𝑘

𝑁

𝑗=0,𝑖≠𝑗

= 1 ,                                                                                       ∀𝑖,   𝑖 ∈ {1, … , 𝑁}         (4)

𝐾

𝑘=1

 

∑ ∑ 𝑥𝑖𝑗𝑘 ≤ |𝑆| − 1                                                                                                                       (5)

𝑁

𝑗=0,𝑗∈𝑆

𝑁

𝑖=0

 

∑ 𝑞𝑖 ∑ 𝑥𝑖𝑗𝑘 ≤ 𝑄𝑘                                                                                                                           (6)

𝑁

𝑗=0,𝑖≠𝑗

𝑁

𝑖=1

 

∑ 𝑥𝑖𝑗𝑘

𝑁

𝑖=1

≤ 1 ,                                                                                                         𝑘 ∈ {1, … , 𝐾}           (7) 

𝑥𝑖𝑗𝑘 ∈ {0,1}                                                                                                       ∀𝑖𝑗 ∈ 𝑉 , ∀𝑘 ∈ 𝐾         (8) 
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In the model (1), the objective function expresses that the total distance traveled and the total fuel 

cost should be minimized. Constraint equation (2) indicates that K vehicles will exit the operation. 

Constraint equations (3) and (4) indicate that a customer must be visited by only one vehicle and only one 

of the ways out of the customer must be used. Constraint (5) is used to eliminate rounds that do not start 

at the warehouse and are not completed in the warehouse, this is added for every possible subset S of 

customers that do not include the warehouse. (6) states that in case the vehicle capacities are different, 

[18] indicates that the vehicle capacities should not exceed 𝑄𝑘. Constraint (7) states that a vehicle will 

leave the operation only once, so it will be used once on the route. The constraint (8) is related to the 

𝑥𝑖𝑗𝑘variable being an integer [19]. 

The simulation annealing algorithm, which is a meta-heuristic solution that we will use to solve 

the problem described above, is described in the following section., 

 

4. Simulated Annealing (SA) meta-heuristic algorithm 

SA, developed by Metropolis et al, is a probability-based optimization algorithm, which is 

generally used for discrete optimization problems, inspired by the slow cooling of solids after heating 

until crystallization [5].  

The SA algorithm is used to select a better solution than the previous one in each round by 

scanning the solution area, based on the principle of heating the solids and then cooling them slowly until 

they crystallize. According to this simulation, the temperature value is used to determine the probability 

of accepting solutions worse than the best solution found.   

An Annealing simulation algorithm generally consists of an initial solution, a neighbor solution 

generation method, and an annealing program. The function of the annealing process is to start from a 

solution at a sufficiently high temperature and gradually decrease the temperature to cycle between good 

and bad solutions and finally arrive at the best solution.  

The algorithm is started with a sufficiently high temperature value and at each step a certain 

number of solutions are obtained before the temperature is reduced. New solutions are either accepted or 

rejected according to established criteria. Each decrease in temperature affects the probability of leaving 

the obtained solution and switching to a new solution. The algorithm is terminated when the temperature 

reaches the lowest value or when the SA algorithm runs for the desired number of repetitions [20]. 
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Figure1. Screenshot of the model created in Matlab 

In Figure 1, I is the number of customers, j is the number of vehicles, c is the vehicle capacities, r 

is the demands for 10 customers, x and y is the customer coordinates, x0 and y0 is the warehouse 

coordinate, d is the distance matrix between customers, d0 is the distance matrix between the warehouse 

and customers. 

When the algorithm was run, optimal route drawing was obtained for 3 vehicles in figure 2. 

 

Figure 2. Routings obtained from Matlab 

Figure 2: It shows the circulation shape of the 3 routes obtained from Matlab in the coordinate 

axis. 
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Optimal solutions of routing and fuel costs obtained from Matlab for the generated problem are 

given in Table 1. 

Table1. Routing results and fuel cost with SA 

Routes Vehicle 

capacity 

Route 

distance (km) 

Route fuel cost 

TL  

Route 

request 

Total distance 

(km) 

Total fuel 

cost TL 

R1 : 0-2-3-0 100 187,5283 562,5849 30 480,5378 1441,6134 

R2 : 0-7-5-6-8-1-0 125 132,1476 396,4428 107 

R3 : 0-4-9-10-0 150 160,8619 482,5857 63 

 

The depot is shown with 0 in Table1, and each vehicle route starts from the depot and ends at the 

depot. R1 is the route that the first vehicle should follow, R2 is the route that the second vehicle should 

follow, R3 is the route that the third vehicle should follow. Assuming that the fuel liter price is 26.40 TL, 

the fuel cost per km of the vehicles is calculated as 3 TL/km. 

5. Conclusion 

In this study, a model for the heterogeneous fleet vehicle routing problem of 3 different capacities, 

consisting of 1 warehouse, 10 customers, 100,125,150, was created. A near-optimal result was obtained 

with the Backgammon simulation algorithm in Matlab. The demands of each customer were met without 

exceeding the vehicle capacities from the shortest routes obtained from the solution of the problem. Total 

customer demands were met with 3 different routes at optimum distance. Total fuel costs were found to 

be the least at the minimum distance. 
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Abstract 

In the present paper a new extended Differential operator  ,
m

pλ  ( )0; , 0p mλ ≥ ∈ ∈ ∪   of 

multivalent functions is introduced. Making use of the Differential operator ,
m

pλ  two new 

subclasses ( , ; , )m A B pσλ  and ( , ; , )m A B pσλ  of multivalent analytic functions are introduced 
and investigated in the open unit disk. Some interesting relations and characteristics such as 
inclusion relationships, neighborhoods, partial sums,  some applications of fractional calculus 
belonging to each of these subclasses ( , ; , )m A B pσλ  and ( , ; , )m A B pσλ   Relevant connections of 
the definitions and results presented in this paper with those obtained in several earlier works on 
the subject are also pointed out. 

 
Keywords: Multivalent analytics, neighborhoods, partial sums, differential operator. 

 
 

1. Introduction and definitions 

 

Let ( , )k p  denote the class of functions normalized by 

( ) p n
n

n k p
f z z a z

∞

= +

= + ∑        ( ), : {1,2,3,...}p k∈ =                           (1) 

which are analytic and p valent−   in the open unit disk { : and 1}.z z z= ∈ <  

Let ( )f z  and ( )g z  be analytic in .  Then we say that the function f  is subordinate to g  if there 
exists a Schwarz function ( ),w z  analytic in   with (0) 0,w = ( ) 1w z <  such that 

( ) ( ( ))   ( ).f z g w z z= ∈ We denote this subordination   or ( ) ( )  ( ).f g f z g z z∈     

In particular, if the function g  is univalent in  , the above subordination is equivalent to (0) (0),f g=    
( ) ( ).f g⊂   

For ( , )f k p∈  given by (1) and ( )g z  given by  
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                                       ( ) p n
n

n k p
g z z b z

∞

= +

= + ∑  ( ), : {1,2,3,...}p k∈ =                                 (2)   

their convolution (or Hadamard product), denoted by ( ),f g∗  is defined as  

( )( ) : : ( )( )p n
n n

n k p
f g z z a b z g f z

∞

= +

∗ = + = ∗∑    ( ).z∈                           (3) 

Note that ( , ).f g k p∗ ∈ In particular, we set 

( ,1) : , (1, ) : ( ), (1,1) : .1p k kp= = = =         

Definition 1. (Deniz- Çekin differential operator) [5] Let ( , ).f k p∈  For the parameters 0λ ≥  , 

z U∈  and { }0 0m∈ = ∪   the differential operatör m
λ  on ( , )k p  by the following 

:, ( , ) ( , ),m
p k p k pλ →    

0
, ( ) ( )p f z f zλ =                                                                                        (4)                    

( ) ( ){ }11 3 2( ) ( ) '''( ) 2 1 ''( ) 1 ( 1) '( ), , 2f z f z z f z z f z p p zf zp p p
λ λ λλ λ= = + + + − −



 
 

( )1( ) ( ), , , .m mf z f zp p pλ λ λ
−=      

If f  is given by (1) then from the definition of the differential operator ,
m

pλ   we can easily see that  

       ( )( ) , ,,
pm nnf z z m p a zp nn k p

λλ
∞
∑= + Φ

= +
                                             (5) 

where 

                              ( ) ( )( )( )1
, , .2

m
n n p n p nn m p

p

λ
λ

 − + − +
 =
  

Φ                                               (6) 

Remark 1. It should be remarked that the operator ,
m

pλ  is a generalization of many other linear differential 

operators considered earlier. In particular, for ( , )f k p∈  we have the following: 
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(i) ( ),   0,1
m m λλ λ= ≥  the Deniz-Özkan differential operator [6]. 

(ii) 2
0,1 1
m m=   ( )0δ ∈  the Salagean differential operator [7]. 

(iii) ( )2 ,   0,
m m pp p= ∈    Shenan, Salim and Mousa oprator [19]. 

Now, by making use of the operator ,,
m

pλ  we define a new subclass of functions belonging to the class 

( , )k p . 

Definition 2. Let 0λ ≥  and { }0 0 ,m p∈ = ∪ ∈    and for the parameters , Aσ  and B such that 

1 1, 0 1A B B− ≤ < ≤ < ≤  and 0 ,pσ≤ <                (7) 

we say that a function ( ) ( , )f z k p∈  is in the class  ( , ; , )m A B pσλ  if it satisfies the following subordination 
condition:  

                                                         
[ ( )]1 1,

1 1

m f z Azp
pp Bzz

λ σ
σ

′ +
−−− +

 
 
 
 




       ( ).z∈                                     (8) 

If the following inequality holds true,  

                     

[ ( )],
1

1
[ ( )], [ ( )( )]1

m f zp ppz
m f zpB pB A B ppz

λ

λ σ

′
−−

<
′
− + − −−




          ( )z∈                  (9) 

the inequality (9) is equivalent the subordination condition (8). 

We note that by specializing the parameters , , , ,m A Bλ σ  and ,p  the subclass ( , ; , )m A B pσλ  reduces to 
several well-known subclasses of analytic functions. Furthermore, we say that a function 

( ) ( , ; , )mf z A B pσλ∈   is in the subclass ( , ; , )m A B pσλ  if  ( )f z  is of the following form: 

( ) p n
n

n k p
f z z a z

∞

= +

= − ∑     ( ), : {1,2,3,...} .p k∈ =                 (10) 

In our present paper, we shall make use of the familiar integral operator , pϑ  defined by (see, for 
details, [2, 11, 13]; see also [25]) 

1
,

0

( )( ) : ( )
z

p p

pz t f t dt
z

ϑ
ϑ

ϑ −+
= ∫       ( , ); 0; )f k p p pϑ∈ + > ∈      (11) 
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as well as the fractional calculus operator z
ν  for which it is well known that (see, for details, [16,23] and 

[21]; see also Section 7) 

( 1)
{ } ( 1; )

( 1 )
pz zz

ρ ρ νν ρ ν
ρ ν

Γ + −= > − ∈
Γ + −

   (12) 

in terms of Gamma function. 

The main object of the present paper is to investigate the various important properties and 
characteristics of two subclasses of ( , )k p  of normalized analytic functions in   with negative and 
positive coefficients, which are introduced here by making use of the differential operator defined by (4). 
Inclusion relationships for the class ( , ; , )m A B pσλ  are investigated by applying the techniques of 
convolution. Furthermore, several properties involving generalized neighborhoods and partial sums for 
functions belonging to these subclasses are investigated. Finally, some applications of fractional calculus 
operators are considered. Relevant connections of the definitions and results presented here with those 
obtained in several earlier works are also pointed out.   

2. Basic properties of the function class ( , ; , )m A B pσλ  

We first determine a necessary and sufficient condition for a function ( ) ( , )f z k p∈  of the form (10) 
to be in the class ( , ; , ).m A B pσλ  

Theorem 1. Let the function ( ) ( , )f z k p∈  be defined by (10). Then the function ( )f z  is in the class 
( , ; , ).m A B pσλ  if and only if 

( )( ) ( )( )1 ( , , ) ( )( )n
n

n k p
n p B B A p m p a B A pσ λ σ

∞

= +

− + − − − Φ ≤ − −  ∑                     (13) 

where ( , , )n m pλΦ  is given by (6). 

Proof. If the condition (13) hold true, we find from (10) and (13) that 

, , , ,[ ( )] ( ) [ ( )] ( )[ ( )( ) ]m m m m
p p p pz f z p f z Bz f z f zpB A B pλ λ λ λσ′ ′− −− + − −     

( )

( )

( , , )

( )( ) ( )( ) ( , , )

n n
n

n k p

p n n
n

n k p

n p m p a z

B A p z B n p B A p m p a z

λ

σ σ λ

∞

= +

∞

= +

= − − Φ

 
− − − − + − − − − Φ 

 

∑

∑
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( )( ) ( )( )1 ( , , ) ( )( ) 0n
n

n k p
n p B B A p m p a B A pσ λ σ

∞

= +

≤ − + − − − Φ − − − ≤  ∑    

( ){ : and 1} .z z z z∈∂ = ∈ =  

Hence, by the Maximum Modulus Theorem, we have 

( ) ( , ; , ).mf z A B pσλ∈   

Conversely, assume that the function ( )f z  defined by (10) is in the class ( , ; , ).m A B pσλ  Then we have 

,

,

,

,

( )
( )

( )
( )

[ ]

[ ]
[ ( )( )]

m
p

m
p

m
p

m
p

f z
f z

f z
f z

z
p

z
B pB A B p

λ

λ

λ

λ

σ

′
−

′
− + − −







 

( )

( )

( , , )
1 ( ).

( )( ) ( , , ) ( )( )

n n
n

n k p

n n p
n

n k p

n p m p a z
z

B n p B A p m p a z B A p z

λ

σ λ σ

∞

= +
∞

= +

− Φ
= < ∈

− − + − − Φ + − −  

∑

∑
      (14) 

Now, since ( )z zℜ ≤  for all ,z  we have 

( )

( ) ( )( ) ( )( )

( , , )
1.

( , , )

n n p
n

n k p

n n p
n

n k p

n p m p a z

B n p B A p m p a z B A p

λ

σ λ σ

∞
−

= +
∞

−

= +

 − Φ 
 ℜ <
  − − + − − Φ + − −  
 

∑

∑
      (15) 

We choose values of z  on the real axis so that the following expression: 

'
( ),

( ),

mz f zp
m f zp

λ

λ

 
  



 

is real. Then, upon clearing the denominator in (15) and letting 1z −→  though real values, we get the 
following inequality 

( )( ) ( )( )1 ( , , ) ( )( )n
n

n k p
n p B B A p m p a B A pσ λ σ

∞

= +

− + − − − Φ ≤ − −  ∑  
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This completes the proof of Theorem 1.                          

Corollary 1. Let the function ( ) ( , )f z k p∈  be defined by (1). If the function ( ) ( , ; , ),mf z A B pσλ∈   then  

( )( ) ( )( )1 ( , , ) ( )( )n
n

n k p
n p B B A p m p a B A pσ λ σ

∞

= +

− + − − − Φ ≤ − −  ∑        (16) 

where ( , , )n m pλΦ  is given by (6). 

Corollary 2. Let the function ( ) ( , )f z k p∈  be defined by (10). If the function ( ) ( , ; , ),mf z A B pσλ∈   
then  

( )( ) ( )( )
( )( )( ) ,

1 ( , , )
n

n

n k p

B A pa n p
n p B B A p m p

σ

σ λ
∞

= +

− −
≤ ∈

− + − − − Φ  ∑
        (17) 

The result is sharp for the function ( )f z  given by 

    ( )( ) ( )( ) ( )( )( )( ) ,
1 ( , , )

p n
n

B A pf z z z n p
n p B B A p m p

σ
σ λ

− −
= − ∈

− + − − − Φ  
                   (18) 

We next prove the following growth and distortion properties for the class ( , ; , ).m A B pσλ  

Theorem 2. If a function ( )f z  be defined by (1) is in the class ( , ; , ).m A B pσλ  then  

( ) ( )( )
( )! ( )( )( )! ( )

( )! ( )! 1 ( , , )
k p q q

k p

p B A p k p z z f z
p q k p q k B B A p m p

σ
σ λ

−

+

 − − +
− ≤  − + − + − − − Φ   

 

                 
( )( ) ( )( )

! ( )( )( )!
( )! ( )! 1 ( , , ))

k p q
k p

p B A p k p z z
p q k p q k B B A p m p

σ
σ λ

−

+

 − − +
≤ +  − + − + − − − Φ   

                            

(19) 

for ,0q p q∈ >  and all .z∈  The result is sharp for the function ( )f z  given by 

( ) ( )( )
( )( )( )

1 ( , , ))
p k p

k p

B A pf z z z
k B B A p m p

σ
σ λ

+
+

− −
= −

+ − − − Φ  
    ( ).p∈   (20) 

Proof. In view of Theorem 1, we have 
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( )(1 ) ( )( ) ( , , ) 1
( )( )

k p

n
n p B B A p m p a

B A p
σ λ
σ

+− + − − − Φ
≤

− −
 

which readily yields we obtain  

( ) ( )( )! 1 ( ) ( , , ) ! 1,
( )( )( )! ( )!

k p

n
n k p

k p q k B B A p m p n a
B A p k p n q

σ λ
σ

+ ∞

= +

+ − + − − − Φ   ≤
− − + −∑      (21) 

or 

( ) ( )
! ( )( )( )!) .

( )! ( )! 1 ( ) ( , , )n k p
n k p

n B A p k pa
n q k p q k B B A p m p

σ
σ λ

∞

+
= +

− − +
≤

− + − + − − − Φ  
∑  

From last inequality, 

      ( )( )
0

! !( ) ;
( )! ( )!

q p q n q
n

n k p

p nf z z a z q p q
p q n q

∞
− −

= +

= − ∈ >
− −∑ 

                              (22) 

( ) ( )
! ( )( )( )!) .

( )! ( )! 1 ( ) ( , , )k p

p B A p k p
p q k p q k B B A p m p

σ
σ λ+

− − +
≤ +

− + − + − − − Φ  
 

Similarly, 

( )( )
0

! !( ) ;
( )! ( )!

q p q n q
n

n k p

p nf z z a z q p q
p q n q

∞
− −

= +

= − ∈ >
− −∑ 

                               (23) 

( ) ( )
! ( )( )( )!) .

( )! ( )! 1 ( ) ( , , )k p

p B A p k p
p q k p q k B B A p m p

σ
σ λ+

− − +
≥ −

− + − + − − − Φ  
 

This complete the proof of Theorem 2. 

For 0q = in Theorem 2, we get obtain the following distortion result for ( , ; , ).m A B pσλ  

Corollary 3. Let ( ) ( , ; , ).mf z A B pσλ∈  Then we have 

( ) ( )

( ) ( )

( )( )1 ( )
1 ( ) ( , , )

( )( )1 .
1 ( ) ( , , )

k p
k p

k p
k p

B A p z f z
k B B A p m p

B A p z
k B B A p m p

σ
σ λ

σ
σ λ

+

+

+

+

− −
− ≤

+ − − − Φ  
− −

≤ +
+ − − − Φ  
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For 1q = in Theorem 2, we get obtain the following growth result for ( , ; , ).m A B pσλ  

Corollary 4. Let ( ) ( , ; , ).mf z A B pσλ∈  Then we have 

( ) ( )

( ) ( )

( )( )( )! '( )
1 ( ) ( , , )

( )( )( ) .
1 ( ) ( , , )

k p
k p

k p
k p

B A p k pp z f z
k B B A p m p

B A p k pp z
k B B A p m p

σ
σ λ

σ
σ λ

+

+

+

+

− − +
− ≤

+ − − − Φ  
− − +

≤ +
+ − − − Φ  

 

 

4. Inclusion relations involving neighborhoods 

Following the earlier investigations (based upon the familiar concept of neighborhoods of analytic 
functions) by Goodman [10], and Ruscheweyh [17], and others including Srivastava et al. [23, 24], Orhan 
[14, 15], Deniz et al. [9], Aouf et al. [1] (see also [3]). 

Firstly, we define the ( , )k η − neighborhood of function k of the form (1) by means of Definition 3 
below.  

Definition 3. For 0η >  and a non-negative sequence { } ,1sn n
∞= = where 

( )( ) ( )1 ( ) ( , , )
: ( ).

( )( )

k pn p B B A p m p
s nn B A p

σ λ

σ

+− + − − − Φ
= ∈

− −

  
              (24) 

The ( , )k η − neighborhood of a function ( ) ( , )f z k p∈  of the form (1) is defined as follows: 

, ( ) : : ( ) ( , ) and ( 0) .p n
k p n n n n

n k p n k p
f g g z z a z k p s b aη η η

∞ ∞

= + = +

 
= = + ∈ − ≤ > 
 

∑ ∑       (25) 

 For ,ns n=  Definition 3 would correspond to the η − neighborhood considered by Ruscheweyh [17]. 

Our first result based upon the familiar concept of neighborhood defined by (24). 

Theorem 2. Let ( ) ( , ; , )mf z A B pσλ∈   be given by (1). If f  satisfies the inclusion condition: 

( )( ) 1( ) 1 ( , ; , )p mf z z A B pλε ε σ−+ + ∈       ( ); ; 0 ,ε ε η η∈ < >
                        (26) 

then 
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( ) ( , ; , ).,
mf A B pk p

η σλ⊂                              (27) 

Proof. It is not difficult to see that a function f  belongs to ( , ; , )m A B pσλ  if and only if   

( )
1

,
1

,

[ ( ) ( )]
; , 1 ,

[ ( ) ( )] [ ( )( )]

m p
p

m p
p

f z f z pz
z

B f z f z z pB A B p
λ

λ

τ τ τ
σ

−

−

′ −
≠ ∈ ∈ =

′− + − −





               (28) 

which is equivalent to, 

( )( ) 0 ( ),pf h z z z∗ ≠ ∈                 (29) 

where for convenience,  

( ) ( )1 ( ( ) ( , , )
( ) : .

( )( )

n
p n p n

n
n k p n k p

n nB B A p m p
h z z c z z z

B A p
σ λ

τ σ

∞ ∞

= + = +

− − − − − Φ  = + = +
− −∑ ∑     (30) 

We easily find from (30) that 

( ) ( )( )

( ) ( )

1 ( ) ( , , )
( )( )

1 ( )( ) ( , , )
( ).

( )( )

n

n

n

n nB B A p m p
c

B A p

n nB B A p m p
n

B A p

σ τ λ

τ σ

σ λ
σ

 − − − − − Φ ≤
− −

− − − − − Φ  ≤ ∈
− −



  (31) 

Furthermore, under the hypotheses of theorem, (26) and (29) yields the following inequalities: 

( )1( ( ) )(1 ) ( )
0 ( )

p

p

f z z h z
z

z
ε ε −+ + ∗

≠ ∈  

or 

( ) ( ) ( ),p

f z h z z
z

ε∗
≠ ∈  

which is equivalent to the following: 

( ) ( ) ( ; 0).p

f z h z z
z

η η∗
≥ ∈ >                 (32) 

Now, if we let 

,( ) : ( ),p n
n k p

n k p
g z z b z fη

∞

= +

= + ∈∑   
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then we have 

( )

( ) ( )

( ) ( ) ( )
( )

1 ( )( ) ( , , )
( )( )

( ; 0).

k p
k k kp

k n p

n
n p

n n
k n p

f z g z h z
a b c z

z

n nB B A p m p
a b z

B A p

z

σ τ λ
τ σ

η
η

∞
−

= +

∞
−

= +

− ∗
= −

− − − − − Φ  ≤ −
− −

<
∈ >

∑

∑



 

Thus, for any complex number τ  such that 1,τ =  we have ( )( ) 0 ( ),pg h z z z∗ ≠ ∈  

which implies that ( , ; , ).mg A B pσλ∈   The proof is complete.     


 

We now define the ( , )k η − neighborhood of a function ( ) ( , )f z k p∈  of the form (11) as follows 

Definition 4. For 0,η >  the ( , )k η − neighborhood of a function ( ) ( , )f z k p∈  of the form (10) is given by 

        



( )( )

( ) : : ( ) ( , ) and,

1 ( )( ) ( , , )
( 0) .

( )( )

p nf g g z z a z k pnk p n k p
nn p B B A p m p

b an nn k p B A p

η

σ λ
η η

σ

∞
= = − ∈∑

= +

∞ − + − − − Φ
− ≤ >∑

= + − −





    


 

             (33) 

Next, we prove 

Theorem 3.  If the function  ( )f z  defined by (11) is in the class ( , ; , ).m A B pσλ  then  

 ( ) ( , ; , ).,
mf A B pk p

η
σλ⊂                                                       (34) 

where 

[ ( ) ]: .
[ ( ) ]

k k p
k k p p l

λµ λ µη
λµ λ µ

+ + −
=

+ + − + +
 

Proof. For a function ( ) ( , ; , )mf z A B pσλ∈   of the form (10) Theorem 1 immediately yields 

172



 
6th INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 
21-24 June 2022, Istanbul, Turkey 

 

 
ICOM 2022 

ISTANBUL / TURKEY 

( )( )1 ( )( ) ( , , )
( )( )

.
[ ( ) ]

n

n
n k p

n p B B A p m p
a

B A p
p l

k k p p l

σ λ
σ

λµ λ µ

∞

= +

 − + − − − Φ 
− −

+
≤

+ + − + +

∑
      (35) 

Similarly, by taking 



,
[ ( ) ]( ) : ( ) ,

[ ( ) ]
p n

k pn
n k p

k k pg z z b z f
k k p p l

η λµ λ µη
λµ λ µ

∞

= +

 + + −
= − ∈ = + + − + + 

∑   

we find from the Definition 4 that 

( )( )1 ( )( ) ( , , )
( 0).

( )( )

n

n n
n k p

n p B B A p m p
b a

B A p
σ λ

η η
σ

∞

= +

 − + − − − Φ  − ≤ >
− −∑  (36) 

With the help of (35) and (36), we have 

( )( )

( )( )

( )( )

1 ( )( ) ( , , )
( )( )

1 ( )( ) ( , , ) )
( )( )

1 ( )( ) ( , , )
( )( )

1.
[ ( ) ]

n

n
n k p

n

n
n k p

n

n n
n k p

n p B B A p m p
b

B A p

n p B B A p m p
a

B A p

n p B B A p m p
b a

B A p
p l

k k p p l

σ λ
σ

σ λ
σ

σ λ
σ

η
λµ λ µ

∞

= +

∞

= +

∞

= +

 − + − − − Φ 
− −

 − + − − − Φ ≤
− −

 − + − − − Φ + −
− −

+
≤ + =

+ + − + +

∑

∑

∑
 

Hence, in view of the Theorem 1 again, we see that ( ) ( , ; , ).mg z A B pσλ∈   

To show the sharpness of the assertion of Theorem 1, we consider the functions ( )f z  and ( )g z  given 
by 

( )
1( )( )( ) ( ) ( , ; , )

1 ( )( ) ( , , )
p k p m

k p

B A pf z z z f z A B p
k B B A p m p λ

σ σ
σ λ

+ +
+

 − −
= − ∈ ∈ 

 + − − − Φ   
  (37) 

and 
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( )

( )

( )( )
1 ( )( ) ( , , )

( )
( )( )

1 ( )( ) ( , , )

k p

p k p

k p

B A p
k B B A p m p

g z z z
B A p

k B B A p m p

σ
σ λ

σ η
σ λ

+

+

∗
+

− − 
  + − − − Φ  = −  − −
+ 
 + − − − Φ   

                    (38) 

where .η η∗ >  

Clearly, the function ( )g z  belong to  ( )., fk p
η∗

  On the other hand, we find from Theorem 1 that 

( ) ( , ; , ).mg z A B pσλ∉  This evidently completes the proof of Theorem 3.  

5. Partial sums of the function class ( , ; , ).m A B pσλ  

Following the earlier works by Silverman [20], Liu [12] and Deniz et al. [9], in this section we 
investigate the ratio of real parts of functions involving (10) and its sequence of partial sums defined by 

, 1,2,..., 1;
( ) ( ; , )

, , 1,....

p

m
m p n

n
n k p

z m k p
z n k p k p

z a z m k p k p
κ

= +

 = + −
= ≥ + ∈ − = + + +


∑
            (39) 

and determine sharp lower bounds for { } { }( ) ( ) , ( ) ( ) .m mf z z z f zκ κℜ ℜ  

Theorem 4. Let ( , )f k p∈  and ( )zmκ  be given by (10) and (39), respectively. Suppose also that 

1n n
n k p

a
∞

= +

≤∑   

     ( )( )1 ( )( ) ( , , )
where  .

( )( )

n

n

n p B B A p m p
B A p

σ λ
σ

  − + − − − Φ  =
 − − 



  (40) 

Then for ,m n p≥ +  we have 

1

( ) 11
( )m m

f z
zκ +

 
ℜ > − 
  

                                          (41) 

and 

1

1

( ) .
( ) 1

m m

m

z
f z
κ +

+

 
ℜ >  + 





                  (42) 
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The result are sharp for every ,m  with the extremal functions given by 

1

1

1( ) .p m

m

f z z z +

+

= −


                                      (43) 

Proof. Under the hypothesis of the theorem, we can see from (40) that 

1 1n n+ > >            ( ).n k p≥ +  

Therefore, we have 

1
1

1,
m

n m n n n
n k p n m n k p

a a a
∞ ∞

+
= + = + = +

+ ≤ ≤∑ ∑ ∑                    (44) 

by using hypothesis (40) again. 

Upon setting 

1
1

1
1

( ) 1( ) 1
( )

1 .
1

m
m m

n p
m n

n m
m

n p
n

n k p

f zz
z

a z

a z

ω
κ+

+

∞
−

+
= +

−

= +

  
= − −  

  

= −
−

∑

∑







                         (45) 

By applying (44) and (45), we find that 

 

1
1

1
1

1
1

1
1

( ) 1
( ) 1 2 2

1 ( ; ),
2 2

n p
m n

n m
m

n p n p
n m n

n k p n m

n p
m n

n m
m

n p n p
n m n

n k p n m

a z
z
z a z a z

a z
z n k p

a z a z

ω
ω

∞
−

+
= +

∞
− −

+
= + = +

∞
−

+
= +

∞
− −

+
= + = +

−
−

=
+ − −

≤ ≤ ∈ ≥ +
− −

∑

∑ ∑

∑

∑ ∑











            (46) 

which shows that ( )( ) 0 ( ).z zωℜ > ∈   From (45), we immediately obtain the inequality (41).  

 To see that the function f  given by (43) gives the sharp result, we observe for 1z −→  that 
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1

1 1

( ) 1 11 1 ,
( )

m p

m m m

f z z
zκ

− +

+ +

= − → −
 

 

which shows that the bound in (41) is the best possible. 

 Similarly, if we put 

 

1
1

1

1
1

( )( ) (1 )
( ) 1

(1 )
1 ,

1

m m
m

m

n p
m n

n m
m

n p
n

n k p

zz
f z

a z

a z

κφ +
+

+

∞
−

+
= +

−

= +

 
= + − + 

+
= +

−

∑

∑









                                            (47) 

and make use of (44), we can deduce that   

1
1

1
1

1
1

1
1

(1 )
( ) 1
( ) 1 2 2 ( 1)

(1 )
1 ( ; ),

2 2 ( 1)

n p
m n

n m
m

n p n p
n m n

n k p n m

n p
m n

n m
m

n p n p
n m n

n k p n m

a z
z
z a z a z

a z
z n k p

a z a z

φ
φ

∞
−

+
= +

∞
− −

+
= + = +

∞
−

+
= +

∞
− −

+
= + = +

+
−

=
+ − + −

+
≤ ≤ ∈ ≥ +

− − −

∑

∑ ∑

∑

∑ ∑











               (48) 

which leads us immediately to assertion (42) of the theorem.  

 The bound in (42) is sharp with the extremal function given by (43). The proof of theorem is thus 
completed.  

 


 

6. Applications of fractional calculus operators 

Various operators of fractional calculus (that is, fractional integral and fractional derivatives) have 
been studied in the literature rather extensively (cf., e.g., [16, 23, 21]; see also [9, 22] the various references 
cited therein). For our present investigation, we recall the following definitions. 

Definition 5. Let ( )f z  be analytic in a simply connected region of the z -plane containing the origin. The 
fractional integral of f  of order ν  is defined by 
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1
0

1 ( )( )
( ) ( )

z

z
fD f z d

z
ν

ν

ζ ζ
ν ζ

−
−=

Γ −∫  ( 0),ν >   (49) 

where the multiplicity of 
1( )z νζ −−  is removed by requiring that log( )z ζ−  is real for 0z ζ− > . 

Definition 6. Let ( )f z  be analytic in a simply connected region of the z -plane containing the origin. The 
fractional derivative of f  of order ν  is defined by 

0

1 ( )( )
(1 ) ( )

z

z
fD f z d

z
ν

ν

ζ ζ
ν ζ

=
Γ − −∫  (0 1),ν≤ <      (50) 

where the multiplicity of ( )z νζ −−  is removed by requiring that log( )z ζ−  is real for 0z ζ− > . 

Definition 7. Under the hypotheses of Definition 6, the fractional derivative of order n ν+  is defined, for 
a function ( )f z , by 

0( ) { ( )} (0 1; ).
n

n
z zn

dD f z D f z n
dz

ν ν ν+ = ≤ < ∈                  (51) 

In this section, we shall investigate the growth and distortion properties of functions in the class 
( , ; , )m A B pσλ  which involving the operators ,pϑ  and .Dz

ν  In order to derive our results, we need the 

following lemma given by Chen et al. [4]. 

Lemma 1 (see [16]). Let the function ( )f z  defined by (10). Then  

,
( 1) ( ) ( 1){( )( )}

( 1 ) ( ) ( 1 )
p n

z p n
n k p

p p nD f z z a z
p n n

ν ν ν
ϑ

ϑ
ν ϑ ν

∞
− −

= +

Γ + + Γ +
= −
Γ + − + Γ + −∑     (52) 

( ; ; , )p p nν ϑ∈ > − ∈   

and 

 ,
( ) ( 1) ( ) ( 1){( )( )}

( ) ( 1 ) ( ) ( 1 )
p n

p z n
n k p

p p p nD f z z a z
p p n n

ν ν ν
ϑ

ϑ ϑ
ϑ ν ν ϑ ν ν

∞
− −

= +

+ Γ + + Γ +
= −

+ − Γ + − + − Γ + −∑        (53) 

( ; ; , )p p nν ϑ∈ > − ∈   

provided that no zeros appear in the denominators in (52) and (53). 

Theorem 5. Let the functions ( )f z  defined by (10) be in the class ( , ; , ).m A B pσλ  Then  
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,
( 1){( )( )}

( 1 )

( ) ( 1)( )( )
( ) ( 1 )( )(1 ) ( , )

z p

n p
k p

pD f z
p

p n p B A p z z
n p n p n p B m

ν
ϑ

ν

ν

ϑ σ
ϑ ν λ

−

+

+

 Γ +
≥ Γ + +

+ Γ + + − −
− + + Γ + + + + + Φ 


         (54) 

( ; 0; ; , )z p p nν ϑ∈ > > − ∈  

and 

,
( 1){( )( )}

( 1 )

( ) ( 1)( )( ) .
( ) ( 1 )( )(1 ) ( , )

z p

n p
k p

pD f z
p

p n p B A p z z
n p n p n p B m

ν
ϑ

ν

ν

ϑ σ
ϑ ν δ

−

+

+

 Γ +
≤ Γ + +

+ Γ + + − −
+ + + Γ + + + + + Φ 


 (55) 

( ; 0; ; , )z p p nν ϑ∈ > > − ∈  

Each of the assertions (54) and (55) is sharp. 

Proof. In view of Theorem 1, we have 

( )

( )( )

1 ( )( ) ( , , )
( )( )

1 ( )( ) ( , , )
1,

( )( )

n

n
n k p

n

n
n k p

k B B A p m p
a

B A p

n p B B A p m p
a

B A p

σ λ
σ

σ λ
σ

∞

= +

∞

= +

 + − − − Φ 
− −

 − + − − − Φ ≤ ≤
− −

∑

∑
  (56) 

which readily yields 

( )
( )( ) .

1 ( )( ) ( , , )n n
n k p

B A pa
k B B A p m p

σ
σ λ

∞

= +

− −
≤
 + − − − Φ 

∑    (57) 

Consider the function ( )z  defined in   by 

,
( 1 )( ) : {( )( )}

( 1) z p
pz z D f z

p
ν ν

ϑ
ν −Γ + −

=
Γ +

   

( ) ( 1) ( 1 )
( ) ( 1 ) ( 1)

p n
n

n k p

p n pz a z
n n p

ϑ ν
ϑ ν

∞

= +

+ Γ + Γ + +
= −

+ Γ + + Γ +∑  
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( )p n
n

n k p
z n a z

∞

= +

= − Θ∑  ( ).z∈  

where 

  
( ) ( 1) ( 1 )( ) :
( ) ( 1 ) ( 1)

p n pn
n n p

ϑ ν
ϑ ν
+ Γ + Γ + +

Θ =
+ Γ + + Γ +

       ( ; , ; 0).n p k p k ν≥ + ∈ >             (58) 

Since ( )nΘ  is a decreasing function of n  when 0,ν >  we get 

   
( ) ( 1) ( 1 )0 ( ) ( )

( ) ( 1 ) ( 1)
p k p pn k p

k p k p p
ϑ ν

ϑ ν
+ Γ + + Γ + +

< Θ ≤ Θ + =
+ + Γ + + + Γ +

        (59) 

             ( 0; ; , )p p nν ϑ> > − ∈  

Thus, by using (57) and (59), for all ,z∈  we deduce that 

( ) ( )p k p
n

n k p
z z k p z a

∞
+

= +

≥ −Θ + ∑  

( )
( ) ( 1) ( 1 )( )( )

( ) ( 1 ) ( 1) 1 ( )( ) ( , , )
p k p

k p

p k p p B A pz z
k p k p p k B B A p m p

ϑ ν σ
ϑ ν σ λ

+

+

+ Γ + + Γ + + − −
≥ −

 + + Γ + + + Γ + + − − − Φ 
 

and 

( ) ( )p k p
n

n k p
z z k p z a

∞
+

= +

≥ +Θ + ∑  

             ( )
( ) ( 1) ( 1 )( )( )

( ) ( 1 ) ( 1) 1 ( )( ) ( , , )
p k p

k p

p k p p B A pz z
k p k p p k B B A p m p

ϑ ν σ
ϑ ν σ λ

+

+

+ Γ + + Γ + + − −
≤ +

 + + Γ + + + Γ + + − − − Φ 
 

which yield the inequalities (54) and (55) of Theorem 5. Equalities in (54) and (55) are attained for the 
function ( )f z  given by 

( )

,
( 1){( )( )}

( 1 )

( ) ( 1)( )( )
( ) ( 1 ) 1 ( )( ) ( , , )

z p

k p
k p

pD f z
p

p k p B A p z z
k p k p k B B A p m p

ν
ϑ

ν

ν

ϑ σ
ϑ ν σ λ

−

+
+

 Γ +
= Γ + +

+ Γ + + − − −  + + Γ + + + + − − − Φ   



 

or, equivalently, by  
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( ),
( )( )( )( )( ) .

( ) 1 ( )( ) ( , , )
p k p

p k p

p B A pf z z z
k p k B B A p m pϑ

ϑ σ
ϑ σ λ

+
+

+ − −
= −

 + + + − − − Φ 
  

Thus we complete the proof of Theorem 5.   

Theorem 6. Let the functions ( )f z  defined by (10) be in the class ( , ; , ).m A B pσλ  Then  

( )

,
( 1){( )( )}

( 1 )

( ) ( )( )( )
( ) ( 1 ) 1 ( )( ) ( , , )

p
z p

k p

k p

pD f z z
p

p k p B A p z z
k p k p k B B A p m p

ν ν
ϑ

ν

ν

ϑ σ
ϑ ν σ λ

−

−

+

 Γ +
≥ Γ + −

+ Γ + − − −  + + Γ + + − + − − − Φ   



       (60) 

( ; 0; ; , )z p p nν ϑ∈ > > − ∈  

and 

   

( )

,
( 1){( )( )}

( 1 )

( ) ( )( )( ) .
( ) ( 1 ) 1 ( )( ) ( , , )

p
z p

k p

n

pD f z z
p

p k p B A p z z
k p k p k B B A p m p

ν ν
ϑ

ν

ν

ϑ σ
ϑ ν σ λ

−

−

 Γ +
≤ Γ + −

+ Γ + − − +  + + Γ + + − + − − − Φ   



   (61) 

( ; 0; ; , )z p p nν ϑ∈ > > − ∈  

Each of the assertions (60) and (61) is sharp. 

Proof. It follows from Theorem 1 that   

( )
( )( ) .

1 ( )( ) ( , , )n k p
n k p

B A pn a
k B B A p m p

σ
σ λ

∞

+
= +

− −
≤
 + − − − Φ 

∑                      (62) 

Consider the function ( )z  defined in   by 

,
( 1 )( ) : {( )( )}

( 1) z p
pz z D f z

p
ν ν

ϑ
νΓ + −

=
Γ +

   

( ) ( ) ( 1 )
( ) ( 1 ) ( 1)

p n
n

n k p

p n pz n a z
n n p

ϑ ν
ϑ ν

∞

= +

+ Γ Γ + −
= −

+ Γ + − Γ +∑  
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( )p n
n

n k p
z n n a z

∞

= +

= − ℘∑  ( ).z∈  

where, for convenience, 

  
( ) ( ) ( 1 )( ) :

( ) ( 1 ) ( 1)
p n pn

n n p
ϑ ν
ϑ ν

+ Γ Γ + −
℘ =

+ Γ + − Γ +
       ( ; , ; 0 1).n p n p k ν≥ + ∈ ≤ <             (63) 

Since ( )n℘  is a decreasing function of n  when 0 1,ν≤ <  we find that 

   
( ) ( ) ( 1 )0 ( ) ( )

( ) ( 1 ) ( 1)
p k p pn k p

k p k p p
ϑ ν

ϑ ν
+ Γ + Γ + −

<℘ ≤℘ + =
+ + Γ + + − Γ +

        (64) 

(0 1; ; , )p p nν ϑ≤ < > − ∈  

Hence, with the aid of (62) and (64), for all ,z∈  we have 

( ) ( )p k p
n

n k p
z z k p z n a

∞
+

= +

≥ −℘ + ∑  

( )
( ) ( ) ( 1 )( )( )

( ) ( 1 ) ( 1) 1 ( )( ) ( , , )
p k p

k p

p k p p B A pz z
k p k p p k B B A p m p

ϑ ν σ
ϑ ν σ λ

+

+

+ Γ + Γ + − − −
≥ −

 + + Γ + + − Γ + + − − − Φ 
 

and 

( ) ( )p k p
n

n k p
z z k p z n a

∞
+

= +

≥ +℘ + ∑  

( )
( ) ( ) ( 1 )( )( )

( ) ( 1 ) ( 1) 1 ( )( ) ( , , ) )
p k p

k p

p k p p B A pz z
n p k p p k B B A p m p

ϑ ν σ
ϑ ν σ λ

+

+

+ Γ + Γ + − − −
≥ +

 + + Γ + + − Γ + + − − − Φ 
 

which yield the inequalities (63) and (64) of Theorem 6. Equalities in (63) and (64) are attained for the 
function ( )f z  given by 

,
( 1){( )( )}

( 1 )

( ) ( 1)( )( )
( ) ( 1 )(1 ) ( , )

z p

k p
k p

pD f z
p

p k p B A p z z
k p k p B m

ν
ϑ

ν

ν

ϑ σ
ϑ ν λ

−
+

 Γ +
= Γ + −

+ Γ + + − −
− + + Γ + + − + Φ 


 

or, equivalently, by  
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,
( )( )( )( )( ) .

( )( )(1 ) ( , )
p k p

p k p

p B A pf z z z
k p k p B mϑ
ϑ σ

ϑ λ
+

+

+ − −
= −

+ + + + Φ
  

Consequently, we complete the proof of Theorem 6.  


 

 

7. References 

 

1. Aouf, M. K., Silverman, H. M. 2008. Some families of linear operators associated with certain 

subclasses of multivalent functions, Comput. Math. with Appl. 55, 535–549. 

2. Bernardi, S.D. 1969.  Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135, 429–

446. 

3. Cataş, A. 2009. Neighborhoods of a certain class of analytic functions with negative coefficients. 

Banach J. Math. Anal. 3 , no. 1, 111-121. 

4. Chen, M. P., Irmark, H., Srivastava, H.M. 1997. Some families of multivalently analytic functions 

with negative coefficients, J. Math. Anal. Appl. 214, 674–690. 

5. Çekin, Ö. 2021. Kafkas University institute of science Deniz, E., Özkan, Y. 2014. Subclasses of 

analytic functions defined by a new differential operator, Acta Universitatis Apulansis, 40, 85-95. 

6. Deniz, E., Çağlar, M., Özkan, Y. 2020. Some properties for certain subclasses of analytic functions 

defined by a general differential operator, 13(1), 2050134(12 pages). 

7. Deniz, E., Özkan, Y. 2021. Certain a Subclasses of Unıformly Convex Functions Associated with 

Deniz-Özkan Differential Operator, 8th. İnternational conference on recent advances in Pure and 

Applied Mathematıcs (ıcrapam). 

8. Deniz, E., Orhan, H. Some properties of certain subclasses of analytic functions with negative 

coefficients by using generalized Ruscheweyh derivative operator, (accepted in Czechoslovak 

Math. J.) 

9. Goodman, A. W. 1957. Univalent functions and nonanalytic curves. Proc. Amer. Math. Soc. 8, 

598-601. 

10. Libera, R.J. 1969. Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16, 755–

758. 

182

http://www.ams.org/mathscinet/search/journaldoc.html?cn=Banach_J_Math_Anal
http://www.ams.org/mathscinet/search/publications.html?pg1=ISSI&s1=268874
http://www.ams.org/mathscinet/search/publications.html?pg1=ISSI&s1=268874


 
6th INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 
21-24 June 2022, Istanbul, Turkey 

 

 
ICOM 2022 

ISTANBUL / TURKEY 

11. Liu, J. -L. 2007. Further properties of a certain subclass of analytic and multivalent functions, Appl. 

Math. Comput. 187 (1), 290–294. 

12. Livingston, A.E. 1966. On the radius of univalence of certain analytic functions, Proc. Amer. Math. 

Soc. 17, 352–357. 

13. Orhan, H. 2007. on neighborhoods of analytic functions defined by using hadamard product. Novi 

Sad J. Math. 37 (1), 17-25. 

14. Orhan, H. 2009. Neighborhoods of a certain class of p − valent functions with negative coefficients 

defined by using a differential operator. Math. Ineq. Appl., Vol.0, No. 1. 

15. Owa, S. 1978. On distortion theorems. I, Kyungpook Math. J. 18, 55–59. 

16. Ruscheweyh, S. 1981. Neighborhoods of univalent functions. Proc. Amer. Math. Soc. 81 (4), 521-

527. 

17. Salagean, G.S. 1983. Subclasses of univalent functions, Lecture Notes in Math., 1013, 362-372. 

18. Shenan, G. M., Salim, T., Mousa, M. S. 2004. A certain class of multivalent prestarlike functions 

involving the Srivastava- Saigo- Owa fractional integral operator, Kyungpook Math. J, 44(3), 353-

362. 

19. Silverman, H. 1997. Partial sums of starlike and convex functions. J. Math. Anal. Appl. 209, 221-

227.  

20. Srivastava, H.M., Owa (Eds.), S. 1989. Univalent Functions, Fractional Calculus, and their 

Applications, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York. 

21. Srivastava, H.M., M.K. Aouf, 1995. A certain fractional derivative operator and its applications to 

a new class of analytic and multivalent fu2nctions with negative coefficients. I and II, J. Math. Anal. 

Appl. 171 (1992) 1–13; J. Math. Anal. Appl. 192, 673–688. 

22. Srivastava, H.M., Patel, J.  2005. Some subclasses of multivalent functions involving a certain linear 

operator. J. Math. Anal. Appl. 310, 209–228. 

23. Srivastava, H. M., Orhan, H. 2007. Coefficient inequalities and inclusion relations for some families 

of analytic and multivalent functions. Appl. Math. Lett. 20, 686-691. 

24. Uralegaddi, B. A., Somanatha, C. 1992. Certain classes of univalent functions, Current Topics in 

Analytic Function Theory, (H. M Srivastava and S. Owa Eds.), World Scientific Publishing 

Company, Singapore, New Jersey, London, Hong Kong, pp. 371-374. 

183



 
6th INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 
21-24 June 2022, Istanbul, Turkey 

 

 
ICOM 2022 

ISTANBUL / TURKEY 
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Abstract 

             In this paper, we investigate a new subclass ( ), ;β δ λ ϕΣ  of bi-univalent functions in the open unit 
disk U  defined by the generalized Jung-Kim-Srivastava integral operator. We obtain initial coefficients 
bounds for functions belonging to this class. 

 
          Keywords: Analytic function, Univalent function, Bi-univalent function, Coefficient inequality.  
 
1. Introduction 
 
Let A  denote the class of functions of the form:  

                                                           ( )
2

,n
n

n
f z z a z

∞

=

= +∑                                                          (1) 

which are analytic in the open unit disk { }: 1 .U z z= ∈ <  Further, by S  we shall denote the class of all 

functions in A  which are univalent in U . It is well known that every function  f S∈  has an inverse 1f − , 
defined by  

( )( ) ( )1      f f z z z U− = ∈  
and 

( )( ) ( ) ( )1
0 0

1      ;
4

f f w w w r f r f−  = < ≥ 
 

 

where 

 ( ) ( ) ( )1 2 2 3 3 4
2 2 3 2 2 3 42 5 5 ...f w w a w a a w a a a a w− = − + − − − + +  

A function f A∈  is said to be in ∑, the class of bi-univalent functions in U , if both  ( )f z and  ( )1f z−

are univalent in .U  Lewin [13] showed that 2 1.51a <  for every function  f ∈∑  given by (1). 

Posteriorly, Brannan and Clunie [1] improved Lewin’s result and conjectured that 2 2a ≤ for every 
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function  f ∈∑  given by (1). Later, Netanyahu [15] showed that 2
4max
3f

a
∈∑

=   The coefficient estimate 

problem for each of the following Taylor-Maclaurin coefficients: 

{ }( )   1,2,... ; 4na n N n∈ = ≥  
is still an open problem (see, for details, [19]). Since then, many researchers (see [2,5,6-9,18,20,21]) 
investigated several interesting subclasses of the class ∑ and found non-sharp estimates on the first two 
Taylor-Maclaurin coefficients 2a  and 3a . Also, many researchers (see [3,4,12,16,17]) investigated the 

upper bounds of combination of initial coefficients. In fact, its worth to mention that by making use of the 
Faber polynomial coefficient expansions Jahangiri and Hamidi [10] have obtained estimates for the 
general coefficients na  for bi-univalent functions subject to certain gap series.  

Let P  denote the class of function of p  analytic in U such that ( )0 1p =  and ( ){ }Re 0p z > , where 

( ) ( )2
1 21 ... .p z p z p z z U= + + + ∈  

If f  and g  are analytic in ,U  we say that f  is subordinate to ,g  written symbolically as  

f g    or   ( ) ( )f z g z    ( ) ,z U∈  

if there exists a Schwarz function ( ),w z  which (by definition) is analytic in U  with (0) 0w =  and 

( ) 1w z <  in U  such that ( ) ( ( )), .f z g w z z U= ∈   

In particular, if the function ( )g z  is univalent in ,U then we have that: 

( ) ( )f z g z    ( )z U∈    if and only if  (0) (0)f g=   and ( ) ( ).f U g U⊆  

Let ϕ  be an analytic function with positive real part in the unit disk U  such that 

( ) ( )0 1, 0 0ϕ ϕ′= >  

and ( )Uϕ  is symmetric with respect to the real axis and has a series expansion of  the form (see  [14]): 

( ) ( )2 3
1 2 3 11 ... 0 .z B z B z B z Bϕ = + + + + >  

Let ( )u z  and ( )v z be two analytic functions in the unit disk U  with ( ) ( )0 0 0u v= =  ( ) ( )1, 1u z v z< < , 

and suppose that 

( ) ( )2 3 2 3
1 2 3 1 2 31 ... and v 1 ...u z b z b z b z w c w c w c w= + + + + = + + + + ⋅                      (2) 
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For above functions, well-known inequalities are 

                                   2 2
1 2 1 1 2 11, 1 , 1 and 1 .b b b c c c≤ ≤ − < ≤ −                                         (3) 

Further we have 

                      ( )( ) ( ) ( )2 2
1 1 1 2 2 11 ... 1u z B b z B b B b z zϕ = + + + + <                                      (4) 

and              

                ( )( ) ( ) ( )2 2
1 1 1 2 2 11 ... 1v w B c w B c B c w wϕ = + + + + <                                    (5) 

In this study, we consider the generalized Jung-Kim-Srivastava integral operator Qβ
δ  [11] defined by 

1 1

0

2

( 1)( ) (1 ) ( ) ,  0,  1
( ) ( 1)

( 1) ( )
( ) ( 1)

z

n
n

n

tQ f z t f t dt
z z

nz a z
n

β δ β
δ

β δ β δ
β δ

β δ δ
β δ δ

− −

∞

=

Γ + +
= − ≥ > −

Γ Γ +

Γ + + Γ +
= +

Γ + + Γ +

∫

∑
                                 (6) 

and for 0β = , we have 0 ( ) ( ).Q f z f zδ =  

The main object of this paper is to introduce the following new subclass of bi-univalent functions 

involving Jung-Kim-Srivastava integral operator Qβ
δ  [11] and to obtain initial bounds for the Taylor-

Maclaurin coefficients 2a  and 3a  of the functions belonging to this class. 

 

2. Preliminaries and Definitions 

The function class ( ), ;Bβ δ λ ϕ∑  defined as follows: 

Definition 1. A function ( )f z ∈∑  is said to be in the class ( ), ;Bβ δ λ ϕ∑   if and only if 

( ) ( ) ( )( ) ( )1
Q f z

Q f z z
z

β
δ β

δλ λ ϕ′− +   

and  

( ) ( ) ( )( ) ( )1
Q g w

Q g w w
w

β
δ β

δλ λ ϕ′− +   

where ( ) ( )10 1,  ,   and .z w U g w f wλ −≤ ≤ ∈ =  
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Theorem 1. If  ( )f z  given by (1) is in the class ( ), ;Bβ δ λ ϕ∑ , then 

( )

1 1
2 2

1
( 1) ( 2)1
( 2) ( 1)

B B
a

B β δ δχ λ
β δ δ

≤
 Γ + + Γ +

+ + Γ + + Γ + 

                                                    (7) 

 

and 

( )

( )

( ) ( )

1
1

3
1 13

12

1

( 3) ( 1)
1 2 ( 1) ( 3)

( 1) ( 3)1 2
( 3) ( 1)

( 1) ( 3) ( 1) ( 2)1 2 1
( 3) ( 1) ( 2) ( 1)

B if B

B Ba
if B

B

β δ δ
λ β δ δ

β δ δχ λ
β δ δ

β δ δ β δ δλ χ λ
β δ δ β δ δ

Γ + + Γ + < ϒ + Γ + + Γ +
 Γ + + Γ + + +≤  Γ + + Γ + ≥ ϒ

   Γ + + Γ + Γ + + Γ +
+  + +    Γ + + Γ + Γ + + Γ +   

            (8) 

                                                                                                                                                 
where 

( ) ( )
2

2
1 2

( 1) ( 3) ( 1) ( 2)1 2 1
( 3) ( 1) ( 2) ( 1)

B Bβ δ δ β δ δχ λ λ
β δ δ β δ δ

 Γ + + Γ + Γ + + Γ +
= + − + Γ + + Γ + Γ + + Γ + 

 

and 

( )
( )

2
1 ( 2) ( 1) ( 3) .

( 2) 1 2 ( 1) ( 3)
λ δ β δ β δ
β δ λ δ δ

+ Γ +  Γ + + Γ + +
ϒ =  Γ + + + Γ + Γ + 

 

Proof: Let ( ) ( ), ; .f z Bβ δ λ ϕ∑∈ Then, there are analytic functions u and v  with ( ) ( )0 0 0,u v= =

( ) ( )1, 1u z v w< <  given by (2) and satisfying the following conditions: 

( ) ( ) ( )( ) ( )( )1
Q f z

Q f z u z
z

β
δ β

δλ λ ϕ′− + =                                                 (9) 

and 

( ) ( ) ( )( ) ( )( )1 ,
Q g w

Q g w v w
w

β
δ β

δλ λ ϕ′− + =                                            (10) 

where ( ) ( )1g w f w−= . Since 
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( ) ( ) ( )( )

( ) ( ) 2
2 3

1

( 1) ( 2) ( 1) ( 3)=1+ 1 1 2 ...
( 2) ( 1) ( 3) ( 1)

Q f z
Q f z

z

a z a z

β
δ β

δλ λ

β δ δ β δ δλ λ
β δ δ β δ δ

′− +

Γ + + Γ + Γ + + Γ +
+ + + +

Γ + + Γ + Γ + + Γ +

                        (11) 

    
and 

( ) ( ) ( )( )

( ) ( ) ( )2 2
2 2 3

1

( 1) ( 2) ( 1) ( 3)       =1 1 1 2 2 ...,
( 2) ( 1) ( 3) ( 1)

Q g w
Q g w

w

a w a a w

β
δ β

δλ λ

β δ δ β δ δλ λ
β δ δ β δ δ

′− +

Γ + + Γ + Γ + + Γ +
− + + + − +

Γ + + Γ + Γ + + Γ +

             (12) 

                                              
it follows from (4), (5), (11) and (12) that 

                                        ( ) 2 1 1
( 1) ( 2)1 ,
( 2) ( 1)

a B bβ δ δλ
β δ δ

Γ + + Γ +
+ =

Γ + + Γ +
                                                         (13) 

( ) 2
3 1 2 2 1

( 1) ( 3)1 2 ,
( 3) ( 1)

a B b B bβ δ δλ
β δ δ

Γ + + Γ +
+ = +

Γ + + Γ +
                                                    (14) 

( ) 2 1 1
( 1) ( 2)1 ,
( 2) ( 1)

a B cβ δ δλ
β δ δ

Γ + + Γ +
− + =

Γ + + Γ +
                                                         (15) 

 
and 

( ) ( )2 2
2 3 1 2 2 1

( 1) ( 3)1 2 2 .
( 3) ( 1)

a a B c B cβ δ δλ
β δ δ

Γ + + Γ +
+ − = +

Γ + + Γ +
                                            (16) 

From (13) and (15), we get 

1 1c b= −                                                                          (17) 
 

( ) ( )
2

2 2 2 2
2 1 1 1

( 1) ( 2)2 1 .
( 2) ( 1)

a B b cβ δ δλ
β δ δ

 Γ + + Γ +
+ = + Γ + + Γ + 

                                          (18) 

By adding (14) to (16), we have 

                                   ( ) ( ) ( )2 2 2
2 1 2 2 2 1 1

( 1) ( 3)2 1 2 .
( 3) ( 1)

a B b c B b cβ δ δλ
β δ δ

Γ + + Γ +
+ = + + +

Γ + + Γ +
                              (19) 

                   
Therefore, from equalities (18) and (19) we find that 
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( ) ( ) ( )
2

2 2 3
1 2 2 1 2 2

( 1) ( 3) ( 1) ( 2)2 1 2 2 1
( 3) ( 1) ( 2) ( 1)

B B a B b cβ δ δ β δ δλ λ
β δ δ β δ δ

  Γ + + Γ + Γ + + Γ +
+ − + = +  Γ + + Γ + Γ + + Γ +   

              (20) 

 

Then, in view of (13), (17) and (3), we obtain 

 
( ) ( )

( ) ( ) ( )

2
22

1 2 2

2
2 23 3 3

1 2 2 1 1 1 1 2

( 1) ( 3) ( 1) ( 2)2 1 2 2 1
( 3) ( 1) ( 2) ( 1)

( 1) ( 2)2 1 2 2 1 .
( 2) ( 1)

B B a

B b c B b B B a

β δ δ β δ δλ λ
β δ δ β δ δ

β δ δλ
β δ δ

 Γ + + Γ + Γ + + Γ +
+ − + Γ + + Γ + Γ + + Γ + 

 Γ + + Γ +
≤ + ≤ − = − + Γ + + Γ + 

 

Thus, we get 

( )

1 1
2 2

1

,
( 1) ( 2)1
( 2) ( 1)

B B
a

B β δ δχ λ
β δ δ

≤
 Γ + + Γ +

+ + Γ + + Γ + 

 

where  

( ) ( )
2

2
1 2

( 1) ( 3) ( 1) ( 2)1 2 1 .
( 3) ( 1) ( 2) ( 1)

B Bβ δ δ β δ δχ λ λ
β δ δ β δ δ

 Γ + + Γ + Γ + + Γ +
= + − + Γ + + Γ + Γ + + Γ + 

 

 Next, in order to find the bound on 3a , subtracting (16) from (14) and using (17), we get  

              ( ) ( ) ( )2
3 2 1 2 2

( 1) ( 3) ( 1) ( 3)2 1 2 2 1 2 .
( 3) ( 1) ( 3) ( 1)

a a B b cβ δ δ β δ δλ λ
β δ δ β δ δ

Γ + + Γ + Γ + + Γ +
+ = + + −

Γ + + Γ + Γ + + Γ +
                  (21) 

  
Then in view of (3) and (17), we have 

( ) ( ) ( )

( ) ( )

2
3 2 1 2 2

2 2
2 1 1

( 1) ( 3) ( 1) ( 3)2 1 2 2 1 2
( 3) ( 1) ( 3) ( 1)

( 1) ( 3)                                         2 1 2 2 1 .
( 3) ( 1)

a a B b c

a B b

β δ δ β δ δλ λ
β δ δ β δ δ

β δ δλ
β δ δ

Γ + + Γ + Γ + + Γ +
+ ≤ + + +

Γ + + Γ + Γ + + Γ +
Γ + + Γ +

≤ + + −
Γ + + Γ +

 

From (13), we immediately have 

189



 
6th INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 
21-24 June 2022, Istanbul, Turkey 

 

 
ICOM 2022 

ISTANBUL / TURKEY 

( )

( ) ( )

1 3

2
2 2

1 2 1

( 1) ( 3)1 2
( 3) ( 1)

( 1) ( 3) ( 1) ( 2)1 2 1 .
( 3) ( 1) ( 2) ( 1)

B a

B a B

β δ δλ
β δ δ

β δ δ β δ δλ λ
β δ δ β δ δ

Γ + + Γ +
+

Γ + + Γ +

  Γ + + Γ + Γ + + Γ +
≤ + − + +  Γ + + Γ + Γ + + Γ +   

   

Now the assertion (8) follows from (7). This evidently completes the proof of Theorem 1.  

By taking 1λ =  in Theorem 1, we have 

Corollary 1. If ( )f z given by (1) is in the class, ( ), ;Bβ δ λ ϕ∑  then 

1 1
2 2

1
( 1) ( 2)4
( 2) ( 1)

B B
a

B β δ δχ
β δ δ

≤
 Γ + + Γ +

+  Γ + + Γ + 

 

 

and 

1
1

3
1 13

12

1

( 3) ( 1)
3 ( 1) ( 3)

( 1) ( 3)3  ( 3) ( 1)

( 1) ( 3) ( 1) ( 2)3 4
( 3) ( 1) ( 2) ( 1)

B if B

B Ba
if B

B

β δ δ
β δ δ

β δ δχ
β δ δ

β δ δ β δ δχ
β δ δ β δ δ

Γ + + Γ + < ϒ Γ + + Γ +
Γ + + Γ + +≤  Γ + + Γ + ≥ ϒ
   Γ + + Γ + Γ + + Γ +
 +    Γ + + Γ + Γ + + Γ +   

 

                                                                                                                                                 
where 

2
2

1 2
( 1) ( 3) ( 1) ( 2)3 4
( 3) ( 1) ( 2) ( 1)

B Bβ δ δ β δ δχ
β δ δ β δ δ

 Γ + + Γ + Γ + + Γ +
= −  Γ + + Γ + Γ + + Γ + 

 

and 

2
2 ( 2) ( 1) ( 3) .
( 2) 3 ( 1) ( 3)

δ β δ β δ
β δ δ δ

 Γ + Γ + + Γ + +
ϒ =  Γ + + Γ + Γ + 

 

Putting 0β =  in Theorem 1, we have 
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Corollary 2. If  ( )f z given by (1) is in the class ( ) ( )0 , ; ;B Bβδ λ ϕ λ ϕ∑ ∑= , then 

( ) ( ) ( )
1 1

2 2 22
1 2 11 2 1 1

B B
a

B B Bλ λ λ
≤

+ − + + +
 

 

and 

( )
( )

( ) ( ) ( )

( ) ( ) ( ) ( )( )
( )

2
1

1

22 33 2
1 2 1 1

12 22
1 2 1

1
1 2 1 2

.1 2 1 1 2 1
1 21 2 1 2 1 1

B if B

a B B B B
if B

B B B

λ
λ λ

λ λ λ λ
λλ λ λ λ

 +
<

+ +≤  + − + + + + ≥ ++ + − + + +

 

                                                                                                                                                                                                                                                                                                
Putting 0β =  in Corollary 1, we have 

Corollary 3. If  ( )f z  given by (1) is in the class ( ) ( )0 ,1;B Hδ ϕ ϕ∑ ∑= , then 

1 1
2

14
B B

a
Bχ

≤
+

 

 

and 

( )

1
1

2 2 33
1 2 1 1

12 2
1 2 1

4
3 3

 .3 4 3 4
33 3 4 4

B if B

a B B B B
if B

B B B

 <
≤  − +
 ≥
 − +
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Abstract 

In this article, we establish the bounds for the initial Taylor–Maclaurin coefficients |𝑎𝑎2| and 
|𝑎𝑎3| for a new family of analytic and bi-univalent functions in the open unit disk which involve 
Laguerre polynomials. Furthermore, we investigate the special cases and consequences for the new 
family functions. 

 
          Keywords: Analytic and bi-univalent functions, subordination, coefficient inequality, Laguerre 

polynomials. 

 

1. Introduction and Preliminaries 

Let A represents the class of functions whose members are of the form 

                                               𝑓𝑓(𝑧𝑧) = 𝑧𝑧 + ∑ 𝑎𝑎𝑛𝑛𝑧𝑧𝑛𝑛,       (𝑧𝑧 ∈ 𝑈𝑈),∞
𝑛𝑛=2                                                     (1) 

which are analytic in  𝑈𝑈 =  {𝑧𝑧 ∈ ℂ ∶  |𝑧𝑧| < 1}, and let S be the subclass of A whose members are 
univalent in 𝑈𝑈. The Koebe one quarter theorem [3] ensures that the image of  𝑈𝑈 under every univalent 

function  𝑓𝑓 ∈ A contains a disk of radius  1
4
 . Thus every univalent function 𝑓𝑓 has an inverse 𝑓𝑓−1 satisfying   

𝑓𝑓−1�𝑓𝑓(𝑧𝑧)� = 𝑧𝑧, (𝑧𝑧 ∈ 𝑈𝑈)  and  𝑓𝑓�𝑓𝑓−1(𝜔𝜔)� = 𝜔𝜔,  (|𝜔𝜔| < 𝑟𝑟0(𝑓𝑓) ,  𝑟𝑟0(𝑓𝑓) ≥ 1
4
) . 

A function  𝑓𝑓 ∈ A  is said to be bi-univalent in 𝑈𝑈 if both  𝑓𝑓 and  𝑓𝑓−1 are univalent in  𝑈𝑈, and let  Σ denote 
the class of bi–univalent functions defined in the unit disk 𝑈𝑈. Since 𝑓𝑓 ∈  Σ has the Maclaurin series given 
by (1), a computation shows that its inverse 𝑔𝑔 = 𝑓𝑓−1 has the expansion  

                   𝑔𝑔(𝜔𝜔) = 𝑓𝑓−1(𝜔𝜔) = 𝜔𝜔 − 𝑎𝑎2𝜔𝜔2 + (2𝑎𝑎22 − 𝑎𝑎3)𝜔𝜔3 + ⋯.                                              (2) 

We notice that the class Σ is not empty. For instance, the functions 
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    𝑓𝑓1(𝑧𝑧) = 𝑧𝑧
𝑧𝑧−1

 ,     𝑓𝑓2(𝑧𝑧) = 1
2

log 1+𝑧𝑧
1−𝑧𝑧

 ,    𝑓𝑓3(𝑧𝑧) = − log(1 − 𝑧𝑧) 

with their corresponding inverses  

𝑓𝑓1−1(𝜔𝜔) = 𝜔𝜔
1+𝜔𝜔′

 ,   𝑓𝑓2−1(𝜔𝜔) = 𝑒𝑒2𝜔𝜔−1
𝑒𝑒2𝜔𝜔+1

   ,   𝑓𝑓3−1(𝜔𝜔) = 𝑒𝑒𝜔𝜔−1
𝑒𝑒𝜔𝜔

 

are elements of Σ. However, the Koebe function is not a member of  Σ. Lately, Srivastava et al. [16] have 
essentially revived the study of analytic and bi-univalent functions; this was followed by such works as 
those of [1 − 15]. Several authors have introduced and examined subclasses of bi-univalent functions 
and obtained bounds for the initial coefficients (see [16], bi-close-to-convex functions [6,9], and bi-
prestarlike functions by Jahangiri and Hamidi [7]. 

Let 𝑓𝑓 and 𝑔𝑔 be analytic functions in 𝑈𝑈. We define that the function 𝑓𝑓 is subordinate to 𝑔𝑔 in 𝑈𝑈 and 
denoted by 

𝑓𝑓(𝑧𝑧) ≺ 𝑔𝑔(𝑧𝑧)    (𝑧𝑧 ∈ 𝑈𝑈), 

if there exists a Schwarz function 𝑤𝑤, which is analytic in 𝑈𝑈 with 𝑤𝑤(0) = 0 and |𝑤𝑤(𝑧𝑧)| < 1 (𝑧𝑧 ∈ 𝑈𝑈) such 
that 

𝑓𝑓(𝑧𝑧) = 𝑔𝑔(𝑤𝑤(𝑧𝑧))    (𝑧𝑧 ∈ 𝑈𝑈). 

If 𝑔𝑔 is a univalent function in ∆, then  

𝑓𝑓(𝑧𝑧) ≺ 𝑔𝑔(𝑧𝑧) ⇔ 𝑓𝑓(0) = 𝑔𝑔(0)    and    𝑓𝑓(𝑈𝑈) ⊂ 𝑔𝑔(𝑈𝑈). 

       The generalized Laguerre polynomial  𝐿𝐿𝑛𝑛
𝛾𝛾 (𝛽𝛽) is the polynomial solution 𝜙𝜙(𝛽𝛽) of the differential 

equation (see [10]) 

𝛽𝛽𝜙𝜙′′ + (1 + 𝛾𝛾 − 𝛽𝛽)𝜙𝜙′ + 𝑛𝑛𝜙𝜙 = 0, 

where  𝛾𝛾 > −1 and  𝑛𝑛 is non-negative integers. 

The generating function of generalized Laguerre polynomial  𝐿𝐿𝑛𝑛
𝛾𝛾 (𝛽𝛽) is defined by 

                                           𝐻𝐻𝛾𝛾(𝛽𝛽, 𝑧𝑧) = ∑ 𝐿𝐿𝑛𝑛
𝛾𝛾 (𝛽𝛽)𝑧𝑧𝑛𝑛 = 𝑒𝑒−

𝛽𝛽𝑧𝑧
1−𝑧𝑧

(1−𝑧𝑧)𝛾𝛾+1
,∞

𝑛𝑛=0                                                      (3) 

where 𝛽𝛽 ∈ ℝ  and  𝑧𝑧 ∈ 𝑈𝑈. Generalized Laguerre polynomials can also be defined by the following 
recurrence relations: 
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                                    𝐿𝐿𝑛𝑛+1
𝛾𝛾 (𝛽𝛽) = 2𝑛𝑛+1+𝛾𝛾−𝛽𝛽

𝑛𝑛+1
𝐿𝐿𝑛𝑛
𝛾𝛾 (𝛽𝛽)− 𝑛𝑛+𝛾𝛾

𝑛𝑛+1
𝐿𝐿𝑛𝑛−1
𝛾𝛾 (𝛽𝛽)     (𝑛𝑛 ≥ 1),                                                (4) 

with the initial conditions 

               𝐿𝐿0
𝛾𝛾(𝛽𝛽) = 1,     𝐿𝐿1

𝛾𝛾(𝛽𝛽) = 1 + 𝛾𝛾 − 𝛽𝛽   and   𝐿𝐿1
𝛾𝛾(𝛽𝛽) = 𝛽𝛽2

2
− (𝛾𝛾 + 2)𝛽𝛽 + (𝛾𝛾+1)(𝛾𝛾+1)

2
.           (5) 

Clearly, when 𝛾𝛾 = 0 the generalized Laguerre polynomials leads to the simply Laguerre polynomial, i.e., 
𝐿𝐿𝑛𝑛0 (𝛽𝛽) = 𝐿𝐿𝑛𝑛 (𝛽𝛽). 

The analytic function ℎ(𝑧𝑧)  with positive real part in 𝑈𝑈 such that ℎ(0) = 1,ℎ′(0) > 0  and ℎ(𝑈𝑈)  is 
symmetric with respect to real axis, which is of the type: 

 ℎ(𝑧𝑧) = 1 + 𝑒𝑒1𝑧𝑧 + 𝑒𝑒2𝑧𝑧2 + ⋯                                                                          (6) 

where   

 𝑒𝑒1  = 1 + 𝛾𝛾 − 𝛽𝛽,   𝑒𝑒2 =  𝛽𝛽
2

2
− (𝛾𝛾 + 2)𝛽𝛽 + (𝛾𝛾+1)(𝛾𝛾+1)

2
.                                            (7) 

     First, we define a new subclass of bi-univalent functions in the open unit disk, associated with 
Laguerre polynomials as below. 

Definition 1.  For 𝜏𝜏 ∈ ℂ\{0},  0 ≤ 𝜗𝜗 ≤ 1 and ℎ  is analytic in 𝑈𝑈, ℎ(0) = 1, a function  𝑓𝑓 ∈  Σ  the form (1) 
is said to be in the class  𝑀𝑀Σ(𝜏𝜏,𝜗𝜗, 𝑒𝑒1, 𝑒𝑒2) if the following subordinations hold: 

                                   1 + 1
𝜏𝜏

(𝑓𝑓′(𝑧𝑧)+ 𝜗𝜗𝑧𝑧𝑓𝑓′′(𝑧𝑧) − 1) ≺ ℎ(𝑧𝑧)                                                                (8) 

and                                    

                                  1 + 1
𝜏𝜏

(𝑔𝑔′(𝜔𝜔) + 𝜗𝜗𝜔𝜔𝑓𝑓′′(𝜔𝜔) − 1) ≺  ℎ(𝜔𝜔)                                                          (9)      

where  𝑧𝑧,𝜔𝜔 ∈ 𝑈𝑈,  𝑒𝑒1, 𝑒𝑒2 are given by (7), and 𝑔𝑔 = 𝑓𝑓−1 is given by (2).    

 

2. Initial Taylor Coefficients Estimates for the Functions of 𝑴𝑴𝚺𝚺(𝝉𝝉,𝝑𝝑, 𝒆𝒆𝟏𝟏, 𝒆𝒆𝟐𝟐) 

    To obtain our first results, we need the following lemma: 

Lemma 1 ([13], p.172). Assume that  𝑤𝑤(𝑧𝑧) = ∑ 𝑤𝑤𝑛𝑛𝑧𝑧𝑛𝑛, 𝑧𝑧 ∈ 𝑈𝑈,∞
𝑛𝑛=1  is an analytic function in 𝑈𝑈 such that 

 |𝑤𝑤(𝑧𝑧) | < 1  for all   𝑧𝑧 ∈ 𝑈𝑈. Then, 
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|𝑤𝑤1| ≤ 1,   |𝑤𝑤𝑛𝑛| ≤ 1 - |𝑤𝑤1|2,    𝑛𝑛 = 2,3, …. 

In the following result, we obtain upper bounds for the modules of the first two coefficients for the 
functions to belong to a class 𝑀𝑀Σ(𝜏𝜏,𝜗𝜗, 𝑒𝑒1, 𝑒𝑒2). 

Theorem 1.  Assume that 𝜏𝜏 ∈ ℂ\{0},  0 ≤ 𝜗𝜗 ≤ 1. If  𝑓𝑓 ∈ Σ  of the form (1) is in the family 𝑀𝑀Σ(𝜏𝜏,𝜗𝜗, 𝑒𝑒1, 𝑒𝑒2), 
with  ℎ(𝑧𝑧) = 1 + 𝑒𝑒1𝑧𝑧 + 𝑒𝑒2𝑧𝑧2 + ⋯, then 

                                           |𝑎𝑎2| ≤ |𝜏𝜏|𝑒𝑒1√𝑒𝑒1
�|3𝜏𝜏(1+2𝜗𝜗)𝑒𝑒12−4(1+𝜗𝜗)2𝑒𝑒2|

 ,                                                            (10) 

and 

                                           |𝑎𝑎3| ≤ 𝑒𝑒1|𝜏𝜏|
3|1+2𝜗𝜗| + |𝜏𝜏|2𝑒𝑒12

4|1+𝜗𝜗|2 ,                                                                         (11) 

where 𝑒𝑒1, 𝑒𝑒2 are given by (7). 

 

Proof. Suppose that 𝑓𝑓 ∈ 𝑀𝑀Σ(𝜏𝜏,𝜗𝜗, 𝑒𝑒1, 𝑒𝑒2). From the definition in formulas (8) and (9), we have  

                             1 + 1
𝜏𝜏

(𝑓𝑓′(𝑧𝑧) + 𝜗𝜗𝑧𝑧𝑓𝑓′′(𝑧𝑧) − 1) = ℎ(𝜑𝜑(𝑧𝑧))                                                            (12)  

and 

                            1 + 1
𝜏𝜏

(𝑔𝑔′(𝜔𝜔) + 𝜗𝜗𝜔𝜔𝑔𝑔′′(𝜔𝜔) − 1) = ℎ(𝑥𝑥(𝜔𝜔)) ,                                                      (13) 

where there exsist two holomorphic functions 𝜑𝜑,𝜒𝜒: 𝑈𝑈 → 𝑈𝑈  given by                                                        

                                        𝜑𝜑(𝑧𝑧) = 𝑟𝑟1𝑧𝑧 + 𝑟𝑟2𝑧𝑧2 + ⋯,                                                                            (14) 

                                        𝑥𝑥(𝜔𝜔) = 𝑠𝑠1𝜔𝜔 + 𝑠𝑠2𝜔𝜔2 + ⋯,                                                                         (15)   

with  𝜑𝜑(0) = 0 = 𝑥𝑥(0) , and  |𝜑𝜑(𝑧𝑧)| < 1 ,   |𝑥𝑥(𝜔𝜔)| < 1, for all   𝑧𝑧, 𝜔𝜔 ∈ 𝑈𝑈. From Lemma 1 it follows that  

                                              �𝑟𝑟𝑗𝑗� ≤ 1   and  �𝑠𝑠𝑗𝑗� ≤ 1, for all   𝑗𝑗 ∈ ℕ.                                                       (16) 

Replacing (14) and (15) in (12) and (13), respectively, we have  

1 + 1
𝜏𝜏

(𝑓𝑓′(𝑧𝑧) + 𝜗𝜗𝑧𝑧𝑓𝑓′′(𝑧𝑧) − 1) = 1 + 𝑒𝑒1𝜑𝜑(𝑧𝑧) + 𝑒𝑒2𝜑𝜑2(𝑧𝑧) + ⋯,                                                    (17) 

and 
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  1 + 1
𝜏𝜏

(𝑔𝑔′(𝜔𝜔) + 𝜗𝜗𝜔𝜔𝑔𝑔′′(𝜔𝜔) − 1) =  1 + 𝑒𝑒1𝑥𝑥(𝜔𝜔) + 𝑒𝑒2𝑥𝑥2(𝜔𝜔) + ⋯.                                            (18)    

In view of (1) and (2), from (17) and (18), we obtain        

1 + 1
𝜏𝜏

(2𝑎𝑎2(1 + 𝜗𝜗)𝑧𝑧 + 3𝑎𝑎3(1 + 2𝜗𝜗)𝑧𝑧2) = 1 + 𝑒𝑒1𝑟𝑟1𝑧𝑧 + [𝑒𝑒1𝑟𝑟2 + 𝑒𝑒2𝑟𝑟12]𝑧𝑧2 

and 

                              1 + 1
𝜏𝜏

(−2𝑎𝑎2(1 + 𝜗𝜗)𝜔𝜔 + 3(2𝑎𝑎22 − 𝑎𝑎3)(1 + 2𝜗𝜗)𝜔𝜔2) 

                                   =1 + 𝑒𝑒1𝑠𝑠1𝜔𝜔 + [𝑒𝑒1𝑠𝑠2 + 𝑒𝑒2𝑠𝑠12]𝜔𝜔2 

which yields the following relations : 

                                      2𝑎𝑎2(1 + 𝜗𝜗) = 𝜏𝜏𝑒𝑒1𝑟𝑟1 ,                                                                                   (19) 

                                      3𝑎𝑎3(1 + 2𝜗𝜗) = 𝜏𝜏𝑒𝑒1𝑟𝑟2 + 𝜏𝜏𝑒𝑒2𝑟𝑟12,                                                                 (20) 

and 

                                      −2𝑎𝑎2(1 + 𝜗𝜗) = 𝜏𝜏𝑒𝑒1𝑠𝑠1 ,                                                                               (21) 

                                       3(2𝑎𝑎22 − 𝑎𝑎3)(1 + 2𝜗𝜗) =  𝜏𝜏𝑒𝑒1𝑠𝑠2 + 𝜏𝜏𝑒𝑒2𝑠𝑠12.                                             (22)  

From (19) and (21), it follows that  

                                                      𝑟𝑟1 = −𝑠𝑠1,                                                                                        (23) 

and    

                                          8𝑎𝑎22(1 + 𝜗𝜗)2 = 𝜏𝜏2𝑒𝑒12(𝑟𝑟12 + 𝑠𝑠12) 

                                           𝑎𝑎22 = 𝜏𝜏2𝑒𝑒12�𝑟𝑟12+𝑠𝑠12�
8(1+𝜗𝜗)2 .                                                                                  (24) 

Adding (20) and (22), using (24), we obtain  

                                           𝑎𝑎22 = 𝜏𝜏2𝑒𝑒13(𝑟𝑟2+𝑠𝑠2)
6𝜏𝜏(1+2𝜗𝜗)𝑒𝑒12−8(1+𝜗𝜗)2𝑒𝑒2

 .                                                                 (25) 

Applying (16) for the coefficients  𝑟𝑟2  and  𝑠𝑠2 and using (7),  we obtain the inequality (10). 

             By subtracting  (22) from (20),  using (23) and (24), we get 
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                                      𝑎𝑎3 = 𝜏𝜏𝑒𝑒1(𝑟𝑟2−𝑠𝑠2)+𝜏𝜏𝑒𝑒2(𝑟𝑟12−𝑠𝑠12)
6(1+2𝜗𝜗)

+ 𝑎𝑎22                                      (26) 

                                       = 𝜏𝜏𝑒𝑒1(𝑟𝑟2−𝑠𝑠2)+𝜏𝜏𝑒𝑒2(𝑟𝑟12−𝑠𝑠12)
6(1+2𝜗𝜗)

+ 𝜏𝜏2𝑒𝑒12�𝑟𝑟12+𝑠𝑠12�
8(1+𝜗𝜗)2 .                                  

Using (7) and once again applying (16) for the coefficients  𝑟𝑟1,  𝑟𝑟2 and  𝑠𝑠1 ,  𝑠𝑠2 , we deduce the required 
inequality (11). 

For 𝜏𝜏 = 1 in Theorem 1, we obtain the following corollary. 

Corollary 1.  Assume that  0 ≤ 𝜗𝜗 ≤ 1. If  𝑓𝑓 ∈ Σ  of the form (1) is in the family 𝑀𝑀Σ(1,𝜗𝜗, 𝑒𝑒1, 𝑒𝑒2), with  
ℎ(𝑧𝑧) = 1 + 𝑒𝑒1𝑧𝑧 + 𝑒𝑒2𝑧𝑧2 + ⋯, then 

|𝑎𝑎2| ≤ 𝑒𝑒1√𝑒𝑒1
�|3(1+2𝜗𝜗)𝑒𝑒12−4(1+𝜗𝜗)2𝑒𝑒2|

 , 

and 

|𝑎𝑎3| ≤ 𝑒𝑒1
3|1+2𝜗𝜗| + 𝑒𝑒12

4|1+𝜗𝜗|2 , 

where 𝑒𝑒1, 𝑒𝑒2 are given by (7). 

For 𝜏𝜏 = 𝜗𝜗 = 1 in Theorem 1, we get the following corollary. 

Corollary 2.  If  𝑓𝑓 ∈ Σ  of the form (1) is in the family 𝑀𝑀Σ(1,1, 𝑒𝑒1, 𝑒𝑒2), with  ℎ(𝑧𝑧) = 1 + 𝑒𝑒1𝑧𝑧 + 𝑒𝑒2𝑧𝑧2 + ⋯, 
then 

|𝑎𝑎2| ≤ 𝑒𝑒1√𝑒𝑒1
�|9𝑒𝑒12−16𝑒𝑒2|

 , 

and 

|𝑎𝑎3| ≤ 𝑒𝑒1
9

+ 𝑒𝑒12

16
 , 

where 𝑒𝑒1, 𝑒𝑒2 are given by (7). 

For 𝜏𝜏 = 1 𝑎𝑎𝑛𝑛𝑎𝑎 𝜗𝜗 = 0 in Theorem 1, we have the following corollary. 

Corollary 3. If  𝑓𝑓 ∈ Σ  of the form (1) is in the family 𝑀𝑀Σ(1,0, 𝑒𝑒1, 𝑒𝑒2), with  ℎ(𝑧𝑧) = 1 + 𝑒𝑒1𝑧𝑧 + 𝑒𝑒2𝑧𝑧2 + ⋯, 
then 

|𝑎𝑎2| ≤ 𝑒𝑒1√𝑒𝑒1
�|3𝑒𝑒12−4𝑒𝑒2|

 , 
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and 

|𝑎𝑎3| ≤ 𝑒𝑒1
3

+ 𝑒𝑒12

4
 , 

where 𝑒𝑒1, 𝑒𝑒2 are given by (7). 
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Abstract 

In this proceeding, two fourth-order discrete-time linear time-varying systems (systems 𝐴 and 

𝐵)  are considered. These systems are described by fourth-order linear difference equations. 

Formulations of the cascaded-connected systems 𝐴𝐵 and 𝐵𝐴 are presented. Necessary conditions of 

commutativity of fourth-order discrete-time linear time-varying systems are given.  

 

          Keywords: Commutativity, Discrete-time, Fourth-order, Linear system  

 

1. Introduction 

 

Cascade-connected system is a common method for the realization of many engineering designs 

and this is important for the synthesis of especially electronic and electrical systems. The order of 

connection of subsystems may be arbitrary or depend on the specific design methods and traditional 

techniques. However, when system performance parameters such as sensitivity, linearity, stability, noise 

quality, and robustness are important, drastic differences may occur. Therefore, the proper order should 

be chosen to obtain the best performance whilest the main function of the overall system remains the 

same (commutativity). For this reason, commutativity is important with regard to technical applications. 

As shown in Fig. 1, by changing the connection order of two cascade-connected time-varying 

linear systems 𝐴  and 𝐵 , we say that 𝐴  and 𝐵  are commutative systems and (𝐴, 𝐵)  constitutes a 

commutative pair if input-output relations of the assembled systems 𝐴𝐵 and 𝐵𝐴 are identical. 

 

 
Figure 1. Cascade connections of differential systems 

 

The cooncept of commutativity was studied for the first time by Marshal [1] in 1977. He 

developed commutativity conditions of first-order continuous-time linear time-varying systems. After 
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that, the results for first-order systems were extended by Koksal for second-order [2], third-order [3] and 

fourth-order [4] continuous-time lienar time-varying systems in 1982, 1984 and 1985, respectively. After 

about two and a half decade, commutativity of Euler differential systems was investigated, and explicit 

commutativity conditions of fifth-order continuous-time linear time-varying ystems were studied in [5]. 

The last literature about the commutativity of continuous time-varying linear systems, sixth-order systems 

were studied in [6] in 2021. 

Even though there are many papers on the commutativity of continuous-time (analog) linear time-

varying systems, there are only a few studies on the commutativity of discrete-time (digital) linear time-

varying systems. The trend in the new technology is moving to the digital world from the analog world. 

There are many advantages of digital systems over analog systems. Some of these advantages are 

reproduciblity of the results and accuracy, easy of design, flexibility and functionality, programmability, 

speed, economy, etc. From this point of view, the investigation of commutativity conditions of discrete-

time linear time-varying systems is important.  

The first literature on the commutativity of digital systems appeared in 2015 [7] where explicit 

commutativity conditions of second-order discrete-time linear time-varying systems were presented. After 

that, in 2019, commutativity of first-order discrete-time linear time-varying system was studied in [8] and 

theoritical reults were supported by illustrative examples. Finally, in [9], third-order discrete-time linear 

time-varying systems are considered. Some commutativity conditions are given. 

 

2. Commutativity Conditions 

 

Let systems 𝐴 and 𝐵 be described by the following linear fourth-order difference equations: 

 

𝐴: 𝑎4(𝑘)𝑦𝐴(𝑘 + 4) + 𝑎3(𝑘)𝑦𝐴(𝑘 + 3) + 𝑎2(𝑘)𝑦𝐴(𝑘 + 2) + 𝑎1(𝑘)𝑦𝐴(𝑘 + 1) + 𝑎0(𝑘)𝑦𝐴(𝑘) = 𝑥𝐴(𝑘), (1) 

𝐵: 𝑏4(𝑘)𝑦𝐵(𝑘 + 4) + 𝑏3(𝑘)𝑦𝐵(𝑘 + 3) + 𝑏2(𝑘)𝑦𝐵(𝑘 + 2) + 𝑏1(𝑘)𝑦𝐵(𝑘 + 1) + 𝑏0(𝑘)𝑦𝐵(𝑘) = 𝑥𝐵(𝑘).(2) 

 

In Eq. (2), writing 𝑘 + 1, 𝑘 + 2, 𝑘 + 3, 𝑘 + 4 instead of 𝑘, 

𝑏4(𝑘 + 1)𝑦𝐵(𝑘 + 5) + 𝑏3(𝑘 + 1)𝑦𝐵(𝑘 + 4) + 𝑏2(𝑘 + 1)𝑦𝐵(𝑘 + 3) + 𝑏1(𝑘 + 1)𝑦𝐵(𝑘 + 2) 

+𝑏0(𝑘 + 1)𝑦𝐵(𝑘 + 1) = 𝑥𝐵(𝑘 + 1) = 𝑦𝐴(𝑘 + 1), 

𝑏4(𝑘 + 2)𝑦𝐵(𝑘 + 6) + 𝑏3(𝑘 + 2)𝑦𝐵(𝑘 + 5) + 𝑏2(𝑘 + 2)𝑦𝐵(𝑘 + 4) + 𝑏1(𝑘 + 2)𝑦𝐵(𝑘 + 3) 

+𝑏0(𝑘 + 2)𝑦𝐵(𝑘 + 2) = 𝑥𝐵(𝑘 + 2) = 𝑦𝐴(𝑘 + 2), 

𝑏4(𝑘 + 3)𝑦𝐵(𝑘 + 7) + 𝑏3(𝑘 + 3)𝑦𝐵(𝑘 + 6) + 𝑏2(𝑘 + 3)𝑦𝐵(𝑘 + 5) + 𝑏1(𝑘 + 3)𝑦𝐵(𝑘 + 4) 

+𝑏0(𝑘 + 3)𝑦𝐵(𝑘 + 3) = 𝑥𝐵(𝑘 + 3) = 𝑦𝐴(𝑘 + 3), 

𝑏4(𝑘 + 4)𝑦𝐵(𝑘 + 8) + 𝑏3(𝑘 + 4)𝑦𝐵(𝑘 + 7) + 𝑏2(𝑘 + 4)𝑦𝐵(𝑘 + 6) + 𝑏1(𝑘 + 4)𝑦𝐵(𝑘 + 5) 

+𝑏0(𝑘 + 4)𝑦𝐵(𝑘 + 4) = 𝑥𝐵(𝑘 + 4) = 𝑦𝐴(𝑘 + 4). 

 

Substituting these values of 𝑦𝐴(𝑖) for 𝑖 = 𝑘 + 1, 𝑘 + 2, 𝑘 + 3, 𝑘 + 4 in Eq. (1) 
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𝑎4(𝑘)[𝑏4(𝑘 + 4)𝑦𝐵(𝑘 + 8) + 𝑏3(𝑘 + 4)𝑦𝐵(𝑘 + 7) + 𝑏2(𝑘 + 4)𝑦𝐵(𝑘 + 6) + 𝑏1(𝑘 + 4)𝑦𝐵(𝑘 + 5) 

+𝑏0(𝑘 + 4)𝑦𝐵(𝑘 + 4)] + 𝑎3(𝑘)[𝑏4(𝑘 + 3)𝑦𝐵(𝑘 + 7) + 𝑏3(𝑘 + 3)𝑦𝐵(𝑘 + 6) + 𝑏2(𝑘 + 3)𝑦𝐵(𝑘 + 5) 

+𝑏1(𝑘 + 3)𝑦𝐵(𝑘 + 4) + 𝑏0(𝑘 + 3)𝑦𝐵(𝑘 + 3)] + 𝑎2(𝑘)[𝑏4(𝑘 + 2)𝑦𝐵(𝑘 + 6) + 𝑏3(𝑘 + 2)𝑦𝐵(𝑘 + 5) 

+𝑏2(𝑘 + 2)𝑦𝐵(𝑘 + 4) + 𝑏1(𝑘 + 2)𝑦𝐵(𝑘 + 3) + 𝑏0(𝑘 + 2)𝑦𝐵(𝑘 + 2)] + 𝑎1(𝑘)[𝑏4(𝑘 + 1)𝑦𝐵(𝑘 + 5) 

+𝑏3(𝑘 + 1)𝑦𝐵(𝑘 + 4) + 𝑏2(𝑘 + 1)𝑦𝐵(𝑘 + 3) + 𝑏1(𝑘 + 1)𝑦𝐵(𝑘 + 2) + 𝑏0(𝑘 + 1)𝑦𝐵(𝑘 + 1)] 
+𝑎0(𝑘)[𝑏4(𝑘)𝑦𝐵(𝑘 + 4) + 𝑏3(𝑘)𝑦𝐵(𝑘 + 3) + 𝑏2(𝑘)𝑦𝐵(𝑘 + 2) + 𝑏1(𝑘)𝑦𝐵(𝑘 + 1) + 𝑏0(𝑘)𝑦𝐵(𝑘)] 

= 𝑥𝐴(𝑘). 
 

Using 𝑥𝐴(𝑘) = 𝑥(𝑘), 𝑥𝐵(𝑘) = 𝑦𝐴(𝑘), 𝑦𝐵(𝑘) = 𝑦(𝑘) and rearranging the terms, we obtain the formula of 

system 𝐴𝐵 as follows: 

 

𝐴𝐵: 𝑎4(𝑘) 𝑏4(𝑘 + 4)𝑦(𝑘 + 8) 

+[𝑎4(𝑘) 𝑏3(𝑘 + 4) + 𝑎3(𝑘)𝑏4(𝑘 + 3)]𝑦(𝑘 + 7) 

+[𝑎4(𝑘)𝑏2(𝑘 + 4) + 𝑎3(𝑘)𝑏3(𝑘 + 3) + 𝑎2(𝑘)𝑏4(𝑘 + 2)]𝑦(𝑘 + 6) 

+[𝑎4(𝑘)𝑏1(𝑘 + 4) + 𝑎3(𝑘)𝑏2(𝑘 + 3) + 𝑎2(𝑘)𝑏3(𝑘 + 2) + 𝑎1(𝑘)𝑏4(𝑘 + 1)]𝑦(𝑘 + 5) 

+[𝑎4(𝑘)𝑏0(𝑘 + 4) + 𝑎3(𝑘)𝑏1(𝑘 + 3) + +𝑎2(𝑘)𝑏2(𝑘 + 2)𝑎1(𝑘)𝑏3(𝑘 + 1) + 𝑎0(𝑘)𝑏4(𝑘)]𝑦(𝑘 + 4) 

+[𝑎3(𝑘)𝑏0(𝑘 + 3) + 𝑎2(𝑘)𝑏1(𝑘 + 2) + 𝑎1(𝑘)𝑏2(𝑘 + 1) + 𝑎0(𝑘)𝑏3(𝑘)]𝑦(𝑘 + 3) 

+[𝑎2(𝑘)𝑏0(𝑘 + 2) + 𝑎1(𝑘)𝑏1(𝑘 + 1) + 𝑎0(𝑘)𝑏2(𝑘)]𝑦(𝑘 + 2) 

+[𝑎1(𝑘)𝑏0(𝑘 + 1) + 𝑎0(𝑘)𝑏1(𝑘)]𝑦(𝑘 + 1) 

+𝑎0(𝑘)𝑏0(𝑘)𝑦(𝑘) = 𝑥(𝑘).              (3) 

 

To obtain the difference equation describing the connection 𝐴𝐵 , we may either follow the above 

procedure for the connection 𝐵𝐴, rather than this we may better the inter-change the coefficients 𝑎𝑖 and 

𝑏𝑖; thus, we obtain 

 

𝐵𝐴: 𝑏4(𝑘)𝑎4(𝑘 + 4)𝑦(𝑘 + 8) 

+[𝑏4(𝑘)𝑎3(𝑘 + 4) + 𝑏3(𝑘)𝑎4(𝑘 + 3)]𝑦(𝑘 + 7) 

+[𝑏4(𝑘)𝑎2(𝑘 + 4) + 𝑏3(𝑘)𝑎3(𝑘 + 3) + 𝑏2(𝑘)𝑎4(𝑘 + 2)]𝑦(𝑘 + 6) 

+[𝑏4(𝑘)𝑎1(𝑘 + 4) + 𝑏3(𝑘)𝑎2(𝑘 + 3) + 𝑏2(𝑘)𝑎3(𝑘 + 2) + 𝑏1(𝑘)𝑎4(𝑘 + 1)]𝑦(𝑘 + 5) 

+[𝑏4(𝑘)𝑎0(𝑘 + 4) + 𝑏3(𝑘)𝑎1(𝑘 + 3) + 𝑏2(𝑘)𝑎2(𝑘 + 2) + 𝑏1(𝑘)𝑎3(𝑘 + 1) + 𝑏0(𝑘)𝑎4(𝑘)]𝑦(𝑘 + 4) 

+[𝑏3(𝑘)𝑎0(𝑘 + 3) + 𝑏2(𝑘)𝑎1(𝑘 + 2) + 𝑏1(𝑘)𝑎2(𝑘 + 1) + 𝑏0(𝑘)𝑎3(𝑘)]𝑦(𝑘 + 3) 

+[𝑏2(𝑘)𝑎0(𝑘 + 2) + 𝑏1(𝑘)𝑎1(𝑘 + 1) + 𝑏0(𝑘)𝑎2(𝑘)]𝑦(𝑘 + 2) 

+[𝑏1(𝑘)𝑎0(𝑘 + 1) + 𝑏0(𝑘)𝑎1(𝑘)]𝑦(𝑘 + 1) 

+𝑏0(𝑘)𝑎0(𝑘)𝑦(𝑘) = 𝑥(𝑘).       (4) 

 

Comparing the coefficients of 𝑦(𝑖) for connections  𝐴𝐵 and 𝐵𝐴, with  𝑖 = 𝑘 + 8, 𝑘 + 7, … 𝑘 + 1 (the case 

of  𝑖 = 𝑘 is ommitted since it gives an identity), we obtain 8 equations between 2𝑥5 = 10 coefficients of 

the subsytems 𝐴 and 𝐵: 

 

𝑎4(𝑘) 𝑏4(𝑘 + 4) = 𝑏4(𝑘)𝑎4(𝑘 + 4),     (5.1) 
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𝑎4(𝑘)𝑏3(𝑘 + 4) + 𝑎3(𝑘)𝑏4(𝑘 + 3) = 𝑏4(𝑘)𝑎3(𝑘 + 4) + 𝑏3(𝑘)𝑎4(𝑘 + 3),         (5.2) 

 

𝑎4(𝑘)𝑏2(𝑘 + 4) + 𝑎3(𝑘)𝑏3(𝑘 + 3) + 𝑎2(𝑘)𝑏4(𝑘 + 2) 

= 𝑏4(𝑘)𝑎2(𝑘 + 4) + 𝑏3(𝑘)𝑎3(𝑘 + 3) + 𝑏2(𝑘)𝑎4(𝑘 + 2),         (5.3) 

 

𝑎4(𝑘)𝑏1(𝑘 + 4) + 𝑎3(𝑘)𝑏2(𝑘 + 3) + 𝑎2(𝑘)𝑏3(𝑘 + 2) + 𝑎1(𝑘)𝑏4(𝑘 + 1) 

= 𝑏4(𝑘)𝑎1(𝑘 + 4) + 𝑏3(𝑘)𝑎2(𝑘 + 3) + 𝑏2(𝑘)𝑎3(𝑘 + 2) + 𝑏1(𝑘)𝑎4(𝑘 + 1),               (5.4) 

 

𝑎4(𝑘)𝑏0(𝑘 + 4) + 𝑎3(𝑘)𝑏1(𝑘 + 3) + 𝑎2(𝑘)𝑏2(𝑘 + 2) + 𝑎1(𝑘)𝑏3(𝑘 + 1) + 𝑎0(𝑘)𝑏4(𝑘) 

= 𝑏4(𝑘)𝑎0(𝑘 + 4) + 𝑏3(𝑘)𝑎1(𝑘 + 3) + 𝑏2(𝑘)𝑎2(𝑘 + 2) + 𝑏1(𝑘)𝑎3(𝑘 + 1) + 𝑏0(𝑘)𝑎4(𝑘),   (5.5) 

 

𝑎3(𝑘)𝑏0(𝑘 + 3) + 𝑎2(𝑘)𝑏1(𝑘 + 2) + 𝑎1(𝑘)𝑏2(𝑘 + 1) + 𝑎0(𝑘)𝑏3(𝑘) 

= 𝑏3(𝑘)𝑎0(𝑘 + 3) + 𝑏2(𝑘)𝑎1(𝑘 + 2) + 𝑏1(𝑘)𝑎2(𝑘 + 1) + 𝑏0(𝑘)𝑎3(𝑘),        (5.6) 

 

𝑎2(𝑘)𝑏0(𝑘 + 2) + 𝑎1(𝑘)𝑏1(𝑘 + 1) + 𝑎0(𝑘)𝑏2(𝑘) 

= 𝑏2(𝑘)𝑎0(𝑘 + 2) + 𝑏1(𝑘)𝑎1(𝑘 + 1) + 𝑏0(𝑘)𝑎2(𝑘),      (5.7) 

 

𝑎1(𝑘)𝑏0(𝑘 + 1) + 𝑎0(𝑘)𝑏1(𝑘) = 𝑏1(𝑘)𝑎0(𝑘 + 1) + 𝑏0(𝑘)𝑎1(𝑘),   (5.8) 

 

3. Solution of Commutativity Conditions 

 

The problem of finding all the fourth order commutative conjugates of a given fourth order discrete time 

system 𝐴 , we consider the solutions of the difference equations in Eq. (5).  It is assumed that the 

coefficients of 𝐴 is known. The coefficients of  𝐵 are found in the following order: 

i) Assuming  𝑏4(0),  𝑏4(1),  𝑏4(2),  𝑏4(3)  are arbitrary nonzero constants, solve the fourth-

degree difference equation (5.1) for   𝑏4(𝑘) for 𝑘 ≥ 4. 

ii) Knowing  𝑏4(𝑘) and assuming  𝑏3(0),  𝑏3(1),  𝑏3(2),  𝑏3(3) are arbitrary constants, solve the 

fourth-degree difference equation (5.2) for   𝑏3(𝑘) for 𝑘 ≥ 4. 

iii) Knowing  𝑏4(𝑘),  𝑏3(𝑘), and assuming  𝑏2(0),  𝑏2(1),  𝑏2(2),  𝑏2(3)  are arbitrary constants, 

solve the fourth-degree difference equation (5.3) for   𝑏2(𝑘) for 𝑘 ≥ 4. 

iv) Knowing  𝑏4(𝑘),  𝑏3(𝑘),  𝑏2(𝑘),  and assuming  𝑏1(0),  𝑏1(1),  𝑏1(2),  𝑏1(3)  are arbitrary 

constants, solve the fourth-degree difference equation (5.4) for   𝑏1(𝑘) for 𝑘 ≥ 4. 

v) Knowing  𝑏4(𝑘),  𝑏3(𝑘),  𝑏2(𝑘),  𝑏1(𝑘),  and assuming  𝑏0(0),  𝑏0(1),  𝑏0(2),  𝑏0(3)  are 

arbitrary constants, solve the fourth-degree difference equation (5.5) for   𝑏0(𝑘) for 𝑘 ≥ 4. 

The method of z-transform may be used to find the solutions. Since the complexity of difference 

equations is rather high and it is further increasing with substitutions of previous solutions each time, a 

proper computer toolbox, in MATLAB or Mathematica for example, is absolutely needed to obtain 

correct results. 

 

4. Existence of the Commutative Conjugate  
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It is mentioned in the previous section that 5𝑥4 = 20 arbitrary constants are needed for finding 

the coefficients of the commutative conjugates 𝐵 of the subsystem 𝐴. On the other hand, there are three 

remaining equations in (5) which have not been used, namely Eqs. (5.6), (5.7), (5.8). For the existence of 

the commutative conjugate 𝐵, these equations must also be satisfied for all 𝑘 ≥ 0. To fix the 20 arbitrary 

selected initial values at least 20 equations are needed. These equations can be chosen in the subset of  

{Eqs. (5.6), (5.7), (5.8) 𝑤𝑖𝑡ℎ 𝑘 ∈ [0, 19]}. If a solution is found, remember that Eqs. (5.6), (5.7), (5.8) 

must be satisfied for all 𝑘 ≥ 0. With the found 20 initial values of coefficients of  𝐵, if the remaining 

equations which have not been used in their computation are not satisfied or result with contradictions, 

this is sufficient to decide that the given fourth order discrete time system 𝐴 has not a fourth order 

commutative conjugate other than itself.  

 

 5. Conclusions  

 

The formulation of commutativity conditions is presented for 4-th order linear discrete time 

systems. It is shown that unlike the case of continuous time systems, the problem of finding the 

commutative conjugates of a given 4-th order discrete time system is very cumbersome.  General 

formulas for explicit commutativity conditions cannot be obtained as for the continuous time varying 

systems [3], [5], [6]. And it is hardly possible to find them for discrete time case by hand computation. 

Although the commutativity problem for first order discrete time systems is fully solved [8], no such 

explicit results have been presented so far for the higher order case. Therefore, Computer tools are 

necessary such as MATLAB or Mathematica. As it is shown in this presentation for the fourth-order 

discrete time systems, the conditions of commutativity are shown to be very stringent and very few 

systems have commutative conjugates. The difficulty will surely increase if the case of nonzero initial 

conditions is treated. This case and illustrative example which are relevant to the subject is reserved for 

future work and it will be presented in another issue. 

 

6. References 

 

1. Marshall, E. 1977. Commutativity of time-varying systems. Electronics Letters. 18, 539-540. 

2. Koksal, M. 1982. Commutativity of second order time-varying systems. International Journal of 

Control, 36(3), 541-544. 

3. Koksal, M. 1984. General conditions for the commutativity of time-varying systems, International 

Conference on Telecommunication and Control, Halkidiki, Greece, pp. 223-225, August 27-30. 

4. Koksal, M. 1985. A Survey on the Commutativity of Time-Varying Systems, METU, Technical 

Report no: GEEE CAS-85/1. 

5. Koksal, M., Koksal, M. E. 2011. Commutativity of linear time-varying differential systems with non-

zero initial conditions: A review and some new extensions. Mathematical Problems in Engineering, 1-

25. 

6. Ibrahim, S., Koksal, M.E. 2021. Commutativity of Sixth-order Time-Varying Linear Systems, 

Circuits, Systems, and Signal Processing, 40(10), 4799-4832. 

7. Koksal, M., Koksal, M.E. 2015. Commutativity of cascade connected discrete time linear time-

varying systems, Transactions of the Institute of Measurement and Control, 37(5), 615-622. 

206



 

6
th

 INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 

21-24 June 2022, Istanbul, Turkey 

 

 

ICOM 2022 

ISTANBUL / TURKEY 

8. Koksal, M.E. 2019. Commutativity of first-order discrete-time linear time-varying systems, 

Mathematical Methods in the Applied Sciences, 42(16), 5274-5292. 

9. Korkmaz, R.F., Koksal, M.E. 2021. Commutativity of Third-Order Discrete-Time Linear Time-

Varying Systems, 5th International Conference on Mathematics: “An Istanbul Meeting for World 

Mathematicians”, 1-3 Dec 2021, Istanbul, Turkey, pp. 437-443. 

 

 

207



 
6th INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 
21-24 June 2022, Istanbul, Turkey 

 

 
ICOM 2022 

ISTANBUL / TURKEY 

Convulation Properties of Certain Sublasses of Multivalent Functions 

Yücel Özkan1, Sercan Kazımoğlu1, Murat Çağlar2 

 
1 Department of Mathematics, Faculty of Science and Letters, Kafkas University, Kars-TURKEY, 

2 Department of Mathematics, Faculty of Science, Erzurum Technical University, Erzurum-TURKEY, 
E-mail: y.ozkan3636@gmail.com, srcnkzmglu@gmail.com, mcaglar25@gmail.com 

  
 

Abstract 
In this study, we consider certain subclasses of multivalent functions defined by Deniz- Özkan differential 
operator. We obtain convulation (or modified Hadamard products) of functions belonging to these 
subclasses  
 

Keywords: Modified Hadamard product, Differential operator. 
 
 
 

1. Introduction and definitions 

 

Let ( , )k p  denote the class of functions normalized by 

( ) p n
n

n k p
f z z a z

∞

= +

= + ∑        ( ), : {1,2,3,...}p k∈ =                           (1) 

which are analytic and p valent−   in the open unit disk { : and 1}.z z z= ∈ <  

Let ( )f z  and ( )g z  be analytic in .  Then we say that the function f  is subordinate to g  if there 
exists a Schwarz function ( ),w z  analytic in   with (0) 0,w = ( ) 1w z <  such that 

( ) ( ( ))   ( ).f z g w z z= ∈ We denote this subordination   or ( ) ( )  ( ).f g f z g z z∈     

In particular, if the function g  is univalent in  , the above subordination is equivalent to (0) (0),f g=    
( ) ( ).f g⊂   

For ( , )f k p∈  given by (1) and ( )g z  given by  

                                       ( ) p n
n

n k p
g z z b z

∞

= +

= + ∑  ( ), : {1,2,3,...}p k∈ =                                 (2)   

their convolution (or Hadamard product), denoted by ( ),f g∗  is defined as  
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( )( ) : : ( )( )p n
n n

n k p
f g z z a b z g f z

∞

= +

∗ = + = ∗∑    ( ).z∈                           (3) 

Note that ( , ).f g k p∗ ∈ In particular, we set 

( ,1) : , (1, ) : ( ), (1,1) : .1p k kp= = = =         

Definition 1. (Deniz- Çekin differential operator) [5] Let ( , ).f k p∈  For the parameters 0λ ≥  , 
z U∈  and { }0 0m∈ = ∪   the differential operatör m

λ  on ( , )k p  by the following 

:, ( , ) ( , ),m
p k p k pλ →    

0
, ( ) ( )p f z f zλ =                                                                                        (4)                    

( ) ( ){ }11 3 2( ) ( ) '''( ) 2 1 ''( ) 1 ( 1) '( ), , 2f z f z z f z z f z p p zf zp p p
λ λ λλ λ= = + + + − −



 
 

( )1( ) ( ), , , .m mf z f zp p pλ λ λ
−=      

If f  is given by (1) then from the definition of the differential operator ,
m

pλ   we can easily see that  

         ( )( ) , ,,
pm nnf z z m p a zp nn k p

λλ
∞
∑= + Φ

= +
                                       (5) 

where 

                              ( ) ( )( )( )1
, , .2

m
n n p n p nn m p

p

λ
λ

 − + − +
 =
  

Φ                                         (6) 

Remark 1. It should be remarked that the operator ,
m

pλ  is a generalization of many other linear differential 

operators considered earlier. In particular, for ( , )f k p∈  we have the following: 

(i) ,1 , ( 0)m m
λ λ λ= ≥  the Deniz-Özkan differential operator [2]. 

(ii) 2
0,1 1
m m=   ( )0δ ∈  the Salagean differential operator [4]. 

(iii) 2
0, , ( )m m

p p p= ∈    Shenan, Salim and Mousa oprator [5]. 
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Now, by making use of the operator ,,
m

pλ  we define a new subclass of functions belonging to the class 

( , )k p . 

Definition 2. Let 0λ ≥  and { }0 0 ,m p∈ = ∪ ∈    and for the parameters , Aσ  and B such that 

1 1, 0 1A B B− ≤ < ≤ < ≤  and 0 ,pσ≤ <                (7) 

we say that a function ( ) ( , )f z k p∈  is in the class  ( , ; , )m A B pσλ  if it satisfies the following subordination 
condition:  

       
[ ( )]1 1,

1 1

m f z Azp
pp Bzz

λ σ
σ

′ +
−−− +

 
 
 
 




       ( ).z∈                                     (8) 

If the following inequality holds true,  

                     

[ ( )],
1

1
[ ( )], [ ( )( )]1

m f zp ppz
m f zpB pB A B ppz

λ

λ σ

′
−−

<
′
− + − −−




          ( )z∈                      (9) 

the inequality (9) is equivalent the subordination condition (8). 

We note that by specializing the parameters , , , ,m A Bλ σ  and ,p  the subclass ( , ; , )m A B pσλ  reduces to 
several well-known subclasses of analytic functions. Furthermore, we say that a function 

( ) ( , ; , )mf z A B pσλ∈   is in the subclass ( , ; , )m A B pσλ  if  ( )f z  is of the following form: 

( ) p n
n

n k p
f z z a z

∞

= +

= − ∑     ( ), : {1,2,3,...} .p k∈ =                 (10) 

In our present paper, we shall make use of the familiar integral operator , pϑ  defined by (see, for 
details, [2, 11, 13]; see also [25]) 

1
,

0

( )( ) : ( )
z

p p

pz t f t dt
z

ϑ
ϑ

ϑ −+
= ∫       ( , ); 0; )f k p p pϑ∈ + > ∈      (11) 

as well as the fractional calculus operator z
ν  for which it is well known that (see, for details, [16,23] and 

[21]; see also Section 7) 
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( 1)
{ } ( 1; )

( 1 )
pz zz

ρ ρ νν ρ ν
ρ ν

Γ + −= > − ∈
Γ + −

                          (12) 

in terms of Gamma function. 

The main object of the present paper is to investigate the various important properties and 
characteristics of two subclasses of ( , )k p  of normalized analytic functions in   with negative and 
positive coefficients, which are introduced here by making use of the  differential operator defined by (4). 
Inclusion relationships for the class ( , ; , )m A B pσλ  are investigated by applying the techniques of 
convolution. Furthermore, several properties involving generalized neighborhoods and partial sums for 
functions belonging to these subclasses are investigated. Finally, some applications of fractional calculus 
operators are considered. Relevant connections of the definitions and results presented here with those 
obtained in several earlier works are also pointed out.   

2. Basic properties of the function class ( , ; , )m A B pσλ  

We first determine a necessary and sufficient condition for a function ( ) ( , )f z k p∈  of the form (10) 
to be in the class ( , ; , ).m A B pσλ  

Theorem 1. Let the function ( ) ( , )f z k p∈  be defined by (10). Then the function ( )f z  is in the class 
( , ; , ).m A B pσλ  if and only if 

( )( ) ( )( )1 ( , , ) ( )( )n
n

n k p
n p B B A p m p a B A pσ λ σ

∞

= +

− + − − − Φ ≤ − −  ∑                              (13) 

where ( , , )n m pλΦ  is given by (6). 

Proof. If the condition (13) hold true, we find from (10) and (13) that 

, , , ,[ ( )] ( ) [ ( )] ( )[ ( )( ) ]m m m m
p p p pz f z p f z Bz f z f zpB A B pλ λ λ λσ′ ′− −− + − −     

( )

( )

( , , )

( )( ) ( )( ) ( , , )

n n
n

n k p

p n n
n

n k p

n p m p a z

B A p z B n p B A p m p a z

λ

σ σ λ

∞

= +

∞

= +

= − − Φ

 
− − − − + − − − − Φ 

 

∑

∑
 

( )( ) ( )( )1 ( , , ) ( )( ) 0n
n

n k p
n p B B A p m p a B A pσ λ σ

∞

= +

≤ − + − − − Φ − − − ≤  ∑    

( ){ : and 1} .z z z z∈∂ = ∈ =  
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Hence, by the Maximum Modulus Theorem, we have 

( ) ( , ; , ).mf z A B pσλ∈   

Conversely, assume that the function ( )f z  defined by (10) is in the class ( , ; , ).m A B pσλ  Then we have 

,

,

,

,

( )
( )

( )
( )

[ ]

[ ]
[ ( )( )]

m
p

m
p

m
p

m
p

f z
f z

f z
f z

z
p

z
B pB A B p

λ

λ

λ

λ

σ

′
−

′
− + − −







 

( )

( )

( , , )
1 ( ).

( )( ) ( , , ) ( )( )

n n
n

n k p

n n p
n

n k p

n p m p a z
z

B n p B A p m p a z B A p z

λ

σ λ σ

∞

= +
∞

= +

− Φ
= < ∈

− − + − − Φ + − −  

∑

∑
      (14) 

Now, since ( )z zℜ ≤  for all ,z  we have 

     
( )

( ) ( )( ) ( )( )

( , , )
1.

( , , )

n n p
n

n k p

n n p
n

n k p

n p m p a z

B n p B A p m p a z B A p

λ

σ λ σ

∞
−

= +
∞

−

= +

 − Φ 
 ℜ <
  − − + − − Φ + − −  
 

∑

∑
  (15) 

We choose values of z  on the real axis so that the following expression: 

[ ( )],
( ),

mz f zp
m f zp

λ

λ

′


 

is real. Then, upon clearing the denominator in (15) and letting 1z −→  though real values, we get the 
following inequality 

( )( ) ( )( )1 ( , , ) ( )( )n
n

n k p
n p B B A p m p a B A pσ λ σ

∞

= +

− + − − − Φ ≤ − −  ∑  

This completes the proof of Theorem 1.                          

2. Properties associated with Quasi-convolution  
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 In this part, we establish certain results concerning the Quasi-convolution of function is in the class 
( , ; , ).m A B pσλ  

 For the functions ( ) ( , )jf z k p∈  given by 

      ,( ) ( 1, , ),p n
j n j

n k p
f z z a z j t p

∞

= +

= − = ∈∑         (16) 

we denote by 1 2( )( )f f z•  the Quasi-convolution of functions 1( )f z  and 2 ( ),f z  that is, 

1 2 ,1 ,2( )( ) .p n
n n

n k p
f f z z a a z

∞

= +

• = − ∑                (17) 

 

Theorem 2.  If ( , ; , )( )j
m A B pf z σλ∈  ( 1, ),j t=  then  

 1 2 ( , ; , )( ... )( ) ,t
m A B pf f f z λ• • • ∈ ϒ                                                (18) 

where 

( )
1

1

( )( )
:

( ) (1 ) ( , , )]

m

j
j

k p t

B A p
p

B A k B B A m p

σ

λ
=

+ −

− −
ϒ = −

− + − − Φ  

∏
   (19) 

The result is sharp for the functions ( )jf z  given by 

[ ]
( )( )

( ) ( 1, ).
(1 ) ( ) ( , , )

jp p k
j k p

B A p
f z z z j t

k B B A m p
σ

λ
+

+

− −
= − =

+ − − Φ
  (20) 

Proof. For 1,t =  we see that 1.σϒ =  For 2,t =  Theorem 1, gives 

( )( ) ( )( )
,

1 ( , , )
1 ( 1,2).

( )( )

n

n j
n k p j

n p B B A P m p
a j

B A p
σ λ

σ

∞

= +

− + − − − Φ   ≤ =
− −∑     (21) 

Therefore, by the Cauchy-Schwarz inequality, we obtain  

( )( ) ( )( )
1.,1 ,22

( )( )
1

1 ( , , )n

a an nn k p
B A p jj

n p B B A P m p

σ

σ λ∞
≤∑

= +
− −∏

=

− + − − − Φ     (22) 
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To prove the case when 2,t =  we have to find the largest ϒ  such that 

( )( ) ( )( )
,1 ,2

1 ( , , )
1,

( )( )

n

n n
n k p

n p B B A P m p
a a

B A p
σ λ∞

= +

− + − − − Φ   ≤
− − ϒ∑                  (23) 

or such that 

,1 ,2,1 ,2

2

1

,
( )( )

( )( )

n nn n

j
j

a aa a
B A p

B A p σ
=

≤
− − ϒ

− −∏
                     (24) 

this, equivalently, that 

,1 ,2 2

1

( )( ) .
( )( )

n n

j
j

B A pa a
B A p σ

=

− − ϒ
≤

− −∏
               (25) 

Further, by using (22), we need to find the largest ϒ  such that 

( )( ) ( )( )

2

1

2

1

( )( )
( )( )

1 ( , , )
( )( )

j
j

n

j
j

B A p
B A p

n p B B A P m p
B A p

σ

σ λ
σ

=

=

− −
− − ϒ

≤
− + − − − Φ   − −

∏

∏
 

or, equivalently, that 

( )( ) ( )( )
2

1

1 ( , , )1 .
( )( ) ( )( )

n

j
j

n p B B A P m p
B A p B A p

σ λ

σ
=

− + − − − Φ  ≤
− − ϒ − −∏

                        (26) 

It follows from (24) that 

( )( ) ( )( )

2

1

( )( )
.

( ) 1 ( , , )

j
j

n

B A p
p

B A n p B B A P m p

σ

σ λ
=

− −
ϒ ≤ −

− − + − − − Φ  

∏
              (27) 

Now, defining the function ( )nψ  by 

214



 
6th INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 
21-24 June 2022, Istanbul, Turkey 

 

 
ICOM 2022 

ISTANBUL / TURKEY 

( )( ) ( )( )

2

1

( )( )
( ) ,

( ) 1 ( , , )

j
j

n

B A p
n p

B A n p B B A P m p

σ
ψ

σ λ
=

− −
= −

− − + − − − Φ  

∏
                (28) 

we see that ( ) 0nψ ′ ≥  for .n p k≥ +  This implies that 

( ) ( )( )

2

1

( )( )
( ) .

( ) 1 ( , , )

j
j

k p

B A p
k p p

B A k B B A P m p

σ
ψ

σ λ
=

+

− −
ϒ ≤ + = −

− + − − − Φ  

∏
 

Therefore, the result is true for 2.t =  

 Suppose that the result is true for any positive integer .t  Then we have

1 2 1( ... )( ) ( , ; , ),m
t tf f f f z A B pλ γ+• • • • ∈  when 

( ) ( )( )
1( )( )( )( )

( ) 1 ( , , )
t
k p

B A p B A pp
B A k B B A P m p

σγ
σ λ

+
+

− − ϒ − −
= −

− + − − − Φ  
 

where, ϒ  is given by (19). After a simple calculation, we have 

( ) ( )( )

1

1

( )( )
.

( ) 1 ( , , )

t

j
j

k p

B A p
p

B A k B B A P m p

σ
γ

σ λ

+

=
+

− −
≤ −

− + − − − Φ  

∏
 

Thus, the result is true for 1.t +  Therefore, by using the mathematical induction, we conclude that the result 
is true for any positive integer .t   

 Finally, taking the functions ( )jf z  defined by (20), we have 

( ) ( )( )1 2
1

( )( )
( ... )( )

1 ( , , )

,

m
jp p k

t k p
j

p k p
k p

B A p
f f f z z z

k B B A P m p

z z

σ
σ λ

+
+

=

+
+

 − − • • • = −  + − − − Φ    
= −Α

∏  

which shows that 
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( )( ) ( )( )

( ) ( )( )

1 ( , , )
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n
n k p

k p
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n p B B A P m p
B A p

k B B A P m p
B A p

σ λ

σ λ

∞
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+

+

+ + − − − Φ   Α
− − ϒ

+ − − − Φ  = Α
− − ϒ

∑
                                  

( ) ( )( )
( ) ( )( )

2

1

1 ( , , ) ( )( )
1.

( )( ) 1 ( , , )

k p
j

k p
j

k B B A P m p B A p
B A p k B B A P m p

σ λ σ
σ λ

+

+
=

 + − − − Φ  − −  = = − − ϒ + − − − Φ    
∏  

Consequently, the result is sharp.          

 Putting jσ σ=  ( 1, ),j t=  in Theorem 2, we have; 

Corollary 2. If ( ) ( , ; , )m
jf z A B pλ σ∈  ( 1, ),j t=  then  

1 2( ... )( ) ( , ; , ),t
mf f f z A B pλ• • • ∈ ϒ  

where 

( ) ( )( )
1

[( )( )]:
( ) 1 ( , , )

t

tk p

B A pp
B A k B B A P m p

σ

σ λ
−+

− −
ϒ = −

 − + − − − Φ   
 

The result is sharp for the functions ( )jf z  given by 

( ) ( )( )
( )( )( ) ( 1, ).

1 ( , , )
k p

j k p

B A pf z z j t
k B B A P m p

σ
σ λ

+
+

− −
= =

+ − − − Φ  
 

 

Theorem 3. Let the functions ( )jf z ( 1, )j t= given by (6.1) be in the class ( , ; , ).m
jA B pλ σ  Then the 

function  

2

,
1

( )
t

p n
n j

n k p j
h z z a z

∞

= + =

 
= −  

 
∑ ∑                         (29) 

belongs to the class ( , ; , ),m A B pλ χ  where 

( ) ( )( )
2

1 2
( )( ): ( : min{ , ,..., }).

1 ( , , ) tk p

t B A pp
k B B A P m p

σχ σ σ σ σ
σ λ

∗
∗

+

− −
= − =

+ − − − Φ  
 (30) 
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The result is sharp for the functions ( )jf z  ( 1, )j t=   given by (20). 

Proof. By virtue of Theorem 1 we have 

( )( ) ( )( )

( )( ) ( )( )

2
2

,

2

,

1 ( , , )
( )( )

1 ( , , )
1.

( )( )

n

n j
n k p j

n

n j
n k p j

n p B B A p m p
a

B A p

n p B B A p m p
a

B A p

σ λ
σ

σ λ
σ

∞

= +

∞

= +

 − + − − − Φ    − −  

 − + − − − Φ   ≤ ≤ − −  

∑

∑
                    (31) 

Then it follows that for ( 1, ),j t=  

( )( ) ( )( )
2

2

,
1

1 ( , , )1 1.
( )( )

n t

n j
n k p jj

n p B B A p m p
a

t B A p
σ λ

σ

∞

= + =

 − + − − − Φ      ≤   − −    
∑ ∑               (32) 

Therefore, we need to find the largest χ  such that 

( )( ) ( )( ) 2

,
1

1 ( , , )1 1.
( )( )

n t

n j
n k p j

n p B B A p m p
a

t B A p
σ λ

χ

∞

= + =

 − + − − − Φ      ≤  − −   
∑ ∑   (33) 

This implies that 

( )( ) ( )( )
2

1 2
( )( ) ( : min{ , ,..., }, ).

1 ( , , ) tn

t B A pp n k p
n p B B A p m p

σχ σ σ σ σ
σ λ

∗
∗− −

≤ − = ≥ +
− + − − − Φ  

   (34) 

Now, defining the function ( )nℑ  by 

( )( ) ( )( )
2( )( )( ) : ,

1 ( , , )n

t B A pn p
n p B B A p m p

σ
σ λ

∗− −
ℑ = −

− + − − − Φ  
                (35) 

we see that ( )nℑ  is an increasing function of ,n  .n k p≥ +  Setting n k p= +  in (31) we have  

( ) ( )( )
2( )( )( ) :

1 ( , , )k p

t B A pk p p
k B B A P m p

σχ
σ λ

∗

+

− −
≤ ℑ + = −

+ − − − Φ  
 

which completes the proof of Theorem 3. 

 Setting jσ σ=  ( 1, ),j t=  in Theorem 3, we arrive at the following result. 
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Corollary 3. Let the functions ( )jf z ( 1, )j t= given by (16) be in the class ( , ; , ).m A B pλ σ  Then the 
function  

2

,
1

( )
t

p n
n j

n k p j
h z z a z

∞

= + =

 
= −  

 
∑ ∑  

belongs to the class ( , ; , ),m A B pλ χ  where 

( ) ( )( )
2( )( ): .

1 ( , , )k p

t B A pp
k B B A P m p

σχ
σ λ+

− −
= −

+ − − − Φ  
 

The result is sharp for the functions ( )jf z  ( 1, )j t=   given by (20). 
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Abstract 

This work is the first to investigate the Data Envelopment Model (DEA) in the presence 

of q-Rung fuzzy inputs and outputs. Fundamental CCR and BCC models are presented in the 

context of q-Rung triangular fuzzy numbers (qRTFNs), which take into account the truth and 

falsity membership degrees of each input and output and provide a novel solution approach for 

it. This method divides a q-Rung fuzzy DEA (qR-FDEA) model into two crisp DEA models, 

first evaluating data value efficiency and the second evaluating membership grade 

efficiency.  The efficiency score of the DMU is a combination of the efficiency score of the 

data value and the efficiency score of the membership grade. Furthermore, an example shows 

the applicability and validity of this unique technique, and DMUs are ranked based on their 

combined overall efficiency score. 

Keywords:  Data Envelopment Analysis; q-Rung Fuzzy Set (qRFS); Efficiency Analysis; q-Rung 

Triangular Fuzzy Number (qRTFN); Ranking. 

1. Introduction 

 
Decision-makers (DMs) cannot conduct their own cognitive evaluation in a completely precise 

environment in multi-attribute decision-making (MADM) situations due to the ambiguity and complexity of 

the problems. Many researchers have used fuzzy sets in MADM situations to tackle this challenge and have 

gotten a lot of research findings as a consequence. Many distinct kinds of higher fuzzy sets were proposed 

after Zadeh's [1] 1965 introduction of fuzzy sets. Atanassov [2] 1986 modified the fuzzy set into an 

intuitionistic fuzzy set (IFS), including membership and nonmembership. Yager [3] in 2013 proposed the 

pythogorean fuzzy set (PFS) as a human decision-making model for voting, which includes membership and 

non membership grade and satisfy the condition sum of squar of membership and non membership grade is 

at most one. Yager [4] proposed the q-rung fuzzy set (q-RFS) as a variant of the classical fuzzy set and IFS 

in which the qth order power summation of the membership and nonmembership functions is at most one. 

The domain of uncertainty increases as the rung q increases. As a result, q-RFS allows decision-makers to 

express opinions more effectively. The q-RFS is successfully used in many MCDM problems such as AHP 

[5], TOPSIS [5], ELECTRE [6], PROMETHEE [7], etc. 
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Data envelopment analysis (DEA) is a nonparametric system analysis method for evaluating the relative 

efficiency of decision-making units (DMUs) with multiple inputs and outputs. For performance evaluation 

of a certain production activity, DMUs aim to produce higher outputs with as few inputs as possible. 

Obviously, the optimal alternative. The original DEA model was put forward by Charnes et al. [8], defined 

as the CCR model. The CCR model assumes the constant return to scale (CRS), which means that when 

inputs increase by times, outputs also increase by the same proportion. Later, Banker et al. [9] put forward 

the BCC model with variable returns to scale (VRS) to apply to the production situation where outputs and 

inputs do not need to change in the same proportion. The proposal of two models opened up a new field for 

efficiency evaluation systems. In the process of continuous improvement, many DEA models have been 

proposed to adapt to different evaluation scenarios, such as the additive model, superefficiency model, cross-

efficiency model, SBM model, and so on. The DEA is a powerful and efficient MCDM approach that has 

been widely implemented in various fields such as a variety of industries, including banking institutions [10], 

the insurance business [11], education [12], supply chain manegment [13], crises management [14], 

sustainability [15], energy [16] and healthcare services [17]. 

Sengupta [18], in 1992, used fuzzy sets in DEA for the first time. The DEA techniques employing 

fuzzy theory may be grouped into four basic groups, according to Hatami-Marbini et al. [19]: parametric 

approaches, possibility approaches, ranking approaches, defuzzification approaches, and many additional 

approaches have been brought to fuzzy DEA advancement. Emrouznejad et al. [20] in 2014 categorized the 

fuzzy DEA approach into six types: "the tolerance technique, the 𝛼 −level-based approach, the fuzzy ranking 

approach, the possible approach, the fuzzy arithmetic, and the fuzzy random/type-2 fuzzy set," and reviewed 

the literature during the last 30 years. Zhou and Xu [21] summarizes the fuzzy data envelopment analysis 

research and its successful implementations. Several ways to deal with inaccurate, ambiguous, partial, and/or 

missing data in DEA have been proposed. Stochastic approaches and interval DEA models are widely utilized 

to detect inaccurate input and output data. Additionally, a number of research publications have been 

published in DEA that use intuitionistic fuzzy sets [22]. Gandotra et al. [23] proposed the data envelopment 

analysis in the context of the intuitionistic fuzzy weighted entropy approach. Sahil et al. [24] proposed the 

Parabolic Intuitionistic Fuzzy based Data Envelopment Analysis based on a parametric approach. Puri and 

Yadav [25] presented the optimistic and pessimistic efficiencies with intuitionistic fuzzy input/output data in 

DEA. Arya and Yadav [26] proposed the intuitionistic fuzzy data envelopment analysis (IFDEA) and dual 

IFDEA (DIFDEA) models based on 𝛼- and 𝛽-cuts, and the index ranking approach is used to rank the DMUs. 

Javaherian et al. [27] proposed the fuzzy network two-stage DEA model based on the expected value of the 

Intuitionistic fuzzy inputs and outputs. Shakouri et al. [28] proposed the intuitionistic fuzzy network DEA 

model based on a parametric approach. Santos Arteaga et al. [29] proposed a novel method for solving 

Intuitionistic Fuzzy Data Envelopment Analysis. Edalatpanah [30] proposed a ranking approach for solving 

the intuitionistic fuzzy DEA model. 

After reviewing the literature, we were unable to find any articles that did not examine the data 

envelopment analysis model using a q-Rung fuzzy set. As a result, we investigated and developed a model 

for data envelopment analysis based on q-rung fuzzy inputs and outputs, which is called the q-Rung fuzzy 

data envelopment analysis (qR-FDEA) model. The suggested qR-FDEA model evaluates the effectiveness 

of a group of homogenous DMUs when q-Rung triangular fuzzy inputs and outputs are present. The qR-
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FDEA model is solved using an innovative solution approach. This qR-FDEA model enables the decision-

maker to describe their level of uncertainty in a wider domain.  

This paper is organised as follows: Section 2 explained some preliminary findings and essential 

concepts. In Section 3, we constructed q-Rung fuzzy data envelopment analysis on the basis of the 

aggrigation operator. Section 4 suggested solution methodology of the proposed q-Rung fuzzy data 

envelopment analysis.. Section 5 presents a case study to demonstrate the applicability and validity. Finally, 

several possible future study directions were discussed in the conclusion section.. 

2. Preliminaries 
In this section, we studied the preliminary results and operation of the q-Rung fuzzy set. The 

aggregation operator for the q-Rung fuzzy set is defined here.  

 

Definition 1 [1] Let 𝑈 be a universe. A fuzzy set 𝐹 in 𝑈 is given by  

 𝐹 = {(𝑥, 𝜇𝐹(𝑥)): 𝑥 ∈ 𝑈} 

 where 𝜇𝐹: 𝑈 → [0,1] is the membership function. The nonmembership function of any 𝑥 ∈ 𝐹 is defined as 

𝜇𝐹(𝑥) = 1 − 𝜇𝐹(𝑥).  

  Definition 2 [2] Let 𝑈 be a universe. An intuitionistic fuzzy set 𝐼 in 𝑈 is given by: 

 𝐼 = {(𝑥, 𝜇𝐼(𝑥), 𝜈𝐼(𝑥)): 𝑥 ∈ 𝑈} 

 where the function 𝜇𝐼 , 𝜈𝐼: 𝑈 → [0,1]  defines the membership and nonmembership degree of 𝑥 ∈ 𝐼 , 

respectively, and satisfies 0 ≤ 𝜇𝐼(𝑥) + 𝜈𝐼(𝑥) ≤ 1, ∀𝑥 ∈ 𝑈.  The hesitancy degree 𝜋𝐼(𝑥) = 1 − 𝜇𝐼(𝑥) −

𝜈𝐼(𝑥). 

Definition 3 [3] Let 𝑈 be a universe. A Pythagorean fuzzy set 𝑃 in 𝑈 is defined as  

 𝑃 = {⟨𝑥, 𝜇𝑃(𝑥), 𝜈𝑃(𝑥)⟩: 𝑥 ∈ 𝑈} 

 where 𝜇𝑃  and 𝜈𝑃  are the membership and nonmembership degrees, respectively. 𝜇𝑃 , 𝜈𝑃: 𝑈 → [0,1],  and 

satisfy the condition 0 ≤ 𝜇𝑃
2(𝑥) + 𝜈𝑃

2(𝑥) ≤ 1  for all 𝑥 ∈ 𝑈.  Pythagorean fuzzy index 𝜋𝑃(𝑥) =

√1 − 𝜇𝑃
2(𝑥) − 𝜈𝑃

2(𝑥) . 

Definition 4 [4] A q-Rung fuzzy set 𝑄 in a finite universe of discourse 𝑈 is defined as follows by  

 𝑄 = {⟨𝑥, 𝜇𝑄(𝑥), 𝜈𝑄(𝑥)⟩: 𝑥 ∈ 𝑈} (1) 

 where the function 𝜇𝑄: 𝑈 → [0,1] denotes the degree of membership and 𝜈𝑄: 𝑈 → [0,1] denotes the degree 

of nonmembership of the element 𝑥 ∈ 𝑈 to the set 𝑄, respectively, with the condition that 0 ≤ 𝜇𝑄
𝑞
(𝑥) +

𝜈𝑄
𝑞
(𝑥) ≤ 1, (𝑞 ≥ 1)  for every 𝑥 ∈ 𝑈 . The degree of indeterminacy is given as 𝜋𝑃(𝑥) =

√1 − 𝜇𝑃(𝑥)
𝑞 − 𝜈𝑃(𝑥)

𝑞𝑞
 . 
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Definition 5 A q-Rung Triangular Fuzzy Numbers (qRTFNs) is denoted by �̂� = 〈𝑥𝐿 , 𝑥M, 𝑥𝑈; 𝜙𝑥 , 𝜓𝑥〉, where 

the three membership functions for the truth, falsity, and indeterminacy of 𝑥 can be defined as follows:  

 𝜏(𝑥) =

{
 
 

 
 
𝑥−𝑥𝐿

𝑥M−𝑥𝐿
𝜙𝑥 , if   𝑥 ∈ [𝑥

𝐿, 𝑥M]

    𝜙𝑥 ,     if   𝑥 = 𝑥
M

𝑥𝑈−𝑥

𝑥𝑈−𝑥M
𝜙𝑥 , if    𝑥 ∈ [𝑥

M, 𝑥𝑈]

     0, otherwise

 

  

 𝜈(𝑥) =

{
 
 

 
 
𝑥M−𝑥+(𝑥−𝑥𝐿)𝜓𝑥

𝑥𝑀−𝑥𝐿
,   if   𝑥 ∈ [𝑥𝐿 , 𝑥M]

     𝜓𝑥 ,     if   𝑥 = 𝑥
M

𝑥𝑈−𝑥+(𝑥−𝑥𝑀)𝜓𝑥

𝑥𝑈−𝑥M
, if    𝑥 ∈ [𝑥M, 𝑥𝑈]

    1, otherwise

 

 where  0 ≤ 𝜏(𝑥)𝑞 + 𝜈(𝑥)𝑞 ≤ 1.  

Definition 6 Suppose �̂�1 = 〈𝑥1
𝐿 , 𝑥1

𝑀 , 𝑥1
𝑈; 𝜙𝑥1 , 𝜓𝑥1〉, and �̂�2 = 〈𝑥2

𝐿 , 𝑥2
𝑀 , 𝑥2

𝑈; 𝜙𝑥2 , 𝜓𝑥2〉, be two qRTFNs. The 

arithmetic relationships are defined as follows:   

1. �̂�1⊕ �̂�2 = ⟨𝑥1
𝐿 + 𝑥2

𝐿 , 𝑥1
𝑀 + 𝑥2

𝑀 , 𝑥1
𝑈 + 𝑥2

𝑈; √𝜙𝑥1
𝑞
+𝜙𝑥2

𝑞
− 𝜙𝑥1

𝑞
𝜙𝑥2
𝑞𝑞

, 𝜓𝑥1𝜓𝑥2⟩.  

2. �̂�1 − �̂�2 = ⟨𝑥1
𝐿 − 𝑥2

𝑈, 𝑥1
𝑀 − 𝑥2

𝑀 , 𝑥1
𝑈 − 𝑥2

𝐿; √𝜙𝑥1
𝑞
+ 𝜙𝑥2

𝑞
− 𝜙𝑥1

𝑞
𝜙𝑥2
𝑞𝑞

, 𝜓𝑥1𝜓𝑥2⟩.  

3. �̂�1⊗ �̂�2 = ⟨𝑥1
𝐿𝑥2

𝐿, 𝑥1
𝑀𝑥2

M, 𝑥1
𝑈𝑥2

𝑈; 𝜙𝑥1𝜙𝑥2 , √𝜓𝑥1
𝑞
+ 𝜓𝑥2

𝑞
− 𝜓𝑥1

𝑞
𝜓𝑥2
𝑞𝑞

⟩.  

4. 𝜆�̂�1 =

{
 
 

 
 ⟨𝜆𝑥1

𝐿, 𝜆𝑥1
𝑀, 𝜆𝑥1

𝑈; √1 − (1 − 𝜙𝑥1
𝑞
)𝜆

𝑞

, 𝜓𝑥1
𝜆 ⟩ , 𝜆 > 0.

⟨𝜆𝑥1
𝑈, 𝜆𝑥1

𝑀 , 𝜆𝑥1
𝐿; √1 − (1 − 𝜙𝑥1

𝑞
)−𝜆

𝑞

, 𝜓𝑥1
−𝜆⟩ ,   𝜆 < 0.

  

5. �̂�1
𝜆 = ⟨(𝑥1

𝐿)𝜆, (𝑥1
𝑀)𝜆, (𝑥1

𝑈)𝜆; 𝜙𝑥1
𝜆 , √1 − (1 − 𝜓𝑥1

𝑞
)𝜆

𝑞

⟩ . 

Lemma 1 Suppose �̂�𝑖 = 〈𝑥𝑖
𝐿, 𝑥𝑖

M, 𝑥𝑖
𝑈; 𝜙𝑥𝑖 , 𝜓𝑥𝑖〉,  for 𝑖 = 1,2,⋯ , 𝑛  are 𝑛  qRTFNs. Then the aggregation 

operator is defined as  

 ∑𝑛𝑖=1 𝜆𝑖𝑋�̂� = ⟨∑
𝑛
𝑖=1 𝜆𝑖𝑥𝑖

𝐿 , ∑𝑛𝑖=1 𝜆𝑖𝑥𝑖
𝑀 , ∑𝑛𝑖=1 𝜆𝑖𝑥𝑖

𝑈; 
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                                                        √1 − ∏𝑛
𝑖=1 (1 − 𝜙𝑥𝑖

𝑞
)𝜆𝑖

𝑞
, ∏𝑛

𝑖=1 𝜓𝑥𝑖
𝜆𝑖⟩, ∀𝜆𝑖 ≥ 0. (2) 

 and  

 ∏𝑛
𝑖=1 𝑋�̂�

𝜆𝑖 = ⟨∏𝑛
𝑖=1 (𝑥𝑖

𝐿)𝜆𝑖 , ∏𝑛
𝑖=1 (𝑥𝑖

𝑀)𝜆𝑖 , ∏𝑛
𝑖=1 (𝑥𝑖

𝑈)𝜆𝑖; 

                                                   ∏𝑛
𝑖=1 𝜙𝑥𝑖

𝜆𝑖 , √1 − ∏𝑛
𝑖=1 (1 − 𝜓𝑥𝑖

𝑞
)𝜆𝑖

𝑞
〉, ∀𝜆𝑖 ≥ 0. (3) 

 where 𝜆 = (𝜆1, 𝜆2,⋯ , 𝜆𝑛) is the weight vector.   

Proof. The process of induction can be used to prove this. 

 

3. qRung Fuzzy Data Envelopment Analysis (qR-FDEA) 

 Data envelopment analysis (DEA) is one of the most effective nonparametric mathematical 

approaches for calculating the overall performance of homogenous decision-making units (DMUs) with 

multiple inputs and outputs. The original DEA approaches were designed to deal with information based on 

crisp data, but they lack the capacity to deal with indeterminacy, impreciseness, ambiguity, inconsistency, 

and incomplete information. Various well-known DEA techniques, such as CCR and BCC models, may be 

found in the traditional DEA literature. 

Let us assume there are 𝑛 DMUs, each with 𝑚 inputs and 𝑠 outputs specified by the vectors 𝑥𝑖 =

(𝑥1𝑖, 𝑥2𝑖, ⋯ , 𝑥𝑚𝑖)
𝑇 ∈ 𝑅𝑚 and 𝑦𝑖 = (𝑦1𝑖 , 𝑦2𝑖, ⋯ , 𝑦𝑠𝑖)

𝑇 ∈ 𝑅𝑠 respectively. The input and output matrices are 

specified as 𝑥 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑚) ∈ 𝑅
𝑚×𝑛, and 𝑦 = (𝑦1, 𝑦2, ⋯ , 𝑦𝑠) ∈ 𝑅

𝑠×𝑛with 𝑥 > 0 and 𝑦 > 0. The CCR 

model is proposed by Charnes et al. [8], and the production possibility set of the CCR model is as follows:  

 𝑃𝐶𝐶𝑅 = {(𝑥, 𝑦): ∑
𝑛
𝑗=1 𝜆𝑗𝑥𝑗 ≤ 𝑥, ∑

𝑛
𝑗=1 𝜆𝑗𝑦𝑗 ≥ 𝑦, 𝜆𝑗 ≥ 0} (4) 

 The CCR model for 𝐷𝑀𝑈𝑜 can be defined as following linear programming.  

min  𝜃𝑜
s. t. ∑𝑛𝑗=1 𝜆𝑗𝑥𝑖𝑗 ≤ 𝜃𝑜𝑥𝑖𝑜,   𝑖 = 1,2,3,⋯ ,𝑚

∑𝑛𝑗=1 𝜆𝑗𝑦𝑟𝑗 ≥ 𝑦𝑟𝑜,   𝑟 = 1,2,3,⋯ , 𝑠

𝜆𝑗 ≥ 0, 𝑗 = 1,2,3,⋯ , 𝑛. }
 
 

 
 

  (5) 

The BCC model is proposed by Banker et al. [9], which is the extension of the CCR model, and the 

production possibility set of the BCC model is as follows:  

 𝑃𝐵𝐶𝐶 = {(𝑥, 𝑦): ∑
𝑛
𝑗=1 𝜆𝑗𝑥𝑗 ≤ 𝑥, ∑

𝑛
𝑗=1 𝜆𝑗𝑦𝑗 ≥ 𝑦, ∑

𝑛
𝑗=1 𝜆𝑗,  𝜆𝑗 ≥ 0} (6) 

 The CCR model for 𝐷𝑀𝑈𝑜 can be defined as following linear programming. 
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min  𝜃𝑜
s. t. ∑𝑛𝑗=1 𝜆𝑗𝑥𝑖𝑗 ≤ 𝜃𝑜𝑥𝑖𝑜,   𝑖 = 1,2,3,⋯ ,𝑚

∑𝑛𝑗=1 𝜆𝑗𝑦𝑟𝑗 ≥ 𝑦𝑟𝑜,   𝑟 = 1,2,3,⋯ , 𝑠

∑𝑛𝑗=1 𝜆𝑗 = 1, and       𝜆𝑗 ≥ 0, 𝑗 = 1,2,3,⋯ , 𝑛.}
 
 

 
 

 (7) 

This Model is calculated the optimum solution 𝜃𝑜
∗ and 𝜆𝑗

∗, 𝑗 = 1,2,⋯ , 𝑛 for each 𝐷𝑀𝑈𝑜, 𝑜 =

1,2,⋯ , 𝑛. The 𝐷𝑀𝑈𝑜 is efficient if 𝜃𝑜
∗ = 1, else it is inefficient.  

Suppose the inputs and outputs are qRung fuzzy numbers that are 𝑥𝑖𝑗 = ⟨𝑥𝑖𝑗
𝐿 , 𝑥𝑖𝑗

𝑀 , 𝑥𝑖𝑗
𝑈; 𝜙𝑥𝑖𝑗 , 𝜓𝑥𝑖𝑗⟩ and 𝑦𝑟𝑗 =

⟨𝑦𝑟𝑗
𝐿 , 𝑦𝑟𝑗

𝑀 , 𝑦𝑟𝑗
𝑈 ; 𝜙𝑦𝑟𝑗 , 𝜓𝑦𝑟𝑗⟩ , ∀𝑖 = 1,2,⋯ , 𝑛, ∀𝑗 = 1,2,⋯ ,𝑚, ∀𝑟 = 1,2,⋯ , 𝑠.  

The CCR model becomes  

 

min  𝜃𝑜
s. t. ∑𝑛𝑗=1 𝜆𝑗〈𝑥𝑖𝑗

𝐿 , 𝑥𝑖𝑗
𝑀 , 𝑥𝑖𝑗

𝑈; 𝜙𝑥𝑖𝑗 , 𝜑𝑥𝑖𝑗 , 𝜓𝑥𝑖𝑗〉

        ≤ 𝜃𝑜〈𝑥𝑖𝑜
𝐿 , 𝑥𝑖𝑜

𝑀 , 𝑥𝑖𝑜
𝑈 ; 𝜙𝑥𝑖𝑜 , 𝜑𝑥𝑖𝑜 , 𝜓𝑥𝑖𝑜〉,   𝑖 = 1,2,3,⋯ ,𝑚

∑𝑛𝑗=1 𝜆𝑗〈𝑦𝑟𝑗
𝐿 , 𝑦𝑟𝑗

𝑀 , 𝑦𝑟𝑗
𝑈 ; 𝜙𝑦𝑟𝑗 , 𝜑𝑦𝑟𝑗 , 𝜓𝑦𝑟𝑗〉

        ≥ 〈𝑦𝑟𝑜
𝐿 , 𝑦𝑟𝑜

𝑀 , 𝑦𝑟𝑜
𝑈 ; 𝜙𝑦𝑟𝑜 , 𝜑𝑦𝑟𝑜 , 𝜓𝑦𝑟𝑜〉,   𝑟 = 1,2,3,⋯ , 𝑠

and         𝜆𝑗 ≥ 0, 𝑗 = 1,2,3,⋯ , 𝑛. }
 
 
 

 
 
 

 (8) 

 which is called the qRung fuzzy CCR (qR-FCCR) model. 

The qRung fuzzy BCC (qR-FBCC) model is defined as  

 

min  𝜃𝑜
s. t. ∑𝑛𝑗=1 𝜆𝑗〈𝑥𝑖𝑗

𝐿 , 𝑥𝑖𝑗
𝑀 , 𝑥𝑖𝑗

𝑈; 𝜙𝑥𝑖𝑗 , 𝜑𝑥𝑖𝑗 , 𝜓𝑥𝑖𝑗〉

        ≤ 𝜃𝑜〈𝑥𝑖𝑜
𝐿 , 𝑥𝑖𝑜

𝑀 , 𝑥𝑖𝑜
𝑈 ; 𝜙𝑥𝑖𝑜 , 𝜑𝑥𝑖𝑜 , 𝜓𝑥𝑖𝑜〉,   𝑖 = 1,2,3,⋯ ,𝑚

∑𝑛𝑗=1 𝜆𝑗〈𝑦𝑟𝑗
𝐿 , 𝑦𝑟𝑗

𝑀 , 𝑦𝑟𝑗
𝑈 ; 𝜙𝑦𝑟𝑗 , 𝜑𝑦𝑟𝑗 , 𝜓𝑦𝑟𝑗〉

        ≥ 〈𝑦𝑟𝑜
𝐿 , 𝑦𝑟𝑜

𝑀 , 𝑦𝑟𝑜
𝑈 ; 𝜙𝑦𝑟𝑜 , 𝜑𝑦𝑟𝑜 , 𝜓𝑦𝑟𝑜〉,   𝑟 = 1,2,3,⋯ , 𝑟

∑𝑛𝑗=1      𝜆𝑗 = 1, and           𝜆𝑗 ≥ 0, 𝑗 = 1,2,3,⋯ , 𝑛. }
 
 
 

 
 
 

 (9) 

Theorem The DEA model given in equation (5) and the qR-FDEA Model in equation (8) are equivalents. 

Proof. When the aggregation operator is applied, it's easy to see that every qR-FCCR Model's optimum 

feasible solution is also an optimum feasible solution for the CCR model and vice versa.   

          The qR-FCCR Model in equation (8) is a non-linear programming problem that is difficult to solve. 

We separated equation (8) into two crisp models by applying definition (7) and theorem (1).  
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min  𝜂𝑜
s. t. ∑𝑛𝑗=1 𝜆𝑗𝑥𝑖𝑗

𝐿 ≤ 𝜂𝑜𝑥𝑖𝑜
𝐿 ;   ∑𝑛𝑗=1 𝜆𝑗𝑥𝑖𝑗

𝑀 ≤ 𝜂𝑜𝑥𝑖𝑜
𝑀;

∑𝑛𝑗=1 𝜆𝑗𝑥𝑖𝑗
𝑈 ≤ 𝜂𝑜𝑥𝑖𝑜

𝑈 ,   𝑖 = 1,2,3,⋯ ,𝑚

∑𝑛𝑗=1 𝜆𝑗𝑦𝑟𝑗
𝐿 ≥ 𝑦𝑟𝑜

𝐿 ;   ∑𝑛𝑗=1 𝜆𝑗𝑦𝑟𝑗
𝑀 ≥ 𝑦𝑟𝑜

𝑀 ;

∑𝑛𝑗=1 𝜆𝑗𝑦𝑟𝑗
𝑈 ≥ 𝑦𝑟𝑜

𝑈 ,   𝑟 = 1,2,3,⋯ , 𝑠

and        𝜆𝑗 ≥ 0, 𝑗 = 1,2,3,⋯ , 𝑛. }
 
 
 

 
 
 

 (10) 

 and  

 

min  𝜌𝑜

s. t  √1 − ∏𝑛
𝑗=1 (1 − 𝜙𝑥𝑖𝑗

q
)𝜆𝑗

𝑞
≤ √1 − (1 − 𝜙𝑥𝑖𝑜

q
)𝜌𝑜

𝑞

 ∏𝑛
𝑗=1 𝜓𝑥𝑖𝑗

𝜆𝑗 ≤ 𝜓𝑥𝑖𝑜
𝜌𝑜 ,   𝑖 = 1,2,3,⋯ ,𝑚

√1 −∏𝑛
𝑗=1 (1 − 𝜙𝑦𝑟𝑗

q
)𝜆𝑗

𝑞
≥ 𝜙𝑦𝑟𝑜

  ∏𝑛
𝑗=1 𝜓𝑦𝑟𝑗

𝜆𝑗 ≥ 𝜓𝑦𝑟𝑜 ,   𝑟 = 1,2,3,⋯ , 𝑠

and          𝜆𝑗 ≥ 0, 𝑗 = 1,2,3,⋯ , 𝑛. }
 
 
 
 

 
 
 
 

 (11) 

 Here, equation (10) represents an LP problem, while equation (11) represents a non-linear programming 

problem.  

The qR-FBCC Model is the extension of the qR-FCCR Model with an additional convexity condition 

∑𝑛𝑗=1 𝜆𝑗 = 1, which becomes  

 

min  𝜂𝑜
s. t. ∑𝑛𝑗=1 𝜆𝑗𝑥𝑖𝑗

𝐿 ≤ 𝜂𝑜𝑥𝑖𝑜
𝐿 ;   ∑𝑛𝑗=1 𝜆𝑗𝑥𝑖𝑗

𝑀 ≤ 𝜂𝑜𝑥𝑖𝑜
𝑀;

∑𝑛𝑗=1 𝜆𝑗𝑥𝑖𝑗
𝑈 ≤ 𝜂𝑜𝑥𝑖𝑜

𝑈 ,   𝑖 = 1,2,3,⋯ ,𝑚

∑𝑛𝑗=1 𝜆𝑗𝑦𝑟𝑗
𝐿 ≥ 𝑦𝑟𝑜

𝐿 ;   ∑𝑛𝑗=1 𝜆𝑗𝑦𝑟𝑗
𝑀 ≥ 𝑦𝑟𝑜

𝑀 ;

∑𝑛𝑗=1 𝜆𝑗𝑦𝑟𝑗
𝑈 ≥ 𝑦𝑟𝑜

𝑈 ,   𝑟 = 1,2,3,⋯ , 𝑠

∑𝑛𝑗=1 𝜆𝑗 = 1, and    𝜆𝑗 ≥ 0, 𝑗 = 1,2,3,⋯ , 𝑛.}
 
 
 

 
 
 

 (12) 

 and  
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min  𝜌𝑜

s. t  √1 − ∏𝑛
𝑗=1 (1 − 𝜙𝑥𝑖𝑗

q
)𝜆𝑗

𝑞
≤ √1 − (1 − 𝜙𝑥𝑖𝑜

q
)𝜌𝑜

𝑞

∏𝑛
𝑗=1 𝜓𝑥𝑖𝑗

𝜆𝑗 ≤ 𝜓𝑥𝑖𝑜
𝜌𝑜 ,   𝑖 = 1,2,3,⋯ ,𝑚

√1 −∏𝑛
𝑗=1 (1 − 𝜙𝑦𝑟𝑗

q
)𝜆𝑗

𝑞
≥ 𝜙𝑦𝑟𝑜

 ∏𝑛
𝑗=1 𝜓𝑦𝑟𝑗

𝜆𝑗 ≥ 𝜓𝑦𝑟𝑜 ,   𝑟 = 1,2,3,⋯ , 𝑠

∑𝑛𝑗=1 𝜆𝑗 = 1, and     𝜆𝑗 ≥ 0, 𝑗 = 1,2,3,⋯ , 𝑛. }
 
 
 
 
 

 
 
 
 
 

 (13) 

Definition 7 The efficiency score (𝜃𝑜) of the 𝐷𝑀𝑈𝑜 , 𝑜 = 1,2,⋯ , 𝑛 is the average of 𝜂𝑜 and 𝜌𝑜 , i.e. 𝜃𝑜 =
𝜂𝑜+𝜌𝑜

2
.  

Definition 8 A DMU is said to be efficient iff the efficiency score is 1 (i.e., The DMU is efficient in both 

data value and membership degree). Otherwise, it is inefficient 

4. Method for Solving qR-FDEA model 

 Let us consider the qRTFNs as the inputs and outputs of the DMUs. The efficiency score of the 

DMU may be calculated using the following steps outlined below. 

1. Transform the DEA model into the qR-FDEA model as shown in equation (8).  

2. Using definition (2) and theorem (1), split the qR-FDEA Model into two crisp models, one of which is 

an LP problem in equation (10) and the other a non-linear programming problem in equation (11).  

3. The logarithm function is used to convert the non-linear programming problem into linear programming, 

as shown in equation (14).  

 

min  𝜌𝑜
s. t  ∑𝑛𝑗=1 𝜆𝑗log(1 − 𝜙𝑥𝑖𝑗

2 ) ≥ 𝜌𝑜log(1 − 𝜙𝑥𝑖𝑜
2 ),

∑𝑛𝑗=1 𝜆𝑗log (𝜓𝑥𝑖𝑗) ≤ 𝜌𝑜log(𝜓𝑥𝑖𝑜),   𝑖 = 1,2,3,⋯ ,𝑚.

∑𝑛𝑗=1 𝜆𝑗log(1 − 𝜙𝑦𝑟𝑗
2 ) ≤ log(1 − 𝜙𝑦𝑟𝑜

2 ),

 ∑𝑛𝑗=1 𝜆𝑗log(𝜓𝑦𝑟𝑗) ≥ log(𝜓𝑦𝑟𝑜), 𝑟 = 1,2,3,⋯ , 𝑠.

  and      𝜆𝑗 ≥ 0, 𝑗 = 1,2,3,⋯ , 𝑛. }
 
 
 

 
 
 

 (14) 

4. Solve these two crisp linear programming problems, and the efficiency score for 𝐷𝑀𝑈𝑜𝑜 = 1,2,⋯ , 𝑛 is 

the product of the optimal solutions of the equation (10) and (14). The DMUs are ranked according to 

their efficiency score.  

 By adding convexity condition ∑𝑛𝑗=1 𝜆𝑗 = 1 in equations (10) and (14) and solve them to calculate 

the efficiency score in the qR-FBCC Model. The data value efficiency and membership degree efficiency 

of the DMUs are calculated. The DMUs are ranked according to their efficiency score. 
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 The solution method for the qR-FDEA Model is depicted in the given flow chart.  

 

Figure 1: The method of solution for the qR-FDEA model 

 

5. Numerical Example 

To demonstrate the applicability and practicality of the novel approach proposed in this research, we 

added the truth membership and false membership degrees of each DMU to the example offered by Guo and 

Tanaka [32]. There are five DMUs, each of which has two inputs and two outputs. These inputs and outputs 

are represented by triangular intuitionistic numbers, and the information for this case is given in Table 1. In 

order to solve the given problem, we must take q = 1, which turns into a triangular intuitionistic fuzzy number 

because the given data satisfies the condition for an intuitionistic set. 

 

 

DMU Input 1 Input 2 Output 1 Output 2 

DMU 1 ⟨
3.5,4.0,4.5;
0.75,0.1

⟩ ⟨
1.9,2.1,2.3;
0.8,0.05

⟩ ⟨
2.4,2.6,2.8;
0.7,0.15

⟩ ⟨
3.8,4.1,4.4;
0.8,0.1

⟩ 

DMU 2 ⟨
2.9,2.9,2.9;
0.8,0.2

⟩ ⟨
1.4,1.5,1.6;
0.9,0.1

⟩ ⟨
2.2,2.2,2.2;
0.6,0.2

⟩ ⟨
3.3,3.5,3.7;
0.55,0.15

⟩ 

DMU 3 ⟨
4.4,4.9,5.4;
0.9,0.01

⟩ ⟨
2.2,2.6,3.0;
0.98,0.01

⟩ ⟨
2.7,3.2,3.7;
0.45,0.25

⟩ ⟨
4.3,5.1,5.9;
0.7,0.05

⟩ 

DMU 4 ⟨
3.4,4.1,4.8;
0.6,0.4

⟩ ⟨
2.2,2.3,2.4;
0.8,0.05

⟩ ⟨
2.5,2.9,3.3;
0.5,0.35

⟩ ⟨
5.5,5.7,5.9;
0.55,0.3

⟩ 

DMU 5 ⟨
5.9,6.5,7.1;
0.7,0.2

⟩ ⟨
3.6,4.1,4.6;
0.5,0.2

⟩ ⟨
4.4,5.1,5.8;
0.6,0.2

⟩ ⟨
6.5,7.4,8.3;
0.85,0.15

⟩ 

Table 1: q-Rung  fuzzy inputs and outputs data 
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The following procedures can be used to determine the efficiency score of DMU 1. 

Step 1.  

The given DEA model was constructed using the qRTFNs data. 

min  𝜃1 

s. t.  𝜆1⟨3.5,4.0,4.5; 0.75,0.1⟩⊕ 𝜆2⟨2.9,2.9,2.9; 0.8,0.2⟩ ⊕ 𝜆3⟨4.4,4.9,5.4; 0.9,0.01⟩⊕ 𝜆4⟨3.4,4.1,4.8; 0.6,0.4⟩

⊕ 𝜆5⟨5.9,6.5,7.1; 0.7,0.2⟩ ≤ 𝜃1⟨3.5,4.0,4.5; 0.75,0.1⟩, 

𝜆1⟨1.9,2.1,2.3; 0.8,0.05⟩⊕ 𝜆2⟨1.4,1.5,1.6; 0.9,0.1⟩⊕ 𝜆3⟨2.2,2.6,3.0; 0.98,0.01⟩⊕ 𝜆4⟨2.2,2.3,2.4; 0.8,0.05⟩

⊕ 𝜆5⟨3.6,4.1,4.6; 0.5,0.2⟩ ≤ 𝜃1⟨1.9,2.1,2.3; 0.8,0.05⟩, 

𝜆1⟨2.4,2.6,2.8; 0.7,0.15⟩⊕ 𝜆2⟨2.2,2.2,2.2; 0.6,0.2⟩⊕ 𝜆3⟨2.7,3.2,3.7; 0.45,0.25⟩⊕ 𝜆4⟨2.5,2.9,3.3; 0.5,0.35⟩

⊕ 𝜆5⟨4.4,5.1,5.8; 0.6,0.2⟩ ≥ ⟨2.4,2.6,2.8; 0.7,0.15⟩, 

𝜆1⟨3.8,4.1,4.4; 0.8,0.1⟩ ⊕ 𝜆2⟨3.3,3.5,3.7; 0.55,0.15⟩⊕ 𝜆3⟨4.3,5.1,5.9; 0.7,0.05⟩⊕ 𝜆4⟨5.5,5.7,5.9; 0.55,0.3⟩

⊕ 𝜆5⟨6.5,7.4,8.3; 0.85,0.15⟩ ≥ ⟨3.8,4.1,4.4; 0.8,0.1⟩, 

and           𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5 ≥ 0 

which is the qR-FCCR Model for DMU D1.  

 

Step 2. Which can be converted into two crips DEA model as shown below. 

 

               min  𝜂1 

s. t. 3.5𝜆1 + 2.9𝜆2 + 4.4𝜆3 + 3.4𝜆4 + 5.9𝜆5 ≤ 3.5𝜂1 

4𝜆1 + 2.9𝜆2 + 4.9𝜆3 + 4.1𝜆4 + 6.5𝜆5 ≤ 4𝜂1 

4.5𝜆1 + 2.9𝜆2 + 5.4𝜆3 + 4.8𝜆4 + 7.1𝜆5 ≤ 4.5𝜂1 

1.9𝜆1 + 1.4𝜆2 + 2.2𝜆3 + 2.2𝜆4 + 3.6𝜆5 ≤ 1.9𝜂1 

2.1𝜆1 + 1.5𝜆2 + 2.6𝜆3 + 2.3𝜆4 + 4.1𝜆5 ≤ 2.1𝜂1 

2.3𝜆1 + 1.6𝜆2 + 3𝜆3 + 2.4𝜆4 + 4.6𝜆5 ≤ 2.3𝜂1 

2.4𝜆1 + 2.2𝜆2 + 2.7𝜆3 + 2.5𝜆4 + 4.4𝜆5 ≥ 2.4 

2.6𝜆1 + 2.2𝜆2 + 3.2𝜆3 + 2.9𝜆4 + 5.1𝜆5 ≥ 2.6 

2.8𝜆1 + 2.2𝜆2 + 3.7𝜆3 + 3.3𝜆4 + 5.8𝜆5 ≥ 2.8 

3.8𝜆1 + 3.3𝜆2 + 4.3𝜆3 + 5.5𝜆4 + 6.5𝜆5 ≥ 3.8 
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4.1𝜆1 + 3.5𝜆2 + 5.1𝜆3 + 5.7𝜆4 + 7.4𝜆5 ≥ 4.1 

4.4𝜆1 + 3.7𝜆2 + 5.9𝜆3 + 5.9𝜆4 + 8.3𝜆5 ≥ 4.4 

and           𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5 ≥ 0. 

 and 

 min    𝜌1 

 s. t. 1 − (1 − 0.75)𝜆1(1 − 0.8)𝜆2(1 − 0.9)𝜆3(1 − 0.6)𝜆4(1 − 0.7)𝜆5 ≤ 1 − (1 − 0.75)𝜌1 

 (0.1)𝜆1(0.2)𝜆2(0.01)𝜆3(0.4)𝜆4(0.32 ≤ (0.1)𝜌1 

 1 − (1 − 0.8)𝜆1(1 − 0.9)𝜆2(1 − 0.98)𝜆3(1 − 0.8)𝜆4(1 − 0.5)𝜆5 ≤ 1 − (1 − 0.8)𝜌1 

 (0.05)𝜆1(0.1)𝜆2(0.01)𝜆3(0.05)𝜆4(0.2)𝜆5 ≤ (0.05)𝜌1 

 1 − (1 − 0.7)𝜆1(1 − 0.6)𝜆2(1 − 0.45)𝜆3(1 − 0.5)𝜆4(1 − 0.6)𝜆5 ≥ 0.7 

 (0.15)𝜆1(0.2)𝜆2(0.25)𝜆3(0.35)𝜆4(0.2)𝜆5 ≥ 0.15 

 1 − (1 − 0.8)𝜆1(1 − 0.55)𝜆2(1 − 0.7)𝜆3(1 − 0.55)𝜆4(1 − 0.85)𝜆5 ≥ 0.8 

 (0.1)𝜆1(0.15)𝜆2(0.05)𝜆3(0.3)𝜆4(0.15)𝜆5 ≥ 0.1 

 and             𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5 ≥ 0, 

which is a non-linear programming problem. 

Step 3.  

Convert non-linear programming problem into LP problem by using logarithm function. 

min  𝜂1 

         s. t. 

log(1 − 0.75)𝜆1 + log(1 − 0.8)𝜆2 + log(1 − 0.9)𝜆3 + log(1 − 0.6)𝜆4 + log(1 − 0.7)𝜆5
≥ log(1 − 0.75)𝜂1 

log(0.1)𝜆1 + log(0.2)𝜆2 + log(0.01)𝜆3 + log(0.4)𝜆4 + log(0.2)𝜆5 ≤ log(0.1)𝜂1 

log(1 − 0.8)𝜆1 + log(1 − 0.9)𝜆2 + log(1 − 0.98)𝜆3 + log(1 − 0.8)𝜆4 + log(1 − 0.5)𝜆5
≥ log(1 − 0.8)𝜂1 

log(0.05)𝜆1 + log(0.1)𝜆2 + log(0.01)𝜆3 + log(0.05)𝜆4 + log(0.2)𝜆5 ≤ log(0.05)𝜂1 

log(1 − 0.7)𝜆1 + log(1 − 0.6)𝜆2 + log(1 − 0.45)𝜆3 + log(1 − 0.5)𝜆4 + log(1 − 0.6)𝜆5 ≤ log(1 − 0.7) 
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log(0.15)𝜆1 + log(0.2)𝜆2 + log(0.25)𝜆3 + log(0.35)𝜆4 + log(0.2)𝜆5 ≥ log(0.15) 

log(1 − 0.8)𝜆1 + log(1 − 0.55)𝜆2 + log(1 − 0.7)𝜆3 + log(1 − 0.55)𝜆4 + log(1 − 0.85)𝜆5
≤ log(1 − 0.8) 

log(0.1)𝜆1 + log(0.15)𝜆2 + log(0.05)𝜆3 + log(0.3)𝜆4 + log(0.15)𝜆5 ≥ log(0.1) 

and         𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5 ≥ 0. 

Step 4.  

The efficiency of each DMU was computed using MATLAB, and the above crisp LP problem evaluated the 

data value efficiency (𝜂) and membership grade efficiency (𝜌), as shown in Table (3), and compared the 

efficiency score in Figure (2).   

 

 

DMU qR-FCCR Model qR-FBCC Model 

𝜂 𝜌 𝑀𝑒𝑎𝑛 𝑇𝑦𝑝𝑒 𝜂 𝜌 𝑀𝑒𝑎𝑛 𝑇𝑦𝑝𝑒 

DMU 1 0.9297  1 0.96485 Inefficient 0.9432  1 0.9716 Inefficient 

DMU 2 1    0.5363 0.76815 Inefficient 1    0.5934 0.7967 Inefficient 

DMU 3 1    0.3226 0.6613 Inefficient 1     1 1 Efficient 

DMU 4 1     1 1 Efficient 1     1 1 Efficient 

DMU 5 1     1 1 Efficient 1     1 1 Efficient 

Table 2: Efficiency Score of the DMUs 

The DMUs are ranked based on their mean efficiency Score. In the qR-FCCR Model, DMU 4 and 

DMU 5 are efficient, and other DMUs are inefficient. The DMUs are raked as follows 

𝐷𝑀𝑈 4 = 𝐷𝑀𝑈 5 >  𝐷𝑀𝑈 1 >  𝐷𝑀𝑈 2 >  𝐷𝑀𝑈 3. 

In the qR-FBCC Model, DMU 3, DMU 4, and DMU 5 are efficient, and other DMUs are 

inefficient. The DMUs are ranked as follows:  

𝐷𝑀𝑈 4 = 𝐷𝑀𝑈 5 =   𝐷𝑀𝑈 3 >  𝐷𝑀𝑈 1 >  𝐷𝑀𝑈 2. 
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Figure 2: Efficiency Score in qR-FCCR and qR-FBCC models 

6. Conclusion 

           A wide range of decision-making problems, including operation research, management science, 

industrial engineering, etc., use the q-Rung fuzzy set (qRFS), a comparatively recent academic concept 

quickly gaining popularity. In real-world applications, accurate input-output data are not always accessible, 

and certain subjective, linguistic, or ambiguous inputs and outputs may also have an q-Rung fuzzy essence 

in addition to simple fuzziness. Consequently, The q-Rung fuzzy DEA (qR-FDEA) model based on the 

aggregation operator  is developed and gives a unique approach to solving them. This research focuses on 

extending the classic DEA models into FDEA with q-Rung fuzzy inputs and outputs. The recommended qR-

FCCR and qR-FBCC models were used to calculate the efficiency score of the DMUs, which were then 

ranked according to their mean efficiency scores. We concluded by providing an example to demonstrate the 

method's viability and usefulness. Based on the results, the Model may be considered as appropriate and 

beneficial. 

             It is encouraged that more research is done on calculating the efficiency score of the DMU in various 

DEA models, including SBM, Additive, and Super-efficiency models. Future studies should concentrate on 

the practical use of our method. This method will help decision-makers assess the performance of several 

industries, including banking institutions, the insurance industry, financial services, education, supply chain 

management, crisis management, sustainability, energy, and healthcare services. 
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Abstract 

In this study, a third-order discrete-time linear time-varying system is considered. 

Decomposition formulas of this system into its first-order and second-order commutative pairs are 

presented.    

 

          Keywords: Decomposition, discrete-time, linear system, difference equations. 

 

1. Introduction 

 

The realization of many engineering systems is done by cascaded-connected systems. This is very 

important in the design of systems [1]. Although the connection order of these subsystems depends on the 

specific design and engineering experience used, changing the connection order of the subsystems 

without changing the main function of the total system (commutativity) can have positive results when 

system performances are taken into account. For this reason, commutativity is very important in terms of 

practical applications especially in electrical and electronic engineering. 

As shown in Fig. 1, by changing the connection order of two cascade-connected time-varying 

linear systems 𝐴  and 𝐵 , we say that 𝐴  and 𝐵  are commutative systems and (𝐴, 𝐵)  constitutes a 

commutative pair if input-output relations of the assembled systems 𝐴𝐵 and 𝐵𝐴 are identical. 

 
Figure 1. Subsystems 𝐴 and 𝐵 are connected in cascade way 
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The first publication on commutativity was reviewed in [2] in 1977 for the first-order continuous-

time linear time-varying systems and the results here were generalized to second-order [3], third-order [4] 

and fourth-order [5] systems in 1982, 1984 and 1985, respectively. After a long period of time, fifth-order 

systems were investigated in [6] in 2011. The last study on the commutaitvity of continuous-time linear 

time-varying systems was appeared in [7] in 2021 for sixth-order systems. 

Since all the studies on commutativity conditions [2]-[7] are related to the commutativity of 

analog systems and today's technology is based on digital systems rather than analog systems, there is a 

serious gap that needs to be studied on the commutativity of digital systems. Commutativity conditions of 

second-order [8] and first-order [9] discrete-time linear time-varying systems were studied in 2015 and 

2019 respectively. 

On the other hand, the higher the degree of the system, the more difficult it becomes to examine 

the system. Hence, the concept of decomposition is used as a very important tool for solving and 

analysing many problems and improving system properties to break down a high-order linear time-

varying system into lower-order commutative pairs. Then, dealing with low-order parts becomes naturally 

simpler. 

The decompostiion of the second-order continuous-time linear time-varying systems into two 

first-order commutative subsystems were proved in [10] in 2016 by Koksal. And for a third-order system, 

similar work to decompose it into first-order and second-order subsystems were presented in [11] in 2019. 

Finally, the decomposition of a fourth-order continuous-time linear time-varying differential system by 

cascaded two second-order commutative pairs and by cascaded first- and third-order commutative pairs 

was studied in [12]. 

 

2. Decomposition 

 

Let the subsystems 𝐴 and  𝐵 in Figure 1 be defined by the following linear discrete-time time-

varying difference equations:  

 

𝐴: 𝑎1(𝑘)𝑦𝐴(𝑘 + 1) + 𝑎0(𝑘)𝑦𝐴(𝑘) = 𝑥𝐴(𝑘), 𝑘 ≥ 0    (1) 

𝐵: 𝑏2(𝑘)𝑦𝐵(𝑘 + 2) + 𝑏1(𝑘)𝑦𝐵(𝑘 + 1) + 𝑏0(𝑘)𝑦𝐵(𝑘) = 𝑥𝐵(𝑘), 𝑘 ≥ 0      (2) 

 

Note that 𝑎1(𝑘) and 𝑏2(𝑘) must not be zero for all 𝑘 ≥ 0 for the solvability of 𝐴 and 𝐵. 

From the connection 𝐴𝐵 shown in Figure 1, it follows that 

 

𝑥(𝑘) = 𝑥𝐴(𝑘), 𝑦𝐴(𝑘) = 𝑥𝐵(𝑘), 𝑦𝐵(𝑘) = 𝑦(𝑘), 𝑘 ≥ 0    (3) 

 

With this and Eqs. (1) and (2), the difference equation between 𝑥(𝑘) and y(𝑘) can be obtained as follows:  

 

𝑏2(𝑘 + 1)𝑦𝐵(𝑘 + 3) + 𝑏1(𝑘 + 1)𝑦𝐵(𝑘 + 2) + 𝑏0(𝑘 + 1)𝑦𝐵(𝑘 + 1) = 𝑥𝐵(𝑘 + 1), 𝑘 ≥ 1. 
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Inserting 𝑦𝐵(𝑘) = 𝑦(𝑘), 𝑥𝐵(𝑘) = 𝑦𝐴(𝑘), and then eliminating 𝑦𝐴(𝑘 + 1) and rearranging the terms, we 

obtain the difference formula of the cascaded-connected system 𝐴𝐵 as follows: 

 

𝐴𝐵: 𝑎1(𝑘)𝑏2(𝑘 + 1 )𝑦(𝑘 + 3) + [𝑎1(𝑘)𝑏1(𝑘 + 1 ) + 𝑎0(𝑘)𝑏2(𝑘)]𝑦(𝑘 + 2) 

+[𝑎1(𝑘)𝑏0(𝑘 + 1) + 𝑎0(𝑘)𝑏1(𝑘)]𝑦(𝑘 + 1) + 𝑎0(𝑘)𝑏0(𝑘)𝑦(𝑘) = 𝑥(𝑘).         (4) 

 

In a similar manner, we obtain the formula of the system 𝐵𝐴 as follows: 

 

𝐵𝐴: 𝑏2(𝑘)𝑎1(𝑘 + 2)𝑦(𝑘 + 3) + [𝑏2(𝑘 )𝑎0(𝑘 + 2) + 𝑏1(𝑘)𝑎1(𝑘 + 1)]𝑦(𝑘 + 2) 

+[𝑏1(𝑘 )𝑎0(𝑘 + 1) + 𝑏0(𝑘)𝑎1(𝑘)]𝑦(𝑘 + 1) + 𝑏0(𝑘)𝑎0(𝑘)𝑦(𝑘) = 𝑥(𝑘).         (5) 

 

On the other hand, the connection 𝐴𝐵 and 𝐵𝐴 of sub-systems  𝐴 and 𝐵  are requested to be equivalent to 

the same system (say 𝐶) due to the commutativity. Let 𝐶 be defined 

 

𝐶: 𝑐3(𝑘)𝑦(𝑘 + 3) + 𝑐2(𝑘)𝑦(𝑘 + 2) + 𝑐1(𝑘)𝑦(𝑘 + 1) + 𝑐0(𝑘)𝑦(𝑘) = 𝑥(𝑘), 𝑘 ≥ 0.      (6) 

 

If Eqs. (4) and (5) defining 𝐴𝐵 and 𝐵𝐴 are compared with Eq. (6) defining 𝐶, we have 

 

𝑐3(𝑘) = 𝑎1(𝑘)𝑏2(𝑘 + 1 ) = 𝑏2(𝑘)𝑎1(𝑘 + 2),    (7) 

𝑐2(𝑘) = 𝑎1(𝑘)𝑏1(𝑘 + 1 ) + 𝑎0(𝑘)𝑏2(𝑘) = 𝑏2(𝑘)𝑎0(𝑘 + 2) + 𝑏1(𝑘)𝑎1(𝑘 + 1),      (8) 

𝑐1(𝑘) = 𝑎1(𝑘)𝑏0(𝑘 + 1) + 𝑎0(𝑘)𝑏1(𝑘) = 𝑏1(𝑘)𝑎0(𝑘 + 1) + 𝑏0(𝑘)𝑎1(𝑘),  (9) 

𝑐0(𝑘) = 𝑎0(𝑘)𝑏0(𝑘) = 𝑏0(𝑘)𝑎0(𝑘).        (10) 

 

3. Decomposition Formulas 

 

From Eq.  (7), we have 

𝑏2(𝑘 + 1) =
𝑏2(𝑘)𝑎1(𝑘 + 2)

𝑎1(𝑘)
. 

Generalizing the above equation, we get  

𝑏2(𝑘) =
𝑏2(0)𝑎1(𝑘)

𝑎1(0)𝑎1(1)
𝑎1(𝑘 + 1)                                                          (11) 

 

Again, by using Eq. (7) and replacing 𝑏2(𝑘)  in Eq. (7) with its equivalence in Eq. (11)   

 

𝑎1(𝑘 + 2) =
𝑐3(𝑘)𝑎1(0)𝑎1(1)

𝑏2(0)𝑎1(𝑘)𝑎1(𝑘 + 1)
; 
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which yields the following general expression for 𝑎1(𝑘): 

 

𝑎1(𝑘) =

{
 
 
 
 
 
 

 
 
 
 
 
 

𝑐3(0)

𝑏2(0)
,     𝑘 = 2

𝑎1(0)∏
𝑐3(3𝑖 − 2)

𝑐3(3𝑖 − 3)
,

𝑘

3

𝑖=1

    𝑘 = 3,6,9,⋯

𝑎1(1)∏
𝑐3(3𝑖 − 1)

𝑐3(3𝑖 − 2)

𝑘−1

3

𝑖=1

,     𝑘 = 4,7,10,⋯

𝑐3(0)

𝑏2(0)
∏

𝑐3(3𝑖)

𝑐3(3𝑖 − 1)

𝑘−2

3

𝑖=1

,     𝑘 = 5,8,11,⋯

,                                            (12) 

 

Solving Eq. (8) for 𝑏1(𝑘 + 1), replacing 𝑏2(𝑘) with Eq. (11) and then generalizing the resulting equation, 

we find the formula of 𝑏1(𝑘) as follows: 

 

𝑏1(𝑘) =
𝑏2(0)𝑎1(𝑘)

𝑎1(0)𝑎1(1)
[𝑎0(𝑘 + 1) − 𝑎0(1) + 𝑎0(𝑘) − 𝑎0(0)] +

𝑏1(0)

𝑎1(0)
𝑎1(𝑘),                  (13) 

 

Similarly, if we solve 𝑏0(𝑘 + 1) in Eq. (9), replace 𝑏1(𝑘) with Eq. (13), generalize the resulting equation, 

we obtain  

 

𝑏0(𝑘) =
𝑏2(0)

𝑎1(0)𝑎1(1)
[𝑎0(𝑘) − 𝑎0(0)][𝑎0(𝑘) − 𝑎0(1)] +

𝑏1(0)

𝑎1(0)
[𝑎0(𝑘) − 𝑎0(0)] + 𝑏0(0).   (14) 

 

On the other hand, solving Eq. (8) for 𝑎0(𝑘 + 2), substituting 𝑏2(𝑘) and 𝑏1(𝑘) in Eqs. (11) and (13) 

respectively, and generalizing the resulting equation, we obtain 
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𝑎0(𝑘) =
𝑎1(0)𝑎1(1)

𝑏2(0)

{
 
 
 
 
 
 

 
 
 
 
 
 

1

𝑎1(0)
[
𝑐2(0)

𝑎1(1)
− 𝑏1(0)] , 𝑘 = 2 

       

∑
1

𝑎1(3𝑖 + 1)
[
𝑐2(3𝑖 + 1)

𝑎1(3𝑖 + 2)
−
𝑐2(3𝑖)

𝑎1(3𝑖)
]

𝑘−3

3

𝑖=0

+
𝑎0(0)

𝑎1(1)
, 𝑘 = 3,6, 9⋯

∑
1

𝑎1(3𝑖 − 1)
[
𝑐2(3𝑖 − 1)

𝑎1(3𝑖)
−

𝑐2(3𝑖 − 2)

𝑎1(3𝑖 − 2)𝑎1
]

𝑘−1

3

𝑖=1

+
𝑎0(1)

𝑎1(1)
, 𝑘 = 4,7,10⋯

∑
1

𝑎1(3𝑖)
[
𝑐2(3𝑖)

𝑎1(3𝑖 + 1)
−
𝑐2(3𝑖 − 1)

𝑎1(3𝑖 − 1)
]

𝑘−2

3

𝑖=0

−
𝑏1(0)

𝑏2(0)
, 𝑘 = 5,8, 11⋯

             (15) 

 

The decomposition sequence will be as follows: 

i) Compute 𝑎1(𝑘) using Eq. (12). 

ii) Then compute 𝑎0(𝑘) using Eq. (15), 𝑏2(𝑘) using Eq. (11), 𝑏1(𝑘) using Eq. (13). 

iii) Compute 𝑏0(𝑘) using Eq. (14). 

In the computations, 𝑎1(1), 𝑎1(0), 𝑎0(1), 𝑎0(0), 𝑏2(0), 𝑏1(0), 𝑏0(0) are undefined and they seem to be 

chosen arbitrary constants (nonzero for  𝑎1 and 𝑏2). However, this is not true since these constants should 

also satisfy Eq. (9) for 𝑐1(𝑘) and Eq. (10) for 𝑐0(𝑘)  for all 𝑘 ≥ 0. If no consistent solutions present, then 

we say that the given third-order discrete-time system cannot be decomposed into its commutative pairs.  

 

4. Conclusion 

 

In this study, the method of synthesizing a third-order discrete-time system as a commutative 

cascaded pair of first- and second-order subsystems. It is also shown that decomposibility conditions are 

very stringent and hence not every system is decomposable. The case of non-zero initial values are not 

considered in this contribution. Otherwise, the decomposition process will introduce extra constraints 

which may be the subject of further research. 
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Abstract 

The theory of numbers called arithmetic is important in mathematical sciences. The importance 

and implementation of computer science in recent years (as a result of rapid development their fields 

such as process systems, communication their systems are financial predictions and quantum 

computers) are increasing related with number theory rapidly. Also, it is easily seen that arithmetic 

functions have practices (since they related with the coefficients of the power series) in engineering, 

IT, architecture, economics, physics as well as number theory, combinatorics, game theory, probability 

theory, analysis in mathematics. 

 

  Main aim in this work is to consider Euler totient arithmetic function and Divisor arithmetic  

function (the number of positive divisors of natural numbers) with their relations to each others. Firstly, 

some of the fundamental notations with theoretical results on these arithmetic functions are given. 

Then, several results are demonstrated by comparing values of these functions for the same natural 

number. Obtained results are also supported by numerical instances. 

 

          Keywords: Arithmetic Functions, Properties of Arithmetic Functions, Primes, Natural Numbers, 

Euler's Totient Arithmetic Function, Divisor Arithmetic Function, Multiplication.. 

 

1. Introduction 

 

Number theory and algebra are one of the most active parts of mathematics. Published workings/documents 

(there is a rich literature consisting of books, monographs, journals, separate articles, reviews) and the 

continuity of them  are indicators of how popular the studies in this field are. One of the topics in analytical 

number theory is arithmetic functions. Number theory and especially the theory of arithmetic functions, is 

full of rediscovery.Also, in the theory of numbers, the function is the basis in all areas of mathematics. It is 

treated as an arithmetic function or theoretical number function if it is defined on a set of positive integers 

and valued of the subset in the set of complex numbers. 

The generalizations and results obtained in the theory of arithmetic functions are not only enable new open 

problems to be raised, but also aim to continue active studies in this field. Many mathematicians contribute 

to the theory of arithmetic functions by using different methods and terminological notations. Recently, the 
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results obtained on this subject are used not only in the field of mathematics (Group theory, Lattice theory, 

Partially ordered sets, analysis, geometry, applied mathematics, etc.) but also in computer sciences, natural 

sciences, coding theory, cryptography and engineering...so on… 

There are still many unsolved problems and assumptions about arithmetic functions theory such as 

concepts, definitions, unresolved problems, questions, theorems, formulas, assumptions, examples, 

mathematical criteria, etc. So, workings on this subject is still in progress.  

The main purpose of the studies on the theory of arithmetic functions is to find the algebraic properties of 

these functions and their connections with each other, to obtain the existing theories with different methods 

and to facilitate the difficulties encountered. In addition, revealing the connections of these functions with 

functional analysis or geometry elements and obtaining new results with analytical approaches contribute 

to the literature of the subject.  

In the literature, the study of the arithmetic functions are defined with algebraic properties/structures and 

some of these special functions can be seen with their specific names such as  Euler Totient function, Tau 

function, Prime divisor or Prime Counting Functions, Mobius function, Mangoldt function, Liouville 

function etc…They are also categorized as multiplicative /full multiplicative or additive /full additive with 

single variable or two variables. 

Another issue on arithmetic functions, based on the concept of unit division unit multiplication with a type 

of multiplication can be given. Also two variables, which are generalized of single variable arithmetic 

functions arithmetic functions are defined. From two variable arithmetic functions Nagell and Ramanujan 

are two in some special cases, as are their total functions these variable functions can be converted into 

single variable basic functions. In addition, the single variable and two variable arithmetic is treated with 

the unit region the functions can be functionally similar. 

In this paper, (as it is seen in the   abstract) , we consider relations between 𝑑𝑖𝑣 (Փ(𝑛)) and 𝑑𝑖𝑣 (𝑛) for  

searching  n natural numbers. Also, some general results as theoretical and practical with numerical 

examples for this equation are given/ demonstrated.  Obtained results will give different perspectives for 

readers in the literature of  arithmetic functions theory.  

 

2. Preliminaries 

Euler phi function and Divisor function are multiplicative arithmetic functions. They have an importance 

roles in the applications of number theory, prime numbers, large calculations and cryptographic systems. 

To use in the next section ( main results) , some basic and useful notions are mentioned for these arithmetic 

functions as follows. 
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Definition. If there is a function which is defined on the set of  positive integers and also takes values in 

the set of  real numbers or complex numbers, then it is called as  an arithmetic function. For example;  a 

function defined as  𝑔 ∶ ℤ+ → ℝ  with  𝑔 (n)= cos n is an arithmetic function. 

Definition (Euler phi (totient) function):  Փ(𝑛) is defined by   ∑ 1𝑛
𝑚=1,𝑔𝑐𝑑(𝑚,𝑛)=1   where the number of 

positive integers satisfy m ≤ n that are relatively prime to 𝑛. 

Note: The multiplicative Euler phi function Փ holds many properties with Carmichael’s conjecture. It can 

be seen some of them as follows:  

 ∑ Փ(d) =  s,d|s    for all natural numbers s. 

 Փ(1) = 1  

 Փ (s) = ∑ d|s µ(d)(s/d)d|s   where µ is möbius function. 

 Փ (s) = ∏ (q m  −  qm−1 )q m||s  for all s ∈ N and q prime.  

Definition (Divisor function): 𝑑𝑖𝑣(𝑠)  is defined by  ∑ 1𝑑|𝑠  for the number of positive divisors of s 

natural numbers.  

Note: The multiplicative  divisor function 𝑑𝑖𝑣 satisfies many properties like Euler phi function. For 

practically, following result can be reminded; 

Assume that q be a prime number and s =𝑞1
𝑘1𝑞2

𝑘2 … 𝑞𝑡
𝑘𝑡 be a positive integer. Then, we get 

𝑑𝑖𝑣 (𝑞𝑘)= k+1 and  𝑑𝑖𝑣 (s)= ∏ (𝑘𝑖 + 1)𝑡
𝑖=1 . 

 

3. Main Results 

 

Before starting our results, it will be better to calculate some values of divisor function, Euler phi function 

and composition of them. So, following table is obtained. 

 

𝒏 1 

 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 22 

𝒅𝒊𝒗(𝒏) 1 

 

2 2 3 2 4 2 4 3 4 2 6 2 4 4 4 

Փ(𝑛) 1 

 

1 2 2 4 2 6 4 6 4 10 4 12 6 8 10 

𝒅𝒊𝒗(Փ(𝒏)) 1 

 

1 2 2 3 2 4 3 4 3 4 3 6 4 4 4 

Table 1. Some values of divisor function, Euler phi function and composition of them. 
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From table, it is seen that   𝑑𝑖𝑣(𝑛) =  𝑑𝑖𝑣(Փ(𝑛)), 𝑑𝑖𝑣(𝑛) <  𝑑𝑖𝑣(Փ(𝑛)) or  𝑑𝑖𝑣(𝑛) >  𝑑𝑖𝑣(Փ(𝑛)) for 

natural n numbers. Considering these three aspects, some new results can be given (some of them will be 

given without proof) as follows: 

 

Theorem 1.  Suppose that  (𝑟1, 𝑟2, … , 𝑟𝑡) and (𝑠1, 𝑠2, … , 𝑠𝑡) be two different t-tuples include primes. Then 

divisor function satisfies  𝑑𝑖𝑣 ( 𝑟1𝑟2 … 𝑟𝑡. 𝑠1𝑠2 … 𝑠𝑡) ≥ 3𝑡 . 

Proof. By using mathematical induction on t, inequality  is  easily demonstrated. If we start with t=1, then 

we get   

𝑑𝑖𝑣(𝑟1𝑠1) = {
4,       𝑖𝑓 𝑠1 ≠ 𝑟1,
3,       𝑖𝑓 𝑠1 = 𝑟1.

 

Also, if there exists primes such that 𝑠𝑖 = 𝑟𝑗, then 

𝑑𝑖𝑣(𝑟1𝑟2 … 𝑠1𝑠2 … 𝑠𝑡) = 𝑑𝑖𝑣(𝑠1
2𝑠2

2 … 𝑠𝑘
2) = 3𝑘 

for every 𝑖 ∈ {1, … , 𝑡} and  𝑗 ∈ {1, … , 𝑡}.   In the contrary case, if  𝑠𝑖 ≠ 𝑟𝑖  for 𝑖 = 1,2, … , 𝑡 − 1 and  

𝑑𝑖𝑣(𝑝1𝑝2 … 𝑝𝑘−1𝑞1𝑞2 … 𝑞𝑘−1) ≥ 3𝑘−1 then,  

𝑑𝑖𝑣 (𝑟1𝑟2 … 𝑟𝑡𝑠1𝑠2 … 𝑠𝑡) = 𝑑𝑖𝑣 (𝑟1𝑟2 … 𝑟𝑡−1𝑠1𝑠2 … 𝑠𝑡−1) 𝑑𝑖𝑣 (𝑟𝑡𝑠𝑡) ≥ 3𝑡−1. 3 = 3𝑡 . 

since 𝑔𝑐𝑑 (𝑟𝑡, 𝑠1𝑠2 … 𝑠𝑡−1) = 1  and  𝑔𝑐𝑑 (𝑠𝑡, 𝑠1𝑠2 … 𝑠𝑡−1) = 1. 

This completes the proof. 

 

Theorem  2 If  𝑑𝑖𝑣 (𝑠) =  𝑑𝑖𝑣(Փ(𝑠)) for 𝑠  odd ıntegers,  then 𝑠 is divisible by 3 for 𝑠 ≥ 3.  

Proof. Let us   3 ∤ 𝑠 and 𝑠  is odd integer. We can consider several cases for the proof,  some of them can 

be given as follows:  

Case 1. Assume that  𝑠 = 𝑞𝛼  with 𝑞 ≥ 5, 𝛼 ≥ 1 such that    𝑑𝑖𝑣 (𝑠) =  𝑑𝑖𝑣(Փ(𝑠)). We obtain 

𝛼 + 1 = 𝑑𝑖𝑣 ((𝑞 − 1)𝑞𝛼−1) = 𝑑𝑖𝑣 ((𝑞 − 1))𝑑𝑖𝑣 (𝑞𝛼−1) = 𝑑𝑖𝑣 ((𝑞 − 1))𝛼   ≥ 3𝛼 

due to 𝑔𝑐𝑑 (𝑞 − 1, 𝑞) = 1.  

This means that 𝛼 + 1 > 2𝛼. It is a contradiction. It means if 3 ∤ 𝑠 then 𝑑𝑖𝑣 (𝑠) ≠  𝑑𝑖𝑣(Փ(𝑠)). 

So, theorem is satisfied in the case of 𝑠 = 𝑞𝛼 with above conditions.  
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Case 2. Supposing that  𝑠 = 𝑞𝛼𝑟𝛽with 5 ≤ 𝑞 < 𝑟 , 𝛼, 𝛽 ≥ 1 such that 𝑑𝑖𝑣 (𝑠) =  𝑑𝑖𝑣(Փ(𝑠)).  

If we use 𝑔𝑐𝑑((𝑞 − 1)(𝑟 − 1)𝑞, 𝑠) = 1, then we have  

(𝛼 + 1)(𝛽 + 1) = 𝑑𝑖𝑣 ((𝑞 − 1)(𝑟 − 1)𝑞𝛼−1𝑟𝛽−1)  = 𝑑𝑖𝑣 ((𝑞 − 1)(𝑟 − 1)𝑞𝛼−1)𝑑𝑖𝑣 (𝑟𝛽−1) 

                                                                                     = 𝑑𝑖𝑣 ((𝑞 − 1)(𝑟 − 1)𝑞𝛼−1)𝛽                             

If 𝑔𝑐𝑑(𝑟 − 1, 𝑞) = 1 , then (𝛼 + 1)(𝛽 + 1)  ≥  8𝛼𝛽  is satisfied.  Otherwise, (𝛼 + 1)(𝛽 + 1)  ≥ 4(𝛼 +

1)𝛽. 

If calculations and  cases are considered/continued, then the proof of the theorem is completed. 

Conjecture 3: There are infinitely many squarefree 𝑠 such that 𝑑𝑖𝑣 (𝑠) =  𝑑𝑖𝑣(Փ(𝑠)). 

Theorem 4. Assume that 𝑠 be a positive integer having at most two distinct prime factors. Then, there are 

1,3,15, 2∝𝑟 with r ≥7 is a safe prime and 𝛼 ≥ 1 numbers which are some of the solutions of 𝑑𝑖𝑣 (𝑠) =

 𝑑𝑖𝑣(Փ(𝑠)). 

Proof. Suppose that 𝑠  be a  positive integer having at most two distinct prime factors for 𝑑𝑖𝑣 (𝑠) =

 𝑑𝑖𝑣(Փ(𝑠)). It can be  distinguished the following cases: 

It is trivial that 𝑑𝑖𝑣 (𝑠) =  𝑑𝑖𝑣(Փ(𝑠)) is satisfied for 𝑠 = 1. 

 

Case 1. Suppose that 𝑠 = 𝑞𝛼 be a prime power. Then,   

𝛼 + 1 = 𝑑𝑖𝑣((𝑞 − 1)𝑞𝛼−1) = 𝛼. 𝑑𝑖𝑣 (𝑞 − 1), 

that is only true and satisfied  for 𝑞 =3 and 𝛼 = 1. So, it is obtained that 𝑠 = 3. 

 

Case2. Assume that 𝑠 = 𝑞. 𝑟  where 𝑞 and 𝑟 are odd primes. Then, we have  

                                                             4 = 𝑑𝑖𝑣 ((𝑞 − 1)(𝑟 − 1)), 

which is only true and satisfied for  𝑞 = 3 and 𝑟= 5. Hence, 𝑠 = 15. 
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Case 3. 𝑠 = 2𝛼𝑟  where 𝑟 is odd prime and 𝛼 ≥ 1.Then 

2(𝛼 + 1)=𝑑𝑖𝑣 (2𝛼−1(𝑟 − 1)).                                                

… 

The rest is left to the reader. 

 

Note. Even there are some different special types of numbers which they are solutions of the  𝑑𝑖𝑣 (𝑠) =

 𝑑𝑖𝑣(Փ(𝑠)),  it is not given all of them in this work. 

Note: As we see from the table of 𝑑𝑖𝑣(𝑛) and  𝑑𝑖𝑣(Փ(𝑛))’s values, 5,7, 9, 11, 13, … are solutions of the 

𝑑𝑖𝑣(𝑛) <  𝑑𝑖𝑣(Փ(𝑛)).  It seems that primes can be solutions of the inequality 𝑑𝑖𝑣(𝑛) <  𝑑𝑖𝑣(Փ(𝑛)). 

 Then, we can give following theorem: 

Theorem 5. Let 𝑞  be a prime greater than 3. Then, every 𝑞  prime satisfies the inequality 𝑑𝑖𝑣(𝑞) <

 𝑑𝑖𝑣(Փ(𝑞)). 

Proof. It is trivial and proof is easily obtained using properties and definitions from prelimineries section. 

Remark: It can be obtained new and similar results on divisibility or solutions  for inequality 𝑑𝑖𝑣(𝑛) <

 𝑑𝑖𝑣(Փ(𝑛)).  

Note: In a similar way,  from the table of 𝑑𝑖𝑣(𝑛), 𝑑𝑖𝑣(Փ(𝑛)) values, 2,4,5,8,10,12 are solutions of the 

𝑑𝑖𝑣(𝑛) > 𝑑𝑖𝑣(Փ(𝑛)). 

So, following theorem can be given: 

Theorem 6. Let 𝛼 be an integer  greater than 0. Then, every 2𝛼  holds the inequality 𝑑𝑖𝑣(𝑞) >  𝑑𝑖𝑣(Փ(𝑞)). 

Proof. Trivially, proof is  got by using properties and definitions given in the  preliminaries section. 

 

Remark: We can easily verify many properties by considering these three statements [ 𝑑𝑖𝑣(𝑛) =

 𝑑𝑖𝑣(Փ(𝑛)), 𝑑𝑖𝑣(𝑛) <  𝑑𝑖𝑣(Փ(𝑛)) or  𝑑𝑖𝑣(𝑛) >  𝑑𝑖𝑣(Փ(𝑛)) for natural n numbers.] Thus, this work just 

demonstrate several results on them to entrance this work with details. One may consider this kind of 

problems and get new results.  
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4. Conclusion 

 

As a result  (in this work) we obtain some common properties of two special arithmetic functions according 

to their connection with each other. We also give some numerical examples to support this type of results, 

which are included newly in the literature. This study will guide our next work and will add a different 

perspective to the readers. 
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Abstract 

In this study, first of all, the concepts of asymptotical Hausdorff deferred statistical equivalence of 

order   and asymptotical Hausdorff deferred Cesàro equivalence of order   (     ) for double 

sequences of sets are introduced, some properties of these concepts are given and the relations between 

them are examined. Then, the relation between the concepts of asymptotical Hausdorff deferred statistical 

equivalence of order   and asymptotical Wijsman deferred statistical equivalence of order   for double 

sequences of sets is showed.  

 

Keywords: Wijsman convergence, Hausdorff convergence, double sequences of sets, asymptotical 

equivalence, order  , deferred Cesàro mean, deferred statistical convergence. 

1. Introduction 

The concept of deferred Cesàro mean for real (or complex) sequences was presented by Agnew 

[1]. Recently, this concept has been attractive for researchers. In 2016, the concept of deferred statistical 

convergence was introduced by Küçükaslan and Yılmaztürk [2]. Then, the concepts of deferred Cesàro 

summability and deferred statistical convergence for double sequences was studied by Da  ̆adur and 

Sezgek in [3, 4]. Also, for sequences, basic asymptotical deferred equivalence definitions were given by 

Koşar et al. [5]. 

The order of statistical convergence of a number sequence was given by Gadjiev and Orhan [6]. 

Then, the concepts of statistical convergence of order   and strongly  -Cesàro summability of order   

were studied by Çolak [7] and Çolak-Bektaş [8]. Also, the concept of Wijsman  -statistical convergence 

of order   was introduced by Savaş [9] and Şengül-Et [10]. The concepts of Wijsman statistical 

convergence of order  , Hausdorff statistical convergence of order   and Wijsman strongly  -Cesàro 

summability of order   for double sequences of sets were presented by Ulusu and Gülle [11]. 

The concept of deferred Cesàro mean was extended to sequences of sets by Altınok et al. [12] and 

they introduced the concepts of Wijsman deferred Cesàro summability and Wijsman deferred statistical 

convergence. Then, the concepts of Wijsman asymptotical deferred equivalence and Wijsman 

asymptotical deferred statistical equivalence for sequences of sets were presented by Altınok et al. [13]. 

Recently, Ulusu and Gülle [14] studied on the concepts of Wijsman deferred Cesàro summability and 

Wijsman deferred statistical convergence for double sequences of sets.  
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Also, the concepts of Wijsman asymptotical strongly deferred Cesàro equivalence and Wijsman 

asymptotical deferred statistical equivalence for double sequences of sets studied by Ulusu [15] and Gülle 

[16], respectively. 

The study is aimed to study on some basic asymptotical Hausdorff deferred equivalence types of 

order   for double set sequences. 

More information on the notions of convergence and asymptotical equivalence in this study can be 

found in [17-38]. 

2. Definitions and Notations 

First of all, let’s start by recalling some basic definitions and notations to make our study easier to 

understand (See, [3, 14, 29, 30, 33, 37]). 

The deferred Cesàro mean      of a double sequence         is defined by   

          
 

    
∑  

  

      

  ∑  

  

      

      
 

    
∑  

     

      
      

      

where     ,     ,      and      are sequences of non-negative integers satisfying following conditions:  

         
   

                  
   

                                             (2.1) 

                                                                          (2.2) 

Throughout the paper, unless otherwise specified,     ,     ,      and      are considered as sequences of 

non-negative integers satisfying       and (2.2). 

For a metric space      ,        represents the distance from   to   where  

          
   

              

for any     and any non-empty    . 

For a non-empty set  , let a function          is defined by              for each     

   . Then, the sequence               , which is the range elements of  , is called sequences of 

sets. 

Throughout the study, unless otherwise stated,       is considered as a metric space and       

(     ) are considered as any non-empty closed subsets of  . 
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A double sequence of sets       is said to be Hausdorff convergent to a set   provided that 

   
     

   
   

                    

It is denoted by     
  

 . 

A double sequence of sets       is said to be Hausdorff Cesàro summable of order   (     ) 

to a set   provided that  

   
     

 

     
∑  

   

   
   

    
   

                    

 It is denoted by     
      

 . For    , we obtain the concept of Hausdorff Cesàro summability for 

double sequences of sets. 

A double sequence of sets       is said to be Hausdorff statistical convergence of order   

(     ) to a set   provided that for every    ,  

   
     

 

     
|{                  

   
                  }|     

 It is denoted by     
    

 . For    , we obtain the concept of Hausdorff statistical convergence for 

double sequences of sets. 

For any non-empty closed subsets           such that           and           for each 

   , double sequences of sets       and       are said to be Wijsman asymptotical equivalent to 

multiple   if for each      

   
     

       

       
     

     
  (

   

   
)      

3. Main Results 

In this section, the concepts of asymptotical Hausdorff deferred statistical equivalence of order   

and asymptotical Hausdorff deferred Cesàro equivalence of order   (     ) for double sequences of 

sets are introduced, some properties of these concepts are given and the relations between them are 

examined. Then, the relation between the concepts of asymptotical Hausdorff deferred statistical 

equivalence of order   and asymptotical Wijsman deferred statistical equivalence of order   for double 

sequences of sets is showed. 

From now on, we will consider that           and           in the following definitions, 

for each     and any non-empty closed subsets          . 
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Definition 3.1 Double sequences of sets       and       are said to be asymptotical Hausdorff deferred 

statistical equivalent to multiple   order   (     ) if for every      

   
     

 

       
|{                  (     ]    

   
|  (

   

   
)   |   }|    

In this case, the notation     
  

    

    is used. For    , we obtain the concept of asymptotical 

Hausdorff deferred statistical equivalence to multiple   (  
   ) for double sequences of sets which has 

never been mentioned before. 

Remark 3.1 The concept of asymptotical Hausdorff deferred statistical equivalence order   for double 

sequences of sets is coincides with;   

 the notion of asymptotical Hausdorff statistical equivalence of order   for double sequences of 

sets which has never been studied before, for           and          . 

 the notion of asymptotical Hausdorff statistical equivalence for double sequences of sets which 

has never been studied before, for    , and           and          .  

Theorem 3.1 If        , then  

    
  

    

        
  

    

      

Proof. Let         and suppose that     
  

    

   . For every    , we can write the following 

inequality   

 

       
|{                             

   
 |  (

   

   
)   |   }| 

 
 

       
|{                             

   
 |  (

   

   
)   |   }|  

Hence, by our assumption, we get     
  

    

   .  

If     is taken in Theorem 3.1, then the following corollary is obtained. 

Corollary 3.1 If double sequences of sets       and       are   
    -equivalent (     ), then these 

sequences are   
   -equivalent. 
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Theorem 3.2 Let      ,       and       are double sequences of sets such that  

                                     

If     
  

    

    and     
  

    

   , then     
  

    

    where      .  

Proof. Let            ,     
  

    

    and     
  

    

   . From the inclusion, it is obvious that   

                                                          

                                 |  (
   

   
)   |  |  (

   

   
)   |  |  (

   

   
)   |  

 Then, for every     we have   

{                          |  (
   

   
)   |   } 

                                                  {                            (
   

   
)     } 

                                                              {                             
   

   
     } 

                                                 {                            (
   

   
)     } 

                                                                {                            (
   

   
)     } 

 for each     and so   

 

       
                               

   
 |  (

   

   
)   |      

                                                     
 

       
                               

   
 |  (

   

   
)   |      

          
 

       
                               

   
 |  (

   

   
)   |       

 Hence, by our assumptions, we get     
  

    

   .  
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Definition 3.2 Double sequences of sets       and       are said to be asymptotical Hausdorff deferred 

Cesàro equivalent to multiple   order   (     ) if  

   
     

 

       
∑  

     

      
      

    
   

 |  (
   

   
)   |     

In this case, the notation     
  

   

    is used. For    , we obtain the concept of asymptotical 

Hausdorff deferred Cesàro equivalence to multiple   (  
  ) for double sequences of sets which has never 

been mentioned before. 

Remark 3.2 The concept of asymptotical Hausdorff deferred Cesàro equivalence order   for double 

sequences of sets is coincides with;   

 the notion of asymptotical Hausdorff Cesàro equivalence of order   for double sequences of sets 

which has never been studied before, for           and          . 

the notion of asymptotical Hausdorff Cesàro equivalence for double sequences of sets which has 

never been studied before, for    , and           and          .  

Theorem 3.1 If        , then  

    
  

   

        
  

   

     

Proof. Let         and suppose that     
  

   

   . Here, we can write the following inequality 

 

       
∑  

     

      
      

    
   

 |  (
   

   
)   |  

 

       
∑  

     

      
      

    
   

 |  (
   

   
)   |  

Hence, by our assumption, we get     
  

   

   .  

If     is taken in Theorem 3.3, then we obtain the following corollary. 

Corollary 3.2 If double sequences of sets       and       are   
   -equivalent (     ), then these 

sequences are   
  -equivalent.  

Theorem 3.4 Let      . If double sequences of sets       and       are   
   -equivalent, then 

these sequences are   
    -equivalent.  
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Proof. Let       and suppose that     
  

   

   . For every    , we can write the following 

inequality   

                        ∑  

     

      
      

            

    
   

 |  (
   

   
)   |  ∑  

     

      
      

    
   
   

      

    
   

 |  (
   

   
)   | 

                                                                                                 
   

 |  (
   

   
)   |      

 and so   

 

 

 

       
∑  

     

      
      

    
   

 |  (
   

   
)   | 

 
 

       
                               

   
 |  (

   

   
)   |       

 Hence, by our assumption, we get     
  

    

   .  

Corollary 3.3 If     
  

 

   , then     
  

    

   . 

The converse of Theorem 3.4 is true only in the cases     and                
 (the class of all 

bounded double sequences of sets).  

 The sequence       is called bounded if                   for each    . 

Theorem 3.5 Let     and               
 . If double sequences of sets       and       are   

   -

equivalent, then these sequences are   
  -equivalent.  

Proof. Let    ,               
  and     

  
   

   . Since               
 , there is an     such 

that  

 |  (
   

   
)   |    

 for all       and each    . Thus, for every     we can write the following inequality   
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∑  

     

      
      

    
   

  |  (
   

   
)   | 

 
 

    
∑  

     

      
      

    
   
   

      

    
   

  |  (
   

   
)   | 

            
 

    
∑  

     

      
      

    
   
   

      

    
   

  |  (
   

   
)   | 

                                                          
 

    
                               

   
  |  (

   

   
)   |         

 Hence, by our assumptions, we get     
  

  
   .  

Finally, we showed the relation between the concepts of asymptotical Hausdorff deferred statistical 

equivalence of order   and Wijsman asymptotical deferred statistical equivalence of order   for double 

sequences of sets. Before this, let’s recall the concept of Wijsman asymptotical deferred statistical 

equivalence for     in [16]. 

Definition 3.3 [16] Double sequences of sets       and       are said to be Wijsman asymptotical 

deferred statistically equivalent to multiple   if for every     and each     

   
     

 

    
|{                  (     ] |  (

   

   
)   |   }|     

It is denoted by     
  

   
   .  

Theorem 3.6 Let      . If double sequences of sets       and       are   
    -equivalent, then 

these sequences are   
    -equivalent.  

Proof. Let       and suppose that     
  

    

   . For every    , we can write the following 

inequality   
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 |  (

   

   
)   |      

 
 

      
 
                            |  (

   

   
)   |       

 for each    . Hence, by our assumption, we get     
  

    

   . 
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Abstract 

The aim of this study is to introduce the notions of deferred Cesàro summability of order 𝛼 and 

deferred statistical convergence of order 𝛼 (0 < 𝛼 ≤ 1) in the Wijsman sense for double set sequences, to 

give some properties of these notions and to examine the relationship between them.  

 

Keywords: Deferred Cesàro mean, deferred statistical convergence, order 𝛼, double sequences of 

sets, Wijsman convergence. 

 

1. Introduction 

In [1], Agnew first introduced the notion of deferred Cesàro mean for real (or complex) 

sequences. Long after this, Küçükaslan and Yılmaztürk [2] presented the notion of deferred statistical 

convergence and showed the relationship of this notion with the strongly deferred Cesàro summability. 

Also, for double sequences, Dağadur and Sezgek [3] introduced and studied on the notions of deferred 

Cesàro summability and deferred statistical convergence. Furthermore, using order 𝛼, Et et al. [4] studied 

on the notions of deferred strongly Cesàro summability and deferred statistical convergence of order 𝛼 in 

metric spaces. 

For sequences of sets, Altınok et al. [5] studied on the notions of deferred statistical convergence 

and strongly deferred Cesàro summability in the Wijsman sense. Also, for double sequences of sets, 

Ulusu and Gülle [6] introduced and studied on similar notions. Furthermore, using order 𝛼, Yılmazer et 

al. [7] studied on the notions of Wijsman deferred statistical convergence and Wijsman strongly deferred 

Cesàro summability of order 𝛼 for sequences of sets. 

The purpose of this work is to introduce the notions of deferred Cesàro summability of order 𝛼 

and deferred statistical convergence of order 𝛼 in the Wijsman sense for double set sequences, and to 

study on these notions. 

More information on the notions in this study can be found in [8-19]. 

 

2. Basic Notions 

Let’s start by recalling some fundamental definitions and notations firstly (See, [6, 20-24]). 
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For a metric space (𝒳, 𝑑), 𝜌(𝑥, 𝐵) indicates the distance from 𝑥 to 𝐵 where  

𝜌(𝑥, 𝐵) = inf
𝑏∈𝐵

𝑑(𝑥, 𝑏): = 𝜌𝑥(𝐵) 

for any 𝑥 ∈ 𝒳 and any non-empty 𝐵 ⊆ 𝒳. 

For a non-empty set 𝒳, let a function ℎ: ℕ → 𝑃(𝒳) is defined by ℎ(𝑣) = 𝐵𝑣 ∈ 𝑃(𝒳) for each     

𝑣 ∈ ℕ. Then, the sequence {𝐵𝑣} = {𝐵1, 𝐵2, … }, which is the codomain elements of ℎ, is called sequences 

of sets. 

Throughout the study, (𝒳, 𝜌) will be considered as a metric space and 𝐵, 𝐵𝑢𝑣 (𝑢, 𝑣 ∈ ℕ) will be 

considered as any non-empty closed subsets of 𝒳. 

The double sequence {𝐵𝑢𝑣} is said to be Wijsman convergent to the set 𝐵 if  

lim
𝑢,𝑣→∞

𝜌𝑥(𝐵𝑢𝑣) = 𝜌𝑥(𝐵), 

for each 𝑥 ∈ 𝒳 and it is denoted by 𝐵𝑢𝑣 ⟶
𝑊2

𝐵. 

As an example to this notion, the following sequence of squares in ℝ2 can be given. 

Let 𝒳 = ℝ2 and a double sequence {𝐵𝑢𝑣} be defined as following:   

𝐵𝑢𝑣: = {(𝑥, 𝑦) ∈ ℝ2: |𝑥| + |𝑦| =
1

𝑢𝑣
}. 

Since  

lim
𝑢,𝑣→∞

𝜌𝑥(𝐵𝑢𝑣) = 𝜌𝑥({0,0}) 

for each 𝑥 ∈ 𝒳, the double sequence {𝐵𝑢𝑣} is Wijsman convergent to the set 𝐵 = {(0,0)}. 

The double sequence {𝐵𝑢𝑣} is said to be Wijsman Cesàro summable of order 𝛼 (0 < 𝛼 ≤ 1) to the 

set 𝐵 if  

lim
𝑚,𝑛→∞

1

(𝑚𝑛)𝛼
∑

𝑚

𝑢=1

  ∑

𝑛

𝑣=1

𝜌𝑥(𝐵𝑢𝑣) = 𝜌𝑥(𝐵), 

for each 𝑥 ∈ 𝒳 and it is denoted by 𝐵𝑢𝑣 ⟶
𝑊2(𝐶)𝛼

𝐵. 

The double sequence {𝐵𝑢𝑣}  is said to be Wijsman strong Cesàro summable of order 𝛼                 

(0 < 𝛼 ≤ 1) to the set 𝐵 if  

lim
𝑚,𝑛→∞

1

(𝑚𝑛)𝛼
∑

𝑚

𝑢=1

  ∑

𝑛

𝑣=1

|𝜌𝑥(𝐵𝑢𝑣) − 𝜌𝑥(𝐵)| = 0, 

for each 𝑥 ∈ 𝒳 and it is denoted by 𝐵𝑢𝑣 ⟶
𝑊2[𝐶]𝛼

𝐵. 
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The double sequence {𝐵𝑢𝑣} is said to be Wijsman statistically convergent of order 𝛼 (0 < 𝛼 ≤ 1) 

to the set 𝐵 if for every 𝜀 > 0  

lim
𝑚,𝑛→∞

1

(𝑚𝑛)𝛼
|{(𝑢, 𝑣): 𝑢 ≤ 𝑚, 𝑣 ≤ 𝑛: |𝜌𝑥(𝐵𝑢𝑣) − 𝜌𝑥(𝐵)| ≥ 𝜀}| = 0, 

for each 𝑥 ∈ 𝒳 and and it is denoted by 𝐵𝑢𝑣 ⟶
𝑊2(𝑆)𝛼

𝐵. 

The double sequence {𝐵𝑢𝑣} is said to be bounded if sup𝑢,𝑣{𝜌𝑥(𝐵𝑢𝑣)} < ∞ for each 𝑥 ∈ 𝒳. Also, 

𝐿∞
2  denotes the class of all bounded double set sequences. 

The deferred Cesàro mean 𝐷𝜙,𝜓 of a double sequence ℬ = {𝐵𝑢𝑣} is defined by   

(𝐷𝜙,𝜓ℬ)𝑢𝑣 =
1

𝜙𝑘𝜓𝑗
∑

𝑟𝑘

𝑢=𝑝𝑘+1

  ∑

𝑠𝑗

𝑣=𝑞𝑗+1

𝜌𝑥(𝐵𝑢𝑣), 

where [𝑝𝑘], [𝑟𝑘], [𝑞𝑗] and [𝑠𝑗] are sequences of non-negative integers satisfying following conditions:  

𝑝𝑘 < 𝑟𝑘, lim
𝑘→∞

𝑟𝑘 = ∞;    𝑞𝑗 < 𝑠𝑗 , lim
𝑗→∞

𝑠𝑗 = ∞                                         (2.1) 

𝑟𝑘 − 𝑝𝑘 = 𝜙𝑘;     𝑠𝑗 − 𝑞𝑗 = 𝜓𝑗 .                                                    (2.2) 

Throughout the paper, unless otherwise specified, [𝑝𝑘], [𝑟𝑘], [𝑞𝑗] and [𝑠𝑗] are considered as sequences of 

non-negative integers satisfying (2.1) and (2.2). 

 

3. New Concepts 

In this section, we have introduced the notions of deferred Cesàro summability of order 𝛼 and 

deferred statistical convergence of order 𝛼 (0 < 𝛼 ≤ 1) in the Wijsman sense for double set sequences. 

Definition 3.1 The double sequence {𝐵𝑢𝑣} is said to be Wijsman deferred Cesàro summable of order 𝛼 to 

the set 𝐵 (0 < 𝛼 ≤ 1) provided that  

lim
𝑘,𝑗→∞

1

(𝜙𝑘𝜓𝑗)𝛼
∑

𝑟𝑘

𝑢=𝑝𝑘+1

  ∑

𝑠𝑗

𝑣=𝑞𝑗+1

𝜌𝑥(𝐵𝑢𝑣) = 𝜌𝑥(𝐵), 

for each 𝑥 ∈ 𝒳. In this case, the notation 𝐵𝑢𝑣 ⟶
𝑊2(𝐷)𝛼

𝐵 is used.  
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Definition 3.2 The double sequence {𝐵𝑢𝑣} is said to be Wijsman strong deferred Cesàro summable of 

order 𝛼 to the set 𝐵 (0 < 𝛼 ≤ 1) provided that  

lim
𝑘,𝑗→∞

1

(𝜙𝑘𝜓𝑗)𝛼
∑

𝑟𝑘

𝑢=𝑝𝑘+1

  ∑

𝑠𝑗

𝑣=𝑞𝑗+1

|𝜌𝑥(𝐵𝑢𝑣) − 𝜌𝑥(𝐵)| = 0, 

for each 𝑥 ∈ 𝒳. In this case, the notation 𝐵𝑢𝑣 ⟶
𝑊2[𝐷]𝛼

𝐵 is used.  

Remark 3.1 The notion of Wijsman strongly deferred Cesàro summability of order 𝛼 for double set 

sequences is reduced to;   

 the notion of Wijsman strongly deferred Cesàro summability in [6], for 𝛼 = 1. 

 the notion of Wijsman strongly Cesàro summability of order 𝛼 in [23], for 𝑝𝑘 = 0, 𝑟𝑘 = 𝑘 and 

𝑞𝑗 = 0, 𝑠𝑗 = 𝑗. 

 the notion of Wijsman strongly Cesàro summability in [22], for 𝛼 = 1, and 𝑝𝑘 = 0, 𝑟𝑘 = 𝑘 and 

𝑞𝑗 = 0, 𝑠𝑗 = 𝑗.  

Definition 3.3 The double sequence {𝐵𝑢𝑣} is said to be Wijsman deferred statistically convergent of order 

α to the set 𝐵 (0 < 𝛼 ≤ 1) provided that for every ε > 0  

lim
𝑘,𝑗→∞

1

(𝜙𝑘𝜓𝑗)𝛼
|{(𝑢, 𝑣): 𝑢 ∈ (𝑝𝑘, 𝑟𝑘], 𝑣 ∈ (𝑞𝑗, 𝑠𝑗], |𝜌𝑥(𝐵𝑢𝑣) − 𝜌𝑥(𝐵)| ≥ 𝜀}| = 0, 

for each 𝑥 ∈ 𝒳. In this case, the notation 𝐵𝑢𝑣 ⟶
𝑊2(𝐷𝑆)𝛼

𝐵 is used.  

Remark 3.2 The notion of Wijsman deferred statistical convergence of order 𝛼 for double set sequences 

is reduced to;   

 the notion of Wijsman deferred statistical convergence in [6], for 𝛼 = 1. 

 the notion of Wijsman statistical convergence of order 𝛼  in [23], for 𝑝𝑘 = 0, 𝑟𝑘 = 𝑘  and             

𝑞𝑗 = 0, 𝑠𝑗 = 𝑗. 

 the notion of Wijsman statistical convergence in [25], for 𝛼 = 1 , and 𝑝𝑘 = 0, 𝑟𝑘 = 𝑘  and            

𝑞𝑗 = 0, 𝑠𝑗 = 𝑗. 

 

4. Main Results 

In this section, we have given some properties of the notions of Wijsman deferred Cesàro 

summability of order 𝛼 and Wijsman deferred statistical convergence of order 𝛼 (0 < 𝛼 ≤ 1) for double 

set sequences, and have examined the relationship between these notions. 
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Theorem 4.1 If 0 < 𝛼 ≤ 𝛽 ≤ 1, then  

𝐵𝑢𝑣 ⟶
𝑊2[𝐷]𝛼

𝐵 ⇒ 𝐵𝑢𝑣 ⟶
𝑊2[𝐷]𝛽

𝐵. 

Proof. Let 0 < 𝛼 < 𝛽 ≤ 1 and assume that 𝐵𝑢𝑣 ⟶
𝑊2[𝐷]𝛼

𝐵. For each 𝑥 ∈ 𝒳, we can write  

1

(𝜙𝑘𝜓𝑗)𝛽
∑

𝑟𝑘

𝑢=𝑝𝑘+1

  ∑

𝑠𝑗

𝑣=𝑞𝑗+1

|𝜌𝑥(𝐵𝑢𝑣) − 𝜌𝑥(𝐵)| ≤
1

(𝜙𝑘𝜓𝑗)𝛼
∑

𝑟𝑘

𝑢=𝑝𝑘+1

  ∑

𝑠𝑗

𝑣=𝑞𝑗+1

|𝜌𝑥(𝐵𝑢𝑣) − 𝜌𝑥(𝐵)|. 

Therefore, by our assumption, we get 𝐵𝑢𝑣 ⟶
𝑊2[𝐷]𝛽

𝐵.  

If 𝛽 = 1 is taken in Theorem 4.1, then the following corollary is obtained. 

Corollary 4.1 If a double sequence {𝐵𝑢𝑣} is 𝑊2[𝐷]𝛼-summable to a set 𝐵 (0 < 𝛼 ≤ 1), then the sequence 

is 𝑊2[𝐷]-summable to same set.  

Theorem 4.2 If 0 < 𝛼 < 𝛽 ≤ 1, then  

𝐵𝑢𝑣 ⟶
𝑊2(𝐷𝑆)𝛼

𝐵 ⇒ 𝐵𝑢𝑣 ⟶
𝑊2(𝐷𝑆)𝛽

𝐵. 

Proof. Let 0 < 𝛼 < 𝛽 ≤ 1 and assume that 𝐵𝑢𝑣 ⟶
𝑊2(𝐷𝑆)𝛼

𝐵. For every 𝜀 > 0 and each 𝑥 ∈ 𝒳, we can write   

1

(𝜙𝑘𝜓𝑗)𝛽
|{(𝑢, 𝑣): 𝑢 ∈ (𝑝𝑘, 𝑟𝑘], 𝑣 ∈ (𝑞𝑗, 𝑠𝑗], |𝜌𝑥(𝐵𝑢𝑣) − 𝜌𝑥(𝐵)| ≥ 𝜀}| 

≤
1

(𝜙𝑘𝜓𝑗)𝛼
|{(𝑢, 𝑣): 𝑢 ∈ (𝑝𝑘, 𝑟𝑘], 𝑣 ∈ (𝑞𝑗, 𝑠𝑗], |𝜌𝑥(𝐵𝑢𝑣) − 𝜌𝑥(𝐵)| ≥ 𝜀}|. 

Therefore, by our assumption, we get 𝐵𝑢𝑣 ⟶
𝑊2(𝐷𝑆)𝛽

𝐵.  

If 𝛽 = 1 is taken in Theorem 4.2, then the following corollary is obtained. 

Corollary 4.2 If a double sequence {𝐵𝑢𝑣} is 𝑊2(𝐷𝑆)𝛼 -convergent to a set 𝐵  (0 < 𝛼 ≤ 1), then the 

sequence is 𝑊2(𝐷𝑆)-convergent to same set.  

Theorem 4.3 Let 0 < 𝛼 ≤ 1 . If a double sequence {𝐵𝑢𝑣} is 𝑊2[𝐷]𝛼 -summable to a set 𝐵 , then the 

sequence is 𝑊2(𝐷𝑆)𝛼-convergent to the same set.  
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Proof. Let 0 < 𝛼 ≤ 1 and assume that 𝐵𝑢𝑣 ⟶
𝑊2[𝐷]𝛼

𝐵. For every 𝜀 > 0 and each 𝑥 ∈ 𝒳, we can write   

∑

𝑟𝑘

𝑢=𝑝𝑘+1

  ∑

𝑠𝑗

𝑣=𝑞𝑗+1

|𝜌𝑥(𝐵𝑢𝑣) − 𝜌𝑥(𝐵)| ≥ ∑

𝑟𝑘

𝑢=𝑝𝑘+1

  ∑

𝑠𝑗

𝑣=𝑞𝑗+1
|𝜌𝑥(𝐵𝑘𝑗)−𝜌𝑥(𝐵)|≥𝜀

|𝜌𝑥(𝐵𝑢𝑣) − 𝜌𝑥(𝐵)| 

≥ 𝜀 |{(𝑢, 𝑣): 𝑢 ∈ (𝑝𝑘, 𝑟𝑘], 𝑣 ∈ (𝑞𝑗 , 𝑠𝑗], |𝜌𝑥(𝐵𝑢𝑣) − 𝜌𝑥(𝐵)| ≥ 𝜀}|             

and so   

1

𝜀

1

(𝜙𝑘𝜓𝑗)𝛼
∑

𝑟𝑘

𝑢=𝑝𝑘+1

  ∑

𝑠𝑗

𝑣=𝑞𝑗+1

|𝜌𝑥(𝐵𝑢𝑣) − 𝜌𝑥(𝐵)| 

≥
1

(𝜙𝑘𝜓𝑗)𝛼
|{(𝑢, 𝑣): 𝑢 ∈ (𝑝𝑘, 𝑟𝑘], 𝑣 ∈ (𝑞𝑗, 𝑠𝑗], |𝜌𝑥(𝐵𝑢𝑣) − 𝜌𝑥(𝐵)| ≥ 𝜀}|. 

Therefore, by our assumption, we get 𝐵𝑢𝑣 ⟶
𝑊2(𝐷𝑆)𝛼

𝐵.  

Remark 4.1 The converse of Theorem 4.3 is true only in the case 𝛼 = 1 and {𝐵𝑢𝑣} ∈ 𝐿∞
2 , which has 

already been shown in [6]. 
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Abstract 
We consider the epitrochoidal surfaces in 3-dimensional Euclidean space 𝔼ଷ . We give 

fundamental notations of a Euclidean space. Defining a helicoidal surface, we reveal the epitrochoidal 
surface, and find its Gauss map, Gaussian curvature, and the mean curvature. Then, we indicate some 
relations between the curvatures of that kind surfaces.  

 
Keywords: 3-space, helicoidal surface, epitrochoidal surface, Gauss map, Gaussian curvature, 

mean curvature. 

 
1. Introduction 
 
The surface theory has been studied for years. It can be seen the books about the topic in literature, such as 
[1-7]. 

 
In this research, we reveal the epitrochoid helical surface in three dimensional Euclidean space 𝔼ଷ.  

 
We indicate the notions of 3-space in Section 1. In Section 2, we give helicoidal surface. Then, we 

reveal epitrochoid helical surface, compute its Gauss and mean curvatures in Section 3. We give some 
relations for the curvatures of the surface. We serve a conclusion in the end.  

 
In this work, with its transpose we equivalent a vector (p, q, r).  Next, in 𝔼ଷ , we describe the 

fundamental forms I, II,  shape operator matrix 𝓢, Gauss curvature K, mean curvature H of the surface 𝓸 =
𝓸(𝑢, 𝑣). 

 
Let 𝓸  be an immersion of surface 𝑀ଶ  in 𝔼ଷ . The vector product of �⃗� = (𝛼ଵ, 𝛼ଶ, 𝛼ଷ)  and 𝛽 =

(𝛽ଵ, 𝛽ଶ, 𝛽ଷ) of 𝔼ଷ is defined by 
 

�⃗� × 𝛽 = det ൭

𝑒ଵ 𝑒ଶ 𝑒ଷ

𝛼ଵ 𝛼ଶ 𝛼ଷ

𝛽ଵ 𝛽ଶ 𝛽ଷ

൱. 

 
We consider the following matrices 
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𝐼 = ൫𝑔൯
ଶ×ଶ

, and 𝐼𝐼 = ൫ℎ൯
ଶ×ଶ

, 

 
where 
 

𝑔ଵଵ = 𝓸௨ ∙ 𝓸௨,    
 

𝑔ଵଶ = 𝓸௨ ∙ 𝓸௩ = 𝑔ଶଵ,    
 

𝑔ଶଶ = 𝓸௩ ∙ 𝓸௩, 
 

ℎଵଵ = 𝓸௨௨ ∙ 𝓊,    
 

ℎଵଶ = 𝓸௨௩ ∙ 𝓊 = ℎଶଵ,    
 

ℎଶଶ = 𝓸௩௩ ∙ 𝓊, 
 

" ∙ " is a Euclidean inner product, the unit normal (i.e., the Gauss map) of the surface is given by 
 

𝓊 =
𝓸௨ × 𝓸௩

‖𝓸௨ × 𝓸௩‖
. 

 
We calculate 𝐼ିଵ. 𝐼𝐼, then it supplies the following matrix of the shape operator  

 

𝓢 =
1

𝑔ଵଵ𝑔ଶଶ − 𝑔ଵଶ
ଶ

൬
𝑔ଶଶℎଵଵ − 𝑔ଵଶℎଵଶ 𝑔ଶଶℎଵଶ − 𝑔ଵଶℎଶଶ

𝑔ଵଵℎଵଶ − 𝑔ଵଶℎଵଵ 𝑔ଵଵℎଶଶ − 𝑔ଵଶℎଵଶ
൰. 

 
Finally, we obtain the following formula of Gaussian curvature 

 
                                                                            𝐾 = 𝑑𝑒𝑡(𝓢) 

 

=
ℎଵଵℎଶଶ − ℎଵଶ

ଶ

𝑔ଵଵ𝑔ଶଶ − 𝑔ଵଶ
ଶ
 

 
and the mean curvature formula 

 

                                                               𝐻 =
1

2
𝑡𝑟(𝓢) 

 

=
𝑔ଵଵℎଶଶ + 𝑔ଶଶℎଵଵ − 2𝑔ଵଶℎଵଶ

2(𝑔ଵଵ𝑔ଶଶ − 𝑔ଵଶ
ଶ)

, 

 
respectively. The surface 𝓸(𝑢, 𝑣) is flat when 𝐾(𝑢) = 0, and it is minimal when 𝐻(𝑢) = 0. 
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2. Helical Surface 
 

In this section, we present the surface of rotation and the helical surface in 𝔼ଷ.  
 

Consider open interval I, let 𝛾 ∶ I ⊂ ℝ ⟶  Π be a curve, and ℓ be a line in Π. We define the surface 
of rotation as a surface rotating the generating curve 𝛾 about the axis ℓ.  

 
While the generating curve rotates about ℓ, it replaces parallel lines orthogonal to ℓ, then the 

accelerate of replacement is in proportion to the accelerate of rotation. Therefore, the above surface is 
named the helical surface having axis ℓ, pitch  𝓅 ∈ ℝା. 

 
The orthogonal matrix is given by 

 

𝒪(𝑣) = ൭
𝑐𝑜𝑠𝑣 −𝑠𝑖𝑛𝑣 0
𝑠𝑖𝑛𝑣 𝑐𝑜𝑠𝑣 0

0 0 1
൱. 

 
Here, 𝑣 ∈ ℝ. 𝒪 holds the following 

 
𝒪. ℓ = ℓ,    𝒪௧. 𝒪 = 𝒪. 𝒪௧ = ℑଷ, 𝑑𝑒𝑡𝒪 = 1, 

 
where ℑଷ is the identity matrix. 

 
When the rotation axis be ℓ, there is a transformation transformed ℓ to the axis 𝑥ଷ. The generating 

curve is given by 
 

𝛾(𝑢) = (𝒻(𝑢), 0, ℊ(𝑢)), 
 
where 𝒻(𝑢), ℊ(𝑢) ∈ 𝐶(I , ℝ). Hence, the helical surface spanned by the (0,0,1) having pitch 𝓅, is defined 
by 

 
ℋ(𝑢, 𝑣) = 𝒪(𝑣). 𝛾(𝑢) + 𝓅 𝑣 ℓ௧, 

 
where 𝑢 ∈ I, 𝑣 ∈ [0, 2𝜋). So, we have the following helicoidal surface 

 

ℋ(𝑢, 𝑣) = ቌ

𝒻(𝑢)𝑐𝑜𝑠𝑣

𝒻(𝑢)𝑠𝑖𝑛𝑣

ℊ(𝑢) + 𝓅𝑣
ቍ. 

 
When 𝓅 = 0, the helical surface is transform to the surface of rotation. 
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3. Helical Surface Having Epitrochoid Curve 
 

In 𝔼ଶ, epitrochoid curve is defined by 
 

𝛾[𝑎, 𝑏, ℎ](𝑢) = ൭(𝑎 + 𝑏)cos𝑢 − ℎcos ൬
𝑎 + 𝑏

𝑏
𝑢൰ , (𝑎 + 𝑏)sin𝑢 −  ℎsin ൬

𝑎 + 𝑏

𝑏
𝑢൰ ൱, 

 
where 𝑎, 𝑏, ℎ ∈ ℝ. 
 

In 𝔼ଷ, the epitrochoid helical surface (see Figure 1) spanned by the (0,0,1), has pitch 𝓅 ∈ ℝା, (see 
Figure 2 for 𝓅 = 0) is defined by 

 

𝔈(𝑢, 𝑣) =

⎝

⎜
⎜
⎜
⎜
⎜
⎛

൭(𝑎 + 𝑏)cos𝑢 − ℎcos ൬
𝑎 + 𝑏

𝑏
𝑢൰൱ cos 𝑣

൭(𝑎 + 𝑏)cos𝑢 − ℎcos ൬
𝑎 + 𝑏

𝑏
𝑢൰൱ sin 𝑣

൭(𝑎 + 𝑏)sin𝑢 −  ℎsin ൬
𝑎 + 𝑏

𝑏
𝑢൰൱ + 𝓅𝑣

⎠

⎟
⎟
⎟
⎟
⎟
⎞

, 

 

where the generating curve is presented by 
 
 

 

Figure. 1.  Epitrochoid helical surface 

Left: Outside view, Right: Inside view 
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Figure. 1.  Epitrochoid rotational surface 

Left: Outside view, Right: Inside view 

 
 

𝛾(𝑢) = ൭(𝑎 + 𝑏)cos𝑢 − ℎcos ൬
𝑎 + 𝑏

𝑏
𝑢൰ , 0, (𝑎 + 𝑏)sin𝑢 −  ℎsin ൬

𝑎 + 𝑏

𝑏
𝑢൰൱, 

 
𝑢 ∈ I, 𝑣 ∈ [0, 2𝜋). 

 
We take [𝑎, 𝑏, ℎ] = [3,1,2]. By using the first differentials of the epitrochoid helical surface 𝔈(𝑢, 𝑣) 

depends on 𝑢 and 𝑣, we reveal the following first quantities 
 

𝑔ଵଵ = 80 − 64cos(3𝑢), 
 

𝑔ଵଶ = (4cosu − 8cos(4u))𝓅, 
 

𝑔ଶଶ = 8cos(2𝑢) − 8cos(5𝑢) − 8cos(3𝑢) + 2𝑐𝑜𝑠(8𝑢) + 10 + 𝓅ଶ. 
 
Then, we get 
 
                         det൫𝑔൯ = −64cos(11𝑢) + (−32𝓅ଶ + 416) cos(8𝑢) + 256 cos(6𝑢) 
 

+(32𝓅ଶ − 960) cos(5𝑢) + (−32𝓅ଶ − 1280) cos(3𝑢) 
 

+(−8𝓅ଶ + 896) cos(2𝑢) − 256 cos 𝑢 + 40𝑐ଶ + 1056. 
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Hence, the Gauss map of the surface is given by 
 

𝓊(𝑢, 𝑣) =
1

(τ(u))ଵ/ଶ
ቌ

𝓊ଵ(𝑢, 𝑣)

𝓊ଶ(𝑢, 𝑣)

𝓊ଷ(𝑢, 𝑣)
ቍ, 

 
where 
 

𝓊ଵ = 𝓅(cos(𝑢 + 𝑣) − cos(𝑢 − 𝑣) − 2 cos(4𝑢 + 𝑣) + 2 cos(4𝑢 − 𝑣)) 
 

−2 cos(2𝑢 + 𝑣) − 2 cos(2𝑢 − 𝑣) + 5 cos(3𝑢 + 𝑣) + 5 cos(3𝑢 − 𝑣) 
 

+5cos(5𝑢 + 𝑣) + 5cos(5𝑢 − 𝑣) − 2cos(8𝑢 + 𝑣) − 2cos(8𝑢 − 𝑣) − 8cos(𝑣), 
 

𝓊ଶ = 𝓅൫sin(𝑢 + 𝑣) + sin(𝑢 − 𝑣) − 2 sin(4𝑢 + 𝑣) − 2sin(4𝑢 − 𝑣)൯ 
 

−2 sin(2𝑢 + 𝑣) + 2 sin(2𝑢 − 𝑣) + 5sin(3𝑢 + 𝑣) − 5sin(3𝑢 − 𝑣) 
 

+5 sin(5𝑢 + 𝑣) − 5 sin(5𝑢 − 𝑣) − 2sin(8𝑢 + 𝑣) + 2sin(8𝑢 − 𝑣) − 8sin(𝑣), 
 

𝓊ଷ = −4sin(8𝑢) + 10sin(5𝑢) + 6sin(3𝑢) − 4sin(2𝑢). 
 
and 
 

τ(u) = 2𝓅ଶ(−4cos(8𝑢) + 4cos(5𝑢) − 4cos(3𝑢) − cos(2𝑢) + 5) 
 

−16cos(11𝑢) + 104cos(8𝑢) + 64cos(6𝑢) − 240cos(5𝑢) 
 

−320cos(3𝑢) + 224cos(2𝑢) − 64cos(𝑢) + 264. 
 
In the end, the mean curvature of the epitrochoid helical surface 𝔈(𝑢, 𝑣) is given by 
 

𝐻(𝑢) =
𝒽(𝑢)

2(𝑊)ଷ/ଶ
, 

 
where 
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Figure. 1.  Gauss map of the epitrochoid helical surface 

Left: Outside view, Right: Inside view 

 
 

 
𝒽(𝑢) = 212992cosଵହ(𝑢) − 798720cosଵଷ(𝑢) + (16384𝓅ଶ − 210944)cosଵଶ(𝑢) 

 
+1198080cosଵଵ(𝑢) + (−49152𝓅ଶ + 599040)cosଵ(𝑢) 

 
+(−3072𝓅ଶ − 835072)cosଽ(𝑢) + (55296𝓅ଶ − 627456)cos଼(𝑢) 

 
+(7488𝓅ଶ + 222720)cos(𝑢) + (−28480𝓅ଶ + 280960)cos(𝑢) 

 
+(−6192𝓅ଶ + 8256)cosହ(𝑢) + (6120𝓅ଶ − 47712)cosସ(𝑢) 

 
+(1940𝓅ଶ − 6272)cosଷ(𝑢) + (−180𝓅ଶ + 3840)cosଶ(𝑢) 

 
+(−120𝓅ଶ + 456)cos(𝑢) − 25𝓅ଶ − 148, 

 
and the Gaussian curvature of the Eptrochoid helical surface 𝔈(𝑢, 𝑣) is given by 
 

𝐾(𝑢) =
𝓀(𝑢)

[𝑊(𝑢)]ଶ
, 

 
where 
 

𝓀(𝑢) = −655360cosଵଽ(𝑢) + 3112960cosଵ(𝑢) + (−65536𝓅ଶ + 811008)cosଵ(𝑢) 
 

−6225920cosଵହ(𝑢) + (262144𝓅ଶ − 3110912)cosଵସ(u)  
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+(16384𝓅ଶ + 6419456)cosଵଷ(𝑢) + (−425984𝓅ଶ + 4805632)cosଵଶ(𝑢) 
 

+(−57344𝓅ଶ − 3301888)cosଵଵ(𝑢) + (358912𝓅ଶ − 3728384)cosଵ(𝑢) 
 

+(77824𝓅ଶ + 539264)cosଽ(𝑢) + (−163328𝓅ଶ + 1484032)cos଼(𝑢) 
 

+(−51136𝓅ଶ + 165696)cos(𝑢) + (35968𝓅ଶ − 287648)cos(𝑢) 
 

+(16224𝓅ଶ − 63536)cosହ(𝑢) + (−1793𝓅ଶ + 30320)cosସ(𝑢) 
 

+(−1920𝓅ଶ + 7456)cosଷ(𝑢) + (−382𝓅ଶ − 1936)cosଶ(𝑢) 
 

+(−32𝓅ଶ − 322)cos(𝑢) − 𝓅ଶ + 68, 
 
and 
 

W(𝑢) = 𝓅ଶ ቐ
256 𝑐𝑜𝑠଼(𝑢) − 512𝑐𝑜𝑠(𝑢) − 32 𝑐𝑜𝑠ହ(𝑢) + 320 𝑐𝑜𝑠ସ(𝑢)

+48 𝑐𝑜𝑠ଷ(𝑢) − 63 𝑐𝑜𝑠ଶ(𝑢) − 16 𝑐𝑜𝑠(𝑢) − 1

ቑ 

 
+4096 cosଵଵ(𝑢) − 11264 cosଽ(𝑢) − 3328 cos଼(𝑢) 

 
+11264 cos(𝑢) + 6144 cos(u) − 3968 cosହ(𝑢) 

 
−3392 cosସ(𝑢) + 432 cosଶ(𝑢) + 32𝑐𝑜𝑠(𝑢) − 20. 

 
 
4. Conclusion 
 
By using above findings, we get the following. 
 
Corollary 1.  Let 𝔈 ∶  Mଶ  ⟶  𝔼ଷ be an immersion defined by 𝔈(𝑢, 𝑣). Mଶ is minimal iff 
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𝓅 = ∓

 2

⎝

⎜
⎜
⎜
⎛

−

⎩
⎪⎪
⎨

⎪⎪
⎧

16384cosଵଶ(𝑢) − 49152cosଵ(𝑢)

−3072 cosଽ(𝑢) + 55296 cos଼(𝑢)

+7488 cos(𝑢) − 28480 cos(𝑢)

−6192 cosହ(𝑢) + 6120 cosସ(𝑢)

+1940 cosଷ(𝑢) − 180 cosଶ(𝑢)

−120cos(𝑢) − 25 ⎭
⎪⎪
⎬

⎪⎪
⎫

.

⎩
⎪⎪
⎨

⎪⎪
⎧

832 cos(𝑢)

−1456 cosହ(u)

−408 cosସ(𝑢)

+728 cosଷ(𝑢)

+380 cosଶ(𝑢)

−34 cos(𝑢) − 37⎭
⎪⎪
⎬

⎪⎪
⎫

⎠

⎟
⎟
⎟
⎞

ଵ/ଶ

. ቐ

8 cosସ(𝑢)

−8 cosଶ(𝑢)

−2 𝑐𝑜𝑠(𝑢) + 1

ቑ

⎩
⎪
⎨

⎪
⎧

16384cosଵଶ(𝑢) − 49152cosଵ(𝑢) − 3072 cosଽ(𝑢) + 55296 cos଼(𝑢)

+7488 cos(𝑢) − 28480 cos(𝑢) − 6192 cosହ(𝑢) + 6120 cosସ(𝑢)

+1940 cosଷ(𝑢) − 180 cosଶ(𝑢) − 120 𝑐𝑜𝑠(𝑢) − 25 ⎭
⎪
⎬

⎪
⎫

. 

 
Proof. Computing 𝐻 = 0, we obtain 𝓀(𝑢) = 0. Then, we reveal 𝓅. 
 
Corollary 2.  Let 𝔈 ∶  Mଶ  ⟶  𝔼ଷ be an immersion given by 𝔈(𝑢, 𝑣). Mଶ is flat iff 
 

𝓅 = ∓

{2 cos(4𝑢) − 4 cos(𝑢)}. ൝
−10 cos(11𝑢) + 59 cos(8𝑢) + 25 cos(6𝑢) − 105 cos(5𝑢)

−125 cos(3𝑢) + 59 cos(2𝑢) − 10 𝑐𝑜𝑠(𝑢) + 93
ൡ

ଵ/ଶ

4 cos(8𝑢) − 4 cos(5𝑢) + 4 cos(3𝑢) + cos(2𝑢) − 5

. 

 
Proof. Solving 𝐾(𝑢) = 0, we have 𝓀(𝑢) = 0. Hence, we obtain 𝓅. 
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Fekete-Szegö Inequalities For A Subclass of Bi-univalent Functions Defined by Laguerre 
Polynomials 
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Abstract 
In this paper, we obtain the bounds for Fekete-Szegö inequalities for a new subclass of analytic 

and bi-univalent functions in the open unit disk defined by Laguerre polynomials. Furthermore, we 
investigate the special cases and consequences for a new subclass. 

 
          Keywords: Analytic and bi-univalent functions, subordination, Fekete-Szegö problem, Laguerre 

polynomials. 

 

1. Introduction and Preliminaries 

Let A represents the class of functions whose members are of the form 

                                               𝑓𝑓(𝑧𝑧) = 𝑧𝑧 + ∑ 𝑎𝑎𝑛𝑛𝑧𝑧𝑛𝑛,       (𝑧𝑧 ∈ ∆),∞
𝑛𝑛=2                                                     (1) 

which are analytic in  ∆=  {𝑧𝑧 ∈ ℂ ∶  |𝑧𝑧| < 1}, and  let S be the subclass of A whose members are univalent 
in ∆. The Koebe one quarter theorem [3] ensures that the image of  ∆ under every univalent function  𝑓𝑓 ∈
𝐴𝐴  contains a disk of radius  1

4
 . Thus every univalent function 𝑓𝑓 has an inverse 𝑓𝑓−1 satisfying   

𝑓𝑓−1�𝑓𝑓(𝑧𝑧)� = 𝑧𝑧, (𝑧𝑧 ∈ ∆)  and  𝑓𝑓�𝑓𝑓−1(𝜔𝜔)� = 𝜔𝜔,  (|𝜔𝜔| < 𝑟𝑟0(𝑓𝑓) ,  𝑟𝑟0(𝑓𝑓) ≥ 1
4
) . 

A function  𝑓𝑓 ∈ 𝐴𝐴  is said to be bi-univalent in ∆ if both  𝑓𝑓 and  𝑓𝑓−1 are univalent in  ∆, and let  Σ denote 
the class of bi – univalent functions defined in the unit disk ∆. Since 𝑓𝑓 ∈  Σ has the Maclaurin series given 
by (1), a computation shows that its inverse 𝑔𝑔 = 𝑓𝑓−1 has the expansion  

                   𝑔𝑔(𝜔𝜔) = 𝑓𝑓−1(𝜔𝜔) = 𝜔𝜔 − 𝑎𝑎2𝜔𝜔2 + (2𝑎𝑎22 − 𝑎𝑎3)𝜔𝜔3 + ⋯.                                              (2) 

We notice that the class Σ is not empty. For instance, the functions 

    𝑓𝑓1(𝑧𝑧) = 𝑧𝑧
𝑧𝑧−1

 ,     𝑓𝑓2(𝑧𝑧) = 1
2

log 1+𝑧𝑧
1−𝑧𝑧

 ,    𝑓𝑓3(𝑧𝑧) = − log(1 − 𝑧𝑧) 
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with their corresponding inverses  

𝑓𝑓1−1(𝜔𝜔) = 𝜔𝜔
1+𝜔𝜔′

 ,   𝑓𝑓2−1(𝜔𝜔) = 𝑒𝑒2𝜔𝜔−1
𝑒𝑒2𝜔𝜔+1

   ,   𝑓𝑓3−1(𝜔𝜔) = 𝑒𝑒𝜔𝜔−1
𝑒𝑒𝜔𝜔

 

are elements of Σ. However, the Koebe function is not a member of  Σ. Lately, Srivastava et al. [17] have 
essentially revived the study of analytic and bi-univalent functions; this was followed by such works as 
those of [1 − 16]. Several authors have introduced and examined subclasses of bi-univalent functions and 
obtained bounds for the initial coefficients (see [17] , bi-close-to-convex functions [6,11] , and bi-
prestarlike functions by Jahangiri and Hamidi [7]. 

Let 𝑓𝑓 and 𝑔𝑔 be analytic functions in ∆. We define that the function 𝑓𝑓 is subordinate to 𝑔𝑔 in ∆ and denoted 
by 

𝑓𝑓(𝑧𝑧) ≺ 𝑔𝑔(𝑧𝑧)    (𝑧𝑧 ∈ ∆), 

if there exists a Schwarz function 𝑤𝑤, which is analytic in ∆ with 𝑤𝑤(0) = 0 and |𝑤𝑤(𝑧𝑧)| < 1 (𝑧𝑧 ∈ ∆) such 
that 

𝑓𝑓(𝑧𝑧) = 𝑔𝑔(𝑤𝑤(𝑧𝑧))    (𝑧𝑧 ∈ ∆). 

If 𝑔𝑔 is a univalent function in ∆, then  

𝑓𝑓(𝑧𝑧) ≺ 𝑔𝑔(𝑧𝑧) ⇔ 𝑓𝑓(0) = 𝑔𝑔(0)    and    𝑓𝑓(∆) ⊂ 𝑔𝑔(∆). 

The classical Fekete-Szegö inequality [4], presented by means of Loewner's method, for the coefficients 
of 𝑓𝑓 ∈ S is that 

|𝑎𝑎3 − 𝜇𝜇𝑎𝑎22| ≤ 1 + 2𝑒𝑒𝑒𝑒𝑒𝑒 �
−2𝜇𝜇
1 − 𝜇𝜇

�  𝑓𝑓𝑓𝑓𝑟𝑟  0 ≤ 𝜇𝜇 < 1. 

As 𝜇𝜇 → 1⁻, we have the elementary inequality |𝑎𝑎₃ − 𝑎𝑎₂²| ≤ 1. Moreover, the coefficient functional 

𝐹𝐹𝜇𝜇(𝑓𝑓) = 𝑎𝑎₃ − 𝜇𝜇𝑎𝑎₂² 

on the normalized analytic functions, f in the open unit disk ∆ plays an important role in geometric 
function theory. The problem of maximizing the absolute value of the functional 𝐹𝐹𝜇𝜇(𝑓𝑓)  is called the 
Fekete-Szegö problem.  

In geometric function theory, there have been numerous interesting and fruitful us-ages of a wide 
variety of special functions, q-calculus, and special polynomials; for example, the Fibonacci polynomials, 
the Faber polynomials, the Lucas polynomials, the Pell polynomials, the Pell–Lucas polynomials, and the 
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Chebyshev polynomials of the second kind. The Horadam polynomials are potentially important in various 
disciplines in the mathematical, physical, statistical, and engineering sciences.  

       The generalized Laguerre polynomial  𝐿𝐿𝑛𝑛
𝛾𝛾 (𝛽𝛽)  is the polynomial solution 𝜙𝜙(𝛽𝛽)  of the differential 

equation (see [12]) 

𝛽𝛽𝜙𝜙′′ + (1 + 𝛾𝛾 − 𝛽𝛽)𝜙𝜙′ + 𝑛𝑛𝜙𝜙 = 0, 

where  𝛾𝛾 > −1 and  𝑛𝑛 is non-negative integers. 

The generating function of generalized Laguerre polynomial    𝐿𝐿𝑛𝑛
𝛾𝛾 (𝛽𝛽) is defined by 

                                           𝐻𝐻𝛾𝛾(𝛽𝛽, 𝑧𝑧) = ∑ 𝐿𝐿𝑛𝑛
𝛾𝛾 (𝛽𝛽)𝑧𝑧𝑛𝑛 = 𝑒𝑒−

𝛽𝛽𝑧𝑧
1−𝑧𝑧

(1−𝑧𝑧)𝛾𝛾+1
,∞

𝑛𝑛=0                                                      (3) 

where 𝛽𝛽 ∈ ℝ   and  𝑧𝑧 ∈ ∆.  Generalized Laguerre polynomials can also be defined by the following 
recurrence relations: 

                                    𝐿𝐿𝑛𝑛+1
𝛾𝛾 (𝛽𝛽) = 2𝑛𝑛+1+𝛾𝛾−𝛽𝛽

𝑛𝑛+1
𝐿𝐿𝑛𝑛
𝛾𝛾 (𝛽𝛽)− 𝑛𝑛+𝛾𝛾

𝑛𝑛+1
𝐿𝐿𝑛𝑛−1
𝛾𝛾 (𝛽𝛽)     (𝑛𝑛 ≥ 1),                               (4) 

with the initial conditions 

               𝐿𝐿0
𝛾𝛾(𝛽𝛽) = 1,     𝐿𝐿1

𝛾𝛾(𝛽𝛽) = 1 + 𝛾𝛾 − 𝛽𝛽     and   𝐿𝐿1
𝛾𝛾(𝛽𝛽) = 𝛽𝛽2

2
− (𝛾𝛾 + 2)𝛽𝛽 + (𝛾𝛾+1)(𝛾𝛾+1)

2
.           (5) 

Clearly, when 𝛾𝛾 = 0 the generalized Laguerre polynomials leads to the simply Laguerre polynomial, i.e., 
𝐿𝐿𝑛𝑛0 (𝛽𝛽) = 𝐿𝐿𝑛𝑛 (𝛽𝛽). 

The analytic function ℎ(𝑧𝑧)  with positive real part in ∆ such that ℎ(0) = 1, ℎ′(0) > 0  and ℎ(∆)  is 
symmetric with respect to real axis, which is of the type: 

 ℎ(𝑧𝑧) = 1 + 𝑒𝑒1𝑧𝑧 + 𝑒𝑒2𝑧𝑧2 + ⋯                                                             (6) 

where   

 𝑒𝑒1  = 1 + 𝛾𝛾 − 𝛽𝛽,   𝑒𝑒2 =  𝛽𝛽
2

2
− (𝛾𝛾 + 2)𝛽𝛽 + (𝛾𝛾+1)(𝛾𝛾+1)

2
.                                      (7) 

     First, we define a new subclass of bi-univalent functions in the open unit disk, associated with Laguerre 
polynomials as below. 

Definition 1.  For 𝜏𝜏 ∈ ℂ\{0},  0 ≤ 𝜗𝜗 ≤ 1 and ℎ  is analytic in ∆, ℎ(0) = 1, a function  𝑓𝑓 ∈  Σ the form (1) 
is said to be in the class  𝑀𝑀Σ(𝜏𝜏,𝜗𝜗, 𝑒𝑒1, 𝑒𝑒2) if the following subordinations hold: 
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                                   1 + 1
𝜏𝜏

(𝑓𝑓′(𝑧𝑧) + 𝜗𝜗𝑧𝑧𝑓𝑓′′(𝑧𝑧) − 1) ≺ ℎ(𝑧𝑧)                                                                (8) 

and                                    

                                  1 + 1
𝜏𝜏

(𝑔𝑔′(𝜔𝜔) + 𝜗𝜗𝜔𝜔𝑓𝑓′′(𝜔𝜔) − 1) ≺  ℎ(𝜔𝜔)                                                          (9)    

where  𝑧𝑧,𝜔𝜔 ∈ ∆,  𝑒𝑒1, 𝑒𝑒2 are given by (7), and 𝑔𝑔 = 𝑓𝑓−1 is given by (2).    

    To obtain our first results, we need the following lemma: 

Lemma 1 ([15], p.172).   Assume that  𝑤𝑤(𝑧𝑧) = ∑ 𝑤𝑤𝑛𝑛𝑧𝑧𝑛𝑛, 𝑧𝑧 ∈ ∆,∞
𝑛𝑛=1  is an analytic function in ∆ such that 

 |𝑤𝑤(𝑧𝑧) | < 1  for all   𝑧𝑧 ∈ ∆. Then, 

|𝑤𝑤1| ≤ 1,   |𝑤𝑤𝑛𝑛| ≤ 1 - |𝑤𝑤1|2,    𝑛𝑛 = 2,3, …. 

In the following result, we obtain upper bounds for the modules of the first two coefficients for the 
functions to belong to a class 𝑀𝑀Σ(𝜏𝜏,𝜗𝜗, 𝑒𝑒1, 𝑒𝑒2). 

2. Fekete-Szegö Inequality for the Function Class  𝑴𝑴𝚺𝚺(𝝉𝝉,𝝑𝝑,𝒆𝒆𝟏𝟏, 𝒆𝒆𝟐𝟐) 

         Due to the result of Zaprawa [18], in this section, we obtain the Fekete-Szegö inequality for the 
function classes  𝑀𝑀Σ�𝜏𝜏,𝜗𝜗;  𝜙𝜙𝑙𝑙𝜆𝜆�. 

Theorem 1. Assume that 𝜏𝜏 ∈ ℂ\{0},  0 ≤ 𝜗𝜗 ≤ 1. Let  𝑓𝑓 given by (1) be in the class 𝑀𝑀Σ(𝜏𝜏,𝜗𝜗, 𝑒𝑒1, 𝑒𝑒2)  with  
ℎ(𝑧𝑧) = 1 + 𝑒𝑒1𝑧𝑧 + 𝑒𝑒2𝑧𝑧2 + ⋯ and  𝜇𝜇 ∈ ℝ. Then, we have  

|𝑎𝑎3 − 𝜇𝜇𝑎𝑎22| ≤ �
|𝜏𝜏|𝑒𝑒1

3|1+2𝜗𝜗|  ,             𝑖𝑖𝑓𝑓                   |𝑙𝑙(𝜇𝜇)| ≤ 1
6|1+2𝜗𝜗| ,

2|𝜏𝜏||𝑙𝑙(𝜇𝜇)|𝑒𝑒1 ,         𝑖𝑖𝑓𝑓                   |𝑙𝑙(𝜇𝜇)| ≥ 1
6|1+2𝜗𝜗| ,       

                    (10) 

where 𝑒𝑒1, 𝑒𝑒2 are given by (7) and   

𝑙𝑙(𝜇𝜇) = (1−𝜇𝜇)𝜏𝜏2𝑒𝑒13

6𝜏𝜏(1+2𝜗𝜗)𝑒𝑒12−8(1+𝜗𝜗)2𝑒𝑒2
.                                                              (11) 

Proof.  Suppose that 𝑓𝑓 ∈ 𝑀𝑀Σ(𝜏𝜏,𝜗𝜗, 𝑒𝑒1, 𝑒𝑒2). From the definition in formulas (8) and (9), we have  

                             1 + 1
𝜏𝜏

(𝑓𝑓′(𝑧𝑧) + 𝜗𝜗𝑧𝑧𝑓𝑓′′(𝑧𝑧) − 1) = ℎ(𝜑𝜑(𝑧𝑧))                                                            (12)  

and 

                            1 + 1
𝜏𝜏

(𝑔𝑔′(𝜔𝜔) + 𝜗𝜗𝜔𝜔𝑔𝑔′′(𝜔𝜔) − 1) = ℎ(𝑒𝑒(𝜔𝜔)) ,                                                      (13)  
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where there exsist two holomorphic functions 𝜑𝜑,𝜒𝜒: ∆ → ∆  given by                                                        

                                        𝜑𝜑(𝑧𝑧) = 𝑟𝑟1𝑧𝑧 + 𝑟𝑟2𝑧𝑧2 + ⋯,                                                                            (14) 

                                        𝑒𝑒(𝜔𝜔) = 𝑠𝑠1𝜔𝜔 + 𝑠𝑠2𝜔𝜔2 + ⋯,                                                                         (15)   

with  𝜑𝜑(0) = 0 = 𝑒𝑒(0) , and  |𝜑𝜑(𝑧𝑧)| < 1 ,   |𝑒𝑒(𝜔𝜔)| < 1, for all   𝑧𝑧, 𝜔𝜔 ∈ ∆. From Lemma 1, it follows that  

                                              �𝑟𝑟𝑗𝑗� ≤ 1   and  �𝑠𝑠𝑗𝑗� ≤ 1, for all   𝑗𝑗 ∈ ℕ.                                               (16) 

Replacing (14) and (15) in (12) and (13), respectively, we have  

1 + 1
𝜏𝜏

(𝑓𝑓′(𝑧𝑧) + 𝜗𝜗𝑧𝑧𝑓𝑓′′(𝑧𝑧) − 1) = 1 + 𝑒𝑒1𝜑𝜑(𝑧𝑧) + 𝑒𝑒2𝜑𝜑2(𝑧𝑧) + ⋯,                                                    (17) 

and 

  1 + 1
𝜏𝜏

(𝑔𝑔′(𝜔𝜔) + 𝜗𝜗𝜔𝜔𝑔𝑔′′(𝜔𝜔) − 1) =  1 + 𝑒𝑒1𝑒𝑒(𝜔𝜔) + 𝑒𝑒2𝑒𝑒2(𝜔𝜔) + ⋯,                                            (18)    

In view of (1) and (2), from (17) and (18), we obtain        

1 + 1
𝜏𝜏

(2𝑎𝑎2(1 + 𝜗𝜗)𝑧𝑧 + 3𝑎𝑎3(1 + 2𝜗𝜗)𝑧𝑧2) = 1 + 𝑒𝑒1𝑟𝑟1𝑧𝑧 + [𝑒𝑒1𝑟𝑟2 + 𝑒𝑒2𝑟𝑟12]𝑧𝑧2 

and 

                              1 + 1
𝜏𝜏

(−2𝑎𝑎2(1 + 𝜗𝜗)𝜔𝜔 + 3(2𝑎𝑎22 − 𝑎𝑎3)(1 + 2𝜗𝜗)𝜔𝜔2) 

                                   =1 + 𝑒𝑒1𝑠𝑠1𝜔𝜔 + [𝑒𝑒1𝑠𝑠2 + 𝑒𝑒2𝑠𝑠12]𝜔𝜔2 

which yields the following relations : 

                                      2𝑎𝑎2(1 + 𝜗𝜗) = 𝜏𝜏𝑒𝑒1𝑟𝑟1 ,                                                                                   (19) 

                                      3𝑎𝑎3(1 + 2𝜗𝜗) = 𝜏𝜏𝑒𝑒1𝑟𝑟2 + 𝜏𝜏𝑒𝑒2𝑟𝑟12,                                                                 (20) 

and 

                                      −2𝑎𝑎2(1 + 𝜗𝜗) = 𝜏𝜏𝑒𝑒1𝑠𝑠1 ,                                                                               (21) 

                                       3(2𝑎𝑎22 − 𝑎𝑎3)(1 + 2𝜗𝜗) =  𝜏𝜏𝑒𝑒1𝑠𝑠2 + 𝜏𝜏𝑒𝑒2𝑠𝑠12                                             (22)  

From (19) and (21), it follows that  

                                                      𝑟𝑟1 = −𝑠𝑠1,                                                                                        (23) 
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and    

8𝑎𝑎22(1 + 𝜗𝜗)2 = 𝜏𝜏2𝑒𝑒12(𝑟𝑟12 + 𝑠𝑠12) 

                                           𝑎𝑎22 = 𝜏𝜏2𝑒𝑒12�𝑟𝑟12+𝑠𝑠12�
8(1+𝜗𝜗)2                                                                                   (24) 

Adding (20) and (22), using (24), we obtain  

                                           𝑎𝑎22 = 𝜏𝜏2𝑒𝑒13(𝑟𝑟2+𝑠𝑠2)
6𝜏𝜏(1+2𝜗𝜗)𝑒𝑒12−8(1+𝜗𝜗)2𝑒𝑒2

 .                                                                 (25) 

By subtracting (22) from (20), using (23) and (24), we get 

                                      𝑎𝑎3 = 𝜏𝜏𝑒𝑒1(𝑟𝑟2−𝑠𝑠2)+𝜏𝜏𝑒𝑒2(𝑟𝑟12−𝑠𝑠12)
6(1+2𝜗𝜗)

+ 𝑎𝑎22                                       (26) 

                                       = 𝜏𝜏𝑒𝑒1(𝑟𝑟2−𝑠𝑠2)+𝜏𝜏𝑒𝑒2(𝑟𝑟12−𝑠𝑠12)
6(1+2𝜗𝜗)

+ 𝜏𝜏2𝑒𝑒12�𝑟𝑟12+𝑠𝑠12�
8(1+𝜗𝜗)2                                   

From (25) and (26), we have                                                                 

                    𝑎𝑎3 − 𝜇𝜇𝑎𝑎22 = 𝜏𝜏𝑒𝑒1(𝑟𝑟2−𝑠𝑠2)
6(1+2𝜗𝜗) + (1 − 𝜇𝜇)𝑎𝑎22       

              = 𝜏𝜏𝑒𝑒1(𝑟𝑟2−𝑠𝑠2)
6(1+2𝜗𝜗)  + (1−𝜇𝜇)𝜏𝜏2𝑒𝑒13(𝑟𝑟2+𝑠𝑠2)

6𝜏𝜏(1+2𝜗𝜗)𝑒𝑒12−8(1+𝜗𝜗)2𝑒𝑒2
 

= 𝜏𝜏𝑒𝑒1 �
𝑟𝑟2

6(1 + 2𝜗𝜗) −
𝑠𝑠2

6(1 + 2𝜗𝜗) +
(1 − 𝜇𝜇)𝜏𝜏2𝑒𝑒13𝑟𝑟2

6𝜏𝜏(1 + 2𝜗𝜗)𝑒𝑒12 − 8(1 + 𝜗𝜗)2𝑒𝑒2
+

(1 − 𝜇𝜇)𝜏𝜏2𝑒𝑒13𝑠𝑠2
6𝜏𝜏(1 + 2𝜗𝜗)𝑒𝑒12 − 8(1 + 𝜗𝜗)2𝑒𝑒2

�

= 𝜏𝜏𝑒𝑒1 ��𝑙𝑙(𝜇𝜇) +
1

6(1 + 2𝜗𝜗)� 𝑟𝑟2 + �𝑙𝑙(𝜇𝜇) −
1

6(1 + 2𝜗𝜗)� 𝑠𝑠2�, 

where 

𝑙𝑙(𝜇𝜇) = (1−𝜇𝜇)𝜏𝜏2𝑒𝑒13

6𝜏𝜏(1+2𝜗𝜗)𝑒𝑒12−8(1+𝜗𝜗)2𝑒𝑒2
. 

Now, by using (7) 

 𝑎𝑎3 − 𝜇𝜇𝑎𝑎22 = 𝜏𝜏(1 + 𝛾𝛾 − 𝛽𝛽) ��𝑙𝑙(𝜇𝜇) +
1

6(1 + 2𝜗𝜗)� 𝑟𝑟2 + �𝑙𝑙(𝜇𝜇)−
1

6(1 + 2𝜗𝜗)� 𝑠𝑠2�, 

where   

𝑙𝑙(𝜇𝜇) = (1−𝜇𝜇)𝜏𝜏2(1+𝛾𝛾−𝛽𝛽)3

6𝜏𝜏(1+2𝜗𝜗)(1+𝛾𝛾−𝛽𝛽)2−8(1+𝜗𝜗)2(𝛽𝛽
2
2 −(𝛾𝛾+2)𝛽𝛽+(𝛾𝛾+1)(𝛾𝛾+1)

2 )
. 
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Therefore, in view of (7) and (16), we conclude that the required inequality holds. 

For  in Theorem 1, we obtain the following corollary. 

Corollary 1.  Assume that  0 ≤ 𝜗𝜗 ≤ 1. Let  𝑓𝑓 given by (1) be in the class 𝑀𝑀Σ(1,𝜗𝜗, 𝑒𝑒1, 𝑒𝑒2)  with  ℎ(𝑧𝑧) = 1 +
𝑒𝑒1𝑧𝑧 + 𝑒𝑒2𝑧𝑧2 + ⋯ and  𝜇𝜇 ∈ ℝ. Then, we have  

|𝑎𝑎3 − 𝜇𝜇𝑎𝑎22| ≤

⎩
⎨

⎧
𝑒𝑒1

3|1 + 2𝜗𝜗|  ,           𝑖𝑖𝑓𝑓                   |𝑙𝑙(𝜇𝜇)| ≤
1

6|1 + 2𝜗𝜗| ,

2|𝑙𝑙(𝜇𝜇)|𝑒𝑒1 ,               𝑖𝑖𝑓𝑓                   |𝑙𝑙(𝜇𝜇)| ≥
1

6|1 + 2𝜗𝜗| ,       
 

where 𝑒𝑒1, 𝑒𝑒2 are given by (7) and   

𝑙𝑙(𝜇𝜇) =
(1 − 𝜇𝜇)𝑒𝑒13

6(1 + 2𝜗𝜗)𝑒𝑒12 − 8(1 + 𝜗𝜗)2𝑒𝑒2
. 

For  in Theorem 1, we get the following corollary. 

Corollary 2.  Let  𝑓𝑓 given by (1) be in the class 𝑀𝑀Σ(1,1, 𝑒𝑒1, 𝑒𝑒2)  with  ℎ(𝑧𝑧) = 1 + 𝑒𝑒1𝑧𝑧 + 𝑒𝑒2𝑧𝑧2 + ⋯ and  𝜇𝜇 ∈
ℝ. Then, we have  

|𝑎𝑎3 − 𝜇𝜇𝑎𝑎22| ≤ �

𝑒𝑒1
9

 ,             𝑖𝑖𝑓𝑓                     |𝑙𝑙(𝜇𝜇)| ≤
1

18
,

2|𝑙𝑙(𝜇𝜇)|𝑒𝑒1 ,       𝑖𝑖𝑓𝑓                      |𝑙𝑙(𝜇𝜇)| ≥
1

18
 ,       

 

where 𝑒𝑒1, 𝑒𝑒2 are given by (7) and   

𝑙𝑙(𝜇𝜇) =
(1 − 𝜇𝜇)𝑒𝑒13

18𝑒𝑒12 − 32𝑒𝑒2
. 

For  in Theorem 1, we have the following corollary. 

Corollary 3. Let  𝑓𝑓 given by (1) be in the class 𝑀𝑀Σ(1,0, 𝑒𝑒1, 𝑒𝑒2)  with  ℎ(𝑧𝑧) = 1 + 𝑒𝑒1𝑧𝑧 + 𝑒𝑒2𝑧𝑧2 + ⋯ and  𝜇𝜇 ∈
ℝ. Then, we have  

|𝑎𝑎3 − 𝜇𝜇𝑎𝑎22| ≤ �

𝑒𝑒1
3

 ,               𝑖𝑖𝑓𝑓                      |𝑙𝑙(𝜇𝜇)| ≤
1
6

,

2|𝑙𝑙(𝜇𝜇)|𝑒𝑒1 ,          𝑖𝑖𝑓𝑓                   |𝑙𝑙(𝜇𝜇)| ≥
1
6

 ,       
 

where 𝑒𝑒1, 𝑒𝑒2 are given by (7) and   
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𝑙𝑙(𝜇𝜇) =
(1 − 𝜇𝜇)𝑒𝑒13

6𝑒𝑒12 − 8𝑒𝑒2
. 
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Abstract 

                In this study, we solve Fekete-Szegö problem for a new subclass ( ), ;β δ λ ϕΣ  of bi-univalent 
functions in the open unit disk U  defined by generalized Jung-Kim-Srivastava integral operator. 

 
          Keywords: Analytic Function, Univalent function, Bi-Univalent function, Integral operator, Fekete- 
Szegö problem. 

 
1. Introduction and Preliminaries 
 
Let A  denote the class of functions of the form:  

                                                           ( )
2

,n
n

n
f z z a z

∞

=

= +∑                                                         (1)  

which are analytic in the open unit disk { }: 1 .U z z= ∈ <  Further, by S  we shall denote the class of all 

functions in A  which are univalent in U . It is well known that every function  f S∈  has an inverse 1f − , 
defined by  

( )( ) ( )1      f f z z z U− = ∈  
and 

( )( ) ( ) ( )1
0 0

1      ;
4

f f w w w r f r f−  = < ≥ 
 

 

where 

 ( ) ( ) ( )1 2 2 3 3 4
2 2 3 2 2 3 42 5 5 ...f w w a w a a w a a a a w− = − + − − − + +  

A function f A∈  is said to be in ∑, the class of bi-univalent functions in U , if both  ( )f z and  ( )1f z− are 

univalent in .U  Lewin [10] showed that 2 1.51a <  for every function  f ∈∑  given by (1). Posteriorly, 
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Brannan and Clunie [1] improved Lewin’s result and conjectured that 2 2a ≤ for every function  f ∈∑  

given by (1). Later, Netanyahu [11] showed that 2
4max
3f

a
∈∑

=   The coefficient estimate problem for each 

of the following Taylor-Maclaurin coefficients: 

{ }( )   1,2,... ; 4na n N n∈ = ≥  
is still an open problem (see, for details, [14]). Since then, many researchers (see [2,4,6,8,15]) investigated 
several interesting subclasses of the class ∑ and found non-sharp estimates on the first two Taylor-
Maclaurin coefficients 2a  and 3a .  One of the most important problem on coefficients of univalent 

functions as known Fekete-Szegö problem. Very recently, some results have obtained by [3,5,8,9,13] for 
this problem. 

Let P  denote the class of function of p  analytic in U such that ( )0 1p =  and ( ){ }Re 0p z > , where 

( ) ( )2
1 21 ... .p z p z p z z U= + + + ∈  

If f  and g  are analytic in ,U  we say that f  is subordinate to ,g  written symbolically as  

f g    or   ( ) ( )f z g z    ( ) ,z U∈  

if there exists a Schwarz function ( ),w z  which (by definition) is analytic in U  with (0) 0w =  and ( ) 1w z <  

in U  such that ( ) ( ( )), .f z g w z z U= ∈   

In particular, if the function ( )g z  is univalent in ,U then we have that: 

( ) ( )f z g z    ( )z U∈    if and only if  (0) (0)f g=   and ( ) ( ).f U g U⊆  

Let ϕ  be an analytic function with positive real part in the unit disk U  such that 

( ) ( )0 1, 0 0ϕ ϕ′= >  

and ( )Uϕ  is symmetric with respect to the real axis and has a series expansion of  the form (see  [11]): 

( ) ( )2 3
1 2 3 11 ... 0 .z B z B z B z Bϕ = + + + + >  

Let ( )u z  and ( )v z be two analytic functions in the unit disk U  with ( ) ( )0 0 0u v= =  ( ) ( )1, 1u z v z< < , 

and suppose that 

( ) ( )2 3 2 3
1 2 3 1 2 31 ... and v 1 ...u z b z b z b z w c w c w c w= + + + + = + + + + ⋅                      (2) 

For above functions, well-known inequalities are 
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                                   2 2
1 2 1 1 2 11, 1 , 1 and 1 .b b b c c c≤ ≤ − < ≤ −                                         (3) 

Further we have 

                      ( )( ) ( ) ( )2 2
1 1 1 2 2 11 ... 1u z B b z B b B b z zϕ = + + + + <                                      (4) 

and              

                ( )( ) ( ) ( )2 2
1 1 1 2 2 11 ... 1v w B c w B c B c w wϕ = + + + + <                                    (5) 

In this study, we consider the generalized Jung-Kim-Srivastava integral operator Qβ
δ  [7] defined by 

1 1

0

2

( 1)( ) (1 ) ( ) ,  0,  1
( ) ( 1)

( 1) ( )
( ) ( 1)

z

n
n

n

tQ f z t f t dt
z z

nz a z
n

β δ β
δ

β δ β δ
β δ

β δ δ
β δ δ

− −

∞

=

Γ + +
= − ≥ > −

Γ Γ +

Γ + + Γ +
= +

Γ + + Γ +

∫

∑
                                 (6) 

and for 0β = , we have 0 ( ) ( ).Q f z f zδ =  

The main object of this paper is to introduce the following new subclass of bi-univalent functions involving 

Jung-Kim-Srivastava integral operator Qβ
δ  [7] and discuss Fekete-Szegö functional problem for functions 

in this new class (see [5]). 

 

2. Fekete-Szegö problem for the functions class ( ), ;Bβ δ λ ϕ∑  
 

Definition 1. A function ( )f z ∈∑  is said to be in the class ( ), ;Bβ δ λ ϕ∑   if and only if 

( ) ( ) ( )( ) ( )1
Q f z

Q f z z
z

β
δ β

δλ λ ϕ′− +   

and  

( ) ( ) ( )( ) ( )1
Q g w

Q g w w
w

β
δ β

δλ λ ϕ′− +   

where ( ) ( )10 1,  ,   and .z w U g w f wλ −≤ ≤ ∈ =  

Now, we are ready to find the sharp bounds of Fekete–Szegö functional 2
3 2a aµ−  defined for 

( ), ;f Bβ δ λ ϕ∑∈  given by (1). 
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Theorem 1.  Let ( )f z  given by (1) be in the class ( ), ;Bβ δ λ ϕ∑ . Then 

( ) ( ) ( )

( ) ( ) ( )

1

2
3 2

1

( 3) ( 1) ( 3) ( 1)0
1 2 ( 1) ( 3) 2 1 2 ( 1) ( 3)

( 3) ( 1)2
2 1 2 ( 1) ( 3)

B for h
a a

B h for h

β δ δ β δ δµ
λ β δ δ λ β δ δ

µ
β δ δµ µ
λ β δ δ

Γ + + Γ + Γ + + Γ + ≤ < + Γ + + Γ + + Γ + + Γ +− ≤  Γ + + Γ + ≥
 + Γ + + Γ +

      (7) 

where 

( ) ( )
( ) ( )

2
1

2
2

1 2

1
.

1 2 ( 1) ( 3) 1 ( 1) ( 2)
2 2

( 3) ( 1) ( 2) ( 1)

B
h

B B

µ
µ

λ β δ δ λ β δ δ
β δ δ β δ δ

−
=

+ Γ + + Γ + + Γ + + Γ + 
−  Γ + + Γ + Γ + + Γ + 

 

 

Proof.  Let ( ) ( ), ; .f z Bβ δ λ ϕ∑∈  By the definition of subordination, there are analytic functions  and u v

with ( ) ( ) ( ) ( )0 0 0, 1, 1u v u z v w= = < < , given by (2) and satisfying the following conditions: 

( ) ( ) ( )( )( )1 ( )Q f z Q f z u z
z

β
βδ
δλ λ ϕ′− + =  

and 

( ) ( ) ( )( ) ( )( )1 ,
Q g w

Q g w v w
w

β
δ β

δλ λ ϕ′− + =  

where ( ) ( )1g w f w−= . Since 

( ) ( ) ( )( )

( ) ( ) 2
2 3

1

( 1) ( 2) ( 1) ( 3)=1+ 1 1 2 ...
( 2) ( 1) ( 3) ( 1)

Q f z
Q f z

z

a z a z

β
δ β

δλ λ

β δ δ β δ δλ λ
β δ δ β δ δ

′− +

Γ + + Γ + Γ + + Γ +
+ + + +

Γ + + Γ + Γ + + Γ +

                       (8) 

    
and 

( ) ( ) ( )( )

( ) ( ) ( )2 2
2 2 3

1

( 1) ( 2) ( 1) ( 3)       =1 1 1 2 2 ...,
( 2) ( 1) ( 3) ( 1)

Q g w
Q g w

w

a w a a w

β
δ β

δλ λ

β δ δ β δ δλ λ
β δ δ β δ δ

′− +

Γ + + Γ + Γ + + Γ +
− + + + − +

Γ + + Γ + Γ + + Γ +

         (9) 

 

it follows from (4), (5), (8) and (9) that 

288



 
6th INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 
21-24 June 2022, Istanbul, Turkey 

 

 
ICOM 2021 

ISTANBUL / TURKEY 

( ) 2 1 1
( 1) ( 2)1 ,
( 2) ( 1)

a B bβ δ δλ
β δ δ

Γ + + Γ +
+ =

Γ + + Γ +
                                                       (10) 

                                         ( ) 2
3 1 2 2 1

( 1) ( 3)1 2 ,
( 3) ( 1)

a B b B bβ δ δλ
β δ δ

Γ + + Γ +
+ = +

Γ + + Γ +
                                               (11) 

                                         ( ) 2 1 1
( 1) ( 2)1 ,
( 2) ( 1)

a B cβ δ δλ
β δ δ

Γ + + Γ +
− + =

Γ + + Γ +
                                                     (12) 

 
and 

                    ( ) ( )2 2
2 3 1 2 2 1

( 1) ( 3)1 2 2 .
( 3) ( 1)

a a B c B cβ δ δλ
β δ δ

Γ + + Γ +
+ − = +

Γ + + Γ +
                                      (13) 

 

From (10) and (12), we get 

1 1c b= −                                                                          (14) 
 

( ) ( )
2

2 2 2 2
2 1 1 1

( 1) ( 2)2 1 .
( 2) ( 1)

a B b cβ δ δλ
β δ δ

 Γ + + Γ +
+ = + Γ + + Γ + 

                                       (15) 

 

By adding (11) to (13), we have 

                                ( ) ( ) ( )2 2 2
2 1 2 2 2 1 1

( 1) ( 3)2 1 2 .
( 3) ( 1)

a B b c B b cβ δ δλ
β δ δ

Γ + + Γ +
+ = + + +

Γ + + Γ +
                              (16)      

              
Therefore, from equalities (15) and (16) we find that 

( ) ( ) ( )
2

2 2 3
1 2 2 1 2 2

( 1) ( 3) ( 1) ( 2)2 1 2 2 1
( 3) ( 1) ( 2) ( 1)

B B a B b cβ δ δ β δ δλ λ
β δ δ β δ δ

  Γ + + Γ + Γ + + Γ +
+ − + = +  Γ + + Γ + Γ + + Γ +   

              (17) 

 

We conclude that, from (17) 
 

       ( )

( ) ( )

3
1 2 22

2 2
2

1 2
( 1) ( 3) ( 1) ( 2)2 1 2 2 1
( 3) ( 1) ( 2) ( 1)

B b c
a

B Bβ δ δ β δ δλ λ
β δ δ β δ δ

+
=

 Γ + + Γ + Γ + + Γ +
+ − + Γ + + Γ + Γ + + Γ + 

                         (18) 

and subtracting (13) from (11) and using (14) 
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          ( )
( )

1 2 22
3 2

( 3) ( 1)
.

2 1 2 ( 1) ( 3)
B b c

a a
β δ δ

λ β δ δ
Γ + + Γ + −

= +
+ Γ + + Γ +

           (19) 

From the Eqs. (18) and (19), it follows that 

( ) ( ) ( ) ( )
2

3 2 1 2 2
( 3) ( 1) ( 3) ( 1) ,

2 1 2 ( 1) ( 3) 2 1 2 ( 1) ( 3)
a a B h b h cβ δ δ β δ δµ µ µ

λ β δ δ λ β δ δ

    Γ + + Γ + Γ + + Γ +
− = + + −       + Γ + + Γ + + Γ + + Γ +       

where 

 ( ) ( )
( ) ( )

2
1

2
2

1 2

1
.

1 2 ( 1) ( 3) 1 ( 1) ( 2)
2 2

( 3) ( 1) ( 2) ( 1)

B
h

B B

µ
µ

λ β δ δ λ β δ δ
β δ δ β δ δ

−
=

+ Γ + + Γ + + Γ + + Γ + 
−  Γ + + Γ + Γ + + Γ + 

 

Since all iB  are real and 1 0B > , which implies the assertion (7). This completes the proof of Theorem 1.                                                                                                                                         

By taking 1λ =  in Theorem 1, we have 

Corollary 1. Let ( )f z  given by (1) be in the class ( ),1; .Bβ δ ϕ∑  Then 

( )

( ) ( )

1

2
3 2

1

( 3) ( 1) ( 3) ( 1)0
3 ( 1) ( 3) 6 ( 1) ( 3)

( 3) ( 1)2
6 ( 1) ( 3)

B for h
a a

B h for h

β δ δ β δ δµ
β δ δ β δ δ

µ
β δ δµ µ
β δ δ

Γ + + Γ + Γ + + Γ + ≤ < Γ + + Γ + Γ + + Γ +− ≤  Γ + + Γ + ≥
 Γ + + Γ +

 

where 

( ) ( )2
1

2
2

1 2

1
.

( 1) ( 3) ( 1) ( 2)6 8
( 3) ( 1) ( 2) ( 1)

B
h

B B

µ
µ

β δ δ β δ δ
β δ δ β δ δ

−
=

 Γ + + Γ + Γ + + Γ +
−  Γ + + Γ + Γ + + Γ + 

 

 

Putting 0β = in Theorem 1., we have 

Corollary 2. Let ( )f z  given by (1) be in the class ( ) ( )0 , ; ; .B Bδ λ ϕ λ ϕ∑ ∑=  Then 
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( ) ( ) ( )

( ) ( ) ( )

1

2
3 2

1

10
1 2 2 1 2

12
2 1 2

B for h
a a

B h for h

µ
λ λ

µ
µ µ

λ

 ≤ < + +− ≤ 
 ≥
 +

 

where 

( ) ( )
( ) ( )

2
1

22
1 2

1
.

2 1 2 2 1
B

h
B B

µ
µ

λ λ

−
=

+ − +
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Abstract 

                In this study, we solve Fekete-Szegö problem for a new subclass ( ), ;cδ β ϕΣ  of bi-univalent 
functions in the open unit disk U  defined by an integral operator. 

 
          Keywords: Analytic Function, Univalent function, Bi-Univalent function, Integral operator, Fekete- 
Szegö problem. 

 
1. Introduction and Preliminaries 
 
Let A  denote the class of functions of the form:  

                                                           ( )
2

,n
n

n
f z z a z

∞

=

= +∑                                                         (1)  

which are analytic in the open unit disk { }: 1 .U z z= ∈ <  Further, by S  we shall denote the class of all 

functions in A  which are univalent in U . It is well known that every function  f S∈  has an inverse 1f − , 
defined by  

( )( ) ( )1      f f z z z U− = ∈  
and 

( )( ) ( ) ( )1
0 0

1      ;
4

f f w w w r f r f−  = < ≥ 
 

 

where 

 ( ) ( ) ( )1 2 2 3 3 4
2 2 3 2 2 3 42 5 5 ...f w w a w a a w a a a a w− = − + − − − + +  

A function f A∈  is said to be in ∑, the class of bi-univalent functions in U , if both  ( )f z and  ( )1f z− are 

univalent in .U  Lewin [10] showed that 2 1.51a <  for every function  f ∈∑  given by (1). Posteriorly, 

Brannan and Clunie [2] improved Lewin’s result and conjectured that 2 2a ≤ for every function  f ∈∑  
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given by (1). Later, Netanyahu [11] showed that 2
4max
3f

a
∈∑

=   The coefficient estimate problem for each 

of the following Taylor-Maclaurin coefficients: 

{ }( )   1,2,... ; 4na n N n∈ = ≥  
is still an open problem (see, for details, [14]). Since then, many researchers (see [3,4,6,8,15]) investigated 
several interesting subclasses of the class ∑ and found non-sharp estimates on the first two Taylor-
Maclaurin coefficients 2a  and 3a .  One of the most important problem on coefficients of univalent 

functions as known Fekete-Szegö problem. Very recently, some results have obtained by [5,8,9,13] for this 
problem. 

Let P  denote the class of function of p  analytic in U such that ( )0 1p =  and ( ){ }Re 0p z > , where 

( ) ( )2
1 21 ... .p z p z p z z U= + + + ∈  

If f  and g  are analytic in ,U  we say that f  is subordinate to ,g  written symbolically as  

f g    or   ( ) ( )f z g z    ( ) ,z U∈  

if there exists a Schwarz function ( ),w z  which (by definition) is analytic in U  with (0) 0w =  and ( ) 1w z <  

in U  such that ( ) ( ( )), .f z g w z z U= ∈   

In particular, if the function ( )g z  is univalent in ,U then we have that: 

( ) ( )f z g z    ( )z U∈    if and only if  (0) (0)f g=   and ( ) ( ).f U g U⊆  

Let ϕ  be an analytic function with positive real part in the unit disk U  such that 

( ) ( )0 1, 0 0ϕ ϕ′= >  

and ( )Uϕ  is symmetric with respect to the real axis and has a series expansion of  the form (see  [11]): 

( ) ( )2 3
1 2 3 11 ... 0 .z B z B z B z Bϕ = + + + + >  

Let ( )u z  and ( )v z be two analytic functions in the unit disk U  with ( ) ( )0 0 0u v= =  ( ) ( )1, 1u z v z< < , 

and suppose that 

( ) ( )2 3 2 3
1 2 3 1 2 31 ... and v 1 ...u z b z b z b z w c w c w c w= + + + + = + + + + ⋅                      (2) 

For above functions, well-known inequalities are 
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                                   2 2
1 2 1 1 2 11, 1 , 1 and 1 .b b b c c c≤ ≤ − < ≤ −                                         (3) 

Further we have 

                      ( )( ) ( ) ( )2 2
1 1 1 2 2 11 ... 1u z B b z B b B b z zϕ = + + + + <                                      (4) 

and              

                ( )( ) ( ) ( )2 2
1 1 1 2 2 11 ... 1v w B c w B c B c w wϕ = + + + + <                                    (5) 

For  ( ) ,f z A∈  Al-Shaqsi [1] defined the following integral operator: 

         1
1 1

0

(1 ) ( ; )* ( )

(1 ) 1log( ) ( )
( )

c

c

L c c z f z

c t f zt dt
t

δ δ
δ

δ
δ

δ
− −

= + Φ

+
= −

Γ ∫
                                                    (6) 

( 0, 1, )c z Uδ> > ∈  

where Γ  standarts for the usual gamma function, ( ; )c zδΦ  is the well known generalization of the 
Riemann- zeta and polylogarithm functions, or the thδ  polylogarithm function, given by  

( )1
( ; )

k

k

zc z
k cδ δ

∞

=

Φ =
+

∑  

where any term without 0k c+ =  is excluded. Also, 
( )1 2(0; )
1

zz
z−Φ =

−
 is Koebe function.  

We also state that the operator  ( )cL f zδ  given by (6) can be expressed by the series expansions as follows: 

2

1( ) .k
c k

k

cL f z z a z
k c

δ
δ

∞

=

+ = +  + 
∑  

The main object of this paper is to introduce the following new subclass of bi-univalent functions involving 

the integral operator cLδ  [1] and discuss Fekete-Szegö functional problem for functions in this new class 

(see [5]). 
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2. Fekete-Szegö problem for the functions class ( ), ;cδ β ϕΣ  
 

Definition 1. A function ( )f z ∈∑  is said to be in the class ( ), ;cδ β ϕΣ   if and only if 

( ) ( ) ( )( ) ( )1 c
c

L f z
L f z z

z

δ
δβ β ϕ′− +   

and  

( ) ( ) ( )( ) ( )1 c
c

L g w
L g w w

w

δ
δβ β ϕ′− +   

where ( ) ( )10 1,  ,   and .z w U g w f wβ −≤ ≤ ∈ =  

Now, we are ready to find the sharp bounds of Fekete–Szegö functional 2
3 2a aµ−  defined for 

( ), ;f cδ β ϕΣ∈  given by (1). 

Theorem 1.  Let ( )f z  given by (1) be in the class ( ), ;cδ β ϕΣ . Then 

( )
( )

( )

( ) ( )
( )

1

2
3 2

1

10
1 11 2 2 1 2
3 3

12
12 1 2
3

B for h
c c
c c

a a
B h for h

c
c

δ δ

δ

µ
β β

µ
µ µ

β

 ≤ < + +    + +   + +    − ≤ 
 ≥
 + +  + 

                         (7) 

where 

( ) ( )

( ) ( )

2
1

2
22

1 2

1
.

1 12 1 2 2 1
3 2

B
h

c cB B
c c

δ δ

µ
µ

β β

−
=

+ +   + − +   + +   

 

 

Proof.  Let ( ) ( ), ; .f z cδ β ϕΣ∈  By the definition of subordination, there are analytic functions  and u v

with ( ) ( ) ( ) ( )0 0 0, 1, 1u v u z v w= = < < , given by (2) and satisfying the following conditions: 

( ) ( ) ( )( )( )1 ( )c
c

L f z L f z u z
z

δ
δβ β ϕ′− + =  

and 
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( ) ( ) ( )( ) ( )( )1 ,c
c

L g w
L g w v w

w

δ
δβ β ϕ′− + =  

where ( ) ( )1g w f w−= . Since 

( ) ( ) ( )( )

( ) ( ) 2
2 3

1

1 1=1+ 1 1 2 ...
2 3

c
c

L f z
L f z

z
c ca z a z
c c

δ
δ

δ δ

β β

β β

′− +

+ +   + + + +   + +   

                                  (8) 

    
and 

( ) ( ) ( )( )

( ) ( ) ( )2 2
2 2 3

1

1 1       =1 1 1 2 2 ...,
2 3

c
c

L g w
L g w

w
c ca w a a w
c c

δ
δ

δ δ

λ λ

β β

′− +

+ +   − + + + − +   + +   

                    (9) 

 

it follows from (4), (5), (8) and (9) that 

( ) 2 1 1
11 ,
2

c a B b
c

δ

β + + = + 
                                                       (10) 

                                         ( ) 2
3 1 2 2 1

11 2 ,
3

c a B b B b
c

δ

β + + = + + 
                                               (11) 

                                         ( ) 2 1 1
11 ,
2

c a B c
c

δ

β + − + = + 
                                                     (12) 

 
and 

                    ( ) ( )2 2
2 3 1 2 2 1

11 2 2 .
3

c a a B c B c
c

δ

β + + − = + + 
                                      (13) 

 

From (10) and (12), we get 

1 1c b= −                                                                          (14) 
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( ) ( )
2

2 2 2 2
2 1 1 1

12 1 .
2

c a B b c
c

δ

β
 +  + = +  +   

                                            (15) 

 

By adding (11) to (13), we have 

                                ( ) ( ) ( )2 2 2
2 1 2 2 2 1 1

12 1 2 .
3

c a B b c B b c
c

δ

β+  + = + + + + 
                                 (16)      

              
Therefore, from equalities (15) and (16) we find that 

( ) ( ) ( )
2

2 2 3
1 2 2 1 2 2

1 12 1 2 2 1
3 2

c cB B a B b c
c c

δ δ

β β
  + +    + − + = +     + +      

                    (17) 

 

We conclude that, from (17) 
 

       ( )

( ) ( )

3
1 2 22

2 2
22

1 2
1 12 1 2 2 1
3 2

B b c
a

c cB B
c c

δ δ

β β

+
=

+ +   + − +   + +   

                               (18) 

and subtracting (13) from (11) and using (14) 
 

          ( )

( )

1 2 22
3 2 .

12 1 2
3

B b c
a a

c
c

δ

β

−
= +

+ +  + 

                                 (19) 

From the Eqs. (18) and (19), it follows that 

( )
( )

( )
( )

2
3 2 1 2 2

1 1 ,
1 12 1 2 2 1 2
3 3

a a B h b h c
c c
c c

δ δµ µ µ
β β

    
    
    − = + + −
    + +   + +       + +       

 

where 
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( ) ( )

( ) ( )

2
1

2
22

1 2

1
.

1 12 1 2 2 1
3 2

B
h

c cB B
c c

δ δ

µ
µ

β β

−
=

+ +   + − +   + +   

 

Since all iB  are real and 1 0B > , which implies the assertion (7). This completes the proof of Theorem 1.                                                                                                                                         

By taking 1β =  in Theorem 1, we have 

Corollary 1. Let ( )f z  given by (1) be in the class ( ),1; .cδ ϕΣ  Then 

( )

( ) ( )

1

2
3 2

1

10
1 13 6
3 3

12
16
3

B for h
c c
c c

a a
B h for h

c
c

δ δ

δ

µ

µ
µ µ

 ≤ < + +       + +    − ≤ 
 ≥
 + 
  + 

 

where 

( ) ( )2
1

2
2

1 2

1
.

1 16 8
3 2

B
h

c cB B
c c

δ δ

µ
µ

−
=

+ +   −   + +   

 

Putting 0δ = in Theorem 1., we have 

Corollary 2. Let ( )f z  given by (1) be in the class ( ) ( )0 , ; ; .c cβ ϕ ϕΣ Σ=   Then 

( ) ( ) ( )

( ) ( ) ( )

1

2
3 2

1

10
1 2 2 1 2

12
2 1 2

B for h
a a

B h for h

µ
β β

µ
µ µ

β

 ≤ < + +− ≤ 
 ≥
 +

 

where 

( ) ( )
( ) ( )

2
1

22
1 2

1
.

2 1 2 2 1
B

h
B B

µ
µ

β β

−
=

+ − +
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Abstract 

In this study, we firstly characterize focal curves of principal-direction curves in 3D ordinary 

space. Then, we obtain the relation of curvatures of principal-direction curve in terms of focal 

curvatures. Finally, we give some conditions with constant curvatures in the ordinary space.   

 

          Keywords: Serret-Frenet frame, focal curve, principal-direction curve. 

 

1. Preliminaries 

 

Associated curves provide meaningful expressions in the study of the characterization of curves and 

surfaces, their behavior, and their motion in space-time. Fundamentally, it allows a second curve 

geometrically related to a curve to be defined with the help of the 1st curve. One of the most obvious 

examples of associated curves is integral curves, which is a superscript of adjoint curves. Integral curves 

are important in terms of the possibilities they provide for the solution of some differential equations that 

we encounter in geometric problems. The principal-direction curves that we will consider in our study are 

the curves determined by the integral of the normal vector field of a curve [1-13]. 

 

By way of design and style, this is model to kind of a moving frame with regards to a particle. In the 

quick stages of regular differential geometry, the Frenet-Serret frame was applied to create a curve in 

location. After that, Serret-Frenet frame is established by way of subsequent equations for a presented 

framework [4], 

 [
𝛻𝑻𝑻
𝛻𝑻𝑵
𝛻𝑻𝑩

] = [
0 𝜅 0

−𝜅 0 𝜏
0 −𝜏 0

] [
𝑻
𝑵
𝑩

], 

where 𝜅 = ‖𝑻‖ and 𝜏 are the curvature and torsion of 𝛾, respectively. 

 

Definition 1. Let 𝛾 be a regular curve arc-length parametrized. Then, the principal-direction curve of 𝛾 is 

given as  𝛾𝑑(𝑠) = ∫ 𝑵(𝑠)𝑑𝑠 [6]. 

 

Teorem 2. Let 𝛾 be a regular curve arc-length parametrized, {𝑻, 𝑵, 𝑩} be Serret-Frenet frame of 𝛾 and 𝛾𝑑 

be principal-direction curve of 𝛾. Denote by {𝑻𝑑 , 𝑻𝑑 , 𝑩𝑑} Serret-Frenet frame of 𝛾𝑑. Then, relation with 

{𝑻, 𝑵, 𝑩} of Serret-Frenet frame elements of 𝛾𝑑 can given by [6] 
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𝑻𝑑  =  𝑵,

𝑵𝑑  =  
−𝜅𝑻+𝜏𝑩

√𝜅2+𝜏2
,

𝑩𝑑  =  
𝜏𝑻+𝜅𝑩

√𝜅2+𝜏2
,

 (1) 

and 

 𝜅𝑑 = √𝜅2 + 𝜏2,      𝜏𝑑 =
𝜏𝜅′−𝜅𝜏′

√𝜅2+𝜏2
. (2)  

 

Proof. From Serret-Frenet frame formulas and Definition 1, the proof is plainly obtained. 

 

2. Focal Curves of Principal-Direction Curves 

 

The focal curve of 𝛾 is given by  

 𝐹𝛾 = 𝛾 + 𝜑1𝑵 + 𝜑2𝑩, (3) 

where the coefficients 𝜑1, 𝜑2 are smooth functions of the parameter of the curve 𝛾, called the first and 

second focal curvatures of 𝛾, respectively. 

 

Teorem 3. Let 𝛾𝑑: 𝐼 → 𝐸3 be principal-direction curve of 𝛾 and 𝐹𝛾𝑑
 be its focal curve on 𝐸3. Then, 

 
𝐹𝛾𝑑

 =  𝛾𝑑 +
−𝜅√𝜅2+𝜏2+𝜏(𝜅𝜅′+𝜏𝜏′)(𝜏𝜅′−𝜅𝜏′)

(𝜅2+𝜏2)3/2 𝑻

  +
𝜏√𝜅2+𝜏2+𝜅(𝜅𝜅′+𝜏𝜏′)(𝜏𝜅′−𝜅𝜏′)

(𝜅2+𝜏2)3/2 𝑩,
 (4) 

where 𝜅,  𝜏 are curvatures of 𝛾. 

 

Proof. Assume that 𝛾𝑑 is a unit speed curve and 𝐹𝛾𝑑
 its focal curve in 𝐸3. So, by differentiating of the 

formula 𝐹𝛾𝑑
= 𝛾𝑑 + 𝜑𝑑1𝑵𝑑 + 𝜑𝑑2𝑩𝑑 , we get 

 𝐹𝛾𝑑
′ = (1 − 𝜅𝑑𝜑𝑑1)𝑻𝑑 + (𝜑𝑑1

′ − 𝜏𝑑𝜑𝑑2)𝑵𝑑 + (𝜑𝑑2
′ + 𝜏𝑑𝜑𝑑1)𝑩𝑑 

From above equation, the first 2 components vanish, we get 

 
1 − 𝜅𝑑𝜑𝑑1  =  0,

𝜑𝑑1
′ − 𝜏𝑑𝜑𝑑2  =  0.

 

Using the above equations, we obtain 

 𝜑𝑑1 =
1

𝜅𝑑
, 

 

 𝜑𝑑2 =
𝜑𝑑1

′

𝜏𝑑
=

−𝜅𝑑
′

𝜅𝑑
2𝜏𝑑

. 

By using (2) in this equations, we find 

 𝜑𝑑1 =
1

√𝜅2+𝜏2
, 

 

 𝜑𝑑2 =
(𝜅𝜅′+𝜏𝜏′)(𝜏𝜅′−𝜅𝜏′)

𝜅2+𝜏2 . 

By means of obtained equations and using (1), we express (4). This completes the proof of the theorem. 
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As an immediate consequence of the above theorem, we have: 

 

Corollary 4. Let 𝛾𝑑: 𝐼 → 𝐸3  be a unit speed curve and 𝐹𝛾𝑑
 its focal curve on 𝐸3 . Then, the focal 

curvatures of 𝛾𝑑 are 

 𝜑𝑑1 =
1

√𝜅2+𝜏2
, 

 

 𝜑𝑑2 =
(𝜅𝜅′+𝜏𝜏′)(𝜏𝜅′−𝜅𝜏′)

𝜅2+𝜏2 . 

 

 

Proof. From above theorem, we have above system, which completes the proof. 

 

In the light of Theorem 3, we express the following corollary without proof: 

  

Corollary 5. Let 𝛾: 𝐼 → 𝐸3 be unit speed curve, 𝛾𝑑 be the principal-direction curve of 𝛾 and 𝐹𝛾𝑑
 its focal 

curve on 𝐸3. Then, if curvature 𝜅 and torsion 𝜏 of 𝛾 are constant, then the focal curve of𝛾𝑑 is given by 

 𝐹𝛾𝑑
= 𝛾𝑑 −

𝜅

𝜅2+𝜏2 𝑻 +
𝜏

𝜅2+𝜏2 𝑩. 

 

 

Example. Let a unit speed curve 𝛾 be given as  

 𝛾(𝑡) = (
1

√2
𝑐𝑜𝑠 𝑡 ,

1

√2
𝑠𝑖𝑛 𝑡 ,

1

√2
𝑡). 

Then, Serret-Frenet frame and curvatures of 𝛾 are obtained as 

 

𝑻 = 𝛾 ′ = (−
1

√2
𝑠𝑖𝑛 𝑡 ,

1

√2
𝑐𝑜𝑠 𝑡 ,

1

√2
),

𝑵 =
𝛾′′

‖𝛾′′‖
= (− 𝑐𝑜𝑠 𝑡 , − 𝑠𝑖𝑛 𝑡 , 0),

𝑩 = 𝑻 × 𝑵 = (
1

√2
𝑠𝑖𝑛 𝑡 ,

−1

√2
𝑐𝑜𝑠 𝑡 ,

1

√2
),

 

and 

 
𝜅 =< 𝑻′, 𝑵 >=

1

√2
,

𝜏 =< 𝑵′, 𝑩 >=
1

√2
.
 

Let 𝛾𝑑 be principal-direction curve of 𝛾. Then, we obtain 

 

𝛾𝑑  =  ∫ 𝑵(𝑡)𝑑𝑡 = (− 𝑠𝑖𝑛 𝑡 , 𝑐𝑜𝑠 𝑡 , 𝑐),

𝑻𝑑  =  (− 𝑐𝑜𝑠 𝑡 , − 𝑠𝑖𝑛 𝑡 , 0) = 𝑵,

𝑵𝑑  =  (𝑠𝑖𝑛 𝑡 , − 𝑐𝑜𝑠 𝑡 , 0) =
−𝜅𝑻+𝜏𝑩

√𝜅2+𝜏2
,

𝑩𝑑  =  (0,0,1) =
𝜏𝑻+𝜅𝑩

√𝜅2+𝜏2
,

 

and 
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𝜅𝑑 =< 𝑻𝑑

′ , 𝑵𝑑 >= 1 = √𝜅2 + 𝜏2,

𝜏𝑑 =< 𝑵𝑑
′ , 𝑩𝑑 >= 0 =

𝜏𝜅′−𝜅𝜏′

√𝜅2+𝜏2
.

 

Hence, equations of (1) and (2) are provided. Also, the focal curve of 𝛾𝑑 is given by  

 𝐹𝛾𝑑
= 𝛾𝑑 + 𝜑𝑑1𝑵𝑑 + 𝜑𝑑2𝑩𝑑 . 

Here, 𝜑𝑑1 =
1

𝜅𝑑
= 1 and 𝜑𝑑2 =

−𝜅𝑑
′

𝜅𝑑
2𝜏𝑑

= 0. Hence the focal curve 𝐹𝛾𝑑
 is obtained as 

 𝐹𝛾𝑑
= (0,0, 𝑐). 

On the other hand, since curvature and torsion are constant, Corollary 5 is provided: 

 

𝐹𝛾𝑑
 =  𝛾𝑑 −

𝜅

𝜅2+𝜏2 𝑻 +
𝜏

𝜅2+𝜏2 𝑩

 =  (− 𝑠𝑖𝑛 𝑡 , 𝑐𝑜𝑠 𝑡 , 𝑐) −
1

2
(− 𝑠𝑖𝑛 𝑡 , 𝑐𝑜𝑠 𝑡 , 1)

  +
1

2
(𝑠𝑖𝑛 𝑡 , − 𝑐𝑜𝑠 𝑡 , 1)

 =  (− 𝑠𝑖𝑛 𝑡 , 𝑐𝑜𝑠 𝑡 , 𝑐) + (𝑠𝑖𝑛 𝑡 , − 𝑐𝑜𝑠 𝑡 , 0)
 =  (0,0, 𝑐).
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Abstract 

The aim of this study is to introduce the generalized spherical fuzzy topological spaces by 

defining some basic concepts such as generalized spherical fuzzy subspace, generalized spherical fuzzy 

interior, generalized spherical fuzzy closure and generalized spherical fuzzy boundary. Then, we obtain  

some properties of these concepts and explain them with examples. We also establish an algorithm to 

solve multi-criteria decision-making problems based on generalized spherical fuzzy topological spaces. 

Finally, we compare the proposed method with the generalized spherical fuzzy TOPSIS method under 

a numerical example to demonstrate the validity and reliability of this new method.  

          Keywords: Generalized spherical fuzzy sets, generalized spherical fuzzy topological spaces, multi-

attribute decision-making, TOPSIS. 

1. Introduction 

 

We have needed to more powerful and useful set theories than the classical set theory to handle the real-

life problems that contain uncertain and ambiguous data such as decision-making problems, data mining, 

pattern recognition, image filtering and etc. For this reason, Zadeh [20] introduced the fuzzy set theory 

which can be used in a wide range of domains in which information is incomplete or imprecise. After Zadeh 

[20] introduced the fuzzy set theory to handle the uncertainty in the real-life problems, different set theories 

which are extensions of fuzzy set theory have been presented by many authors: intuitionistic fuzzy set 

theory (Atanassov [5]), Pythagorean fuzzy set theory (Yager [19]), picture fuzzy set theory (Cuong [6]), 

spherical fuzzy set theory (Ashraf et al. [1], Kutlu Gündoğdu and Kahraman [15]), spherical fuzzy soft set 

theory (Perveen et al. [18]) and etc.  Some important decision-making methods established on spherical 

fuzzy (soft) sets was given in [2, 3, 4, 8, 9, 14-18]. Recently, Hague et al. [12] initiated the generalized 

spherical fuzzy (GSF) set theory as a generalization of the spherical fuzzy set to use when this theory cannot 

enough to handle the data in the problems consisting of uncertain information. Some recent studies on 

generalized spherical fuzzy set theories and decision-making approaches can be found in [7, 10, 11, 13]. 

In this study, we introduce the generalized spherical fuzzy topological spaces by defining some basic 

concepts such as generalized spherical fuzzy subspace, generalized spherical fuzzy interior, generalized 

spherical fuzzy closure and generalized spherical fuzzy boundary. Then, we obtain some properties of these 

concepts and explain them with examples. We also establish an algorithm to solve multi-criteria decision-

making problems based on generalized spherical fuzzy topological spaces. Finally, we compare the 

proposed method with the generalized spherical fuzzy TOPSIS method under a numerical example to 

demonstrate the validity and reliability of this new method. 
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2. Preliminaries 

In this section, we recall some fundamental definitions which will be used in the main sections. 

Throughout this paper 𝑈 will refer the set of the discourse. 

Definition 2.1. [1, 12] Let 𝜇: 𝑈 → [0,1], 𝜄: 𝑈 → [0,1]  and 𝜈: 𝑈 → [0,1]  be three mappings. A set  

𝐺 = {< 𝑥, 𝜇(𝑥), 𝜄(𝑥) 𝜈(𝑥) > |𝑥 ∈ 𝑈} is called a 

(i) spherical fuzzy set (SFS) if the condition 0 ≤ 𝜇2(𝑥) + 𝜄2(𝑥) + 𝜈2(𝑥) ≤ 1 hold for all 𝑥 ∈ 𝑈. 

(ii) generalized spherical fuzzy set (GSFS) if the condition 0 ≤ 𝜇2(𝑥) + 𝜄2(𝑥) + 𝜈2(𝑥) ≤ 3  hold for all 

𝑥 ∈ 𝑈. 

The values 𝜇(𝑥), 𝜄(𝑥), 𝜈(𝑥) ∈ [0,1] denote the positive membership degree, neutral membership degree 

and negative membership degree of 𝑥 to 𝐺, respectively. 

The triplet 𝐺 =< 𝜇, 𝜄, 𝜈 >  where 𝜇, 𝜄, 𝜈 ∈ [0,1] and 𝜇2 + 𝜄2 + 𝜈2 ≤ 3   (or 𝜇 + 𝜄 + 𝜈 ≤ 1   and 𝜇2 + 𝜄2 +
𝜈2 ≤ 1 , resp.), is called a generalized spherical fuzzy number (GSFN) (or spherical fuzzy number (SFN)). 

Definition 2.2. A GSFS on 𝑈  of the form {< 𝑥, 1,0,0 > : 𝑥 ∈  𝑈} is called an absolute GSFS and  
{ < 𝑥, 0,1,1 > : 𝑥 ∈ 𝑈}  a null GSFS.  We will denote the absolute GSFS and null GSFS by 1𝑈 and 0𝑈, 

respectively. 

Definition 2.3. [12] Let 𝐺1 = {< 𝑥, 𝜇1(𝑥), 𝜄1(𝑥), 𝜈1(𝑥) > |𝑥 ∈  𝑈} and 𝐺2 = {< 𝑥, 𝜇2(𝑥), 𝜄2(𝑥), 𝜈2(𝑥) >
|𝑥 ∈  𝑈} be two GSFSs on 𝑈. Then the set operations between GSFSs are defined as follows: 

(i) 𝐺1 is called a subset of 𝐺2 and denoted by 𝐺1 ⊑ 𝐺2 if 𝜇1(𝑥) ≤ 𝜇2(𝑥), 𝜄1(𝑥) ≥ 𝜄2(𝑥) and 𝜈1(𝑥) ≥ 𝜈2(𝑥) 
for all 𝑥 ∈  𝑈. 

(ii) 𝐺1 is called equal to 𝐺2 and denoted by 𝐺1 = 𝐺2 if 𝐺1 ⊑ 𝐺2 and 𝐺2 ⊑ 𝐺1. 

(iii) The union of 𝐺1  and 𝐺2  is denoted by 𝐺1 ⊔ 𝐺2  and defined by  

𝐺1 ⊔ 𝐺2 = {(𝑥, 𝜇1(𝑥) ∨ 𝜇2(𝑥), 𝜄1(𝑥) ∧ 𝜄2(𝑥), 𝜈1(𝑥) ∧ 𝜈2(𝑥)|𝑥 ∈  𝑋}.  

(iv) The intersection of 𝐺1  and 𝐺2  is denoted by 𝐺1 ⊔ 𝐺2  and defined by  

𝐺1 ⊔ 𝐺2 = {(𝑥, 𝜇1(𝑥) ∧ 𝜇2(𝑥), 𝜄1(𝑥) ∨ 𝜄2(𝑥), 𝜈1(𝑥) ∨ 𝜈2(𝑥)|𝑥 ∈  𝑋}.  

Definition 2.4. Let 𝐺 = {< 𝑥, 𝜇(𝑥), 𝜄(𝑥) 𝜈(𝑥) > |𝑥 ∈ 𝑈}   be a GSFS on U. Then the complement of 𝐺 is 

denoted by 𝐺𝑐 and defined by 𝐺𝑐 = {< 𝑥, 𝜈(𝑥), 𝜄(𝑥), 𝜇(𝑥) > |𝑥 ∈ 𝑈}. 

Definition 2.5. [12] Let 𝐺 =< 𝜇, 𝜄, 𝜈 > , 𝐺1 =< 𝜇1, 𝜄1, 𝜈1 > , 𝐺2 =< 𝜇2, 𝜄2, 𝜈2 >   be three GSFNs and  
𝑎 ≥ 0. Then the algebraic operations between GSFNs are defined as follows: 

(i) 𝐺1⊕𝐺2 =< √𝜇1
2 + 𝜇2

2 − 𝜇1
2𝜇2
2, 𝜄1𝜄2, 𝜈1𝜈2 >, 

(ii) 𝐺1⊙𝐺2 =< 𝜇1𝜇2, 𝜄1𝜄2, √𝜈1
2 + 𝜈2

2 − 𝜈1
2𝜈2
2 >, 

(iii) 𝑎 × 𝐺 =< √1 − (1 − 𝜇2)𝑎, 𝜄𝑎, 𝜈𝑎 >, 

(iv) 𝐺𝑎 =< 𝜇𝑎, 𝜄𝑎, √1 − (1 − 𝜈2)𝑎 >. 

Lemma 2.1. Let 𝐺1 =< 𝜇1, 𝜄1, 𝜈1 > , 𝐺2 =< 𝜇2, 𝜄2, 𝜈2 >  be two GSFNs and 𝑎, 𝑎1, 𝑎2 ≥ 0 . Then the 

following properties hold: 

(i) 𝐺1 + 𝐺2 = 𝐺2 + 𝐺1, 

(ii) 𝑎 × (𝐺1 + 𝐺2) = 𝑎 × 𝐺1 +  𝑎 × 𝐺2, 
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(iii) (𝑎1 + 𝑎2) × 𝐺1 = 𝑎1 × 𝐺1 + 𝑎2 × 𝐺2, 

(vi) (𝐺1
𝑎1)

𝑎2
= 𝐺1

𝑎1𝑎2. 

Definition 2.6. [12] Let 𝒢 be a collection of all GSFNs and (𝐺1, 𝐺2, … , 𝐺𝑛) ∈  𝒢
𝑛 where 𝐺𝑖 =< 𝜇𝑖 , 𝜄𝑖, 𝜈𝑖 > 

for all 𝑖 = 1,2, . . . , 𝑛 and 𝑤 = (𝑤1, 𝑤2, . . . , 𝑤𝑛)
𝑇 the weight vector corresponding to (𝐺𝑖)𝑖=1

𝑛  such that 𝑤𝑖 ≥
0 for all 𝑖 and ∑ 𝑤𝑖

𝑛
𝑖=1 = 1. A mapping 𝐺𝑆𝑊𝐴𝑤: 𝒢

n → 𝒢 is said to be a GSF-weighted averaging (GSWA) 

operator and defined by 

𝐺𝑆𝑊𝐴𝑤(𝐺1, 𝐺2, . . . , 𝐺𝑛) = 𝑤1 × 𝐺1⊕𝑤2 × 𝐺2⊕ . . . 𝑤𝑛 × 𝐺𝑛 =⊕𝑖=1
𝑛  𝑤𝑖 × 𝐺𝑖 . 

Definition 2.7. [12] Let 𝒢  be the family of all GSFNs and 𝐺 ∈ 𝒢  where  𝐺 =< 𝜇, 𝜄, 𝜈 >. 

(i) A score function 𝑆𝐹: 𝒢 → [−1,1] is defined as 𝑆𝐹(𝐺) =
3𝜇2−2𝜄2−𝜈2

3
.  

(ii) An accuracy function 𝐴𝐹: 𝒢 → [0,1] is defined as 𝐴𝐹(𝐺) =
1+3𝜇2−𝜈2

4
. 

Definition 2.8. [12] Let 𝐺1 =< 𝜇1, 𝜄1, 𝜈1 >  and 𝐺2 =< 𝜇2, 𝜄2, 𝜈2 >  be any two GSFNs. Then the ranking 

method (comparison technique) as follows:  

(i) 𝑆𝐹(𝐺1) < 𝑆𝐹(𝐺2) ⇒ 𝐺1 < 𝐺2, 

(ii) 𝑆𝐹(𝐺1) > 𝑆𝐹(𝐺2) ⇒ 𝐺1 > 𝐺2, 

(iii) If 𝑆𝐹(𝐺1) = 𝑆𝐹(𝐺2), then; (a) 𝐴𝐹(𝐺1) < 𝐴𝐹(𝐺2)  ⇒ 𝐺1 < 𝐺2, 

(b) 𝐴𝐹(𝐺1) > 𝐴𝐹(𝐺2)  ⇒ 𝐺1 > 𝐺2, 

(c) 𝐴𝐹(𝐺1) = 𝐴𝐹(𝐺2)  ⇒ 𝐺1 = 𝐺2. 

3. Generalized spherical fuzzy topological spaces 

 

In this section, we give the definitions of generalized spherical fuzzy topology, generalized spherical 

fuzzy closure and generalized fuzzy interior to use in the methodology for solving MCGDM problems. 

Definition 3.1. Let 𝒢  be the family of GSFSs on 𝑈 . If the collection 𝜏 ⊆ 𝒢   satisfies the following 

conditions, then 𝜏 is called a generalized spherical fuzzy topology (GSFT) on 𝑈. 

(T1) 0𝑢, 1𝑈 ∈ 𝜏, 

(T2) If 𝐺1, 𝐺2 ∈ 𝜏, then 𝐺1 ⊓ 𝐺2 ∈ 𝜏, 

(T3) If 𝐺𝑖 ∈ 𝜏 for all 𝑖 ∈ 𝐼, then ⊔𝑖∈ 𝐼 𝐺𝑖 ∈ 𝜏. 

Then the pair (𝑈, 𝜏) is called a generalized spherical fuzzy topological space (GSFTS). A member of 𝜏 is 

said to be generalized spherical fuzzy open (GSF-open) and if 𝐺𝑐 ∈ 𝜏 then 𝐺 is called generalized spherical 

fuzzy closed (GSF-closed) set. 

Example 3.1. Let 𝑈 be a non-empty set. Then the topology 𝜏 = {0𝑢, 1𝑈} is called a trivial GSFT on 𝑈 and 

denoted by 𝜏𝑡. Also, the topology 𝜏 = 𝒢 is called a discrete topology on 𝑈 and denoted by 𝜏𝜌.  
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Proposition 3.1. If 𝜏1 and 𝜏2 are two GSFTs on 𝑈, then 𝜏1 ∩ 𝜏2 is also GSFT on 𝑈. But 𝜏1 ∪ 𝜏2 may not be 

a GSFT on 𝑈. 

Definition 3.2. Let (𝑈, 𝜏) be a GSFTS and 𝑌 ⊂ 𝑋 . Then the subspace topology 𝜏𝑌  on 𝑌  is defined by  

𝜏𝑌 = { 𝐺 ⊓ 1𝑦: 𝐺 ∈ 𝜏}. 

Definition 3.3. Let (𝑈, 𝜏) be a GSFTS and 𝐺 ∈ 𝒢. The generalized spherical fuzzy closure of 𝐺 is denoted 

by 𝐺 and defined by 𝐺 =⊓ {𝐻:𝐻 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒𝑑 𝑎𝑛𝑑 𝐺 ⊑ 𝐻}. It is clear from definition that 𝐺 is the smallest 

generalized spherical fuzzy closed set which contains 𝐺.  

Definition 3.4. Let (𝑈, 𝜏) be a GSFTS and 𝐺 ∈ 𝒢. The generalized spherical fuzzy interior of 𝐺 is denoted 

by 𝐺𝑜 and defined by 𝐺𝑜 =⊔ {𝐻:𝐻 𝑖𝑠 𝑜𝑝𝑒𝑛 𝑎𝑛𝑑 𝐻 ⊑ 𝐺}. It is clear from definition that 𝐺𝑜 is the largest 

generalized spherical fuzzy open set which is contained in 𝐺. 

Theorem 3.1. Let (𝑈, 𝜏) be a GSFTS and 𝐺, 𝐺1, 𝐺2 ∈  𝒢. Then the followings are satisfied. 

(i) 0𝑈 = 0𝑈, 1𝑈 = 1𝑈 , 0𝑈
𝑜 = 0𝑈, 

(ii) 𝐺 ⊑ 𝐺, 𝐺𝑜 ⊑ 𝐺 

(iii) 𝐺 = 𝐺, (𝐺𝑜)𝑜 = 𝐺𝑜, 

(iv) If 𝐺1 ⊑ 𝐺2, then 𝐺1 ⊑ 𝐺2 and 𝐺1
𝑜 ⊑ 𝐺2

𝑜, 

(v) If 𝐺 is a GSF-open set, then 𝐺𝑜 = 𝐺,  

(vi) If 𝐺 is a GSF-closed set, then 𝐺 = 𝐺, 

(vii) 𝐺1 ⊔ 𝐺2 = 𝐺1 ⊔ 𝐺2, 

(viii) (𝐺1 ⊓ 𝐺2)
𝑜 = 𝐺1

𝑜 ⊓ 𝐺2
𝑜,  

(ix) (𝐺𝑜)𝑐 = 𝐺𝑐  , 

(x) (𝐺)
𝑐
= (𝐺𝑐)𝑜. 

4. Application of the GSFTS to the MCGDM problems 

 

In this section, we construct a novel method to solve the MCDM problems based on GSFTS where 

we consider the interior of the GSFTSs. Then we give an example to illustrate the method step by step.  

Finally, we compare the proposed method with the TOPSIS method in GSF environment by analyzing the 

result of the given numerical example. 

4.1. Methodology 

Let 𝑈 = {𝑥1, 𝑥2, . . . , 𝑥𝑚} be the set of 𝑚 alternatives, 𝑐 = {𝑐1, 𝑐2, . . . , 𝑐𝑛}  be the set of n criteria and 

𝐷 = {𝐷1, 𝐷2, . . . , 𝐷𝑟} be the set of  𝑟 experts (DMs). The proposed method is consisting of the following 

steps:  
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Step I: Input the GSFS-data by considering the alternatives and criteria to construct a GSFTS for suitable 

numbers (𝑘) of the attributes. Denote the GSFS-data by 𝐺𝑘.  

Step II: Construct the GSFT 𝜏𝐺 on 𝑈 as 𝜏𝐺 = {0𝑈, 1𝑈 , 𝐺1, 𝐺2, . . . , 𝐺𝑘}. 

Step III: Each DM (𝐷𝑖, 𝑖 = 1,2, . . . , 𝑟) establishes the decision matrix individually. Denote these matrices 

by 𝑀𝐷𝑖 as follow:  

Table 1. Decision Matrix 𝐷(𝑟). 

Alternatives 

Attributes 

𝐸1 𝐸2 … 𝐸𝑛 

𝐴1 𝐷11
𝑟  𝐷12

𝑟  … 𝐷1𝑛
𝑟  

𝐴2 𝐷21
𝑟  𝐷22

𝑟  … 𝐷2𝑛
𝑟  

…       …       … …       … 

𝐴𝑚 𝐷𝑚1
𝑟  𝐷𝑚2

𝑟  … 𝐷𝑚𝑛
𝑟  

And also, if there exist cost type criteria then normalize the each decision matrices by taking complement 

of related element. 

Step IV: If the weights of DMs are given as 𝑤 = (𝑤1, 𝑤2, . . . , 𝑤𝑙), calculate the weighted decision matrix 

(𝛿𝐷𝑖 , 𝑖 = 1,2, . . . , 𝑟) as 𝛿𝐷𝑖 = 𝑤𝑖 ×𝑀𝐷𝑖, for all 𝑖 = 1,2, . . . , 𝑟. If the weights of DMs are equal, then this step 

is skipped. 

Step V: Calculate the aggregated weighted decision matrices according to the weights of criteria and denote 

each aggregated weighted decision matrices as GSFS (say Δ𝐷𝑖). If weights of criteria are given by 𝜖 =

(𝜖1, . . . , 𝜖𝑛) , then the aggregated weighted decision matrices are obtained by using GSWA (GSWG) 

operator.  

Step VI: Find the interior of each Δ𝐷𝑖(Δ𝐷𝑖
𝑜 ) according to the GSFT 𝜏𝐺 constructed in the Step 2. 

Step VII: Find ⊓ Δ𝐷𝑖
𝑜 = 𝑅 (Resultant GSFS).  

Step VIII: Calculate the score values of each raw of the weighted resultant GSFS 𝑅∗  by using score 

function. 

Step IX: Rank the alternatives according to the score values calculated in the last step. 

4.2. A numerical example 

In this subsection, we solve a MCGDM problem given in [7] to explain the proposed method step 

by step.  
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There is a three-shareholder company in which the rates of share are effective at the decisions to be 

made by shareholders and the sharing of the earnings. Let the shareholders be denoted by 𝐷1, 𝐷2 and 𝐷3.  

The shareholder 𝐷1 has 35% share rate, the shareholder 𝐷2 has 45% share rate and the shareholder 𝐷3 has 

20% share rates. This company is planning to make an investment in an area where the alternatives are 

𝐴1:Development of small business, 𝐴2: Information Technology, 𝐴3: Tourism, 𝐴4: Transportation. They 

are taking into consideration the degree of risk, volume of income and investment recovery period when 

making an investment in these areas. Let the degree of risk, volume of income and investment recovery 

period be denoted by 𝑐1, 𝑐2 and 𝑐3, respectively.  A prioritization relationship among the criteria 𝑐𝑖 (𝑖 =

1,2,3) which satisfies 𝑐2 > 𝑐1 > 𝑐3 was determined according to the shareholder’s preferences. So, assume 

that 𝑤 = (0,3, 0,45, 0,25) is the weight vector of the attribute {𝑐1, 𝑐2, 𝑐3}. In this problem, whereas the 

attributes 𝑐1  and 𝑐3  are non-benefit (cost) types, 𝑐2  is benefit type. In order to choose the optimum 

investment, the shareholder’s 𝐷1, 𝐷2 and 𝐷3 with the decision-makers weight vector 𝛿 = (0,35, 0,45, 0,2) 

evaluate the four investment options based on these criteria considering the aggregation operators.   

Let us start the decision-making process: 

Step I: By considering the alternatives and criteria, initial data is inputted to construct a GSFTS as follows: 

𝐺1 = {< 𝑥1, 0.2, 0.84, 0.84 >,< 𝑥2, 0.44, 0.81, 0.89 >,< 𝑥3, 0.27, 0.74, 0.83 >,< 𝑥4, 0.35, 0.88, 0.83 >},  

𝐺2 = {< 𝑥1, 0.5, 0.84, 0.84 >,< 𝑥2, 0.6, 0.55, 0.58 >,< 𝑥3, 0.27, 0.85, 0.88 >,< 𝑥4, 0.61, 0.62, 0.7 >},  

𝐺3 = {< 𝑥1, 0.19, 0.93, 0.94 >,< 𝑥2, 0.16, 0.94, 0.92 >,< 𝑥3, 0.26, 0.95, 0.94 >,< 𝑥4, 0.28, 0.93, 0.94 >}. 

Step II: The GSFT 𝜏𝐺 = {0𝑈, 1𝑈, 𝐺1, 𝐺2, 𝐺3} on 𝑈 is established. 

Step III: Each DMs (𝐷𝑖 for all 𝑖 = 1,2,3) establishes the decision matrix individually. The decision matrices are 

shown in the following table:  

Table 2. Decision Matrices. 

𝐷1 𝐸1 𝐸2 𝐸3 

𝐴1 <0.6,0.8,0,2> <0.4, 0.3, 0.7> <0.2, 0.7, 0.4> 

𝐴2 <0.55,0.2,0.8> <0.8,0.75,0.65> <0.9, 0.8, 0.2> 

𝐴3 <0.7, 0.4, 0.4> <0.55,0.2,0.45> <0.5, 0.7, 0.8> 

𝐴4 <0.35,0.6,0.5> <0,7, 0.8,0.55> <0.8, 0.6, 0.5> 

𝐷2 𝐸1 𝐸2 𝐸3 

𝐴1 <0.85, 0.7,0.8> <0.4, 0.75, 0.8> <0.6, 0.8, 0.5> 

𝐴2 <0.3, 0.4, 0.4> <0.8, 0.2, 0.45> <0.5, 0.6, 0.8> 

𝐴3 <0.9, 0, 8, 0,2> <0.4, 0.8, 0.7> <0.8, 0.7, 0.4> 

𝐴4 <0.75,0.3, 0.5> <0.8, 0.5, 0.45> <0.5, 0.6, 0.8> 
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𝐷3 𝐸1 𝐸2 𝐸3 

𝐴1 <0.75, 0.4, 0.5> <0.8, 0.8, 0.45> <0.8, 0.6, 0.8> 

𝐴2 <0.9, 0, 6, 0, 4> <0.4, 0.6, 0.9> <0.2, 0.7, 0.4> 

𝐴3 <0.55, 0.5, 0.8> <0.8,0.75,0.85> <0.6, 0.8, 0.2> 

𝐴4 <0.75, 0.4, 0.8> <0.4, 0.8, 0.45> <0.8, 0.6, 0.6> 

 

Step IV: We calculate the weighted decision matrices by considering the decision-makers weight vector 

𝛿 = (0,35, 0,45, 0,2). So, we obtain the following matrices: 

𝛿𝐷1 = (

< 0.1191, 0.9249, 0.8363 > < 0.2433, 0.6561, 0.8826 > < 0.2433, 0.8826, 0.5693 >
< 0.5483, 0.5693, 0.8112 > < 0.5483, 0.9042, 0.8600 > < 0.1191, 0.9249, 0.9638 >
< 0.2433, 0.7256, 0.8826 > < 0.3442, 0.5693, 0.7562 > < 0.5483, 0.8826, 0.7846 >
< 0.3095, 0.8363, 0.6925 > < 0.4582, 0.9249, 0.8112 > < 0.3095, 0.8363, 0.9249 >

), 

𝛿𝐷2 = (

< 0.6071, 0.8517, 0.9295 > < 0.2747, 0.8786, 0.9045 > < 0.3485, 0.9045, 0.7946 >
< 0.2747, 0.6621, 0.5817 > < 0.6071, 0.4847, 0.6981 > < 0.6071, 0.7946, 0.7320 >
< 0.1349, 0.9045, 0.9537 > < 0.2747, 0.9045, 0.8517 > < 0.2747, 0.8517, 0.9045 >
< 0.3485, 0.5817, 0.8786 > < 0.6071, 0.7320, 0.6981 > < 0.6071, 0.7946, 0.7320 >

), 

𝛿𝐷3 = (

< 0.2365, 0.8326, 0.9441 > < 0.4299, 0.9564, 0.8524 > < 0.4299, 0.9029, 0.9564 >
< 0.1851, 0.9029, 0.9791 > < 0.1851, 0.9029, 0.9791 > < 0.1851, 0.9311, 0.7248 >
< 0.4299, 0.8706, 0.8873 > < 0.4299, 0.9441, 0.9680 > < 0.0902, 0.9564, 0.9029 >
< 0.4299, 0.8326, 0.9441 > < 0.1851, 0.9564, 0.8524 > < 0.2922, 0.9029, 0.9564 >

) 

Step V: We calculate the aggregated weighted decision matrices according to the weights of criteria  

𝑤 = (0.3, 0.45, 0.25) and denote each aggregated weighted decision matrices as GSFS (Δ𝐷𝑖) as follows: 

Step VI: We find the interior of each Δ𝐷𝑖(Δ𝐷𝑖
𝑜 ) for all 𝑖 = 1,2,3 according to the GSFT 𝜏𝐺 constructed 

 in the Step 2 as follows: Δ𝐷1
𝑜 = 𝐺1, Δ𝐷2

𝑜 = 𝐺2 𝑎𝑛𝑑 Δ𝐷3
𝑜 = 𝐺3. 

 Step VII: We find  Δ𝐷1
𝑜 ⊓ Δ𝐷2

𝑜 ⊓ Δ𝐷3
𝑜  =  𝐺3. 

Step VIII: Then, we calculate the score values of each raw of the weighted resultant GSFS 𝐺3 by using the 

function 𝑆𝐹(𝐺) =
|3𝜇2−2𝜄2−𝜈2|

3
 . 

 Δ𝐷1 Δ𝐷2 Δ𝐷3 

𝐴1 

(

 
 < 0.2002, 0.8292, 0.7710 >
< 0.4433, 0.8004, 0.8877 >
< 0.3883, 0.7389, 0.8236 > 
< 0.3505, 0.8775, 0.8217 >)

 
 

 

(

 
 < 0.5094, 0.8389, 0.8340 >
< 0.6015,0.5407,0.5793 >
< 0.2754, 0.8499, 0.8704 >
 < 0.6134, 0.6141, 0.6975 >)

 
 

 

(

 
 < 0.3317, 0.9208, 0.9366 >
 < 0,1607, 0.9334, 0.9130 >
< 0.3146, 0.9416, 0.9384 >
< 0.2808, 0.9208, 0.9366 >)

 
 

 
𝐴2 

𝐴3 

𝐴4 
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Step IX: Finally, we rank the alternatives according to the score values 𝑆𝐹(𝐴1) = 0,5467 , 𝑆𝐹(𝐴2) =  0,5511, 

𝑆𝐹(𝐴3) =  0,5278 and 𝑆𝐹(𝐴4) =  0,5044. As a conclude, 𝐴2 is the best solution of this problem.  

In [11], Güner and Aygün established the TOPSIS method in the GSF environment. If we solve the same 

problem according to the TOPSIS method, we obtain the ranking result as 𝐴2 > 𝐴4 > 𝐴1 > 𝐴3 which shows 

the best solution are the same in these two approaches. 
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Abstract 

A useful family of integral operators and special functions plays a crucial role on the study of 
mathematical and applied sciences. The purpose of the present paper is to give sufficient conditions 
for an integral operator, which involves the normalized form of the Rabotnov function to be univalent 
in the open unit disk. Furthermore, we determine the order of the convexity of this operator. In order 
to prove main results, we use differential inequalities for the Rabotnov functions together with some 
known properties in connection with the integral operator which we have considered in this paper. 
Moreover, some graphical illustrations are provided in support of the results proved in this paper. 

 
          Keywords: Univalent functions, Integral operator, Rabotnov function, Convexity. 

 
1. Introduction 
 
Let   denote the family of functions f of the form 

2
( ) n

n
n

f z z a z
∞

=

= +∑  

which are analytic in the open unit disk   and satisfy the usual normalization condition: 

(0) (0) 1 0.f f ′= − =  

We denote by   the subclass of the normalized analytic function class   consisting of functions which 

are also univalent in  . A function f ∈  is said to be convex of order  ( )0 1δ δ≤ <  if it satisfies 

( )1    ( ).
( )

zf z z
f z

δ
′′ 

ℜ + > ∈ ′ 
  

Let { }: 1, 2,3,n∈ = …  and  

( ) ( ){ }1 2, , , : 1, 2, , .n
n jf f f f j n= ∈ = …   
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For the functions ( )1,2, , ,jf j n∈ = …  the parameters ( ), 1, 2, ,j j j nα β ∈ = …  and ,γ ∈  we define 

the following integral operator: 

 
1 2 1 2, , , ; , , , ; ; :

n n

n
nα α α β β β γ… …    

by 

[ ] ( ) ( )1 2 1 2

1/
( )1

, , , ; , , , ; ; 1 2 0
1

, , , ( ) : ( ) .
jj j

n n

nz f t
n n j

j

f f f z t f t e dt
γ

βαγ
α α α β β β γ γ −

… …
=

 
′… =  

 
∏∫              (1) 

Moreover, Deniz et al. [4] introduced certain integral operators by using an obvious parametric variation 
of the generalized Bessel functions of the first kind and of order ν  and studied the univalence criteria of 
the corresponding integral operators. On the other hand, Deniz [5] and Raza et al. [15] discussed the 
convexity, starlikeness and uniform convexity of integral operators involving these equivalent forms of 
the classical Bessel function ( ).J zν  Recently, Al-Khrasani et al. [1] investigated some sufficient 
conditions for univalence of some linear fractional derivative operators involving the normalized forms of 
the same obvious parametric variation of the classical Bessel function ( )J zν  of the first kind and of order 
ν . Additionally, the theory of integrals and derivatives of an arbitrary real or complex order (see, for 
details, [18]) has been applied not only in geometric function theory of complex analysis, but has also 
emerged as a potentially useful direction in the mathematical modeling and analysis of real-world 
problems in applied sciences (see, for example,[17]). 

Motivated by the works mentioned above, in this paper, we will investigate some mapping and geometric 
properties for the integral operator defined by (1), associated with the Rabotnov function which is defined 
as follows: 

Denote by   the subclass of   which consists of univalent functions in  . 

Consider the function ( ),cR zµ  defined by 

( ) ( )( )( )
( )1

,
0 1 1

n
n

c
n

cR z z z
n

µµ
µ µ

∞
+

=

=
Γ + +∑                                                   (2) 

where Γ  stands for the Euler gamma function and 1,  cµ > − ∈  and .z∈  This function was 
introduced by Rabotnov in 1948 [14] and is therefore known as the Rabotnov function. 

The function defined by (2) does not belong to the class .  Therefore, we consider the following 
normalization of the Rabotnov function ( ), :cR zµ  for ,z∈  
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( ) ( ) ( ) ( )( ) ( )
( )( )( )

1/ 1 1/ 1 1
, ,

0

1
1

1 1

n
n

c c
n

c
z z R z z

n
µ µ

µ µ

µ
µ

µ

∞
+ + +

=

Γ +
= Γ + =

Γ + +∑
                             (3) 

where 1  and  .cµ > − ∈  

Note that some special cases of ( ),c zµ  are: 

( )

( )

( )

( )

( )

3
10,
3

11,
2

11,
4

1,1

1,2

2 sinh
2

.
2 sin

2

sinh                       

2 sinh 2
2

z

z ze

zz z

zz z

z z z

z zz

−

−

−


=



 =




=

 =


=












 

Let 1, 2, ,j n= …  and let 1jµ > −  and .c∈  Consider the functions ( ),  1, 2, ,
j c j nµ = …  defined by 

( ) ( ) ( ) ( )( )1/ 1 1/ 1
, ,1 .j j

j jc j cz z R zµ µ
µ µµ + += Γ +  

Using the functions ,j cµ  and integral operator defined by (1), we define the function 

1 2

1 2 1 2

, , , ;
, , , ; , , , ; ; :n

n n

c
n

µ µ µ
α α α β β β γ

…
… …    as follows: 

( ) ( )

1 2

1 2 1 2 1 2 1 2 1 2

,

, , , ;
, , , ; , , , ; ; , , , ; , , , ; ; , , ,

1/
( )1

,0
1

( ) : , , , ( )

( ) .

n

n n

cj

n n n

jj

j

c
n n c c c

nz t
c

j

z z

t t e dtµ

µ µ µ
α α α β β β γ α α α β

α

µ µβ β

µ
γ

µγ

γ
β

γ

…
… … … …

−

=

 = … 

 
′=  

 
∏∫

 



  


                           (4) 

In this paper, we drive some sufficient conditions for the following operator: 

1 2

1 2 1 2

, , , ;
, , , ; , , , ; ;

n

n n

c
n

µ µ µ
α α α β β β γ

…
… …  

defined by (4), respectively, to be univalent in  . We also determine the order of convexity of the 
functions defined by using the above-mentioned integral operator (4). 
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Recently, many mathematicians have set the univalence criteria of several those integral operators which 
preserve the class .  By using a variety of different analytic techniques, operators and special functions, 
several authors have studied univalence criterion, a few of them are as mentioned below.  

In 2010 Baricz and Frasin [3] studied some integral operators involving Bessel functions. These integral 
operators were defined by using the normalized Bessel functions of the first kind. Frasin [8] and Arif and 
Raza [2] studied the convexity and strongly convexity of the integral operators defined in [3]. There is an 
extensive literature in geometric function theory that deals with the geometric properties of the integral 
operators defined by different kinds of special functions like Bessel functions [2-5,8], Struve function 
[6,9,10], Lommel function [7,11] and Mittag-Leffler function [16]. Motivated by the work of these above 
authors, we contribute to this univalence theory by studying the univalence and convexity of integral 
operator involving the Rabotnov function.    

 

2. A set of lemmas  

The following lemmas will be required in our present investigations. 

Lemma 1. (See Pescar [13])  Let ζ  and η  be complex number such that 

( ) ( )0 and 1  1 .ζ η ηℜ > ≠ −  

If the function h∈  satisfies the following inequality:  

( )2 2 ( )1 1
( )

zh zz z
h z

ζ ζη
ζ
′′

+ −
′

  

for all ,z∈  then the function Fζ ∈  defined by  

( )1 1/

0
( ) ( ) )

z
F z t h t dtζ ζ
ζ ζ − ′= ∫                                                                 (5) 

is in the normalized univalent function class .  

Lemma 2. (See Pascu [12]) Let λ∈  such that ( ) 0.λℜ >  If f ∈  satisfies the following inequality:  

( )

( )

21 ( ) 1
( )

z zh z
h z

λ

λ

ℜ − ′′
 
  ′ℜ 
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for all .z∈  Then, for all ζ ∈  such that  

( ) ( ) ,ζ λℜ ℜ  

the function Fζ  defined by (5) is in the normalized univalent function class .  

Lemma 3. Let 1µ > −  and .c∈  Then, for all ,z∈  the function ,cµ  defined by (3) satisfies the 

following inequalities: 

1
,

1
( )

1

c

c

c
z z e µ

µ

µ
µ

+ + +
′  + 
                                                           (6) 

and 

( )
( )

( ) ( )
1

2
,

, 1

2 2

1( ) 2 1
,      1 ln .

( ) 11
2

1

c

c
c

c

c c
e

z z
c

z cc
e

µ

µ

µ µ

µ

µ µ
µ

µµ
µ

+

+

 + +
 
   +′′  +  < +    ′ + + + +   −  + 





                                (7) 

Proof. By using the well-known triangle inequality and the following inequality 

( )
( )( )( ) ( ) ( )

1 1 , n ,
1 1 1 !nn n

µ
µ µ

Γ +
≤ ∈

Γ + + +


 

we have 

( ) ( )
( )( )( )

( ) ( )
( )( )( )

( )
( )

1
,

1

1

1

1

1 1
( )

1 1

1 1
1

1 1

1 1
1 .

1! 1

n
n

c
n

n

n

n c

n
n

n c
z z z z

n

n c
n

n c c
e

n

µ

µ

µ
µ

µ
µ

µ
µµ

∞
+

=

∞

=

∞
+

=

+ Γ +
′ = +

Γ + +

+ Γ +
≤ +

Γ + +

 + + +
≤ + =  ++  

∑

∑

∑



                                              (8) 

Finally, using the same inequalities to prove (7), we arrive at the following 
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( ) ( )
( )( )( )

( ) ( )
( )( )( )

( )
( )

( )
( )

,
1

1

1
2

1

1 1
( )

1 1

1 1
1 1

2 21
.

! 1 1

n
n

c
n

n

n

n c

n
n

n nc
z z z

n

n n c
n

c cn n c
e

n

µ

µ

µ
µ

µ
µ

µ

µ µ

∞

=

∞

=

∞
+

=

+ Γ +
′′ =

Γ + +

+ Γ +
≤

Γ + +

 + ++
 ≤ =
 + + 

∑

∑

∑



                                          (9)    

Moreover, if we use reverse triangle inequality, then we have 

( ) ( )
( )( )( )

( ) ( )
( )( )( )

( )
( )

( ) ( )

,
1

1

1

1

1 1
( ) 1

1 1

1 1
1

1 1

1 2 11
1 2 , 1 ln .

1 1! 1

n
n

c
n

n

n

n c

n
n

n c
z z

n

n c
n

n c c
e c

cn

µ

µ

µ
µ

µ
µ

µµ
µ

µ µµ

∞

=

∞

=

∞
+

=

+ Γ +
′ = +

Γ + +

+ Γ +
≥ −

Γ + +

   + ++ +
≥ − = − < +      + + ++     

∑

∑

∑



                (10) 

Next, by combining the inequalities (9) with (10), we immediately deduce that 

( )
( )

( ) ( )
1

2
,

, 1

2 2

1( ) 2 1
,     1 ln .

( ) 11
2

1

c

c
c

c

c c
e

z z
c

z cc
e

µ

µ

µ µ

µ

µ µ
µ

µµ
µ

+

+

 + +
 
   +′′  +  < +    ′ + + + +   −  + 





  

This completes the proof. 

 

3. Univalence and convexity conditions for the integral operator in (4)  

In this section, we investigate univalence and convexity conditions for the integral operator defined by 
(4). 

Theorem 1. Let 1, 2, , ,j n= …  1,jµ > −  c∈  and ( ) ( )2 1
1 ln .

1
j

j
j

c
c

µ
µ

µ

 +
 < +
 + + 

 Also, let , , jγ η α  and jβ  

be in   such that  
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( ) ( )0,   1  , . 1 , 0   j jγ η η α βℜ ≤ − ≠> ≠  

Suppose that these numbers satisfy the following inequality:  

( )
( )

1
2

1

1 11

2 2

1 11 1,
11

2
1

c

cn n

j jc
j j

c c
e

c
e

c
e

µ

µ

µ

µ

µ µ
η α β

γ µµ
µ

+

+

= =+

  + +
  
  +  + + + +  + + +  −   +   

∑ ∑                               (11) 

where { }1 2min , , , .nµ µ µ µ= …  Then the function:  

1 2

1 2 1 2

, , , ;
, , , ; , , , ; ;

n

n n

c
n

µ µ µ
α α α β β β γ

…
… …  

defined by (4) is in the normalized univalent function class .  

Proof. Let us define the function φ  by 

( ) ( ),1 2

1 2 1 2

( ), , , ;
, , , ; , , , ; ;1 ,0

1

( ) : ( ) ( ) ,j

n j

jj cn

n

nz tc
n c

j

z z t e dtµ
βα

µ µ µ
α α α β β β µφ …

… …
=

′= = ∏∫
                              (12) 

so that 

( ) ( ), ( )
,

1

( ) ( ) .
j

jj
j c

n z
c

j

z z e µ
β

µ

α
φ

=

′ ′=∏                                                   (13) 

We observe that 

( ), ,(0) (0) 1 0      1, 2, , ,
j jc c j nµ µ′= − = ∀ = …   

since ,j cµ ∈  for all 1, 2, , .j n= …  Therefore, clearly, ( ) ( ) 1 0.z zφ φ′= − =   

Now, upon Differentiating both sides of (13) logarithmically, we obtain 

,
,

1 1,

( )( ) ( ).
( ) ( )

j

j

j

n n
c

j j c
j jc

z zz z z z
z z

µ
µ

µ

φ α β
φ = =

′′′′
′= +

′ ′∑ ∑





                                              (14) 

Furthermore, by (6) and (7), we have 
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+  +   
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                         (15) 

where ( ) ( ) ( )
2 1

; 1 ln , 1, 2, , .
1

j
j

j

z c j n
c

µ
µ

µ

 +
 ∈ < + = …
 + + 

  We have also used the fact that the functions 

( )1 2, : 1, ,Θ Θ − ∞   defined by  

( )
( )

1
2

1
1 2

1

2 2

1 1
( )     and    ( ) ,

11
2

1

c
x

c
x

c
x

c x c
e

x x c
x x e

xx c
e

x

+

+

+

 + +
 
 +  + + Θ = Θ =  + + +  −  + 

 

are decreasing and, consequently, we have  

( )
( )

( )
( )

11
22

1 1

2 22 2
11

1 12 21 1

j

j

cc
j

j

c c
j

j

c cc c ee

c ce e

µµ

µ µ

µµ
µµ

µ µ
µ µ

+
+

+ +

 + + + +       ++   <
 + +  + +

− −    + +   

 

and   
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11 11
.

1 1
j

cc
j

j

cc
e e µµ µµ

µ µ
++

 + + + +
<     + +   

 

Therefore, we have 

( )

( )
( )

2 2

1
2

1

1 11

( )1
( )

( )
( )

2 2

1 11 1.
11

2
1

c

cn n

j jc
j j

z zz z
z

z z
z

c c
e

c
e

c
e

γ γ

µ

µ

µ

φη
γφ

φη
φ

µ

µ µ
η α β

γ µµ
µ

+

+

= =+

′′
+ −

′

′′
+

′

  + +
  
  +  + + + +  + + +  −   +   

∑ ∑



 

                      (16) 

By Lemma 1., the inequalities in (16) imply that the function .φ ∈  

Theorem 2. Let 1, 2, , ,j n= …  1,jµ > −  c∈  and ( ) ( )2 1
1 ln .

1
j

j
j

c
c

µ
µ

µ

 +
 < +
 + + 

 Also, let , jγ α  and jβ  be 

in   such that ( ) 0γℜ >  and , 0.j jα β ≠  Suppose that these numbers satisfy the following inequality:  

( )

( )
( )

1
2

1

1 11

2 2

1 1
11

2
1

c

cn n

j jc
j j

c c
e

c
e

c
e

µ

µ

µ

µ

µ µ
γ α β

µµ
µ

+

+

= =+

  + +
  
  +  + +  ℜ +  + + +   −   +   

∑ ∑                              (17) 

where { }1 2min , , , .nµ µ µ µ= …  Then the function:   

1 2

1 2 1 2

, , , ;
, , , ; , , , ; ;

n

n n

c
n

µ µ µ
α α α β β β γ

…
… …  

defined by (4) is in the normalized univalent function class .  

Proof. Let us define the function φ  as in (12). By using similar methods in (15), we get  

324



 
6th INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 
21-24 June 2022, Istanbul, Turkey 

 

 
ICOM 2022 

ISTANBUL / TURKEY 

         

( )

( )

( )

( )

( )
( )

( )

( )
( )

2

1
22

1

1 11

1
2

1

11

1 ( )
( )

2 2

11 1
11

2
1

2 2

1 11
11

2
1

c

cn n

j jc
j j

c

cn

jc
j

z z z
z

c c
e

z c
e

c
e

c c
e

c
e

c
e

γ

µ
γ

µ

µ

µ

µ

φ
γ φ

µ

µ µ
α β

γ µµ
µ

µ

µ µ
α

γ µµ
µ

ℜ

+
ℜ

+

= =+

+

=+

− ′′
′ℜ

  + +
  
  +  − + +   +  ℜ + + +   −   +   

 + +
 
 +  + +  +  ℜ + + +  −  + 

∑ ∑

∑




1

1.
n

j
j

µ β+

=

 
 
  
 
 
 
  

∑ 

                   (18) 

By Lemma 2., the inequalities in (18) imply that the function .φ ∈  

Theorem 3. Let 1, 2, , ,j n= …  1,jµ > −  c∈  and ( ) ( )2 1
1 ln .

1
j

j
j

c
c

µ
µ

µ

 +
 < +
 + + 

 Also, let , jγ α  and jβ  be 

in   such that  

( ) 0γℜ >  and , 0.j jα β ≠  

Suppose that these numbers satisfy the following inequality:  

( )
( )

1
2

1

1 11

2 2

1 1
0 1,

11
2

1

c

cn n

j jc
j j

c c
e

c
e

c
e

µ

µ

µ

µ

µ µ
α β

µµ
µ

+

+

= =+

 + +
 
 +  + + < +  + + +  −  + 

∑ ∑                               (19) 

where { }1 2min , , , .nµ µ µ µ= …  Then the function:   

1 2

1 2 1 2

, , , ;
, , , ; , , , ; ;1

n

n n

c
n

µ µ µ
α α α β β β

…
… …  

defined by (4) with 1,γ =  is convex of order δ  given by  
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( )
( )

1
2

1

1 11

2 2

1 1
1

11
2

1

.

c

cn n

j jc
j j

c c
e

c
e

c
e

µ

µ

µ

µ

µ µ
δ α β

µµ
µ

+

+

= =+

 + +
 
 +  + + = − +  + + +  −  + 

∑ ∑                              (20) 

 

Proof. Let us define the function φ  as in (12). By using similar methods in (15), we obtain  

( )
( )

1
2

1

1 11

2 2

1 1( )
( ) 11

2
1

1 .

c

cn n

j jc
j j

c c
e

cz z e
z c

e

µ

µ

µ

µ

µ µφ α β
φ µµ

µ

δ

+

+

= =+

 + +
 
 +  + +′′   +  ′ + + +  −  + 

= −

∑ ∑                              (21) 

Therefore, the function φ  is convex of order .δ  

From Theorem 1. with 11,  0n µ= =  and 1/ 3,c = −  we can obtain the following result. 

Corollary 1. Let , ,γ η α  and β  be in   such that ( ) ( )0,  1  1 .γ η ηℜ > ≤ ≠ −  If these numbers satisfy 

the following inequality: 

1/3 1/3

1/3
1 7 4 1

18 12 3
e e

e
η α β

γ
 

+ + − 
  

then the function: 

( ) ( ) ( )/3
1/

1 /3

0
3

3
tz t tet t e e dt

γ
α βαγ

α

γ −− − −  ∫  

is in the normalized univalent function class .  

Example 1. From Corollary 1.: we can easily get the following consequence (see Figure 1 below): 

( ) ( )( )( )/3/3
1 0

3 .
3
1 tz t tef z t e e dt

−− = − ∈  ∫   
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Figure 1: The image of 1f  on .   

From Theorem 3. with 11, 0n µ= =  and 1/ 3,c = −  we can obtain the following result. 

Corollary 2. Let α  and β  be complex numbers such that 

1/3 1/3

1/3
7 40 1.

18 12 3
e e

e
α β< +

−
  

Then the function: 

( ) ( ) ( )/3/3

0
3 3

tz t tet e e dt
βααα −− −−∫  

is convex of order δ  given by 

1/3 1/3

1/3
7 41 .

18 12 3
e e

e
δ α β= − −

−
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Abstract 

In this paper, we obtain conditions for the normalized Miller-Ross function to belong to the 
Hardy space .∞  

 
          Keywords: Analytic function, starlike and convex functions, Miller-Ross function, Hardy space. 

 
1. Introduction 
 

Denote by { }: 1z z= ∈ <  the open unit disk and   be set of all analytic functions on .  Let 

  be a class of functions f  in   which satisfy the usual normalization conditions 

( ) ( )0 0 1 0.f f ′= − = Traditionally, the subclass of   consisting of univalent functions is denoted by . 

The classes of starlike and convex functions in   are two important [ )( )0,1κ κ ∈  in   are defined by 

( ) ( ) ( )( ){ }* : :  and /f f zf z f zκ κ′= ∈ ℜ >   and ( ) ( ) ( )( ){ }: :  and 1+ / ,f f zf z f zκ κ′′ ′= ∈ ℜ >   

respectively. The familiar classes ( )* *: 0=   and ( ): 0=   are known, respectively, as the classes of 

starlike and convex functions in .  In [1], for 1,γ <  the author introduced the classes:  

( ) ( ) ( ){ }: :  such that 0 1,  ,  ip p e p z zηγ η γ = ∈ ∃ ∈ = ℜ > ∈      

and ( ) ( ){ }: : .g gγ γ′= ∈ ∈    

 When 0,η =  the classes ( )γ  and ( )γ  will be denoted by ( )0 γ  and ( )0 ,γ   respectively. 

Also, for 0γ =  we denote ( )0 γ  and ( )0 γ   simply  and ,  respectively. Moreover, the Hadamard 

product (or convolution) of two power series belongs to the class   given by ( )
2

n
n

n
f z z a z

∞

=

= +∑   and  

( )
2

n
n

n
g z z b z

∞

=

= +∑  defined as  

( )( ) ( )( ) ( )
2

: : ,    .n
n n

n
f g z z a b z g f z z

≥

∗ = + = ∗ ∈∑   
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Let ( )0p p< ≤ ∞  denote the Hardy space of all analytic functions ( )f z  in   and define the integral 

means ( ),pM r f  by  

( )
( ) ( )

( ) ( )

1
2

0

0 2

1 0
2, .
sup

p pi

p
i

f re d p
M r f

f re p

π θ

θ

θ π

θ
π

≤ ≤


  < < ∞ =  
 = ∞

∫  

An analytic function ( )f z  in ,  is said to belong to the Hardy space ( )0 ,p p< ≤ ∞  if the set 

( ) [ ){ }, : 0,1pM r f r∈  is bounded. It is important to remind here that p  is Banach space with the norm 

defined by (see [2, p. 23]) 
( )

1
lim ,pp r

f M r f
−→

=  

for 1 .p≤ ≤ ∞  On the other hand, we known that ∞  is the class of bounded analytic functions in ,  

while 2  is the class of power series n
na z∑  such that 2 .na < ∞∑  In addition, it is known from [2] that 

q  is a subset of p  for 0 .p q< ≤ ≤ ∞  Also, two well-known results about the Hardy space p  are the 
following (see [2]): 

                                               ( ){ }
( )

( )( )1

1
0 .

0,1

q

q
qq

f q
f z

f q−

′ ∈ <
′ℜ > ⇒ 
 ∈ ∈




                                                  (1) 

 
2. Preliminaries  
 
 In 1993, Miller and Ross [7] function is defined as 

( )*
, , ,cz
cE z e czν

ν γ ν=  

where *γ  is the incomplete gamma function. 

( ),cE zν  is a solution of the ordinary differential equation  

( )
1

,    0.zDy cy
ν

ν
ν

−

− = >
Γ

 

Since ( )* ,cze czγ ν  is an entire function, if 1ν > −  then ( ),cE zν  is a function of class ,  which is the class 

of functions that have both a fractional integral and a fractional derivative of any order, (see Miller and 
Ross [7, p.88]). It is clear that we can write  

                                                            ( ) ( )
( ),

0
,

1

n

c
n

cz
E z z

n
ν

ν ν

∞

=

=
Γ + +∑                                                             (2) 
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where 1ν > −  and , .c z∈  

It is clear that the Miller-Ross function ( ),cE zν  does not belong to the family  . Thus, it is natural to 

consider the following normalization of the Miller-Ross function: 

                    ( ) ( ) ( ) ( )
( ) ( )

1
1

, ,
2

1
1 ,   1,  ,  .

n
n

c c
n

c
z z E z z z c z

n
ν

ν ν

ν
ν ν

ν

−∞
−

=

Γ +
= Γ + = + > − ∈ ∈

Γ +∑                      (3) 

In this recent years, the authors in [1,3,5,6,8-10,13,14] studied the Hardy space of some special functions 
as normalized; Hypergeometric, Bessel, Struve, Lommel, Wright, Mittag-Leffler and Rabotnov. 
Motivated by above studies, our main aim is to determine some conditions on the parameters such that the 
Miller-Ross function ( ),c zν  is convex of order ,κ  Also, we find some conditions for the Hadamard 

products ( ) ( ),c z f zν ∗  to belong to ,∞ ∩   where f  is an analytic function in . Moreover, we 

investigate the Hardy space of the mentioned the normalized Miller-Ross function ( ), .c zν  

 In order to prove the main results we need the following preliminary results.  
 

Lemma 1. (Silverman [11]) Let ( )
2

.n
n

n
f z z a z

∞

=

= + ∈∑   If  

( )
2

1 ,n
n

n n aκ κ
∞

=

− ≤ −∑  

then the function ( )f z  is in the class ( ).κ  

Lemma 2. (Eenigenburg and Keogh, [4]) Let [ )0,1 .κ ∈  If the function ( )f κ∈  is not of the form  

                                                   
( ) ( )

( ) ( )

2 1 11
2
1log 1
2

i

i

f z k lz ze

f z k l ze

κθ

θ

κ

κ

−  = + − ≠   


  = + − =   

                                                     (4) 

for some ,k l∈  and ,θ ∈  then the following statements hold: 

a: There exist ( ) 0fδ δ= >  such that ( )
1

2 1 .f
δ

κ
+

−′∈  

b: If 10, ,
2

κ  ∈  
 then there exist ( ) 0fτ τ= >  such that 

1
1 2 .f

τ
κ

+
−′∈  

c: If 1 ,
2

κ ≥  then .f ∞∈  

Lemma 3. (Stankiewich and Stankiewich, [12]) ( ) ( ) ( )0 0 0 ,λ µ γ∗ ⊂    where ( )( )1 2 1 1 .γ λ µ= − − −  

The value of γ  is the best possible. 
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2. Main Results  
 
In this section, we present our main results related to the some geometric properties and Hardy class of 
the normalized Miller-Ross function ( ), .c zν   

Theorem 1. Let [ )0,1 ,κ ∈  1,ν > −  c∈  and 1.c ν< +  The following inequality is true: 

                                                           
2

1 2
1 2

1 1
c c

c
ν

κ
ν ν

 − + 
− + ≤ + − + 

                                                      (5) 

holds, then the normalized Miller-Ross function ( ),c zν  is convex of order κ  in .  

Proof. By virtue of the Silverman’s result which is given in Lemma 1, in order to prove the convex of 
order κ  of the function, ( ),c zν  it is enough to show that the following inequality  

                                                           ( ) ( )
( )

1

2

1
1

n

n

c
n n

n
ν

κ κ
ν

−∞

=

Γ +
− ≤ −

Γ +∑                                                       (6) 

is satisfied under our assumptions. According to the hypothesis of theorem, by using the inequality 

( )( ) ( )11 1 n nν ν ν−Γ + + ≤ Γ +  
and thus   

                                                             ( )
( ) ( ) 1

1 1 ,    ,
1 n n

n
ν
ν ν −

Γ +
≤ ∈

Γ + +


                                                       (7) 

we have  

( ) ( )
( ) ( ) ( )

( )

( )
( )

( )
( )

11

2 2

1

1
2

1 1
2

2 2

2 22

3

11

                                            
1

1 1

2 11 1
1 11

nn

n n

n

n
n

n n

n n

cc
n n n n

n n

c
n n

c c
n n

c
c cc

νν
κ κ

ν ν

κ
ν

κ
ν ν

νν νκ
ν νν

−−∞ ∞

= =

−∞

−
=

− −
∞ ∞

= =

Γ +Γ +
− = −

Γ + Γ +

≤ −
+

   
= −   + +   

   ++ +
= + − −      − + − +− +   

∑ ∑

∑

∑ ∑

( )1,    1 .cκ ν− < +

 

The inequality (5) implies that the last sum is bounded above by 1 .κ−  Therefore the inequality (6) is 
satisfied, that is, ( ), zα β  is convex of order κ  in .  
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Theorem 2. Let [ )0,1 ,κ ∈  1,ν > −  c∈  and 1.c ν< +  If inequality  

                                                                         
2 1

1
c

c
ν

κ
ν
− +

<
− +

                                                                   (8) 

holds, then ( ) ( ),
0 .c z

z
ν κ∈


  

Proof. In order to prove ( ) ( ),
0 .c z

z
ν κ∈


  it is enough to show that ( ) 1 1,p z − <  where 

( ) ( ),1 .
1

c z
p z

z
ν κ

κ
 

= − −  


 Now, using the inequalities (7), we have  

( ) ( )
( )

( )
( )

( )( ) ( )

1
1

2

1

2

1

2

111 1 1
1

11
1

1 ,    1 .
1 1 1 1

n
n

n

n

n

n

n

c
p z z

n

c
n

c c
c

c

ν
κ

κ ν

ν
κ ν

ν
κ ν κ ν

−∞
−

=

−∞

=

−
∞

=

 Γ +
− = + − −  − Γ + 

Γ +
≤

− Γ +

 
≤ = < + − + − − + 

∑

∑

∑

 

Consequently, from (8) ( ),c z
z

ν  is in the class ( )0 ,κ  and the proof is completed. 

Theorem 3. Let [ )0,1 ,κ ∈  1,ν > −  .c∈  If the inequality (5) is satisfied, then  

( )

1
1 2

,

1, 0,
2 .

1, ,1
2

c z

κ

ν

κ

κ

−

∞

  ∈   ∈
  ∈   





 

Proof. It is known that Gauss hypergeometric function is defined by 

                                                     ( ) ( ) ( )
( ) ( )2 1

0
, , ;    .

!

n
n n

n

a b zF a b c z z
c n≥

= ∈∑                                               (9) 

Now, using the equality (9) it is possible to show that the function ( ),c zν  can not be written in the forms 

which are given by (4) for corresponding values of .κ  More precisely, we can write that the following 
equalities: 

                                                   ( ) ( )2 1 1

0

1 2
1

!
i in nn

n
k lz ze k l e z

n
κθ θκ− +

≥

−
+ − = + ∑                                         (10) 

and  
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                                                      ( ) 1

0

1log 1
1

i in n

n
k l ze k l e z

n
θ θ +

≥

+ − = −
+∑                                               (11) 

hold true for ,k l∈  and .θ ∈  If we consider the series representation of the function ( ),c zν  which is 

given by (3), then we see that the function ( ),c zν  is not of the forms (10) for 1
2

κ ≠  and (11) for 1 ,
2

κ =  

respectively. On the other hand, Theorem 1, states that the function ( ),c zν  is convex of order under 

hypothesis. Therefore, the proof is completed by applying Lemma 2. 
Theorem 4. Let 1,ν > −  ,c∈  [ )0,1 ,λ∈  1µ < , 1c ν< +  and ( )( )1 2 1 1 .γ λ µ= − − −  Suppose that the 

function ( ) ( )0 .f z µ∈  If the inequality  

                                                                      2 1
1

c
c

ν
λ

ν
− +

<
− +

                                                                    (13) 

holds, then ( ) ( ) ( ), 0 .c z f zν γ∗ ∈   

Proof. If ( ) ( )0 ,f z µ∈  then this implies that ( ) ( )0 .f z µ′ ∈  We know from the Theorem 2 that the 

function ( ) ( ),
0 .c z

z
ν λ∈


  Since ( ) ( ) ( ), ,c z

u z f z
z

ν′ ′= ∗


 taking into account the Lemma 3 we may write 

that ( ) ( )0 .u z γ′ ∈  This implies that ( ) ( )0 .u z γ∈  
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Abstract 

 
In this study, we obtained initial coefficients bounds for a new subclass of bi-univalent functions defined 
by an integral operator in the open unit disk U . 

 

Keywords: Analytic function, Univalent function, Bi-univalent function, Coefficient inequality. 

 

1. Introduction 
 
Let A  denote the class of functions of the form:  

                                                           ( )
2

,n
n

n
f z z a z

∞

=

= +∑                                                         (1)  

which are analytic in the open unit disk { }: 1 .U z z= ∈ <  Further, by S  we shall denote the class of all 

functions in A  which are univalent in U . It is well known that every function  f S∈  has an inverse 1f − , 
defined by 

  
( )( ) ( )1      f f z z z U− = ∈  

and 

( )( ) ( ) ( )1
0 0

1      ;
4

f f w w w r f r f−  = < ≥ 
 

 

where 

 ( ) ( ) ( )1 2 2 3 3 4
2 2 3 2 2 3 42 5 5 ...f w w a w a a w a a a a w− = − + − − − + +  

A function f A∈  is said to be in ∑, the class of bi-univalent functions in U , if both  ( )f z  and  ( )1f z−

are univalent in .U  Lewin [14] showed that 2 1.51a <  for every function  f ∈∑  given by (1). Posteriorly, 
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Brannan and Clunie [2] improved Lewin’s result and conjectured that 2 2a ≤ for every function  f ∈∑  

given by (1). Later, Netanyahu [16] showed that 2
4max
3f

a
∈∑

=   The coefficient estimate problem for each 

of the following Taylor-Maclaurin coefficients: 

{ }( )   1,2,... ; 4na n N n∈ = ≥  
is still an open problem (see, for details, [21]). Since then, many researchers (see [3,5,8-11,22,23]) 
investigated several interesting subclasses of the class ∑ and found non-sharp estimates on the first two 
Taylor-Maclaurin coefficients 2a  and 3a . Also, many researchers (see [4,13,17,18]) investigated the 

upper bounds of combination of initial coefficients. In fact, its worth to mention that by making use of the 
Faber polynomial coefficient expansions Jahangiri and Hamidi [12] have obtained estimates for the general 
coefficients na  for bi-univalent functions subject to certain gap series.  

  Let P  denote the class of function of p  analytic in U such that ( )0 1p =  and ( ){ }Re 0p z > , where 

( ) ( )2
1 21 ... .p z p z p z z U= + + + ∈  

If f  and g  are analytic in ,U  we say that f  is subordinate to ,g  written symbolically as  

f g    or   ( ) ( )f z g z    ( ) ,z U∈  

if there exists a Schwarz function ( ),w z  which (by definition) is analytic in U  with (0) 0w =  and ( ) 1w z <  

in U  such that ( ) ( ( )), .f z g w z z U= ∈   

In particular, if the function ( )g z  is univalent in ,U then we have that: 

( ) ( )f z g z    ( )z U∈    if and only if  (0) (0)f g=   and ( ) ( ).f U g U⊆  

Let ϕ  be an analytic function with positive real part in the unit disk U  such that 

( ) ( )0 1, 0 0ϕ ϕ′= >  

and ( )Uϕ  is symmetric with respect to the real axis and has a series expansion of  the form (see  [15]): 

( ) ( )2 3
1 2 3 11 ... 0 .z B z B z B z Bϕ = + + + + >  

Let ( )u z  and ( )v z be two analytic functions in the unit disk U  with ( ) ( )0 0 0u v= =  ( ) ( )1, 1u z v z< < , 

and suppose that 
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( ) ( )2 3 2 3
1 2 3 1 2 31 ... and v 1 ...u z b z b z b z w c w c w c w= + + + + = + + + + ⋅                      (2) 

For above functions, well-known inequalities are 

2 2
1 2 1 1 2 11, 1 , 1 and 1 .b b b c c c≤ ≤ − < ≤ −                                             (3) 

Further we have 

( )( ) ( ) ( )2 2
1 1 1 2 2 11 ... 1u z B b z B b B b z zϕ = + + + + <                                          (4) 

and              

                                      ( )( ) ( ) ( )2 2
1 1 1 2 2 11 ... 1v w B c w B c B c w wϕ = + + + + <                                               (5)                                                             

For  ( ) ,f z A∈  Al-Shaqsi [1] defined the following integral operator: 

         11
1

0

(1 ) ( ; )* ( )

(1 ) 1log ( ) , ( 0, 1, )
( )

c

c

L c c z f z

c t f zt dt c z U
t

δ δ
δ

δδ

δ
δ

−
−

= + Φ

+  = − > > ∈ Γ  ∫
                            (6) 

where Γ  standarts for the usual gamma function, ( ; )c zδΦ  is the well known generalization of the 
Riemann- zeta and polylogarithm functions, or the thδ  polylogarithm function, given by  

( )1
( ; )

k

k

zc z
k cδ δ

∞

=

Φ =
+

∑  

where any term without 0k c+ =  is excluded. Also, 
( )1 2(0; )
1

zz
z−Φ =

−
 is Koebe function.  

We also state that the operator  ( )cL f zδ  given by (6) can be expressed by the series expansions as follows: 

2

1( ) .k
c k

k

cL f z z a z
k c

δ
δ

∞

=

+ = +  + 
∑  

The main object of this paper is to introduce the following new subclass of bi-univalent functions involving 

integral operator cLδ   and to obtain initial bounds for the Taylor- Maclaurin coefficients 2a  and 3a  of the 

functions belonging to this class. 

2. Preliminaries and Definitions 
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The function class ( ), ;B cδ β ϕ∑  defined as follows: 

Definition 1. A function ( )f z ∈∑  is said to be in the class ( ), ;B cδ β ϕ∑   if and only if 

( ) ( ) ( )( ) ( )1 c
c

L f z
L f z z

z

δ
δβ β ϕ′− +   

and  

( ) ( ) ( )( ) ( )1 c
c

L g w
L g w w

w

δ
δβ β ϕ′− +   

where ( ) ( )10 1, ,  and .z w U g w f wβ −≤ ≤ ∈ =  

Theorem 1. If  ( )f z  given by (1) is in the class ( ), ;B cδ β ϕ∑ , then 

( )

1 1
2 2

2
1

11
2

B B
a

cB
c

δ

χ β

≤
+ + +  + 

                                                          (7) 

 

and 

( )

( )

( )

( )

( ) ( )

( )

( )

2
2

1
1

3 2
23

1 1

12
2

1

11
2         if      

1 11 2 1 2
3 3

1 11 2 1
3 2    if     

11 1 1 21 2 1
33 2

c
B cB

c c
c c

a
c cB B
c cB

cc c B
cc c

δ

δ δ

δ δ

δδ δ

β

β β

χ β β

ββ χ β

 + +  + <
+ +   + +   + +   

≤ 
+ +   + + +   + +   ≥

  ++ +      ++ + +        ++ +      

     













           (8) 

                                                                                                                                                 
where 

 ( ) ( ) ( ) ( ) 222
1 21 2 9 2 1 1 4 1 .

m m
B Bχ β λ β λ= + + − + +        

Proof: Let ( ) ( ), ; .f z B cδ β ϕ∑∈ Then, there are analytic functions  and u v  with

( ) ( ) ( ) ( )0 0 0, 1, 1u v u z v w= = < < , given by (2) and satisfying the following conditions: 
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( ) ( ) ( )( ) ( )( )1 c
c

L f z
L f z u z

z

δ
δβ β ϕ′− + =                                                      (9) 

and 

( ) ( ) ( )( ) ( )( )1 ,c
c

L g w
L g w v w

w

δ
δβ β ϕ′− + =                                                (10) 

where ( ) ( )1g w f w−= . Since 

 
( ) ( ) ( )( )

( ) ( ) 2
2 3

1

1 1       =1+ 1 1 2 ...
2 3

c
c

L f z
L f z

z
c ca z a z
c c

δ
δ

δ δ

β β

β β

′− +

+ +   + + + +   + +   

                                      (11) 

    
and 

 
( ) ( ) ( )( )

( ) ( ) ( )

'

2 2
2 2 3

1

1 1       =1- 1 1 2 2 ...,
2 3

c
c

L g w
L g w

w
c ca w a a w
c c

δ
δ

δ δ

β β

β β

− +

+ +   + + + − +   + +   

               (12) 

                                              
it follows from (4), (5), (11) and (12) that 

                                      ( ) 2 1 1
11 ,
2

c a B b
c

δ

β + + = + 
                                                       (13) 

( ) 2
3 1 2 2 1

11 2 ,
3

c a B b B b
c

δ

β + + = + + 
                                            (14) 

( ) 2 1 1
11 ,
2

c a B c
c

δ

β + − + = + 
                                                    (15) 

 
and 

( ) ( )2 2
2 3 1 2 2 1

11 2 2 .
3

c a a B c B c
c

δ

β + + − = + + 
                                      (16) 

From (13) and (15), we get 

1 1c b= −                                                                          (17) 
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( ) ( )
2

2 2 2 2
2 1 1 1

12 1 .
2

c a B b c
c

δ

β
 +  + = +  +   

                                          (18) 

By adding (13) to (16), we have 

                                    ( ) ( ) ( )2 2 2
2 1 2 2 2 1 1

12 1 2 .
3

c a B b c B b c
c

δ

β+  + = + + + + 
                              (19)                   

Therefore, from equalities (18) and (19) we find that 

( ) ( ) ( )
2

2 2 3
1 2 2 1 2 2

1 12 1 2 2 1 .
3 2

c cB B a B b c
c c

δ δ

β β
  + +    + − + = +     + +      

              (20) 

Then, in view of (13), (17) and (3), we obtain 

 

( ) ( )

( ) ( ) ( )

2
22

1 2 2

2
2 23 3 3

1 2 2 1 1 1 1 2

1 12 1 2 2 1
3 2

12 1 2 2 1 .
2

c cB B a
c c

cB b c B b B B a
c

δ δ

δ

β β

β

 + +   + − +     + +    

 + ≤ + ≤ − = − +   +  

 

Thus, we get 

( )

1 1
2 2

2
1

,
11
2

B B
a

cB
c

δ

χ β

≤
+ + +  + 

 

where  

( ) ( )
2

22
1 2

1 11 2 1 .
3 2

c cB B
c c

δ δ

χ β β+ +   = + − +   + +   
 

 Next, in order to find the bound on 3a , subtracting (16) from (14) and using (17), we get  

                 ( ) ( ) ( )2
3 2 1 2 2

1 12 1 2 2 1 2 .
3 3

c ca a B b c
c c

δ δ

β β+ +   + = + + −   + +   
                                 (21) 

Then in view of (3) and (7), we have 
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( ) ( ) ( )

( ) ( )

2
3 2 1 2 2

2 2
2 1 1

1 12 1 2 2 1 2
3 3

1                                         2 1 2 2 1 .
3

c ca a B b c
c c

c a B b
c

δ δ

δ

β β

β

+ +   + ≤ + + +   + +   

+ ≤ + + − + 

 

From (13), we immediately have 

( )

( ) ( )

1 3

22 2
1 2 1

11 2
3

1 1  1 2 1 .
3 2

cB a
c

c cB a B
c c

δ

δ δ

β

β β

+ +  + 

+ +   ≤ + − + +   + +   

   

Now the assertion (8) follows from (7). This evidently completes the proof of Theorem 1.  

By taking 1β =  in Theorem 1, we have 

Corollary 1. If ( )f z given by (1) is in the class ( ),1;B cδ ϕ∑ , then 

1 1
2 2

1
14
2

B B
a

cB
c

δ

τ

≤
+ +  + 

                                             (22) 

and 

 

2

1
1

3 2
3

1 1

12

1

14
2         if       

1 13 3
3 3

     
1 13 4
3 2    if     

11 1 33 4
33 2

c
B cB

c c
c c

a
c cB B
c cB

cc c B
cc c

δ

δ δ

δ δ

δδ δ

τ

τ

 + 
  +  <
 + +   
    + +   ≤ 

+ +    +     + +   ≥   ++ +      +        ++ +      

                (23) 

                                                                                                                                                 
  

where 

 
2

2
1 2

1 13 4 .
3 2

c cB B
c c

δ δ

τ + +   = −   + +   
 

Putting 0δ = in Theorem 1, we have 
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Corollary 2. [19] If  ( )f z given by (1) is in the class ( ) ( )0 , ; ;B c Bβ ϕ β ϕ∑ ∑= , then 

( ) ( ) ( )
1 1

2 2 22
1 2 11 2 1 1

B B
a

B B Bβ β β
≤

+ − + + +
                                (24) 

and 

   
( )

( )

( ) ( ) ( )

( ) ( ) ( ) ( )( )
( )

2
1

1

22 33 2
1 2 1 1

12 22
1 2 1

1
         if    

1 2 1 2
     1 2 1 1 2 1

    if    
1 21 2 1 2 1 1

B B

a B B B B
B

B B B

β
β β

β β β β
ββ β β β

 +
<

+ +≤  + − + + + + ≥ ++ + − + + +

        (25) 

                                                                                                                                                 
  

Putting 0δ =  in Corollary 1, we have 

Corollary 3. [19] If  ( )f z  given by (1) is in the class ( ) ( )0 ,1;B c Hϕ ϕ∑ ∑= , then 

                                                       1 1
2 2

1 2 13 4 4

B B
a

B B B
≤

− +
                                                       (26) 

and 

      

( )

1
1

2 33
1 2 1 1

12
1 2 1

4                               if   
3 3

     3 4 3 4    if   
33 3 4 4

B B

a B B B B
B

B B B

 <
≤  − +
 ≥
 − +

                                      (27) 
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Abstract 

Optimization is significant to many applications such as engineering design, computer science, 

artificial intelligence, business planning, and industries. Product designs must maximize energy 

efficiency, performance, sustainability, and cost and waste minimization. Furthermore, optimization is 

crucial for engineering applications. Steel cushion (SC) is a major device to improve the seismic 

performance of structures since it is an easy-to-produce and plug-and-play damper with stable 

hysteretic loops and big displacement capacity, but SC is less effective in the transverse direction. As 

a result, optimal sizing utilizing intelligent optimization techniques improves the damper's efficiency.  

Also, we have to optimize multiple objectives. Finding solutions to a multi-objective optimization 

problem, even using a simple method is frequently difficult. Other potential methods, particularly 

metaheuristic methods such as genetic algorithms (GAs), particle swarm optimization (PSO), simulated 

annealing, firefly algorithm and cuckoo search work well for multi-objective optimization problems. 

The study's aim is to use a metaheuristic method, simulated annealing, to optimal size the SC that is 

subjected to transversal loads. By optimal sizing considering the dissipated cumulative energy as an 

objective, the efficiency of SC that is subjected to transversal loads in energy dissipation is increased.  

 

          Keywords: Multi-objective optimization, transversal loading, metaheuristic method. 

 

1. Introduction 

 

Sacrificial dampers are used in today's earthquake-resistant structure design to diffuse a significant portion 

of seismic energy. The seismic performance of structures improves because energy is dispersed by dampers 

rather than core structural components. Using extra damping, it is also possible to lessen the seismic 

demands of structures [1]. In the literature, many energy dissipative devices and isolation systems, such as 

lead extrusion dampers, metallic dampers, and spring-type isolators have been created to suit this purpose 

[2-5]. For different loadings and connections, the effectiveness of steel cushion (SC), which is a hysteretic 

damper, for seismic energy dissipation has been proved. Furthermore, it was discovered that the damping 

ratio in the transversal direction is roughly 18 percent, whereas the longitudinal damping ratio is 50 percent. 

As a result, optimization, which is a natural tool for developing methodologies to accomplish safe and cost-
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effective design as the fundamental goal of multi-objective structural engineering, may improve the 

efficiency of SC [6-8].  

Because optimization is significant in many disciplines, such as engineering design, computer science, 

artificial intelligence, and industries, it is a part of many applied fields. The majority of studies have 

concentrated on classic optimization strategies; nevertheless, during the last few decades, optimization 

techniques have developed, and some new techniques have begun to show their usefulness and have become 

an integral element of new mainstream methodologies. The terminology employed in the optimization 

literature, as well as the classification of optimization issues, can be confusing.  

Many factors, as well as the actual perspective of mathematical formulations, might influence whether an 

optimization issue is regarded as easy or difficult. In fact, three elements make a problem more difficult: 

the objective function's nonlinearity, the problem's high dimensionality, and the search domain's 

complicated structure. Other factors, such as the number of an objective, are also important. In many cases, 

a single objective's evaluation is insufficient, hence multi-objective functions can be utilized. In fact, we 

frequently have to optimize multiple objectives at the same time. For example, we might aim to improve a 

product's performance while also attempting to reduce costs. We're working with multiobjective 

optimization problems in this situation. To solve multiobjective optimization, many new concepts are 

necessary. Moreover, these multiobjectives may conflict, necessitating some trade-offs. As a consequence, 

rather than a single solution, a series of Pareto-optimal solutions must be found. This frequently necessitates 

numerous iterations of the solution methods. As a result, selecting efficient methods for multi-objective 

optimization problems becomes critical. Because iterative algorithms for handling optimization problems 

are common, multiple objective evaluations are required, generally hundreds or thousands of evaluations.  

For optimal size of energy dissipative SCs loaded in the longitudinal direction, Güllü et al. used different 

optimization techniques and multiple objective functions (maximizing dissipated energy, cumulative 

dissipated energy, and damping ratio) [9]. The damping ratio of the damper and the amount of energy 

dissipated by the damper were both enhanced as a result of proper sizing. Güllü and Körpeoğlu studied 

simultaneous multi-objective optimal sizing of energy dissipative steel cushions for transversal loading. 

Finite element analysis was used to assess the optimization's effectiveness (FEA). It was demonstrated that 

the optimally sized SC dissipates energy better [10]. 

Optimization is the most essential instrument for increasing the capability and effectiveness of sacrificial 

damping devices, according to studies published in the literature. As a result, the best device sizing or 

configuration throughout the structure is of practical significance. The study's aim is to a metaheuristic 

algorithm to size the SC that is exposed to transversal loading. Since the objective functions may be 

expressed in closed-form equations, the optimization process is primarily a mathematical problem solution. 

 

2. Metaheuristic Algorithms 

 

Different algorithms may have varying efficiencies and requirements. Newton's gradient-based technique 

is particularly efficient for solving smooth objective functions, but if the objective is very multimodal, it 
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can get trapped in local modes. The trust-region approach, the interior-point method, and others are 

examples of nonlinear optimization algorithms, but they are mainly local search methods. Quadratic 

programming (QP) use convexity properties to their advantage. In practice, the simplex method for solving 

LP can be effective, but it requires that all problem functions be linear. 

Because traditional approaches are primarily local search algorithms, heuristic and metaheuristic 

algorithms are becoming increasingly popular. Meta denotes "beyond" or "higher level," thus meta 

heuristics outperform simple heuristics. It's worth noting that there are no universally accepted definitions 

of heuristics and metaheuristics in the literature, and some authors use the terms interchangeably. However, 

in recent years, any stochastic algorithms involving randomization and local search have been referred to 

as metaheuristics. Almost all metaheuristic algorithms claim to be capable of global optimization, while in 

fact, global optimality may be difficult to accomplish for most tasks [11]. 

The majority of metaheuristic algorithms are nature-inspired, as they were created based on a natural 

abstraction. Nature has evolved over millions of years and has perfected solutions to nearly every difficulty 

encountered. As a result, we can learn from nature about problem-solving success and design nature-

inspired heuristic and/or metaheuristic algorithms. They are referred regarded as biologically inspired or 

simply bio-inspired [11]. 

Randomization and selection of the best solutions are two essential components of any metaheuristic 

algorithm. The best solution is chosen, ensuring that the solutions will converge to the optimality, while 

randomization prevents solutions from becoming stuck at local optima while also increasing the diversity 

of the solutions. In most cases, a solid combination of these two components will result in global optimality. 

Many different types of metaheuristic algorithms exist. One method is to divide them into two categories: 

trajectory-based and population-based. Because they use a collection of strings, genetic algorithms are 

population-based, as are the firefly algorithm (FA) and particle swarm optimization (PSO), which use many 

agents or particles. Agent-based algorithms are also known as PSO and FA. 

Simulated annealing (SA), on the other hand, employs a single agent or solution that advances piecewise 

through the search space or design space. A better action or solution is always accepted, although a less-

than-ideal move can be accepted with a high degree of certainty. The steps or moves follow a course in the 

search space that has a nonzero chance of reaching the global optimum [11]. 
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Linear programming (Simplex method,… )
Integer programming (Branch and bound,… )

Convex optimization (QP,… )

Gradient − based (Newton′s method, … )
…

Nonlinear programming (Newton′s method,… )

Stochastic {
Heuristic (evaluation strategy,… )

Metaheuristic {
Population − based

Trajectory − based (SA,… )
(PSO, FA,… )

Stochastic learning {
Supervised learning(Regression, ANN,… )

Unsupervised learning (Clustering, ANN,… )

 

Figure 1. Classification of optimization algorithms [11]. 

 

 

 

3. Energy Dissipative SCs 

 

SC has been used in the literature for both retrofitting and improving the seismic performance of frame-

type structures. SCs, which are made by bending steel sheets, disperse seismic energy by utilizing the 

ductile properties of mild steel and relative movement between fixed surfaces [12-13]. Its geometry (Figure 

2(a)) consists of two half-circles with straight portions connecting them. The relative movement of the bolts 

through each other on SC was used to name the loading types (Figures. 2(b) and 2(c)). A transversal load 

is one in which the bolts stay in the same vertical portion as they were when the load was applied. It's 

possible that the transverse load is compressive or tensile. The loading is called longitudinal if there is 

shearing action between the fixed surfaces. The out-of-plane direction is the third direction. SC's hysteretic 

behavior varies according on the loading type. In real-world applications, SC was subjected to several 

deformation mechanisms for longitudinal, transverse (compressive and tensile) as well as bending moment 

loadings. SC may be subjected to longitudinal or transverse deformations depending on the connection 

detail. When SC is used under shear walls/panels, the wall/rocking panel's behavior causes transversal 

deformations in SC (Figure 3). 
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a- General views b- Loading directions. 

  

 
Transversal Longitudinal  Out-of-plane 

c- Illustration of loading types 

 

Figure 2. Steel cushions [10]. 

 

By optimizing size with the dissipated cumulative energy as an objective, the efficiency of SC that is 

subjected to transversal loads in energy dissipation might be increased. The optimization method is carried 

out by solving the closed form equations for SC under transversal loads, which are already available in the 

literature [6-8]. Equations (1)–(8) provide the relevant equations for determining the hysteretic behavior of 

SC under the influence of transversal loads. 

 
 

 

a) b) 
 

Figure 3. a) Possible connection details of SCs and b) transversal loading mechanism [10]. 
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In the equations, 𝑏 represents the width, 𝑎 represents the half-length of the straight part, 𝑟 represents the 

radius of the half-circle, 𝐷𝑛 represents the diameter of the nuts, 𝑡 represents the thickness of the steel sheet,  

𝜑  represents the angle between the vertical axis and any point on the half-circle, 𝑁  represents the 

transversal force, and 𝑓𝑦𝑑 and 𝑓𝑢𝑑 represent the yielding and ultimate strengths of the base material. 

 

4. Optimization of SCs for Transversal Loading 

 

This paper proposes a multi-objective optimization technique for selecting the optimal SC sizes. The half-

length of the straight component (a), the width (b), the thickness (t), and the radius of the half-circle are the 

operating variables (r). Two objective functions are studied, both of which attempt to maximize the 

cumulative plastic energy dissipated. Finding the design variables that maximize equation (9) and meet the 

equality constraints given by equations (1)–(8) results in optimal sizing: 

 

     1 2
,

T

F x f x f x     

(9) 

        

Figures 4(a) and 4(b) illustrate a general hysteresis produced from a cyclic experiment, as well as a 

schematic diagram showing the considered parameters. Equations (10) and (11) are the objective functions 

of the optimization problem that aim to maximize the dissipated cumulative energy (hatched areas in Figure 

4b.). 
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a- Experimental hysteresis b- Schematic representation 

Figure 4. General hysteretic behavior of SCs under transversal loading [10]. 

5. Application of the Optimization Technique 

 

Simulated Annealing Algorithm 

 

For global optimization problems, simulated annealing (SA) is a random search approach. It is 

similar to the annealing process in materials processing, which occurs when a metal cools and freezes into 

a crystalline state with the least amount of energy and a bigger crystal size to decrease flaws in metallic 

structures [11]. The annealing process necessitates precise temperature and cooling rate control.  

Kirk Patrick et al. were the first to apply SA to optimization problems in 1983 [14]. There have been 

numerous investigations since then. With the exception of gradient-based and other deterministic search 

methods, which are susceptible to becoming stuck in local minima, SA's key advantage is its ability to resist 

becoming trapped in local minima. In reality, it has been proven that if enough randomization is utilized in 

combination with very slow cooling, SA will converge to its global optimality. In terms of metaphor, the 

iterations in SA are analogous to scattering bouncing balls throughout a landscape. The balls will settle 

down to some local minima as they bounce and lose energy. If the balls are allowed to bounce for long 

enough and lose energy slowly enough, some of them will eventually fall to the lowest global locations, 

resulting in the global minimum. 

In this part, the simulated annealing algorithm is introduced for solving optimization problems [11]. 

The simulated annealing algorithm works on the principle of random search, which accepts modifications 
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that improve the objective function while still keeping some changes that aren't perfect. In a minimization 

task, for example, any better moves or adjustments that reduce the cost (or value) of the objective function 

f will be accepted with a probability p; but, some changes that raise f will also be accepted with a probability 

𝑝. This probability p, also known as the transition probability, is calculated as follows: 

𝑝 = exp (−
𝛿𝐸

𝑘𝐵𝑇
), 

(12) 

 

where 𝑇 is the temperature used to control the annealing process and 𝑘𝐵 is the Boltzmann constant. The 

change in energy level is denoted by 𝛿𝐸. The Boltzmann distribution in physics is used to calculate this 

transition probability. The most straightforward way to connect 𝛿𝐸 to the change in the objective function 

𝛿𝑓 is to use 𝛿𝐸 = 𝛾𝛿𝑓, where 𝛾 is a real constant. We can use 𝑘𝐵 = 1 and 𝛾 = 1 for convenience without 

sacrificing generality. 

As a result, the probability 𝑝 is simply 

𝑝(𝛿𝑓, 𝑇) = 𝑒−
𝛿𝑓

𝑇 . 
(13) 

 

We commonly use a random number 𝑟 (taken from a uniform distribution in [0,1]) as a threshold to 

determine whether or not to accept a change. As a result, if 𝑝 >  𝑟, it is acceptable. 

The selection of the appropriate temperature is critical in this case. If  𝑇 is too high (𝑇 → ∞), then 

𝑝 → 1, suggests that practically all changes will be accepted for a given change 𝛿𝑓. If  𝑇 is too low (𝑇 →

0), any 𝛿𝑓 > 0 (worse solution) will be rarely accepted as 𝑝 → 0, limiting the solution's variety, but any 

improvement in 𝛿𝑓  will almost always be accepted. In fact, because only better solutions are allowed and 

the system is effectively climbing or descending a hill, the exceptional case 𝑇 → 0 corresponds to the 

gradient-based technique. As a result, if 𝑇 is too high, the system is in a high-energy state on the topological 

landscape, making it difficult to attain the minima. If  𝑇 is too low, the system may become trapped in a 

local minimum (rather than a global minimum), with insufficient energy to jump out of the local minimum 

and explore other possible global minima. As a consequence, a correct starting temperature must be 

computed. 

Another critical challenge is how to control the cooling process so that the system gradually cools down 

from a higher temperature to eventually freeze to a global lowest condition. There are numerous methods 

for controlling the rate of cooling or temperature decline. 

Linear and geometric cooling are two regularly utilized cooling schemes.  

 We have a linear cooling process 

𝑇 = 𝑇0 − 𝛽𝑡. (14) 
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The initial temperature is 𝑇0, and the pseudo time for iterations is t. The cooling rate, 𝛽, should be 

chosen so that 𝑇 → 0 when 𝑡 → 𝑡𝑓 (maximum number of iterations) is reached, which usually results in 

𝛽 = 𝑇0/𝑡𝑓. 

 The geometric cooling process reduces the temperature by a factor of 0 < 𝛼 < 1  so that 𝑇  is 

replaced by 𝛼𝑇. 

𝑇(𝑡) = 𝑇0𝛼
𝑡,   (𝑡 = 1,2,… , 𝑡𝑓). (15) 

  

The benefit of the second way is that 𝑇 → 0 when → ∞ , eliminating the requirement to provide the 

maximum number of iterations 𝑡𝑓. As a result, we'll follow this geometric cooling strategy. The cooling 

process should be slow enough that the system can easily stabilize. 

Furthermore, several objective function evaluations are required for a given temperature. There is a 

possibility that the system may not stabilize and, as a result, will not converge to its global optimality if 

there are too few evaluations. It is time-consuming to perform too many evaluations, and the system will 

usually converge too slowly since the number of iterations required to attain stability may be exponentially 

proportional to the problem size. 

As a result, there is a ratio between the number of assessments and the quality of the solutions. We 

can either perform a large number of evaluations at a few temperature levels or a small number of 

evaluations at a large number of temperature levels. The number of iterations can be set in one of two ways: 

fixed or variable. The first employs a set number of iterations at each temperature, but the second is meant 

to increase the number of repeats at lower temperatures in order to completely investigate the local minima.  

The simulated annealing algorithm's main procedure can be summarized using the pseudocode presented 

in Algorithm 1 [11]. 

We can utilize any knowledge about the objective function to obtain an appropriate starting temperature 

𝑇0. We can estimate an initial temperature 𝑇0 for a given probability 𝑝0 if we know the objective function's 

maximum change 𝑚𝑎𝑥(𝛿𝑓). 

𝑇0 ≈ −
max(𝛿𝑓)

𝑙𝑛𝑝0
. 

(16) 

  

We can apply a heuristic technique if we don't know the greatest feasible change in the objective 

function. We can begin evaluations at a very high temperature (such that practically all changes are 

allowed), then rapidly lower the temperature until around 50 or 60 percent of the worst moves are accepted, 

and then use this temperature as the new initial temperature 𝑇0 for proper and reasonably slow cooling. 

In theory, the final temperature should be zero, such that no worse move can be tolerated. In practice, 

depending on the desired quality of the answers and time restrictions, we just set a very small value. 
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Algorithm 1. Simulated Annealing Algorithm. 

Objective function 𝐹(𝑥), 𝑥 = (𝑥1, 𝑥2, … , )
𝑇 

Initialize initial temperature 𝑇0 and initial guess 𝑥0  

Set final temperature 𝑇𝑓 and max number of iterations 𝑁  

Define cooling schedule 𝑇 →  𝛼𝑇, (0 < 𝛼 <  1) 
       while ( 𝑇 >  𝑇𝑓 or 𝑡 <  𝑡𝑓 )  

              Move randomly to new location 𝑥𝑡+1  

              Calculate 𝛿𝑓 =  𝐹 (𝑥𝑡+1)  −  𝐹 (𝑥𝑡)  
              Accept the new solution if better  

              if not improved  

              Generate a random number 𝑟  

              Accept if 𝑝 =  𝑒𝑥𝑝[−𝛿𝐹 ∕ 𝑇]  >  𝑟  
              end if  

              Update the best x∗ and F∗  

        end while 
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Figure 5. Flowchart of Simulated Annealing Algorithm [15]. 

 

MATLAB program can be used to demonstrate the use of SA to optimize the functions in equations (10)-

(11). We chose 𝑇0 = 1.0 as the initial temperature, 𝑡𝑓 = 10
−10 as the final temperature, and a geometric 

cooling plan with 𝛼= 0.8 as the cooling rate. 
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Table 1. Optimization results for design variables of SCs. 

 

Objective function 𝒂/𝒓 𝒃/𝒕 𝒂/𝒃 

𝒇𝟏(𝒙) 3.0003 20.0 1.0000 

𝒇𝟐(𝒙) 3.0002 20.0 1.4039 

 

Table 2. Smoothed geometric dimensions of optimized SCs. 

 

Objective function 𝒂(mm) 𝒃(mm) 𝒕(mm) 𝒓(mm) 

𝒇𝟏(𝒙) 20.0 20.0 10.0 6.6 

𝒇𝟐(𝒙) 28.0 20.0 10.0 9.3 

 

 

Table 3. Resultant object function values. 

 

 𝒇𝟏(𝒙) 𝒇𝟐(𝒙) 
Simulated annealing algorithm 1.3459e14 1.2112e12 

 

6. Conclusions 

 

In the literature, energy dissipative SC was created to improve the seismic performance of cladding 

systems, existing buildings, and other structures. The efficiency of transversal loading is improved in this 

work by optimizing the size of multiple object functions related to cumulative dissipated energy. 

Considering unitless ratios of 𝑎/𝑟, 𝑏/𝑡 , and 𝑎/𝑏 , the optimal sizing is reached. An optimal energy 

dissipative SC can be designed easily for applications in practice using the achieved optimal ratios, the 

closed-form equations, and structural constraints. The optimal SC ratios are 3, 20, 1.40 and 3, 20, 1 for 

tensile and compressive load, respectively, for half of the straight part length to the radius of the circular 

portion (𝑎/𝑟), width to thickness (𝑏/𝑡), and half of the straight part length to width (𝑎/𝑏). 
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Abstract 
In this study, using the fractional derivative operator, we define a new subclass of 

meromorphic functions. Some properties neighborhoods and partial sums of functions in this subclass 
are given. 

 
          Keywords: Meromorphic, Neighborhood, Fractional derivative operator, Partial sum. 

 
1. Introduction 

 
Let  Σ  denote  the class of functions of the form 

1

0
( ) n

n
n

f z z a z
∞

−

=

= +∑                                                                         (1) 

which are analytic in the punctured disc { }: 0 1 .z z= ∈ < <  

The meromorphic analouge of the fractional derivative of order ,  0 1,α α≤ ≤ is defined in [3] for a 

function ( )f z  by 

( ) ( ) ( ) ( )1 2
12

0

1 1 ,1,1 ;1  ,
1 2

z

z
dD f z z z F f d
dz

αα α ξξ α α ξ ξ ξ
α

−−  = − − − −  Γ −   
∫  

where ( )f z  is analytic function in a simply connected domain of the z − plane containing the origin and 

the multiplicity of ( )z αξ −−  is removed by requiring ( )log z ξ− to be real when ( ) 0.z ξ− > Using 

( ) ,zD f zα  Noor, Ahmad and Khan [9] defined an operator ( ) : ,z f zαΩ Σ→Σ as follows: 

( ) ( )
( ) ( )

( )
( )

( ) ( )

1 1

0 1

2
2

2
2

2,2 ; ,  2,3, 4,...

z z

nn
n

n n

f z zD f z

z a z

z f z

α αα

α

φ α α

∞
− +

= +

Γ −
Ω =

Γ

= +
−

= − ∗ ≠

∑  

where 
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( ) ( )
( )

1 1

0 1

2
2,2 ; .

2
nn

n n

z z zφ α
α

∞
− +

= +

− = +
−∑  

We now define the following classes of functions. 

Let 1 1.B A− ≤ < ≤  A function 1

0
( ) n

n
n

f z z a z
∞

−

=

= + ∈Σ∑  is said to be in the class ( ), ,mT A Bα  if it satisfies 

the condition  

 
( )( )

( )
( )

1
( ) ( )

z z

z z

z f z f z

Bz f z A f z

α α

α α

′Ω +Ω
<

′Ω + Ω
                                                         (2) 

for all .z∈  

Furthermore, a function 1

1
( ) n

n
n

f z z a z
∞

−

=

= + ∈Σ∑  is said to be in the class *( , , )mT A Bα  if it satisfies  the 

condition (2).  
It should be remarked  in passing  that  the definition (2) is motivated  essentially by the recent work of 
Morga [8] and Srivastava and co-authors [11].  
In recent years, many  important properties and characteristics of various  interesting  subclasses of  the 
class Σ of meromorphically functions were  inverstigated extensively  by (among others ) Aouf et al. [2], 
Dziok et al. [4], El-Ashwah and Aouf [5], He et al. [7] and also [12]. 
The main object of this paper is to present neighborhoods and partial sums of functions in the classes  

( ), ,mT A Bα  and ( )* , ,mT A Bα  which we introduced here.  

 
2. Neighborhoods and partial sums  
 

Following the earlier works (based  upon the familiar concept of  neighborhoods of analytic 
functions) by Goodman [6] and Ruscheweyh [10] and (more recently)by Altıntas and Owa [1] and 
Srivastava and Owa [12] ,we begin by introducing here the δ -neighborhood of a function f ∈Σ  of the  
form (1)  by means of the definition  

[ ] ( )
( )

1 1

0 0 1

2(1 ) (1 )
( ) ( ) : , 1 1; 0

( ) 2
n n

n n n
n n n

A n B
f g z z b z b a B A

A Bδ δ δ
α

∞ ∞
− +

= = +

 − + − Ν = = + ∈Σ − ≤ − ≤ < ≤ ≥ − −  
∑ ∑  

where 0 1.α≤ ≤  
Making use of this definition, we now prove that: 
 

Theorem 1. Let 0δ >  and 1 0A− < ≤ . If 1

0
( ) n

n
n

f z z a z
∞

−

=

= + ∈Σ∑  satisfies the condition   
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1( ) ( , , )
1 m

f z z T A Bε α
ε

−+
∈

+
                                                              (3) 

for any complex number ε  such that ε δ< , then ( ) ( , , ).mf T A Bδ αΝ ⊂  

 
Proof. It is obvious from (2) that ( ) ( , , )mg z T A Bα∈  if and only if for any complex number σ  with 

1σ =  

( )( )
( )

( )

( ) ( )

z z

z z

z g z g z

Bz g z A g z

α α

α α
σ

′Ω +Ω
≠

′Ω + Ω
    ( )z∈ , 

which is equivalent to 

 1

( ) ( ) 0g z h z
z−

∗
≠      ( )z∈         (4) 

where  

                                  ( )
( )

1

0

1 1

0 1

( )

2[(1 ) ( )] .
( ) 2

n
n

n
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n n

h z z c z
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σ

σ α

∞
−

=

∞
− +

= +

= +

+ − +
= +

− −

∑

∑
                                           (5)                                                   

From (5), we have   
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( )
( )

( )

1

1

1

1
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+ − +
=

− −

− + −
≤

− −

 

If 1

0
( ) n

n
n

f z z a z
∞

−

=

= + ∈Σ∑  satisfies the condition (3), then (4) yields  

 1

( ) ( )f z h z
z

δ−

∗
≥        ( ).z∈                                                             (6) 

Now let 1

0
( ) ( )n

n
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p z z b z fδ

∞
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=
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Thus for any complex number σ  such that 1σ = , we have  

1

( ) ( ) 0p z h z
z−

∗
≠      ( ),z∈  

which implies that ( ) ( , , )mp z T A Bα∈ . 

Theorem 2. Let 1 0,A− < ≤ 1

0
( ) n

n
n

f z z a z
∞

−

=

= + ∈Σ∑ , 1
1( )s z z−=  and 

2
1

0
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k
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k n
n

s z z a z
−

−

=

= +∑  ( 2).k ≥

Suppose that  
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1n n
n

c a
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where  
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1

2(1 ) (1 ) .
( ) 2

n
n

n

A n Bc
A B α

+
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− + −
=

− −
 

Then we have  
i. ( ) ( , , )mf z T A Bα∈  

ii. 
1

( ) 1Re 1
( )k k

f z
s z c −

 
> − 

 
                                                                                                                      (8) 

and                                                                                                                                                     

1

1

( )Re .
( ) 1

k k

k

s z c
f z c

−

−

 
>  + 

                                                                                                                                    (9) 

The estimates are sharp. 

Proof. i.  It is obvious that 1 ( , , )mz T A Bα− ∈ . Thus from  Theorem 1. and the condition (7), we have 
1

1( ) ( , , )mz T A Bα−Ν ⊂ . This gives ( ) ( , , )mf z T A Bα∈ . 

ii.  It is easy to see that 1 1n nc c+ > > . Thus  
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1
0 1 0
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It follows from (10) that  

1
11

2
1

1
0 1

( ) 1 1
( ) 1 2 2

k n
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k

n k n
n n k

c a
h z
h z a c a

∞

−
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−
= = −

−
≤ ≤

+ − −

∑

∑ ∑
          ( )z∈ . 

From this we obtain the inequality (8). 
If we take  

 
1

1

1

( ) ,
k

k

zf z z
c

−
−

−

= −                                                                            (11) 

then  

1 1

( ) 11 1
( )

k

k k k

f z z
s z c c− −

= − → −   as  1z −→ . 

This shows that the bound in (8) is best possible for each k. 
Similarly, if we take  

1
2 1

1

1
1

1

1

0

( )( ) (1 )
( ) 1
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1

1

k k
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∞
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∞
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∑
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then we deduce that  

1
12

2
2

1
0 1

(1 )
( ) 1 1
( ) 1 2 2 (1 )

k n
n k
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n k n
n n k

c a
h z
h z a c a

∞

−
= −

− ∞

−
= = −

+
−

≤ ≤
+ − + −

∑

∑ ∑
       ( ),z∈  

which yields (9).  The estimate (9) is sharp with the extramal function ( )f z  given by (11). 

Theorem 3. Let  1

1
( ) n

n
n

f z z a z
∞

−

=

= +∑  be analytic in { }: 0 1z z= < < . Then ( )*( ) , ,mf z T A Bα∈  if and 

only if  

 [ ] ( )
( ) ( )1

1 1

2
(1 ) (1 )

2
n

n
n n

A n B a A B
α

∞
+

= +

− + − ≤ −
−∑                                    (12) 

The result is sharp for the function ( )f z given by  

( )
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1

2 ( )
( )

2 1 (1 )
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A B
f z z z

A n B
α− +
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Proof.  Let 1 *

1
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=

= + ∈∑ . Then  
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                     (13) 

Since Re z z≤  for any z, choosing z to be real letting 1z −→  throuh real values (12) yields  

( )
( )
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1 11 1

2 2
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which gives (13). 
On the other hand, we have that  
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This shows that ( ) ( , , )mf z T A Bα∗∈ . 

For 0, 1 1B Aδ ≥ − ≤ < ≤  and 1

0
( ) n

n
n

f z z a z
∞

−

=

= + ∈Σ∑ , we define neighborhood of ( )f z  by 
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Theorem 4. Let 0A B+ ≤ . If ( )1 *
1

1
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n

f z z a z T A Bα
∞

−
+

=

= + ∈∑ , then ( )* *( ) , ,mN f T A Bδ α⊂ , where 

2
3

δ = . The result is sharp. 

Proof. Using the same method as in Theorem 1., we would have  
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Under the hypothesis 0A B+ ≤ , we obtain that  
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From Theorem 3., we get  

1

( ) ( ) 2 .
3

f z h z
z

δ−

∗
≥ =  

The remaining part of the proof is similar to that of Theorem 1. 
To show the sharpness,we consider the function 

( )
1 *

11( ) ( , , )
2 ( ) 3 mn

A Bf z z z T A B
A B

α−
++

−
= + ∈

− +
 

and 

1
1

( )( )
(2 ( ))3 (2 ( ))3n n

A B A Bg z z z
A B A B

δ−
+

′ − −
= + + − + − + 

 

where 2
3

δ ′ > . Then the function ( )g z  belong to '
* ( )f
δ

Ν . 

On the other  hand, we find from Theorem 3. that ( )g z is not in *( , , )nT A Bα . Now the proof is complete. 
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Abstract 

In this study, we work on the surfaces determined in relation to associated curves. We study 

normal surfaces defined with the help of donor curves, a special type of associated curve. For this, we 

first remember the basic equations of the 3-dimensional Euclidean space and the donor curve issue. 

Then, by obtaining the first and second fundamental forms, principal curvatures and Gaussian and 

mean curvatures of the normal surface of a donor curve, we give the characterizations of this surface 

and some results.  

 

          Keywords: Normal surface, Principal-donor curve, Serret-Frenet frame. 

 

1. Introduction 

 

Surfaces and curves in differantial geometry is a valuable topic that paves the way for studies in these 

fields by providing geometric expressions to many applied sciences such as physics, engineering and 

geophysics that serve technology. The subject of surfaces associated with curves, which we will discuss 

in this study, is one of the special examples of this. These surfaces, which are formed as a result of the 

movement of a line or curve depending on another curve, provide important conveniences in terms of 

giving geometric expressions to the subject [1-12]. 

 

Tangent, normal and binormal surfaces, which are formed as a result of the movement of a curve in the 

direction of the tangent, normal and binormal vector field due to the change of the time parameter, can be 

given as examples of surfaces associated with curves. Associated curves have an important place in 

determining the behavior and characterization of surfaces. The surfaces established with the help of donor 

curves, which is a type of associated curve, form the framework of our study [13-15]. 

 

2. Preliminaries 

 

In this part, we remember the basic definitions and formulas related to the frame elements and the concept 

of principal-donor curves that we have studied in 3D Euclidean space. Next, we give some basic 

reminders that have an important place in determining the behavior and characterization of a surface. 

 

The Serret-Frenet(SF) formulas in 3D Euclidean are given as 
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 [

𝛻𝒔𝑻
𝛻𝒔𝑵
𝛻𝒔𝑩

] = [
0 𝜅 0
−𝜅 0 𝜏
0 −𝜏 0

] [
𝑻
𝑵
𝑩
], 

where 𝜅, 𝜏 are curvature and torsion of 𝜆, respectively. Let 𝑠 be the length of the arc [1]. Then, the SF 

frame formulas are given as  

 𝑻 = 𝜆′(𝑠), 𝑵 =
𝜆′′(𝑠)

‖𝜆′′(𝑠)‖
, 𝑩 = 𝑻 × 𝑵. 

 

Definition 1. Let {𝑻𝜆, 𝑵𝜆, 𝑩𝜆} be the SF frame of 𝜆 curve with 𝑠 parameter. Then, the principal-donor 

curve of 𝜆 according to the SF frame is defined as [2] 

 𝛿(𝑠) = −∫𝑵𝜆(𝑠) 𝑐𝑜𝑠( 𝛼)𝑑𝑠
𝑠0

𝑠

+ ∫𝑩𝜆(𝑠) 𝑠𝑖𝑛( 𝛼)𝑑𝑠
𝑠0

𝑠

,       𝛼 = 𝜏𝜆(𝑠)𝑑𝑠. 

 

Theorem 2. Let {𝑻𝜆, 𝑵𝜆, 𝑩𝜆} be the SF frame of 𝜆 curve with 𝑠 parameter, 𝛿 be principal-donor curve of 

𝜆 according to the SF frame and 𝜅𝜆 and 𝜏𝜆 be curvature and torsion of 𝜆. Denote by {𝑻𝛿 , 𝑵𝛿 , 𝑩𝛿} the SF 

frame elements for 𝛿 and denote by 𝜏𝛿 and 𝜅𝛿 be torsion and curvature of 𝛿. Then, relationship between 𝛿 

and 𝜆 can be given by following equations [2]: 

 

,)(cos)(2sin
2

=

,)(cos=

,)(sin)(cos=

2






































BNB

TN

BNT

+

+−

 

and 

 𝜅𝛿 = 𝜅𝜆|𝑐𝑜𝑠( 𝛼)|, 𝜏𝛿 = 𝜅𝜆 𝑠𝑖𝑛( 𝛼). 
 

 

 The normal(unit) vector field for any surface 𝜑(𝑠, 𝑡) is defined by the equation 

 𝑛 =
𝜑𝑠∧𝜑𝑡

‖𝜑𝑠∧𝜑𝑡‖
, 

where 𝜑𝑡 = 𝜕𝜑/𝜕𝑡, 𝜑𝑠 = 𝜕𝜑/𝜕𝑠  and, 𝑡  is parameter representing time. Then, first and second 

fundamental forms of 𝜑 are given by following equations: 

 
𝑰 =  𝐸𝑑𝑠2 + 2𝐹𝑑𝑠𝑑𝑡 + 𝐺𝑑𝑡2,

𝑰𝑰 =  𝑒𝑑𝑠2 + 2𝑓𝑑𝑠𝑑𝑡 + 𝑔𝑑𝑡2,
 

where 

 
𝐸 =  ⟨𝜑𝑠, 𝜑𝑠⟩,  𝐹 = ⟨𝜑𝑠, 𝜑𝑡⟩,  𝐺 = ⟨𝜑𝑡, 𝜑𝑡⟩,

𝑒 =  ⟨𝜑𝑠𝑠, 𝑛⟩,  𝑓 = ⟨𝜑𝑠𝑡, 𝑛⟩,  𝑔 = ⟨𝜑𝑡𝑡, 𝑛⟩.
 (1) 

 

Also, Gaussian and mean curvatures 𝐾, and 𝐻 are given as 

 𝐻 =
𝐸𝑔−2𝐹𝑓+𝐺𝑒

2(𝐸𝐺−𝐹2)
,  𝐾 =

𝑒𝑔−𝑓2

𝐸𝐺−𝐹2
 (2) 

and principal curvatures are defined by [3-7] 
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 𝑘1 = √𝐻2 − 𝐾 + 𝐻, 𝑘2 = 𝐻 − √𝐻2 −𝐾. (3) 

 

Theorem 3. A surface is minimal surface if and only if it has vanished mean curvature of this surface [1]. 

Theorem 4. A surface is a developable (flat) surface if and only if it has vanished Gaussian curvature of 

this surface [1]. 

Definition 5. The normal surface describing with normal vector field of a regular curve 𝜆 is defined as 

𝜑(𝑠𝑡) = 𝜆 + 𝑡𝑵 [5]. 

 

3. Normal Surfaces of Donor Curves with The SF Frame in 𝑬𝟑 

 

In this section, we give certain characterizations and results for the normal surface of a principal-donor 

curve with the help of reminders from the previous section. 

 

Theorem 6. Let 𝛿 be principal-donor curve of 𝜆 curve with arc length parameter. Then, first and second 

fundamental forms of normal surface of 𝛿 are given by following equations:  

 

.
)(sin))(cos(1

)(cos)(sin

)(sin))(cos(1

))(cos))(1(cos)(sin()(cos)(sin
=

,))(sin))(cos((1=

222

22

2

222

2

22222

dsdt
t

ds
t

t

dtdst
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+−
+

+−

+++

++−

II

I

 

 

Proof. From the definition of normal surface, the normal surface of 𝛿 is written as 

 𝜑𝛿(𝑠, 𝑡) = 𝛿 + 𝑡𝑵𝛿 . 
Therefore, the following equalities are obtained: 

 

𝜑𝑠
𝛿  =  𝜏𝛿𝑩𝛿 + (1 − 𝑡𝜅𝛿)𝑻𝛿 ,

𝜑𝑠𝑠
𝛿  =  −𝑡𝜅𝛿𝑻𝛿 + (𝜅𝛿 − 𝑡𝜅𝛿

2 − 𝜏𝛿
2)𝑵𝛿 + 𝜏𝛿

′ 𝑩𝛿 ,

𝜑𝑡
𝛿  =  𝑵𝛿 ,    𝜑𝑡𝑡

𝛿 = 0,   𝜑𝑠𝑡
𝛿 = −𝜅𝛿𝑻𝛿 ,

 

and, from the equalities, unit standart normal vector field of 𝜑𝛿 surface is found as  

 𝑛𝛿 =
𝜑𝑠
𝛿×𝜑𝑡

𝛿

‖𝜑𝑠
𝛿×𝜑𝑡

𝛿‖
=

−𝜏𝛿𝑻𝛿+(1−𝑡𝜅𝛿)𝑩𝛿

√𝜏𝛿
2+(1−𝑡𝜅𝛿)

2
. 

These equalities are obtained similarly for the normal surface of 𝜆 curve. Then, with the help of Theorem 

2 and of the equations we gave at the beginning of this section, we obtain  

 

 

𝐸𝛿 = 𝜏𝛿
2 + (1 − 𝑡𝜅𝛿)

2,  𝐹𝛿 = 0, 𝐺𝛿 = 1,

𝑒𝛿 =
𝑡𝜅𝛿𝜏𝛿+𝜏𝛿

′ +𝑡𝜅𝛿𝜏𝛿
′

√𝜏𝛿
2+(1−𝑡𝜅𝛿)

2
,  𝑓𝛿 =

𝜅𝛿𝜏𝛿

√𝜏𝛿
2+(1−𝑡𝜅𝛿)

2
,  𝑔𝛿 = 0. (4) 
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Hence, from Theorem 2, the first and second fundamental forms of normal surfaces of 𝛿 are obtained as 

 

.
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)(sin))(cos(1

))(cos))(1(cos)(sin()(cos)(sin
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,))(sin))(cos((1=
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Corollary 7. Let 𝛿 be principal-donor curve of 𝜆 curve with arc length parameter. Then, mean (𝐻𝛿) and 

Gaussian curvatures (𝐾𝛿) of the normal surfaces of 𝛿 are given by following equations: 

 

.
))(sin))(cos((12

))(cos))(1(cos)(sin()(cos)(sin
=

,
))(sin))(cos4((1

)(2sin
=

3222

2

2222

24




















+−

+++

+−

t

tt
H

t
K

'  (5) 

 

Proof. Using equations (4), we obtain 

 

𝐾𝛿  =  
𝑒𝛿𝑔𝛿−𝑓𝛿

2

𝐸𝛿𝐺𝛿−𝐹𝛿
2 =

𝜅𝛿
2𝜏𝛿

2

(𝜏𝛿
2+(1−𝑡𝜅𝛿)

2)2
,

𝐻𝛿  =  
𝐸𝛿𝑔𝛿−2𝐹𝛿𝑓𝛿+𝐺𝛿𝑒𝛿

2(𝐸𝛿𝐺𝛿−𝐹𝛿
2)

=
𝑡𝜅𝛿𝜏𝛿+𝜏𝛿

′ +𝑡𝜅𝛿𝜏𝛿
′

2√(𝜏𝛿
2+(1−𝑡𝜅𝛿)

2)3
.
 

Hence, by using equations of 𝜅𝛿 = 𝜅𝜆|𝑐𝑜𝑠( 𝛼)|, 𝜏𝛿 = 𝜅𝜆 𝑠𝑖𝑛( 𝛼), the proof is completed. 

 

Theorem 8. Let 𝛿 be principal-donor curve of 𝜆 curve with arc length parameter. If the curve 𝜆 is planar, 

then the normal surface of 𝛿 is minimal and flat. 

 

Proof. Since the curve 𝜆 is planar, 𝜏𝜆 = 0. Then, it's obtained  

 𝜏𝛿 = 𝜅𝜆 𝑠𝑖𝑛( 0) = 0  and 𝜅𝛿 = 𝜅𝜆|𝑐𝑜𝑠( 0)| = 𝜅𝜆. 
From Theorem 3 and Theorem 4, 𝐻𝛿 = 0 and 𝐾𝛿 = 0. Hence, the normal surface of 𝛿 is minimal and flat. 

 

We can easily obtain the following results with the aid of equations (5): 

 

Corollary 9. Let 𝛿 be principal-donor curve of 𝜆 curve with arc length parameter. If the torsion of the 

curve 𝜆 is constant. Then, principal curvatures of normal surface of 𝛿 are given by 

 

,
))(sin))(cos((12
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Abstract 

The aim of this paper is introduce the concepts of asymptotical deferred invariant equivalence, 

strongly deferred invariant equivalence and deferred invariant statistical equivalence in the Wijsman 

sense for double set sequences. Additionally, some properties and based relations among these concepts 

have been established.   

 

Keywords: Deferred Cesàro mean, deferred statistical convergence, asymptotical equivalence, 

invariant convergence, Wijsman convergence, double sequences of sets. 

 

1. Preliminaries 

Long after the concept of deferred Cesàro mean for real or complex-valued sequences was 

introduced by Agnew [1], Küçükaslan and Yılmaztürk [2] studied on the concept of deferred statistical 

convergence. Then, using the invariant mean, Nuray [3] gave the definitions of strongly deferred invariant 

and deferred invariant statistical convergence. In addition, for non-negative sequences, Koşar et al. [4] 

presented new concepts named asymptotical deferred and asymptotical deferred statistical equivalence. 

Also, Dağadur and Sezgek [5, 6] extended the concepts of deferred Cesàro mean and deferred statistical 

convergence to the double sequences. Furthermore, on the concepts of strongly double deferred invariant 

and double deferred invariant statistical convergence were studied by Savaş [7]. 

For sequences of sets, Altınok et al. [8] firstly introduced the concepts of Wijsman strongly 

deferred Cesàro summability and Wijsman deferred statistical convergence. Using the asymptotical 

equivalence, Altınok et al. [9] also gave the definitions of asymptotical deferred and asymptotical 

deferred statistical equivalence in the Wijsman sense for sequences of sets. In addition, for sequences of 

sets, some asymptotical deferred invariant equivalence types in the Wijsman sense were presented by 

Gülle and Ulusu [10]. Furthermore, Ulusu and Gülle [11] studied on the concepts of Wijsman deferred 

Cesàro summability and Wijsman deferred statistical convergence for double sequences of sets. 

More information on these concepts can be found in [12-35]. 
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The deferred Cesàro mean 𝐷𝜙,𝜓 of a double real sequence x = (𝑥𝑢𝑣) is defined by   

(𝐷𝜙,𝜓x)𝑖𝑗 =
1

𝜙(𝑖)𝜓(𝑗)
∑

𝑞𝑖

𝑢=𝑝𝑖+1

  ∑

𝑠𝑗

𝑣=𝑟𝑗+1

𝑥𝑢𝑣 ∶= ∑ 𝑥𝑢𝑣,

𝑞𝑖,𝑠𝑗

𝑢=𝑝𝑖+1
𝑣=𝑟𝑗+1

 

where (𝑝𝑖), (𝑞𝑖), (𝑟𝑗) and (𝑠𝑗) are sequences of non-negative integers satisfying following conditions:  

𝑝𝑖 < 𝑞𝑖 , lim
𝑖→∞

𝑞𝑖 = ∞;    𝑟𝑗 < 𝑠𝑗 , lim
𝑗→∞

𝑠𝑗 = ∞                                             (1) 

𝑞𝑖 − 𝑝𝑖 = 𝜙(𝑖);    𝑠𝑗 − 𝑟𝑗 = 𝜓(𝑗).                                                     (2) 

Note here that the method 𝐷𝜙,𝜓 is openly regular for any selection of the above sequences of 

integers. 

Throughout the paper, unless otherwise specified, (𝑝𝑖) , (𝑞𝑖) , (𝑟𝑗)  and (𝑠𝑗)  are considered as 

sequences of non-negative integers satisfying (1) and (2). 

For a metric space (𝒳, 𝑑), distance from 𝑥 to 𝐵 is denoted by 𝜇𝑥(𝐵) where  

𝜇𝑥(𝐵) ∶= 𝜇(𝑥, 𝐵) = inf
𝑦∈𝐵

𝑑(𝑥, 𝑦) 

for any 𝑥 ∈ 𝒳 and any non-empty 𝐵 ⊆ 𝒳. 

For a non-empty set 𝒳, let a function 𝑓: ℕ → 2𝒳 is defined by 𝑓(𝑢) = 𝐵𝑢 ∈ 2𝒳 for each 𝑢 ∈ ℕ 

where 2𝒳denotes the power set of 𝒳. Then, the sequence {𝐵𝑢} = {𝐵1, 𝐵2, … } is called sequence of sets. 

Throughout the paper, we will take that  (𝒳, 𝑑) as a metric space and 𝐵, 𝐵𝑢𝑣, 𝐶𝑢𝑣 as any non-

empty closed subsets of 𝒳. 

The double sequence {𝐵𝑢𝑣}  is called bounded if sup𝑢,𝑣 𝜇𝑥(𝐵𝑢𝑣) < ∞  for each 𝑥 ∈ 𝒳 . Also,          

𝐿∞
2  denotes the class of all bounded double sequences of sets. 

The double sequence {𝐵𝑢𝑣} is said to be Wijsman convergent to the set 𝐵 if for each 𝑥 ∈ 𝒳 

lim
𝑢,𝑣→∞

𝜇𝑥(𝐵𝑢𝑣) = 𝜇𝑥(𝐵) 

and it is denoted by 𝐵𝑢𝑣 ⟶
𝑊2

𝐵. 

Let 𝜎 be a mapping of the set of positive integers into itself. A continuous linear functional 𝜙 on 

ℓ∞, the space of real bounded sequences, is called an invariant mean or a 𝜎-mean if and only if 

i. 𝜙(𝑥𝑢) ≥ 0, when the sequence (𝑥𝑢) has 𝑥𝑢 ≥ 0 for all 𝑢,  

ii. 𝜙(𝑒) = 1, where 𝑒 = (1,1,1, … ), and 

iii. 𝜙(𝑥𝜎(𝑢)) = 𝜙(𝑥𝑢)  for all  (𝑥𝑢) ∈ ℓ∞. 
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The mappings 𝜎 are assumed to be one to one and 𝜎𝑢(𝑚) ≠ 𝑚 for all positive integers 𝑢 and 𝑚, 

where 𝜎𝑢(𝑚) denotes the 𝑢 th iterate of the mapping 𝜎 at 𝑚. Thus, 𝜙 extends the limit functional on 𝑐, 

the space of convergent sequences, in the sense that 𝜙(𝑥𝑢) = lim𝑥𝑢 for all (𝑥𝑢) ∈ 𝑐. 

The double sequence {𝐵𝑢𝑣} is said to be Wijsman invariant convergent to the set 𝐵 if for each    

𝑥 ∈ 𝒳   

lim
𝑖,𝑗→∞

1

𝑖𝑗
∑

𝑖,𝑗

𝑢,𝑣=1,1

𝜇𝑥(𝐵𝜎𝑢(𝑚)𝜎𝑣(𝑛)) = 𝜇𝑥(𝐵) 

uniformly in 𝑚, 𝑛. 

The double sequence {𝐵𝑢𝑣} is said to be Wijsman strongly invariant convergent to the set 𝐵 if for 

each 𝑥 ∈ 𝒳   

lim
𝑖,𝑗→∞

1

𝑖𝑗
∑

𝑖,𝑗

𝑢,𝑣=1,1

|𝜇𝑥(𝐵𝜎𝑢(𝑚)𝜎𝑣(𝑛)) − 𝜇𝑥(𝐵)| = 0 

uniformly in 𝑚, 𝑛. 

The double sequence {𝐵𝑢𝑣} is said to be Wijsman invariant statistically convergent to the set 𝐵 if 

for every 𝜀 > 0 and each 𝑥 ∈ 𝒳  

lim
𝑖,𝑗→∞

1

𝑖𝑗
|{(𝑢, 𝑣): 𝑢 ≤ 𝑖, 𝑣 ≤ 𝑗, |𝜇𝑥(𝐵𝜎𝑢(𝑚)𝜎𝑣(𝑛)) − 𝜇𝑥(𝐵)| ≥ 𝜀}| = 0 

uniformly in 𝑚, 𝑛. 

For any non-empty closed subsets 𝐵𝑢𝑣, 𝐶𝑢𝑣 ∈ 𝒳 such that 𝜇𝑥(𝐵𝑢𝑣) > 0 and 𝜇𝑥(𝐶𝑢𝑣) > 0 for each 

𝑥 ∈ 𝒳, the double sequences {𝐵𝑢𝑣} and {𝐶𝑢𝑣} are said to be Wijsman asymptotically equivalent if  

lim
𝑢,𝑣→∞

 𝜇𝑥 (
𝐵𝑢𝑣

𝐶𝑢𝑣
) : = 𝑙𝑖𝑚

𝑢,𝑣→∞

𝜇𝑥(𝐵𝑢𝑣)

𝜇𝑥(𝐶𝑢𝑣)
= 1 

for each 𝑥 ∈ 𝒳. It is denoted by 𝐵𝑢𝑣 ∼
W2

𝐶𝑢𝑣. 

A double sequence 𝜃2 = {(𝑢𝑖, 𝑣𝑗)} is called double lacunary sequence if there exists increasing 

integers sequences (𝑢𝑖) and (𝑣𝑗) such that  

 𝑢0 = 0, ℎ𝑖 = 𝑢𝑖 − 𝑢𝑖−1 → ∞    and   𝑣0 = 0, ℎ̅𝑗 = 𝑣𝑗 − 𝑣𝑗−1 → ∞   as  𝑖, 𝑗 → ∞. 
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2. New Concepts 

In this section, we introduced the concepts of asymptotical deferred invariant equivalence, 

strongly deferred invariant equivalence and deferred invariant statistical equivalence in the Wijsman 

sense for double set sequences. Additionally, we established some properties and based relations among 

these concepts. 

Throughout the section, we regarded that 𝜇𝑥(𝐵𝑢𝑣) > 0 and 𝜇𝑥(𝐶𝑢𝑣) > 0 for each 𝑥 ∈ 𝒳. 

Definition 2.1 The double set sequences {𝐵𝑢𝑣} and {𝐶𝑢𝑣} are said to be Wijsman asymptotical deferred 

invariant statistically equivalent of multiple 𝜆 if for every 𝜀 > 0 and each 𝑥 ∈ 𝒳  

lim
𝑖,𝑗→∞

1

𝜙(𝑖)𝜓(𝑗)
|{(𝑢, 𝑣): 𝑝𝑖 < 𝑢 ≤ 𝑞𝑖, 𝑟𝑗 < 𝑣 ≤ 𝑠𝑗 , |𝜇𝑥 (

𝐵𝜎𝑢(𝑚)𝜎𝑣(𝑛)

𝐶𝜎𝑢(𝑚)𝜎𝑣(𝑛)
) − 𝜆| ≥ 𝜀}| = 0 

uniformly in 𝑚, 𝑛 . The notation 𝐵𝑢𝑣 ∼
𝑊2

𝜆𝐷𝑆𝜎
𝐶𝑢𝑣  is used for this case and these sequences are called 

Wijsman asymptotical deferred invariant statistically equivalent if 𝜆 = 1.  

The set of all double set sequences that Wijsman asymptotical deferred invariant statistically 

equivalent is denoted by {𝑊2
𝜆𝐷𝑆𝜎}. 

Remark 2.1    

 For 𝑝𝑖 = 0, 𝑞𝑖 = 𝑖  and 𝑟𝑗 = 0, 𝑠𝑗 = 𝑗 , the concept of Wijsman asymptotical deferred invariant 

statistical equivalence coincides with the concept of Wijsman asymptotical invariant statistical 

equivalence for double set sequences in [34]. 

 For 𝑝𝑖 = 𝑢𝑖−1, 𝑞𝑖 = 𝑢𝑖  and 𝑟𝑗 = 𝑣𝑗−1, 𝑠𝑗 = 𝑣𝑗  where {(𝑢𝑖, 𝑣𝑗)} is a double lacunary sequence, the 

concept of Wijsman asymptotical deferred invariant statistical equivalence coincides with the 

concept of Wijsman asymptotical lacunary invariant statistical equivalence for double set 

sequences in [34].  

Definition 2.2 The double set sequences {𝐵𝑢𝑣} and {𝐶𝑢𝑣} are said to be Wijsman asymptotically deferred 

invariant equivalent of multiple 𝜆 if for each 𝑥 ∈ 𝒳  

lim
𝑘,𝑗→∞

1

𝜙(𝑖)𝜓(𝑗)
∑

𝑞𝑖,𝑠𝑗

𝑢=𝑝𝑖+1
𝑣=𝑟𝑗+1

𝜇𝑥 (
𝐵𝜎𝑢(𝑚)𝜎𝑣(𝑛)

𝐶𝜎𝑢(𝑚)𝜎𝑣(𝑛)
) = 𝜆 

uniformly in 𝑚, 𝑛 . The notation 𝐵𝑢𝑣 ∼
𝑊2

𝜆𝐷𝜎
𝐶𝑢𝑣  is used for this case and these sequences are called 

Wijsman asymptotically deferred invariant equivalent if 𝜆 = 1.  

378



 

6th INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 

21-24 June 2022, Istanbul, Turkey 

 

 

ICOM 2022 

ISTANBUL / TURKEY 

Definition 2.3 The double set sequences {𝐵𝑢𝑣} and {𝐶𝑢𝑣} are said to be Wijsman asymptotical strongly 

deferred invariant equivalent of multiple 𝜆 if for each 𝑥 ∈ 𝒳  

lim
𝑘,𝑗→∞

1

𝜙(𝑖)𝜓(𝑗)
∑

𝑞𝑖,𝑠𝑗

𝑢=𝑝𝑖+1
𝑣=𝑟𝑗+1

|𝜇𝑥 (
𝐵𝜎𝑢(𝑚)𝜎𝑣(𝑛)

𝐶𝜎𝑢(𝑚)𝜎𝑣(𝑛)
) − 𝜆| = 0 

uniformly in 𝑚, 𝑛 . The notation 𝐵𝑢𝑣 ∼
𝑊2

𝜆[𝐷𝜎]
𝐶𝑢𝑣  is used for this case and these sequences are called 

Wijsman asymptotical strongly deferred invariant equivalent if 𝜆 = 1.  

The set of all double set sequences that Wijsman asymptotical strongly deferred invariant 

equivalent is denoted by {𝑊2
𝜆[𝐷𝜎]}. 

Remark 2.2  

 For 𝑝𝑖 = 0, 𝑞𝑖 = 𝑖  and 𝑟𝑗 = 0, 𝑠𝑗 = 𝑗 , the concept of Wijsman asymptotical strongly deferred 

invariant equivalence coincides with the concept of Wijsman asymptotical strongly invariant 

equivalence for double set sequences in [34]. 

 For 𝑝𝑖 = 𝑢𝑖−1, 𝑞𝑖 = 𝑢𝑖  and 𝑟𝑗 = 𝑣𝑗−1, 𝑠𝑗 = 𝑣𝑗  where {(𝑢𝑖, 𝑣𝑗)} is a double lacunary sequence, the 

concept of Wijsman asymptotical strongly deferred invariant equivalence coincides with the 

concept of Wijsman asymptotical strongly lacunary invariant equivalence for double set sequences 

in [34].  

 

3. Main Theorems 

In this section, firstly, we gave two theorems associated with the concept of 𝑊2
𝜆𝐷𝑆𝜎-equivalence. 

Theorem 3.1 Let 𝐴𝑢𝑣 ⊆ 𝐵𝑢𝑣 for all 𝑢, 𝑣 ∈ ℕ. If 𝐴𝑢𝑣 ∼
𝑊2

𝜆𝐷𝑆𝜎
𝐶𝑢𝑣, then 𝐵𝑢𝑣 ∼

𝑊2
𝜆𝐷𝑆𝜎

𝐶𝑢𝑣. 

Proof. Suppose that 𝐴𝑢𝑣 ∼
𝑊2

𝜆𝐷𝑆𝜎
𝐶𝑢𝑣. Since 𝐴𝑢𝑣 ⊆ 𝐵𝑢𝑣 for all 𝑢, 𝑣 ∈ ℕ, we have 

𝐴𝑢𝑣 ⊆ 𝐵𝑢𝑣 ⇒ 𝐴𝜎𝑢(𝑚)𝜎𝑣(𝑛) ⊆ 𝐵𝜎𝑢(𝑚)𝜎𝑣(𝑛)      (for all  𝑚, 𝑛) 

                                              ⇒ 𝜇𝑥(𝐵𝜎𝑢(𝑚)𝜎𝑣(𝑛)) ≤ 𝜇𝑥(𝐴𝜎𝑢(𝑚)𝜎𝑣(𝑛))      (for each  𝑥 ∈ 𝒳) 

                                  ⇒ |𝜇𝑥 (
𝐵𝜎𝑢(𝑚)𝜎𝑣(𝑛)

𝐶𝜎𝑢(𝑚)𝜎𝑣(𝑛)
) − 𝜆| ≤ |𝜇𝑥 (

𝐴𝜎𝑢(𝑚)𝜎𝑣(𝑛)

𝐶𝜎𝑢(𝑚)𝜎𝑣(𝑛)
) − 𝜆|. 

So, for every 𝜀 > 0   
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{(𝑢, 𝑣): 𝑝𝑖 < 𝑢 ≤ 𝑞𝑖, 𝑟𝑗 < 𝑢 ≤ 𝑠𝑗 , |𝜇𝑥 (
𝐵𝜎𝑢(𝑚)𝜎𝑣(𝑛)

𝐶𝜎𝑢(𝑚)𝜎𝑣(𝑛)
) − 𝜆| ≥ 𝜀} 

⊆ {(𝑢, 𝑣): 𝑝𝑖 < 𝑢 ≤ 𝑞𝑖 , 𝑟𝑗 < 𝑢 ≤ 𝑠𝑗 , |𝜇𝑥 (
𝐴𝜎𝑢(𝑚)𝜎𝑣(𝑛)

𝐶𝜎𝑢(𝑚)𝜎𝑣(𝑛)
) − 𝜆| ≥ 𝜀}. 

Then, the following inequality is obtained:  

1

𝜙(𝑖)𝜓(𝑗)
|{(𝑢, 𝑣): 𝑝𝑖 < 𝑢 ≤ 𝑞𝑖 , 𝑟𝑗 < 𝑢 ≤ 𝑠𝑗, |𝜇𝑥 (

𝐵𝜎𝑢(𝑚)𝜎𝑣(𝑛)

𝐶𝜎𝑢(𝑚)𝜎𝑣(𝑛)
) − 𝜆| ≥ 𝜀}| 

≤
1

𝜙(𝑖)𝜓(𝑗)
|{(𝑢, 𝑣): 𝑝𝑖 < 𝑢 ≤ 𝑞𝑖 , 𝑟𝑗 < 𝑢 ≤ 𝑠𝑗, |𝜇𝑥 (

𝐴𝜎𝑢(𝑚)𝜎𝑣(𝑛)

𝐶𝜎𝑢(𝑚)𝜎𝑣(𝑛)
) − 𝜆| ≥ 𝜀}|. 

Thus, by the assumption, 𝐵𝑢𝑣 ∼
𝑊2

𝜆𝐷𝑆𝜎
𝐶𝑢𝑣.  

Theorem 3.2 Let 𝐵𝑢𝑣 ⊆ 𝐶𝑢𝑣 for all 𝑢, 𝑣 ∈ ℕ. If 𝐴𝑢𝑣 ∼
𝑊2

𝜆𝐷𝑆𝜎
𝐶𝑢𝑣, then 𝐴𝑢𝑣 ∼

𝑊2
𝜆𝐷𝑆𝜎

𝐵𝑢𝑣. 

Proof. Suppose that 𝐴𝑢𝑣 ∼
𝑊2

𝜆𝐷𝑆𝜎
𝐶𝑢𝑣. Since 𝐵𝑢𝑣 ⊆ 𝐶𝑢𝑣 for all 𝑢, 𝑣 ∈ ℕ, we have   

𝐵𝑢𝑣 ⊆ 𝐶𝑢𝑣 ⇒ 𝐵𝜎𝑢(𝑚)𝜎𝑣(𝑛) ⊆ 𝐶𝜎𝑢(𝑚)𝜎𝑣(𝑛)      (for all  𝑚, 𝑛) 

                                             ⇒ 𝜇𝑥(𝐶𝜎𝑢(𝑚)𝜎𝑣(𝑛)) ≤ 𝜇𝑥(𝐵𝜎𝑢(𝑚)𝜎𝑣(𝑛))      (for each  𝑥 ∈ 𝒳) 

                                 ⇒ |𝜇𝑥 (
𝐴𝜎𝑢(𝑚)𝜎𝑣(𝑛)

𝐵𝜎𝑢(𝑚)𝜎𝑣(𝑛)
) − 𝜆| ≤ |𝜇𝑥 (

𝐴𝜎𝑢(𝑚)𝜎𝑣(𝑛)

𝐶𝜎𝑢(𝑚)𝜎𝑣(𝑛)
) − 𝜆|. 

So, for every 𝜀 > 0   

{(𝑢, 𝑣): 𝑝𝑖 < 𝑢 ≤ 𝑞𝑖, 𝑟𝑗 < 𝑢 ≤ 𝑠𝑗 , |𝜇𝑥 (
𝐴𝜎𝑢(𝑚)𝜎𝑣(𝑛)

𝐵𝜎𝑢(𝑚)𝜎𝑣(𝑛)
) − 𝜆| ≥ 𝜀} 

⊆ {(𝑢, 𝑣): 𝑝𝑖 < 𝑢 ≤ 𝑞𝑖 , 𝑟𝑗 < 𝑢 ≤ 𝑠𝑗 , |𝜇𝑥 (
𝐴𝜎𝑢(𝑚)𝜎𝑣(𝑛)

𝐶𝜎𝑢(𝑚)𝜎𝑣(𝑛)
) − 𝜆| ≥ 𝜀}. 

Then, the following inequality is obtained:  

1

𝜙(𝑖)𝜓(𝑗)
|{(𝑢, 𝑣): 𝑝𝑖 < 𝑢 ≤ 𝑞𝑖 , 𝑟𝑗 < 𝑢 ≤ 𝑠𝑗, |𝜇𝑥 (

𝐴𝜎𝑢(𝑚)𝜎𝑣(𝑛)

𝐵𝜎𝑢(𝑚)𝜎𝑣(𝑛)
) − 𝜆| ≥ 𝜀}| 

≤
1

𝜙(𝑖)𝜓(𝑗)
|{(𝑢, 𝑣): 𝑝𝑖 < 𝑢 ≤ 𝑞𝑖 , 𝑟𝑗 < 𝑢 ≤ 𝑠𝑗, |𝜇𝑥 (

𝐴𝜎𝑢(𝑚)𝜎𝑣(𝑛)

𝐶𝜎𝑢(𝑚)𝜎𝑣(𝑛)
) − 𝜆| ≥ 𝜀}|. 

Thus, by the assumption, 𝐴𝑢𝑣 ∼
𝑊2

𝜆𝐷𝑆𝜎
𝐵𝑢𝑣.  
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Finally, we compared the concepts of 𝑊2
𝜆𝐷𝑆𝜎-equivalence and 𝑊2

𝜆[𝐷𝜎]-equivalence.  

Theorem 3.3 If double sequences {𝐵𝑢𝑣} and {𝐶𝑢𝑣} are Wijsman asymptotical strongly deferred invariant 

equivalent of multiple λ, then these sequences are Wijsman asymptotical deferred invariant statistically 

equivalent of multiple λ.  

Proof. Suppose that 𝐵𝑢𝑣 ∼
𝑊2

𝜆[𝐷𝜎]
𝐶𝑢𝑣. For every 𝜀 > 0 and each 𝑥 ∈ 𝒳, we have the following equality:  

∑

𝑞𝑖,𝑠𝑗

𝑢=𝑝𝑖+1
𝑣=𝑟𝑗+1

|𝜇𝑥 (
𝐵𝜎𝑢(𝑚)𝜎𝑣(𝑛)

𝐶𝜎𝑢(𝑚)𝜎𝑣(𝑛)
) − 𝜆| = ∑

𝑞𝑖,𝑠𝑗

𝑢=𝑝𝑖+1
𝑣=𝑟𝑗+1

|𝜇𝑥(
𝐵𝜎𝑢(𝑚)𝜎𝑣(𝑛)

𝐶𝜎𝑢(𝑚)𝜎𝑣(𝑛)
)−𝜆|≥𝜀

|𝜇𝑥 (
𝐵𝜎𝑢(𝑚)𝜎𝑣(𝑛)

𝐶𝜎𝑢(𝑚)𝜎𝑣(𝑛)
) − 𝜆| 

(3) 

+ ∑

𝑞𝑖,𝑠𝑗

𝑢=𝑝𝑖+1
𝑣=𝑟𝑗+1

|𝜇𝑥(
𝐵𝜎𝑢(𝑚)𝜎𝑣(𝑛)

𝐶𝜎𝑢(𝑚)𝜎𝑣(𝑛)
)−𝜆|<𝜀

|𝜇𝑥 (
𝐵𝜎𝑢(𝑚)𝜎𝑣(𝑛)

𝐶𝜎𝑢(𝑚)𝜎𝑣(𝑛)
) − 𝜆|                    

From the equality (3), we have   

∑

𝑞𝑖,𝑠𝑗

𝑢=𝑝𝑖+1
𝑣=𝑟𝑗+1

|𝜇𝑥 (
𝐵𝜎𝑢(𝑚)𝜎𝑣(𝑛)

𝐶𝜎𝑢(𝑚)𝜎𝑣(𝑛)
) − 𝜆| ≥ ∑

𝑞𝑖,𝑠𝑗

𝑢=𝑝𝑖+1
𝑣=𝑟𝑗+1

|𝜇𝑥(
𝐵𝜎𝑢(𝑚)𝜎𝑣(𝑛)

𝐶𝜎𝑢(𝑚)𝜎𝑣(𝑛)
)−𝜆|≥𝜀

|𝜇𝑥 (
𝐵𝜎𝑢(𝑚)𝜎𝑣(𝑛)

𝐶𝜎𝑢(𝑚)𝜎𝑣(𝑛)
) − 𝜆| 

                            ≥ 𝜀 |{(𝑢, 𝑣): 𝑝𝑖 < 𝑢 ≤ 𝑞𝑖 , 𝑟𝑗 < 𝑢 ≤ 𝑠𝑗 , |𝜇𝑥 (
𝐵𝜎𝑢(𝑚)𝜎𝑣(𝑛)

𝐶𝜎𝑢(𝑚)𝜎𝑣(𝑛)
) − 𝜆| ≥ 𝜀}| 

and   

1

𝜀
 

1

𝜙(𝑖)𝜓(𝑗)
∑

𝑞𝑖,𝑠𝑗

𝑢=𝑝𝑖+1
𝑣=𝑟𝑗+1

|𝜇𝑥 (
𝐵𝜎𝑢(𝑚)𝜎𝑣(𝑛)

𝐶𝜎𝑢(𝑚)𝜎𝑣(𝑛)
) − 𝜆| 

≥
1

𝜙(𝑖)𝜓(𝑗)
|{(𝑢, 𝑣): 𝑝𝑖 < 𝑢 ≤ 𝑞𝑖, 𝑟𝑗 < 𝑢 ≤ 𝑠𝑗 , |𝜇𝑥 (

𝐵𝜎𝑢(𝑚)𝜎𝑣(𝑛)

𝐶𝜎𝑢(𝑚)𝜎𝑣(𝑛)
) − 𝜆| ≥ 𝜀}| 

Thus, by the assumption, 𝐵𝑢𝑣 ∼
𝑊2

𝜆𝐷𝑆𝜎
𝐶𝑢𝑣.  
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Theorem 3.4 Let {𝐵𝑢𝑣}, {𝐶𝑢𝑣} ∈ 𝐿∞
2 . If double sequences {𝐵𝑢𝑣} and {𝐶𝑢𝑣}  are Wijsman asymptotical 

deferred invariant statistically equivalent of multiple λ, then these sequences are Wijsman asymptotical 

strongly deferred invariant equivalent of multiple λ.  

Proof. Since {𝐵𝑢𝑣}, {𝐶𝑢𝑣} ∈ 𝐿∞
2 , there is a positive real number 𝒦  such that for all 𝑢, 𝑣 ∈ ℕ and each       

𝑥 ∈ 𝒳  

|𝜇𝑥 (
𝐵𝜎𝑢(𝑚)𝜎𝑣(𝑛)

𝐶𝜎𝑢(𝑚)𝜎𝑣(𝑛)
) − 𝜆| ≤ 𝒦 

uniformly in 𝑚, 𝑛. Suppose that 𝐵𝑢𝑣 ∼
𝑊2

𝜆𝐷𝑆𝜎
𝐶𝑢𝑣. From the equality (3), for every 𝜀 > 0 and each 𝑥 ∈ 𝒳 

we have  

1

𝜀
 

1

𝜙(𝑖)𝜓(𝑗)
∑

𝑞𝑖,𝑠𝑗

𝑢=𝑝𝑖+1
𝑣=𝑟𝑗+1

|𝜇𝑥 (
𝐵𝜎𝑢(𝑚)𝜎𝑣(𝑛)

𝐶𝜎𝑢(𝑚)𝜎𝑣(𝑛)
) − 𝜆| 

≤
𝒦

𝜙(𝑖)𝜓(𝑗)
|{(𝑢, 𝑣): 𝑝𝑖 < 𝑢 ≤ 𝑞𝑖, 𝑟𝑗 < 𝑢 ≤ 𝑠𝑗 , |𝜇𝑥 (

𝐵𝜎𝑢(𝑚)𝜎𝑣(𝑛)

𝐶𝜎𝑢(𝑚)𝜎𝑣(𝑛)
) − 𝜆| ≥ 𝜀}| + ε 

Thus, by the assumptions, we get 𝐵𝑢𝑣 ∼
𝑊2

𝜆[𝐷𝜎]
𝐶𝑢𝑣.  

Corollary 3.1 {𝑊2
𝜆𝐷𝑆𝜎} ∩ 𝐿∞

2 = {𝑊2
𝜆[𝐷𝜎]} ∩ 𝐿∞

2 .  
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Abstract 

In this work, some new properties of gs-essential submodules are studied. Every ring has an 

unity and every module is an unitary left module, in this work. It is proved that the finite intersection 

of gs-essential submodules is gs-essential. 

Keywords: Essential Submodules, Small Submodules, g-Small Submodules. 
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1. INTRODUCTION 

    Throughout this paper all rings will be associative with identity and all modules will be unital left 

modules. 

    Let R be a ring and M be an R-module. We will denote a submodule N of M by N≤M. Let M be an R-

module and N≤M. If L=M for every submodule L of M such that M=N+L, then N is called a small 

submodule of M and denoted by NM. Let M be an R-module and N≤M. If there exists a submodule K of 

M such that M=N+K and N∩K=0, then N is called a direct summand of M and it is denoted by M=N⊕K. 

A submodule N of an R-module M is called an essential submodule of M, denoted by NM, if K=0 for 

every K≤M with K∩N=0. Let M be an R-module and K be a submodule of M. K is called a generalized 

small (briefly, g-small) submodule of M if for every TM with M=K+T implies that T=M, this is written 

by KgM (in [6], it is called an e-small submodule of M and denoted by KeM). Let M be an R-module. 

M is called an hollow module if every proper submodule of M is small in M. M is called a generalized 

hollow (briefly, g-hollow) module, if every proper submodule of M is g-small in M. M is called a local 

module if M has the largest submodule, i. e. a proper submodule which contains all other proper 

submodules. The intersection of all maximal submodules of an R-module M is called the radical of M and 

denoted by RadM. If M have no maximal submodules, then we denote RadM=M. The intersection of all 

essential maximal submodules of an R-module M is called the generalized radical (briefly, g-radical) of 

M and denoted by RadgM (in [6], it is denoted by RadeM). If M have no maximal essential submodules, 

then we denote RadgM=M.Let M be an R-module and N be a submodule of M. If L=0 for every LM 
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with N∩L=0, then N is called a small essential (briefly, s-essential) submodule of M and denoted by 

NsM. 

    More informations about small and essential submodules are in [1] and [5]. More details about g-small 

submodules are in [2] and [3]. More informations about s-essential submodules are in [6]. 

 

Lemma 1.1. Let M be an R-module. 

(1) If K≤L≤M, then KM if and only if KLM. 

(2) Let N be an R-module and f : M→N be an R-module homomorphism. If KN, then f  -1(K)M. 

(3) For N≤K≤M, if K/NM/N, then KM. 

(4) If K1L1≤M and K2L2≤M, then K1∩K2L1∩L2. 

(5) If K1M and K2M, then K1∩K2M. 

Proof. See [5, 17.3]. 

 

Lemma 1.2. Let M be an R-module. The following assertions are hold. 

(1) Every small submodule in M is g-small in M. 

(2) If K≤L≤M and LgM, then KgM and L/KgM/K. 

(3) Let N be an R-module and f : M→N be an R-module homomorphism. If KgM, then f(K) gN. 

(4) If KgM, then (K+L)/LgM/L for every L≤M. 

(5) If L≤M and KgL, then KgM. 

(6) If K1,K2,...,KngM, then K1+K2+...+KngM. 

(7) Let K1,K2,...,Kn,L1,L2,...,Ln≤M. If KigLi for every i=1,2,...,n, then K1+K2+...+Kng L1+L2+...+Ln. 

Proof. See [2] and [3]. 

 

2. gs-ESSENTIAL SUBMODULES 

Definition 2.1. Let M be an R-module and N be a submodule of M. If L=0 for every LgM with N∩L=0, 

then N is called a g-small essential (briefly, gs-essential) submodule of M and denoted by NgsM. (See 

also [4]) 

 

Proposition 2.2. Every essential submodule is gs-essential. 
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Proof. Let M be an R-module and KM. Let KL=0 with LgM. Since KM and L≤M, L=0. Hence K is 

a gs-essential submodule of M, as desired. 

 

Proposition 2.3. Every gs-essential submodule is s-essential. 

Proof. Let M be an R-module and KgsM. Let KL=0 with LM. Since LM, LgM. Since KgsM and 

LgM, L=0. Hence K is a s-essential submodule of M, as desired. 

 

Proposition 2.4. Let M be an R-module and K≤L≤M. If KM, then KgsLgsM. 

Proof. By Lemma 1.1(1), KLM. Since KL, by Proposition 2.2, KgsL. Since LM, by Proposition 

2.2, LgsM. Hence KgsLgsM, as desired. 

 

Proposition 2.5. Let M be an R-module and K≤L≤M. If KLM, then KgsM. 

Proof. Since KLM, by Lemma 1.1(1), KM. Then by Proposition 2.2, KgsM, as desired. 

 

Proposition 2.6. Let f : M→N be an R-module homomorphism. If KN, then f  -1(K)gsM. 

Proof. Since KN, by Lemma 1.1(2),  f  -1(K)M. Then by Proposition 2.2, f  -1(K)gsM, as desired. 

 

Proposition 2.7. Let M be an R-module and K≤L≤M. If L/KM/K, then LgsM. 

Proof. Since L/KM/K, by Lemma 1.1, LM. Then by Proposition 2.2, LgsM, as required. 

 

Proposition 2.8. Let M be an R-module. If K1L1≤M and K2L2≤M, then K1∩K2gsL1∩L2. 

Proof. Since K1L1≤M and K2L2≤M, by Lemma 1.1(4), K1∩K2L1∩L2. Then by Proposition 2.2, 

K1∩K2gsL1∩L2, as desired. 

 

Proposition 2.9. Let M be an R-module. If K1M and K2M, then K1∩K2gsM. 
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Proof. Since K1M and K2M, by Lemma 1.1(4), K1∩K2M. Then by Proposition 2.2, K1∩K2gsM, as 

desired. 

 

Proposition 2.10. Let M be an R-module. If K1gsM and K2gsM, then K1∩K2gsM. 

Proof. Let K1K2L=0 with LgM. Since LgM, by Lemma 1.2, K2LgM and since K1K2L=0 

and K1M, K2L=0. Then by K2M and LgM, L=0 holds. Hence K1∩K2gsM, as required. 

 

Corollary 2.11. Let M be an R-module and KigsM for i=1,2,...,n. Then K1K2...KngsM. 

Proof. Clear from Proposition 2.10. 
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Abstract 

In this study, we firstly introduced the concepts of Hausdorff deferred Cesàro summability of 

order 𝜂 and Hausdorff deferred statistical convergence of order 𝜂 (0 < 𝜂 ≤ 1) for double set sequences, 

gave some properties of these concepts and examined the relations between them. Finally, we showed the 

relation between the concepts of Hausdorff deferred statistical convergence of order 𝜂  and Wijsman 

deferred statistical convergence of order 𝜂 for double sequences of sets.  

 

Keywords: Double sequences of sets, Hausdorff convergence, Deferred Cesàro mean, Order 𝜂, 

Deferred statistical convergence, Wijsman convergence. 

 

1. Introduction 

For real (or complex) sequences, the concept of deferred Cesàro mean was first introduced by 

Agnew [1]. Long after this, Küçükaslan and Yılmaztürk [2] presented the concept of deferred statistical 

convergence and showed the relationship of this concept with the strongly deferred Cesàro summability. 

Also, for double sequences, on the concepts of deferred Cesàro summability and deferred statistical 

convergence were introduced and studied by Dağadur and Sezgek [3]. Furthermore, using order 𝛼, Et et 

al. [4] studied on the concepts of deferred strongly Cesàro summability and deferred statistical 

convergence of order 𝛼 in metric spaces. 

The concepts of Hausdorff convergence and Wijsman convergence which are considered in this 

study are two of the important convergence concepts for sequences of sets [5-7]. Nuray and Rhoades [8] 

extended these concepts to statistical convergence and gave some fundamental theorems. In [9, 10], 

Nuray et al. also introduced and studied on the concepts of Wijsman convergence, Wijsman Cesàro 

summability, Wijsman statistical convergence and Hausdorff statistical convergence for double sequences 

of sets. Also, for double sequences of sets, the concepts of Hausdorff convergence was presented by 

Sever et al. [11]. Furthermore, using order 𝛼, on similar concepts for double sequences of sets were 

studied by Ulusu and Gülle [12]. 

For sequences of sets, on the concepts of strongly deferred Cesàro summability and deferred 

statistical convergence in the Wijsman sense were studied by Altınok et al. [13]. Also, for double 

sequences of sets, Ulusu and Gülle [14] introduced and studied on similar concepts. Furthermore, using 
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order 𝛼 , on the concepts of Wijsman strongly deferred Cesàro summability and Wijsman deferred 

statistical convergence of order 𝛼 for sequences of sets were studied by Yılmazer et al. [15]. 

In this work, for double sequences of sets, we introduced the concept of Hausdorff deferred 

statistical convergence of order 𝛼 and studied on this concept. 

More information on the concepts in this study can be found in [16-30]. 

 

2. Definitions and Notations 

First of all, let’s start by recalling some basic definitions and notations to make our study easier to 

understand (See, [3, 5, 10-12]). 

The deferred Cesàro mean 𝐷𝜓,𝜙 of a double sequence x = (𝑥𝑖𝑗) is defined by   

(𝐷𝜓,𝜙x)𝑢𝑣 =
1

𝜓𝑢𝜙𝑣
∑

𝑞𝑢

𝑖=𝑝𝑢+1

  ∑

𝑠𝑣

𝑗=𝑟𝑣+1

𝑥𝑖𝑗, 

where [𝑝𝑢], [𝑞𝑢], [𝑟𝑣] and [𝑠𝑣] are sequences of non-negative integers satisfying following conditions:  

𝑝𝑢 < 𝑞𝑢 , lim
𝑢→∞

𝑞𝑢 = ∞;      𝑟𝑣 < 𝑠𝑣 , lim
𝑣→∞

𝑠𝑣 = ∞                                        (2.1) 

𝑞𝑢 − 𝑝𝑢 = 𝜓𝑢;       𝑠𝑣 − 𝑟𝑣 = 𝜙𝑣 .                                                    (2.2) 

Throughout the paper, unless otherwise specified, [𝑝𝑢] , [𝑞𝑢] , [𝑟𝑣]  and [𝑠𝑣]  are considered as 

sequences of non-negative integers satisfying (2.1) and (2.2). 

For a metric space (𝒴, 𝜌), 𝑑(𝑦, 𝐶) represents the distance from 𝑦 to 𝐶 where  

𝑑(𝑦, 𝐶) = inf
𝑐∈𝐶

𝜌(𝑦, 𝑐): = 𝑑𝑦(𝐶) 

for any 𝑦 ∈ 𝒴 and any non-empty 𝐶 ⊆ 𝒴. 

For a non-empty set 𝒴, let a function 𝑔: ℕ → 2𝒴  is defined by 𝑔(𝑖) = 𝐶𝑖 ∈ 2𝒴  for each 𝑖 ∈ ℕ. 

Then, the sequence {𝐶𝑖} = {𝐶1, 𝐶2, … }, which is the codomain elements of 𝑔, is called sequences of sets. 

Throughout the study, unless otherwise stated, (𝒴, 𝜌)  is considered as a metric space and          

𝐶, 𝐶𝑖𝑗 (𝑖, 𝑗 ∈ ℕ) are considered as any non-empty closed subsets of 𝒴. 

A double sequence of sets {𝐶𝑖𝑗} is said to be Hausdorff convergent to a set 𝐶 provided that  

lim
𝑖,𝑗→∞

sup
𝑦∈𝒴

 |𝑑𝑦(𝐶𝑖𝑗) − 𝑑𝑦(𝐶)| = 0. 

It is denoted by 𝐶𝑖𝑗 ⟶
𝐻2

𝐶. 
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A double sequence of sets {𝐶𝑖𝑗} is said to be Hausdorff Cesàro summable of order 𝜂 (0 < 𝜂 ≤ 1) 

to a set 𝐶 provided that  

lim
𝑚,𝑛→∞

1

(𝑚𝑛)𝜂
∑

𝑚

𝑖=1

  ∑

𝑛

𝑗=1

 sup
𝑦∈𝒴

 |𝑑𝑦(𝐶𝑖𝑗) − 𝑑𝑦(𝐶)| = 0. 

It is denoted by 𝐶𝑖𝑗 ⟶
𝐻2(𝐶)𝜂

𝐶. For 𝜂 = 1, we obtain the concept of Hausdorff Cesàro summability for 

double sequences of sets. 

A double sequence of sets {𝐶𝑖𝑗}  is said to be Hausdorff statistical convergence of order 𝜂            

(0 < 𝜂 ≤ 1) to a set 𝐶 provided that for every 𝜀 > 0,  

lim
𝑚,𝑛→∞

1

(𝑚𝑛)𝜂
|{(𝑖, 𝑗): 𝑖 ≤ 𝑚, 𝑗 ≤ 𝑛: sup

𝑦∈𝒴
 |𝑑𝑦(𝐶𝑖𝑗) − 𝑑𝑦(𝐶)| ≥ 𝜀}| = 0. 

It is denoted by 𝐶𝑖𝑗 ⟶
𝐻2𝑆𝜂

𝐶. For 𝜂 = 1, we obtain the concept of Hausdorff statistical convergence for 

double sequences of sets. 

 

3. Main Results 

In this section, we firstly introduce the concepts of Hausdorff deferred Cesàro summability of 

order 𝜂 and Hausdorff deferred statistical convergence of order 𝜂 (0 < 𝜂 ≤ 1) for double set sequences, 

give some properties of these concepts and examine relations between them. Finally, we show the relation 

between the concepts of Hausdorff deferred statistical convergence of order 𝜂  and Wijsman deferred 

statistical convergence of order 𝜂 for double sequences of sets. 

Definition 3.1 A double sequence of sets {𝐶𝑖𝑗} is said to be Hausdorff deferred Cesàro summable of order 

𝜂 (0 < 𝜂 ≤ 1) to a set C if  

lim
𝑢,𝑣→∞

1

(𝜓𝑢𝜙𝑣)𝜂
∑

𝑞𝑢

𝑖=𝑝𝑢+1

  ∑

𝑠𝑣

𝑗=𝑟𝑣+1

 sup
𝑦∈𝒴

 |𝑑𝑦(𝐶𝑖𝑗) − 𝑑𝑦(𝐶)| = 0. 

In this case, the notation 𝐶𝑖𝑗 ⟶
𝐻2𝐷𝜂

𝐶  is used. For 𝜂 = 1, we obtain the concept of Hausdorff deferred 

Cesàro summability (𝐻2𝐷) for double sequences of sets which has never been mentioned before.  

Remark 3.1 The concept of Hausdorff deferred Cesàro summability of order 𝜂 for double set sequences 

is coincides with;   

 the notion of Hausdorff Cesàro summability of order 𝜂  for double set sequences in [12], for       

𝑝𝑢 = 0, 𝑞𝑢 = 𝑢 and 𝑟𝑣 = 0, 𝑠𝑣 = 𝑣. 
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 the notion of Hausdorff Cesàro summabililty for double set sequences in [10], for 𝜂 = 1, and 

𝑝𝑢 = 0, 𝑞𝑢 = 𝑢 and 𝑟𝑣 = 0, 𝑠𝑣 = 𝑣.  

Theorem 3.1 If 0 < 𝜂 ≤ 𝜇 ≤ 1, then  

𝐶𝑖𝑗 ⟶
𝐻2𝐷𝜂

𝐶 ⇒ 𝐶𝑖𝑗 ⟶
𝐻2𝐷𝜇

𝐶. 

Proof. Let 0 < 𝜂 ≤ 𝜇 ≤ 1 and suppose that 𝐶𝑖𝑗 ⟶
𝐻2𝐷𝜂

𝐶. Here, we can write following inequality  

1

(𝜓𝑢𝜙𝑣)𝜂
∑

𝑞𝑢

𝑖=𝑝𝑢+1

  ∑

𝑠𝑣

𝑗=𝑟𝑣+1

 sup
𝑦∈𝒴

 |𝑑𝑦(𝐶𝑖𝑗) − 𝑑𝑦(𝐶)| ≥
1

(𝜓𝑢𝜙𝑣)𝜇
∑

𝑞𝑢

𝑖=𝑝𝑢+1

  ∑

𝑠𝑣

𝑗=𝑟𝑣+1

 sup
𝑦∈𝒴

 |𝑑𝑦(𝐶𝑖𝑗) − 𝑑𝑦(𝐶)|. 

Hence, by our assumption, we get 𝐶𝑖𝑗 ⟶
𝐻2𝐷𝜇

𝐶.  

If 𝜇 = 1 is taken in Theorem 3.1, then we obtain the following corollary. 

Corollary 3.1 If a double sequence of sets {𝐶𝑖𝑗} is 𝐻2𝐷𝜂 -summable to a set 𝐶  (0 < 𝜂 ≤ 1), then the 

sequence is 𝐻2𝐷-summable to same set.  

Definition 3.2 A double sequence of sets {𝐶𝑖𝑗} is said to be Hausdorff deferred statistically convergent of 

order 𝜂 to the set 𝐶 (0 < 𝜂 ≤ 1) if for every 𝜀 > 0,  

lim
𝑢,𝑣→∞

1

(𝜓𝑢𝜙𝑣)𝜂
|{(𝑖, 𝑗): 𝑖 ∈ (𝑝𝑢 , 𝑞𝑢], 𝑗 ∈ (𝑟𝑣 , 𝑠𝑣], sup

𝑦∈𝒴
 |𝑑𝑦(𝐶𝑖𝑗) − 𝑑𝑦(𝐶)| ≥ 𝜀}| = 0. 

In this case, the notation 𝐶𝑖𝑗 ⟶
𝐻2𝐷𝑆𝜂

𝐶 is used. For 𝜂 = 1, we obtain the concept of Hausdorff deferred 

statistical convergence (𝐻2𝐷𝑆) for double sequences of sets which has never been mentioned before.  

Remark 3.2 The concept of Hausdorff deferred statistical convergence of order 𝜂  for double set 

sequences is coincides with;   

 the notion of Hausdorff statistical convergence of order 𝜂 for double set sequences in [12], for 

𝑝𝑢 = 0, 𝑞𝑢 = 𝑢 and 𝑟𝑣 = 0, 𝑠𝑣 = 𝑣. 

 the notion of Hausdorff statistical convergence for double set sequences in [10], for 𝜂 = 1, and 

𝑝𝑢 = 0, 𝑞𝑢 = 𝑢 and 𝑟𝑣 = 0, 𝑠𝑣 = 𝑣.  

Theorem 3.2 If 0 < 𝜂 ≤ 𝜇 ≤ 1, then  

𝐶𝑖𝑗 ⟶
𝐻2𝐷𝑆𝜂

𝐶 ⇒ 𝐶𝑖𝑗 ⟶
𝐻2𝐷𝑆𝜇

𝐶. 
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Proof. Let 0 < 𝜂 ≤ 𝜇 ≤ 1  and suppose that 𝐶𝑖𝑗 ⟶
𝐻2𝐷𝑆𝜂

𝐶 . For every 𝜀 > 0 , we can write following 

inequality   

1

(𝜓𝑢𝜙𝑣)𝜂
|{(𝑖, 𝑗): 𝑖 ∈ (𝑝𝑢 , 𝑞𝑢], 𝑗 ∈ (𝑟𝑣 , 𝑠𝑣], sup

𝑦∈𝒴
 |𝑑𝑦(𝐶𝑖𝑗) − 𝑑𝑦(𝐶)| ≥ 𝜀}| 

≥
1

(𝜓𝑢𝜙𝑣)𝜇
|{(𝑖, 𝑗): 𝑖 ∈ (𝑝𝑢 , 𝑞𝑢], 𝑗 ∈ (𝑟𝑣 , 𝑠𝑣], sup

𝑦∈𝒴
 |𝑑𝑦(𝐶𝑖𝑗) − 𝑑𝑦(𝐶)| ≥ 𝜀}|. 

Hence, by our assumption, we get 𝐶𝑖𝑗 ⟶
𝐻2𝐷𝑆𝜇

𝐶.  

If 𝜇 = 1 is taken in Theorem 3.2, then the following corollary is obtained. 

Corollary 3.2 If a double sequence of sets {𝐶𝑖𝑗} is 𝐻2𝐷𝑆𝜂-convergent to a set 𝐶 (0 < 𝜂 ≤ 1), then the 

sequence is 𝐻2𝐷𝑆-convergent to same set.  

Theorem 3.3 Let {𝐴𝑖𝑗}, {𝐵𝑖𝑗} and {𝐶𝑖𝑗} are double sequences of sets such that  

𝐴𝑖𝑗 ⊂ 𝐵𝑖𝑗 ⊂ 𝐶𝑖𝑗     (for  every  𝑖, 𝑗 ∈ ℕ). 

In this case; if 𝐴𝑖𝑗 ⟶
𝐻2𝐷𝑆𝜂

𝐵 and 𝐶𝑖𝑗 ⟶
𝐻2𝐷𝑆𝜂

𝐵, then 𝐵𝑖𝑗 ⟶
𝐻2𝐷𝑆𝜂

𝐵 where 0 < 𝜂 ≤ 1.  

Proof. Let 𝐴𝑖𝑗 ⊂ 𝐵𝑖𝑗 ⊂ 𝐶𝑖𝑗, 𝐴𝑖𝑗 ⟶
𝐻2𝐷𝑆𝜂

𝐵 and 𝐶𝑖𝑗 ⟶
𝐻2𝐷𝑆𝜂

𝐵. From the inclusion, it is obvious that  

 𝑑𝑦(𝐶𝑖𝑗) ≤ 𝑑𝑦(𝐵𝑖𝑗) ≤ 𝑑𝑦(𝐴𝑖𝑗) 

for each 𝑦 ∈ 𝒴. Then, for every 𝜀 > 0 we have   

{(𝑖, 𝑗): 𝑖 ∈ (𝑝𝑢 , 𝑞𝑢], 𝑗 ∈ (𝑟𝑣 , 𝑠𝑣], |𝑑𝑦(𝐵𝑖𝑗) − 𝑑𝑦(𝐵)| ≥ 𝜀} 

= {(𝑖, 𝑗): 𝑖 ∈ (𝑝𝑢 , 𝑞𝑢], 𝑗 ∈ (𝑟𝑣 , 𝑠𝑣], 𝑑𝑦(𝐵𝑖𝑗) ≥ 𝑑𝑦(𝐵) + 𝜀}                

∪ {(𝑖, 𝑗): 𝑖 ∈ (𝑝𝑢 , 𝑞𝑢], 𝑗 ∈ (𝑟𝑣 , 𝑠𝑣], 𝑑𝑦(𝐵𝑖𝑗) ≤ 𝑑𝑦(𝐵) − 𝜀}        

⊂ {(𝑖, 𝑗): 𝑖 ∈ (𝑝𝑢 , 𝑞𝑢], 𝑗 ∈ (𝑟𝑣 , 𝑠𝑣], 𝑑𝑦(𝐴𝑖𝑗) ≥ 𝑑𝑦(𝐵) + 𝜀}                

∪ {(𝑖, 𝑗): 𝑖 ∈ (𝑝𝑢 , 𝑞𝑢], 𝑗 ∈ (𝑟𝑣 , 𝑠𝑣], 𝑑𝑦(𝐶𝑖𝑗) ≤ 𝑑𝑦(𝐵) − 𝜀}        

for each 𝑦 ∈ 𝒴 and so  
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1

(𝜓𝑢𝜙𝑣)𝜇
|{(𝑖, 𝑗): 𝑖 ∈ (𝑝𝑢 , 𝑞𝑢], 𝑗 ∈ (𝑟𝑣 , 𝑠𝑣], sup

𝑦∈𝒴
 |𝑑𝑦(𝐵𝑖𝑗) − 𝑑𝑦(𝐵)| ≥ 𝜀}| 

≤
1

(𝜓𝑢𝜙𝑣)𝜇
|{(𝑖, 𝑗): 𝑖 ∈ (𝑝𝑢 , 𝑞𝑢], 𝑗 ∈ (𝑟𝑣 , 𝑠𝑣], sup

𝑦∈𝒴
 |𝑑𝑦(𝐴𝑖𝑗) − 𝑑𝑦(𝐵)| ≥ 𝜀}|     

+
1

(𝜓𝑢𝜙𝑣)𝜇
|{(𝑖, 𝑗): 𝑖 ∈ (𝑝𝑢 , 𝑞𝑢], 𝑗 ∈ (𝑟𝑣 , 𝑠𝑣], sup

𝑦∈𝒴
 |𝑑𝑦(𝐶𝑖𝑗) − 𝑑𝑦(𝐵)| ≥ 𝜀}|. 

Hence, by our assumption, we get 𝐵𝑖𝑗 ⟶
𝐻2𝐷𝑆𝜇

𝐵.  

Theorem 3.4 Let 0 < 𝜂 ≤ 1. If a double sequence of sets {𝐶𝑖𝑗} is 𝐻2𝐷𝜂-summable to a set 𝐶, then the 

sequence is 𝐻2𝐷𝑆𝜂-convergent to the same set.  

Proof. Let 0 < 𝜂 ≤ 1 and suppose that 𝐶𝑖𝑗 ⟶
𝐻2𝐷𝜂

𝐶. For every 𝜀 > 0, we can write following inequality   

∑

𝑞𝑢

𝑖=𝑝𝑢+1

  ∑

𝑠𝑣

𝑗=𝑟𝑣+1

 sup
𝑦∈𝒴

 |𝑑𝑦(𝐶𝑖𝑗) − 𝑑𝑦(𝐶)| ≥ ∑

𝑞𝑢

𝑖=𝑝𝑢+1

  ∑

𝑠𝑣

𝑗=𝑟𝑣+1
|𝑑𝑦(𝐶𝑖𝑗)−𝑑𝑦(𝐶)|≥𝜀

 sup
𝑦∈𝒴

 |𝑑𝑦(𝐶𝑖𝑗) − 𝑑𝑦(𝐶)| 

≥ 𝜀 |{(𝑖, 𝑗): 𝑖 ∈ (𝑝𝑢 , 𝑞𝑢], 𝑗 ∈ (𝑟𝑣 , 𝑠𝑣], sup
𝑦∈𝒴

 |𝑑𝑦(𝐶𝑖𝑗) − 𝑑𝑦(𝐶)| ≥ 𝜀}| 

and so   

1

𝜀

1

(𝜓𝑢𝜙𝑣)𝜂
∑

𝑞𝑢

𝑖=𝑝𝑢+1

  ∑

𝑠𝑣

𝑗=𝑟𝑣+1

 sup
𝑦∈𝒴

 |𝑑𝑦(𝐶𝑖𝑗) − 𝑑𝑦(𝐶)| 

≥
1

(𝜓𝑢𝜙𝑣)𝜂
|{(𝑖, 𝑗): 𝑖 ∈ (𝑝𝑢 , 𝑞𝑢], 𝑗 ∈ (𝑟𝑣 , 𝑠𝑣], sup

𝑦∈𝒴
 |𝑑𝑦(𝐶𝑖𝑗) − 𝑑𝑦(𝐶)| ≥ 𝜀}|. 

Hence, by our assumption, we get 𝐶𝑖𝑗 ⟶
𝐻2𝐷𝑆𝜂

𝐶.  

Corollary 3.3 If 𝐶𝑖𝑗 ⟶
𝐻2

𝐶, then 𝐶𝑖𝑗 ⟶
𝐻2𝐷𝑆𝜂

𝐶.  

The converse of Theorem 3.4 is true only in the case 𝜂 = 1 and {𝐶𝑖𝑗} ∈ 𝐿∞
2  (the class of all bounded 

double sequences of sets).  
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The sequence {𝐶𝑖𝑗} is said to be bounded if sup𝑖,𝑗{𝑑𝑦(𝐶𝑖𝑗)} < ∞ for each 𝑦 ∈ 𝒴. 

Theorem 3.5 If a double sequence of sets {𝐶𝑖𝑗} ∈ 𝐿∞
2  is 𝐻2𝐷𝑆-convergent to a set 𝐶, then the sequence is 

𝐻2𝐷-summable to the same set.  

Proof. Let the double sequence of sets {𝐶𝑖𝑗} is bounded and 𝐶𝑖𝑗 ⟶
𝐻2𝐷𝑆

𝐶. Since {𝐶𝑖𝑗} ∈ 𝐿∞
2 , there is an 

ℳ > 0 such that  

 |𝑑𝑦(𝐶𝑖𝑗) − 𝑑𝑦(𝐶)| ≤ ℳ 

for all 𝑖, 𝑗 ∈ ℕ and each 𝑦 ∈ 𝒴. Thus, for every 𝜀 > 0 we can write the following inequality   

1

𝜓𝑢𝜙𝑣
∑

𝑞𝑢

𝑖=𝑝𝑢+1

  ∑

𝑠𝑣

𝑗=𝑟𝑣+1

 sup
𝑦∈𝒴

 |𝑑𝑦(𝐶𝑖𝑗) − 𝑑𝑦(𝐶)| 

= ∑

𝑞𝑢

𝑖=𝑝𝑢+1

  ∑

𝑠𝑣

𝑗=𝑟𝑣+1
|𝑑𝑦(𝐶𝑖𝑗)−𝑑𝑦(𝐶)|≥𝜀

 sup
𝑦∈𝒴

 |𝑑𝑦(𝐶𝑖𝑗) − 𝑑𝑦(𝐶)| + ∑

𝑞𝑢

𝑖=𝑝𝑢+1

  ∑

𝑠𝑣

𝑗=𝑟𝑣+1
|𝑑𝑦(𝐶𝑖𝑗)−𝑑𝑦(𝐶)|<𝜀

 sup
𝑦∈𝒴

 |𝑑𝑦(𝐶𝑖𝑗) − 𝑑𝑦(𝐶)| 

≤
ℳ

𝜓𝑢𝜙𝑣

|{(𝑖, 𝑗): 𝑖 ∈ (𝑝𝑢 , 𝑞𝑢], 𝑗 ∈ (𝑟𝑣 , 𝑠𝑣], sup
𝑦∈𝒴

 |𝑑𝑦(𝐶𝑖𝑗) − 𝑑𝑦(𝐶)| ≥ 𝜀}| + 𝜀.                 

Hence, by our assumption, we get 𝐶𝑖𝑗 ⟶
𝐻2𝐷

𝐶.  

Corollary 3.4 Let {𝐶𝑖𝑗} ∈ 𝐿∞
2 , then  

 𝐶𝑖𝑗 ⟶
𝐻2𝐷𝑆

𝐶 ⇔ 𝐶𝑖𝑗 ⟶
𝐻2𝐷

𝐶. 

Finally, we show the relation between the concepts of Hausdorff deferred statistical convergence 

of order 𝜂 and Wijsman deferred statistical convergence of order 𝜂 for double sequences of sets. Before 

show the relation, let’s recall the concept of Wijsman deferred statistical convergence of order 𝜂  for 

double sequences of sets from [14]. 

Definition 3.3 [14] A double sequence of sets {𝐶𝑖𝑗}  is said to be Wijsman deferred statistically 

convergent of order 𝜂 to a set 𝐶 (0 < 𝜂 ≤ 1) if for every 𝜀 > 0  

lim
𝑢,𝑣→∞

1

(𝜓𝑢𝜙𝑣)𝜂
|{(𝑖, 𝑗): 𝑖 ∈ (𝑝𝑢 , 𝑞𝑢], 𝑗 ∈ (𝑟𝑣 , 𝑠𝑣], |𝑑𝑦(𝐶𝑖𝑗) − 𝑑𝑦(𝐶)| ≥ 𝜀}| = 0, 
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for each 𝑦 ∈ 𝒴 and it is denoted by 𝐶𝑖𝑗 ⟶
𝑊2𝐷𝑆𝜂

𝐶.  

Theorem 3.6 Let 0 < 𝜂 ≤ 1. If a double sequence of sets {𝐶𝑖𝑗} is 𝐻2𝐷𝑆𝜂-convergent to a set 𝐶, then the 

sequence is 𝑊2𝐷𝑆𝜂-convergent to the same set.  

Proof. Let 0 < 𝜂 ≤ 1 and suppose that 𝐶𝑖𝑗 ⟶
𝐻2𝐷𝑆𝜂

𝐶. For every 𝜀 > 0, we can write following inequality   

1

(𝜓𝑢𝜙𝑣)𝜂
|{(𝑖, 𝑗): 𝑖 ∈ (𝑝𝑢 , 𝑞𝑢], 𝑗 ∈ (𝑟𝑣 , 𝑠𝑣], sup

𝑦∈𝒴
 |𝑑𝑦(𝐶𝑖𝑗) − 𝑑𝑦(𝐶)| ≥ 𝜀}| 

≥
1

(𝜓𝑢𝜙𝑣)𝜂
|{(𝑖, 𝑗): 𝑖 ∈ (𝑝𝑢 , 𝑞𝑢], 𝑗 ∈ (𝑟𝑣 , 𝑠𝑣], |𝑑𝑦(𝐶𝑖𝑗) − 𝑑𝑦(𝐶)| ≥ 𝜀}|. 

for each 𝑦 ∈ 𝒴. Hence, by our assumption, we get 𝐶𝑖𝑗 ⟶
𝑊2𝐷𝑆𝜂

𝐶. 
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Abstract 

The idea of lacunary statistical convergence for triple sequences, which is a development of 

statistical convergence, is examined and expanded in this study on L − fuzzy normed spaces, which is a 

generalization of normed spaces. 

          

 Keywords: Triple sequences, lacunary sequence, lacunary statistically convergence 

 

1. Introduction 

 

To date, studies have been conducted on statistical convergence in many different spaces  

[1],[3],[5],[6],[12],[13],[15],[19],[26],[28],[30]. These studies have a very important place in the field of 

analysis and continue to be of great interest to mathematicians.  

 

The concept of lacunary statistical convergence, which is a generalization of statistical convergence, was 

first introduced by Fridy, John Albert, and Cihan Orhan in 1993[7],[8] and very important studies have 

been conducted on this concept again [6],[16],[17],[24],[27],[29]. 

 

The fuzzy concept was first introduced to the mathematical community by Zadeh [32], and then the 

intuitionistic fuzzy set concept was introduced [2] along with the L-fuzzy set concept [9]. In subsequent 

years, studies have been conducted on these notions. 

 

2. Preliminaries 

 

Preliminaries on L − fuzzy normed spaces are presented in this section. 

Definition 2.1. [25] Assume that K : [0, 1] × [0, 1] → [0, 1] is a function that satisfies the following  

1. K(a, b) = K(b, a)  

2. K(K(a, b), c) = K(a, K(b, c))  

3. K(a, 1) = K(1, a) = x  

4. a ≤ b, c ≤ d then K(a, c) ≤ K(b, d)  
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is known as a t− norm. 

Example 2.2. [25] K1, K2 and K3 are the functions that given with,    

 K1(a, b) = min{a, b},  

            K2(a, b) = ab,  

            K3(a, b) = max{a + b − 1, 0}  

are the samples, which are well known of t− norms. 

 

Definition 2.3. [25] Let L = (L, ⪯) be a complete lattice and let a set A be called the universe. An L−fuzzy 

set, on A is defined with a function  

                                                      X : A → L.  

On a set A, the family of all L−sets is denoted by L A.  

Two L− sets on A intersect and union  

                                             (𝐶 ∩ 𝐷)(𝑥) = 𝐶(𝑥) ∩ 𝐷(𝑥) , (𝐶 ∪ 𝐷)(𝑥) = 𝐶(𝑥) ∪ 𝐷(𝑥) 

for all x ∈ A                  

Definition 2.4. [25] Let L = (L, ⪯) be a complete lattice. Therefore, t− norm is a function  

                                                    K : L × L → L  

that satisfies the following for all a, b, c, d ∈ L:  

1. K (a, b) = K (b, a)  

2. K (K (a, b), c) = K (a, K (b, c))  

3. K (a, 1L) = K (1L, a) = a  

4. a ⪯ b and c ⪯ d, then K (a, c) ⪯ K (b, d).  

 

Definition 2.6. [25] The function N : L → L is defined as a negator on L = (L, ⪯) if, 

 N1) N (0𝐿) = 1𝐿  
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N2) N (1𝐿) = 0𝐿  

N3) a ⪯ b implies N (b) ⪯ N (a) for all a, b ∈ L.  

If in addition,  

N4) N (N (a)) = a for all a ∈ L.  

Therefore N is known as an involutive. 

Definition 2.7. [25] Let L = (L, ⪯) be a complete lattice and V be a real vector space. K be a continuous 

t−norm on L and µ be an L−set on V × (0, ∞) satisfying the following  

(a) µ(a, t) ≻ 0𝐿 for all a ∈ V, t > 0  

(b) µ(a, t) = 1𝐿 for all t > 0 if and only if a = θ  

(c) µ(αa, t) = µ(a, t |α| ) for all a ∈ V, t > 0 and α ∈ R − {0}  

(d) K (µ(a, t), µ(b, s)) ⪯ ν(a + b, t + s), for all a, b ∈ V and t, s > 0  

(e) limt→∞ µ(a, t) = 1L and limt→0 µ(a, t) = 0L for all a ∈ V − {θ}  

(f) The functions fa : (0, ∞) → L which is f(t) = µ(a, t) are continuous.  

The triple (V, µ, K ) is referred to as an L − fuzzy normed space or L − normed space in this context . 3  

 

Lacunary Statistical Convergence for triple sequences on L −Fuzzy Normed Space   

Recently, many studies show us that the notion of lacunary statistical convergence has been introduced and 

investigated in many fields [7], [8] both for double [17], [1] and also triple sequences [24], [6]. In this 

section we define and study lacunary statistical convergence for triple sequences on L − fuzzy normed 

space.  

Definition 3.1. By a lacunary sequence we mean an increasing integer sequence θ = (𝑘𝑟) such that 𝑘0 = 0 

and ℎ𝑟 = 𝑘𝑟 − 𝑘𝑟−1 → ∞ as r → ∞. The intervals determined by θ will be denoted by 𝐼𝑟 = (𝑘𝑟−1, 𝑘𝑟] and 

the ratio 
𝑘𝑟

𝑘𝑟−1
 will be abbreviated by 𝑞𝑟. For any subset of natural numbers, the number  

                                                            δθ(N) =lim
𝑟

1

ℎ𝑟
|𝑘 ∈ 𝐼𝑟: 𝑘 ∈ 𝑁|   
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is called the θ density of the set N, provided the limit exists. A sequence a = (𝑎𝑘) is said to be lacunary 

statistically convergent to a number ℓ provided that for each ϵ > 0, δθ{k ∈ N : |𝑎𝑘 − ℓ| ≥ ϵ}| = 0. In this case 

the number ℓ is called lacunary statistical limit of the sequence a = (𝑎𝑘). 

 

Definition 3.2. Let (V, µ, K ) be a L −fuzzy normed space. Then a sequence a = (𝑎𝑘) is lacunary statistically 

convergent to l ∈ V with respect to µ fuzzy norm, provided that, for each ϵ ∈ L − {0L} and t> 0,  

                                             δθ{k ∈ N : µ(𝑎𝑘 − l, t) ⊁ N (ϵ)} = 0.  

The triple sequence θ = {(𝑘𝑟,𝑙𝑠, 𝑡𝑞)} is called triple lacunary if there exist three increasing integer sequence 

such that 

                              𝑘0 = 0, ℎ𝑟 = 𝑘𝑟 − 𝑘𝑟−1 → ∞ as r → ∞,  

                           𝑙0 = 0, 𝑚𝑠 = 𝑙𝑠 − 𝑙𝑠−1  → ∞, as s → ∞,  

                          𝑡0 = 0, , 𝑛𝑞 = 𝑡𝑞 − 𝑡𝑞−1→ ∞, as q → ∞.  

The intervals are determined by θ, 𝐼𝑟 = {(𝑘): 𝑘𝑟−1 < 𝑘 < 𝑘𝑟} Ir = {(k) : kr−1 < k ≤ kr},, 𝐼𝑠 = {(𝑙): 𝑙𝑠−1 <

𝑙 < 𝑙𝑠},  𝐼𝑞 = {(𝑡): 𝑡𝑞−1 < 𝑡 < 𝑡𝑞}, , 𝐼𝑟,𝑠,𝑞 = {(𝑘, 𝑙, 𝑡): 𝑘𝑟−1 < 𝑘 < 𝑘𝑟 , 𝑙𝑠−1 < 𝑙 < 𝑙𝑠, 𝑡𝑞−1 < 𝑡 < 𝑡𝑞}, 𝑞𝑟 =
𝑘𝑟

𝑘𝑟−1
, 𝑢𝑠 =

𝑙𝑠

𝑙𝑠−1
  and  𝑦𝑞 =

𝑡𝑞

𝑡𝑞−1
. Note that the triple θ− density will be denoted by δθ3

. 

Definition 3.3. Let (V, µ, K ) be a L −fuzzy normed space. Then a triple sequence 𝑎 = (𝑎𝑚𝑛𝑘) is lacunary 

statistically convergent to l ∈ V with respect to ν fuzzy norm, provided that, for each ϵ ∈ L − {0𝐿} and t > 

0, 

                                       δθ3
{(m, n, k) ∈ N × N × N : µ(𝑎𝑚𝑛𝑘)  − l, t) ⊁ N (ϵ)} = 0.  

In this case, we write  𝑆θ3𝐿
 − lim a = l. 

Proposition 3.4. Let (V, ν, K ) be a L −fuzzy normed space. Then, the following statements are equivalent, 

for every ϵ ∈ L − {0L} and t > 0:  

(a) 𝑆θ3𝐿
 − lim a = ℓ.  

(b) δθ3
 {(m, n, k) ∈ N × N × N : µ(𝑎𝑚𝑛𝑘  − ℓ, t) ⊁ N (ϵ)} = 0.  

(c) δθ3
 {(m, n, k) ∈ N × N × N : µ(𝑎𝑚𝑛𝑘  − ℓ, t) ≻ N (ϵ)} = 1.  

(d) 𝑆θ3𝐿
 − lim µ(𝑎𝑚𝑛𝑘  − ℓ, t) = 1𝐿.   
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Theorem 3.5. Let (V, µ, K ) be a L − fuzzy normed space and a = (𝑎𝑚𝑛𝑘) be a triple sequence. If lim a = 

ℓ, then 𝑆θ3𝐿
 − lim a = ℓ. 

Proof. Let lim a = ℓ. Then for every ϵ ∈ L − {0𝐿} and t > 0, there is a number 𝑡0 ∈ N such that  

                                                       µ(𝑎𝑚𝑛𝑘  − ℓ, t) ≻ N (ϵ)  

for all m, n, k ≥ 𝑡0. Therefore, {(m, n, k) ∈ N × N × N : µ(𝑎𝑚𝑛𝑘  − ℓ, t) ⊁ N (ϵ)} has at most finitely many 

terms. We can see right away that any finite subset of the natural numbers has triple θ− density zero. Hence,  

                                         𝑆θ3𝐿
{(m, n, k) ∈ N × N × N : µ(𝑎𝑚𝑛𝑘  − l, t) ⊁ N (ϵ)} = 0. 

Theorem 3.7. Let (V, µ, K ) be a L −fuzzy normed space. If a triple sequence 𝑎 = (𝑎𝑚𝑛𝑘) is lacunary 

statistically convergent with respect to the L − fuzzy norm µ, then  𝑆θ3𝐿
 − limit is unique. 

 

Proof. Suppose that 𝑆θ3𝐿
 − lim a = ℓ1 and 𝑆θ3𝐿

 − lim a = ℓ2 where ℓ1 ̸= ℓ2. For any given ϵ ∈ L − {0𝐿}  

 

and t > 0, we can choose a r ∈ L − {0𝐿} such that K (N (r), N (r)) ≻ N (ϵ). Define the following sets  

 

                                     K_1 = {(m, n, k) ∈ N × N × N : µ(𝑎𝑚𝑛𝑘  −ℓ1, t)) ⊁ N (r)}  

and  

                                     K_2 = {(m, n, k) ∈ N × N × N : µ(𝑎𝑚𝑛𝑘  − ℓ2, t)) ⊁ N (r)}  

 

for any t > 0. Since for elements of the set K(ϵ, t) = K_1(ϵ, t) ∪ K_2(ϵ, t) we have  

 

                      µ(ℓ1 − ℓ2, t) ⪰ K (µ(𝑎𝑚𝑛𝑘  − ℓ1, t 2 ), µ(𝑎𝑚𝑛𝑘  − ℓ2, t 2 )) ≻ K (N (r), N (r)) ≻ N (ϵ).  

 

It can be concluded that ℓ1 = ℓ2. 

 

 

 

6. Conclusion 

 

In this study, the properties of Lacunary statistical convergence for triple sequences, which is a 

generalization of statistical convergence, are defined on L − fuzzy normed spaces, which are a 

generalization of normed, and their properties are examined. 
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Abstract 

The object of the present paper is to study quasi-Einstein spacetimes admitting M-projective 
curvature tensor. In the first section, we give the definition and some properties of M-projective 
curvature tensor. In the second section, the definition of quasi-Einstein manifold admitting M-
projective curvature tensor is given. Some geometric properties of these spacetimes have been studied 
under special conditions. In the third section, perfect fluid spacetimes satisfying the Einstein’s field 
equations without cosmological constant are examined.  

 
          Keywords: Quasi-Einstein manifold, divergence-free, M-projective curvature tensor. 

1. Introduction 
 
This paper is dedicated to certain investigations in general relativity by the coordinate free method of 
differential geometry. In this method, the spacetime of general relativity is regarded as a connected four 
dimensional semi-Riemannian manifold (𝑀𝑀4,𝑔𝑔) with the Lorentzian metric g of signature (−, +, +, +). 
The geometry of the Lorentzian manifold ([1]) begins with the study of the causal character of the vectors 
of the manifold. This makes the Lorentzian manifolds a convenient choice in the study of general 
relativity. The Einstein’s equations [2] (p.337), imply that the energy-momentum tensor is of vanishing 
divergence. We get this easily if the energy-momentum tensor is covariantly constant [3]. In the paper [3], 
M. C. Chaki and Sarbari Ray showed that a general relativistic spacetime with the covariant-constant 
energy-momentum tensor is Ricci symmetric, that is, Δ𝑆𝑆 = 0 , where S is the Ricci tensor of the 
spacetime. Many authors studied about spacetimes and their properties such as spacetimes with 
semisymmetric energy momentum tensor by De and Velimirovi [4], M-Projectively flat spacetimes by 
Özen Zengin [5], pseudo Z symmetric spacetimes by Mantica and Suh [6], Mixed generalized quasi-
Einstein manifold and some properties on it by Debnath, De and Bhattacharyya [7], On Ricci-symmetric 
mixed generalized quasi-Einstein spacetime by Chattopadhyay, Bhunia and Bhattacharyya [8], 
Concircular Curvature Tensor and Fluid Spacetimes by Z. Ahsan and S. A. Siddiqui in [9] and many 
more. 

An Einstein manifold is a Riemannian or pseudo-Riemannian manifold whose Ricci tensor S of type (0, 
2) is non-zero and proportional to the metric tensor. Einstein manifolds form a natural sub-class of 
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various classes of Riemannian or semi-Riemannian manifolds by a curvature condition imposed on their 
Ricci tensor [1]. Also in Riemannian geometry as well as in general relativity theory, the Einstein 
manifold plays a very important role. In [10], Karcher stated that a conformally flat perfect fluid 
spacetime has the geometric structure of quasi-constant curvature. A manifold of quasi-constant curvature 
is a natural sub-class of quasi Einstein manifold [11]. Studying on quasi Einstein manifolds helps us to 
have a deeper understanding of the global characteristics of the universe including its topology [14]. 
Hence, Chaki and Maity [11] generalized the concept of Einstein manifolds and introduced the notion of a 
quasi-Einstein manifold. According to them, a Riemannian or semi-Riemannian manifold is said to be a 
quasi-Einstein manifold if its Ricci tensor S of type (0, 2) is non-zero and satisfies the condition 

 𝑆𝑆(𝑋𝑋,𝑌𝑌) = 𝛼𝛼𝑔𝑔(𝑋𝑋,𝑌𝑌) + 𝛽𝛽𝐴𝐴(𝑋𝑋)𝐴𝐴(𝑌𝑌)                                                                             (1) 

where 𝛼𝛼, 𝛽𝛽 are two non-zero real-valued scalar functions and A is a nowhere vanishing 1-form defined by 
𝑔𝑔(𝑋𝑋,𝜌𝜌) = 𝐴𝐴(𝑋𝑋), 𝑔𝑔(𝜌𝜌,𝜌𝜌) = 1 for all vector fields X; 𝜌𝜌 being a unit vector field, called the generator of 
the manifold. An n-dimensional manifold of this kind is denoted by (𝑄𝑄𝑄𝑄)𝑛𝑛. The scalars 𝛼𝛼,𝛽𝛽 are known as 
the associated scalars. The notion of quasi-Einstein manifolds arose during the study of exact solutions of 
the Einstein’s field equations as well as during the considerations of quasi-umbilical hypersurfaces of 
semi-Euclidean spaces. For instance, the Robertson-Walker spacetime is a quasi-Einstein manifold. Also, 
quasi-Einstein manifolds can be taken as a model of perfect fluid spacetimes in general relativity. The 
importance of quasi-Einstein spacetimes lies in the fact that 4-dimensional semi-Riemannian manifolds 
are related to study of general relativistic fluid spacetimes, where the unit vector field 𝜌𝜌 is taken as a 
timelike velocity vector field, that is, 𝑔𝑔(𝜌𝜌, 𝜌𝜌) = −1. 

As a generalization of quasi Einstein manifolds, in [12], De and Ghosh introduced and studied the notion 
of generalized quasi Einstein manifolds. A Riemannian manifold is said to be a generalized quasi Einstein 
manifold if its Ricci tensor S of type (0, 2) is not identically zero and satisfies the following: 

  𝑆𝑆(𝑋𝑋,𝑌𝑌) = 𝛼𝛼𝑔𝑔(𝑋𝑋,𝑌𝑌) + 𝛽𝛽𝐴𝐴(𝑋𝑋)𝐴𝐴(𝑌𝑌) + 𝛾𝛾𝐵𝐵(𝑋𝑋)𝐵𝐵(𝑌𝑌),                                                         (2) 
 
where 𝛼𝛼,𝛽𝛽, 𝛾𝛾  are scalars of which 𝛽𝛽 ≠ 0 , 𝛾𝛾 ≠ 0  and A, B are nowhere vanishing 1-forms such that 
𝑔𝑔(𝑋𝑋,𝜌𝜌) = 𝐴𝐴(𝑋𝑋), 𝑔𝑔(𝑋𝑋, 𝜇𝜇) = 𝐵𝐵(𝑋𝑋) for all vector fields X. The unit vectors 𝜌𝜌 and 𝜇𝜇 corresponding to the 1-
forms A and B are orthogonal to each other. Also 𝜌𝜌 and 𝜇𝜇 are known as the generators of the manifold. 
Such an n-dimensional manifold is denoted by 𝐺𝐺(𝑄𝑄𝑄𝑄)𝑛𝑛. 
 
In Cosmology, spacetime models are studied in order to represent the different phases in the evolution of 
the Universe which can be divided into three phases: 
 

• Initial Phase. The initial phase is just after the big bang when the effects of both viscosity and 
heat flux were quite pronounced.  
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• Intermediate Phase. The effect of viscosity was no longer significant but the heat flux was still 
not negligible. 

• Final Phase. This phase extends to the present state of the universe. In this phase, both the effects 
of viscosity and the heat flux have become negligible and the matter content of the universe may 
be assumed to be a perfect fluid. 

 
The significance of the study of 𝐺𝐺(𝑄𝑄𝑄𝑄)𝑛𝑛  and (𝑄𝑄𝑄𝑄)𝑛𝑛  lies in the fact that 𝐺𝐺(𝑄𝑄𝑄𝑄)𝑛𝑛  spacetime manifold 
represents the second phase while (𝑄𝑄𝑄𝑄)𝑛𝑛 the spacetime manifold corresponds to the third phase in the 
evolution of the universe [13]. One way to understand the geometric properties of such manifolds is to 
study the tensors for these manifolds. 
 
In 1971, Pokhariyal and Mishra [15] introduced a new curvature tensor of type (1,3) denoted by 𝑀𝑀�  in an 
n-dimensional Riemannian manifold (𝑀𝑀𝑛𝑛,𝑔𝑔), 𝑛𝑛 > 2 and defined by 
 
  𝑀𝑀�(𝑌𝑌,𝑍𝑍)𝑈𝑈 = 𝑅𝑅�(𝑌𝑌,𝑍𝑍)𝑈𝑈 − 1

2(𝑛𝑛−1)
[𝑆𝑆(𝑍𝑍,𝑈𝑈)𝑌𝑌 − 𝑆𝑆(𝑌𝑌,𝑈𝑈)𝑍𝑍 + 𝑔𝑔(𝑍𝑍,𝑈𝑈)𝑄𝑄𝑌𝑌 − 𝑔𝑔(𝑌𝑌,𝑈𝑈)𝑄𝑄𝑍𝑍]      (3) 

 
where 𝑅𝑅� and S denote the Riemannian curvature tensor of type (1, 3) and the Ricci operator defined by 
𝑔𝑔(𝑄𝑄𝑋𝑋,𝑌𝑌) = 𝑆𝑆(𝑋𝑋,𝑌𝑌), respectively. Such a tensor 𝑀𝑀�  is known as the M-projective curvature tensor. The 
M-projective curvature tensor have been studied by J.P. Singh [16], S.K. Chaubey and R.H. Ojha [17], 
S.K. Chaubey [18], and many others. 
 
From (3) we can define the M-projective curvature tensor of type (0,4) as follows: 
 

𝑀𝑀(𝑌𝑌,𝑍𝑍,𝑈𝑈,𝑉𝑉) = 𝑅𝑅(𝑌𝑌,𝑍𝑍,𝑈𝑈,𝑉𝑉) − 1
2(𝑛𝑛−1)

[𝑆𝑆(𝑍𝑍,𝑈𝑈)𝑔𝑔(𝑌𝑌,𝑉𝑉) − 𝑆𝑆(𝑌𝑌,𝑈𝑈)𝑔𝑔(𝑍𝑍,𝑉𝑉) + 𝑆𝑆(𝑌𝑌,𝑉𝑉)𝑔𝑔(𝑍𝑍,𝑈𝑈) −

                                                                                                     −𝑆𝑆(𝑍𝑍,𝑉𝑉)𝑔𝑔(𝑌𝑌,𝑈𝑈)],                                            (4) 

where R denotes the Riemannian curvature tensor of type (0,4) defined by 

𝑅𝑅(𝑌𝑌,𝑍𝑍,𝑈𝑈,𝑉𝑉) = 𝑔𝑔(𝑅𝑅�(𝑌𝑌,𝑍𝑍)𝑈𝑈,𝑉𝑉). 

Thus, from (4), we have 

𝑀𝑀(𝑌𝑌,𝑍𝑍,𝑈𝑈,𝑉𝑉) = 𝑔𝑔(𝑀𝑀�(𝑌𝑌,𝑍𝑍)𝑈𝑈,𝑉𝑉), 
 

where 𝑅𝑅� is the Riemannian curvature tensor of type (1,3) and S denotes the Ricci tensor of type (0,2), 
respectively. 
 
Let {𝑒𝑒𝑖𝑖 ,    𝑖𝑖 = 1,2, . . . ,𝑛𝑛} be an orthonormal basis of the tangent space at each point of the manifold. From 
(3) we can easily verify that the tensor M satisfies the following property 
 

𝑀𝑀�(𝑌𝑌,𝑍𝑍)𝑈𝑈 = −𝑀𝑀�(𝑍𝑍,𝑌𝑌)𝑈𝑈, 
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𝑀𝑀�(𝑌𝑌,𝑍𝑍)𝑈𝑈 + 𝑀𝑀�(𝑍𝑍,𝑈𝑈)𝑌𝑌 + 𝑀𝑀�(𝑈𝑈,𝑌𝑌)𝑍𝑍 = 0.                                                      (5) 

From (4) and (5) it follows that 

             (𝑖𝑖)    𝑀𝑀(𝑌𝑌,𝑍𝑍,𝑈𝑈,𝑉𝑉) = −𝑀𝑀(𝑍𝑍,𝑌𝑌,𝑈𝑈,𝑉𝑉), 

             (𝑖𝑖𝑖𝑖)    𝑀𝑀(𝑌𝑌,𝑍𝑍,𝑈𝑈,𝑉𝑉) = −𝑀𝑀(𝑌𝑌,𝑍𝑍,𝑉𝑉,𝑈𝑈), 

 (𝑖𝑖𝑖𝑖𝑖𝑖)    𝑀𝑀(𝑌𝑌,𝑍𝑍,𝑈𝑈,𝑉𝑉) = 𝑀𝑀(𝑈𝑈,𝑉𝑉,𝑌𝑌,𝑍𝑍), 

 (𝑖𝑖𝑖𝑖)    𝑀𝑀(𝑌𝑌,𝑍𝑍,𝑈𝑈,𝑉𝑉) + 𝑀𝑀(𝑍𝑍,𝑈𝑈,𝑌𝑌,𝑉𝑉) + 𝑀𝑀(𝑈𝑈,𝑌𝑌,𝑍𝑍,𝑉𝑉) = 0. (6) 

Also from the equation (4) we have 

�
𝑛𝑛

𝑖𝑖=1

𝑀𝑀(𝑌𝑌,𝑍𝑍, 𝑒𝑒𝑖𝑖 , 𝑒𝑒𝑖𝑖) = 0 = �
𝑛𝑛

𝑖𝑖=1

𝑀𝑀(𝑒𝑒𝑖𝑖 , 𝑒𝑒𝑖𝑖 ,𝑈𝑈,𝑉𝑉) 

(7) 

and 

�
𝑛𝑛

𝑖𝑖=1

𝑀𝑀(𝑒𝑒𝑖𝑖 ,𝑍𝑍,𝑈𝑈, 𝑒𝑒𝑖𝑖) = �
𝑛𝑛

𝑖𝑖=1

𝑀𝑀(𝑍𝑍, 𝑒𝑒𝑖𝑖 , 𝑒𝑒𝑖𝑖 ,𝑈𝑈) 

                                                       = 𝑛𝑛
2(𝑛𝑛−1)

[𝑆𝑆(𝑍𝑍,𝑈𝑈) − 𝑟𝑟
𝑛𝑛
𝑔𝑔(𝑍𝑍,𝑈𝑈)],      (8) 

where r is the scalar curvature. 

 
 
2. M-projective Curvature Tensor on Quasi Einstein Spacetime 
 

In this section, we consider a spacetime 𝑛𝑛 = 4 admitting the M-projective curvature tensor. Then, from 
the equation (4), we have  

𝑀𝑀ℎ𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑅𝑅ℎ𝑖𝑖𝑖𝑖𝑖𝑖 + 1
6

(𝑆𝑆𝑖𝑖𝑖𝑖𝑔𝑔ℎ𝑖𝑖 − 𝑆𝑆𝑖𝑖𝑖𝑖𝑔𝑔ℎ𝑖𝑖 + 𝑆𝑆ℎ𝑖𝑖𝑔𝑔𝑖𝑖𝑖𝑖 − 𝑆𝑆ℎ𝑖𝑖𝑔𝑔𝑖𝑖𝑖𝑖).                                        (9) 

Theorem 2.1  If a spacetime is a Lorentzian infinitesimally isotropic relative to a unit timelike vector 
field 𝐴𝐴𝑙𝑙 then this spacetime reduces to M-projectively flat spacetime. 
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Proof. If our spacetime is a Lorentzian infinitesimally isotropic relative to a unit timelike vector field 𝐴𝐴𝑙𝑙 
then we have [10] 

 𝑅𝑅ℎ𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛾𝛾(𝑔𝑔𝑖𝑖𝑖𝑖𝑔𝑔ℎ𝑖𝑖 − 𝑔𝑔𝑖𝑖𝑖𝑖𝑔𝑔ℎ𝑖𝑖). (10) 

Multiplying (10) by 𝑔𝑔ℎ𝑖𝑖, we get 

 𝑆𝑆𝑖𝑖𝑖𝑖 = −3𝛾𝛾𝑔𝑔𝑖𝑖𝑖𝑖 . (11) 

Putting (10) and (11) in (4), we find 𝑀𝑀ℎ𝑖𝑖𝑖𝑖𝑖𝑖 = 0. Thus, the proof is completed.  

 

Let us assume that our spacetime is a quasi Einstein. Here, we denote this spacetime which is quasi-
Einstein as (𝑉𝑉4,𝑔𝑔). From (1) and (9), we get 

 𝑀𝑀ℎ𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑅𝑅ℎ𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛼𝛼
3

(𝑔𝑔𝑖𝑖𝑖𝑖𝑔𝑔ℎ𝑖𝑖 − 𝑔𝑔𝑖𝑖𝑖𝑖𝑔𝑔ℎ𝑖𝑖) + 𝛽𝛽
6

(𝑔𝑔ℎ𝑖𝑖𝐴𝐴𝑖𝑖𝐴𝐴𝑖𝑖 − 𝑔𝑔ℎ𝑖𝑖𝐴𝐴𝑖𝑖𝐴𝐴𝑖𝑖 + 𝑔𝑔𝑖𝑖𝑖𝑖𝐴𝐴ℎ𝐴𝐴𝑖𝑖 − 𝑔𝑔𝑖𝑖𝑖𝑖𝐴𝐴ℎ𝐴𝐴𝑖𝑖)            (12) 

In this case, the covariant derivative of (12) can be obtained as follows 

 𝑀𝑀ℎ𝑖𝑖𝑖𝑖𝑖𝑖,𝑙𝑙 = 𝑅𝑅ℎ𝑖𝑖𝑖𝑖𝑖𝑖,𝑙𝑙 + 𝛼𝛼𝑙𝑙
3

(𝑔𝑔𝑖𝑖𝑖𝑖𝑔𝑔ℎ𝑖𝑖 − 𝑔𝑔𝑖𝑖𝑖𝑖𝑔𝑔ℎ𝑖𝑖) + 𝛽𝛽𝑙𝑙
6

(𝑔𝑔ℎ𝑖𝑖𝐴𝐴𝑖𝑖𝐴𝐴𝑖𝑖 − 𝑔𝑔ℎ𝑖𝑖𝐴𝐴𝑖𝑖𝐴𝐴𝑖𝑖 + 𝑔𝑔𝑖𝑖𝑖𝑖𝐴𝐴ℎ𝐴𝐴𝑖𝑖 − 𝑔𝑔𝑖𝑖𝑖𝑖𝐴𝐴ℎ𝐴𝐴𝑖𝑖) 

 + 𝛽𝛽
6

(𝑔𝑔ℎ𝑖𝑖(𝐴𝐴𝑖𝑖,𝑙𝑙𝐴𝐴𝑖𝑖 + 𝐴𝐴𝑖𝑖𝐴𝐴𝑖𝑖,𝑙𝑙) − 𝑔𝑔ℎ𝑖𝑖(𝐴𝐴𝑖𝑖,𝑙𝑙𝐴𝐴𝑖𝑖 + 𝐴𝐴𝑖𝑖𝐴𝐴𝑖𝑖,𝑙𝑙) 

 +𝑔𝑔𝑖𝑖𝑖𝑖(𝐴𝐴ℎ,𝑙𝑙𝐴𝐴𝑖𝑖 + 𝐴𝐴ℎ𝐴𝐴𝑖𝑖,𝑙𝑙) − 𝑔𝑔𝑖𝑖𝑖𝑖(𝐴𝐴ℎ,𝑙𝑙𝐴𝐴𝑖𝑖 + 𝐴𝐴ℎ𝐴𝐴𝑖𝑖,𝑙𝑙)) (13) 

where 𝛼𝛼 and 𝛽𝛽 are the associated scalars for the quasi Einstein manifold. 

 

Theorem 2.2  If the M-projective curvature tensor of (𝑉𝑉4,𝑔𝑔) is covariantly constant then the associated 
scalar function 𝛽𝛽 must be constant.  

Proof. Assuming that the M-projective curvature tensor is covariantly constant then from (13), we get 

𝑅𝑅ℎ𝑖𝑖𝑖𝑖𝑖𝑖,𝑙𝑙 =
𝛼𝛼𝑙𝑙
3

(𝑔𝑔𝑖𝑖𝑖𝑖𝑔𝑔ℎ𝑖𝑖 − 𝑔𝑔𝑖𝑖𝑖𝑖𝑔𝑔ℎ𝑖𝑖) +
𝛽𝛽𝑙𝑙
6

(𝑔𝑔ℎ𝑖𝑖𝐴𝐴𝑖𝑖𝐴𝐴𝑖𝑖 − 𝑔𝑔ℎ𝑖𝑖𝐴𝐴𝑖𝑖𝐴𝐴𝑖𝑖 + 𝑔𝑔𝑖𝑖𝑖𝑖𝐴𝐴ℎ𝐴𝐴𝑖𝑖 − 𝑔𝑔𝑖𝑖𝑖𝑖𝐴𝐴ℎ𝐴𝐴𝑖𝑖) 

 + 𝛽𝛽
6

(𝑔𝑔ℎ𝑖𝑖(𝐴𝐴𝑖𝑖,𝑙𝑙𝐴𝐴𝑖𝑖 + 𝐴𝐴𝑖𝑖𝐴𝐴𝑖𝑖,𝑙𝑙) − 𝑔𝑔ℎ𝑖𝑖(𝐴𝐴𝑖𝑖,𝑙𝑙𝐴𝐴𝑖𝑖 + 𝐴𝐴𝑖𝑖𝐴𝐴𝑖𝑖,𝑙𝑙) + 𝑔𝑔𝑖𝑖𝑖𝑖(𝐴𝐴ℎ,𝑙𝑙𝐴𝐴𝑖𝑖 + 𝐴𝐴ℎ𝐴𝐴𝑖𝑖,𝑙𝑙) 

                             −𝑔𝑔𝑖𝑖𝑖𝑖(𝐴𝐴ℎ,𝑙𝑙𝐴𝐴𝑖𝑖 + 𝐴𝐴ℎ𝐴𝐴𝑖𝑖,𝑙𝑙)) (14) 
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Since 𝐴𝐴𝑖𝑖𝐴𝐴𝑖𝑖 = −1 then 𝐴𝐴𝑖𝑖,𝑙𝑙𝐴𝐴𝑖𝑖 = 0. Multiplying (14) by 𝑔𝑔ℎ𝑖𝑖, we obtain 

 𝑆𝑆𝑖𝑖𝑖𝑖,𝑙𝑙 = 𝛼𝛼𝑙𝑙𝑔𝑔𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑙𝑙
3
𝐴𝐴𝑖𝑖𝐴𝐴𝑖𝑖 −

𝛽𝛽𝑙𝑙
6
𝑔𝑔𝑖𝑖𝑖𝑖 + 𝛽𝛽

3
(𝐴𝐴𝑖𝑖,𝑙𝑙𝐴𝐴𝑖𝑖 + 𝐴𝐴𝑖𝑖𝐴𝐴𝑖𝑖,𝑙𝑙). (15) 

On the other hand, by taking the covariant derivative of (1), we also have 

 𝑆𝑆𝑖𝑖𝑖𝑖,𝑙𝑙 = 𝛼𝛼𝑙𝑙𝑔𝑔𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑙𝑙𝐴𝐴𝑖𝑖𝐴𝐴𝑖𝑖 + 𝛽𝛽(𝐴𝐴𝑖𝑖,𝑙𝑙𝐴𝐴𝑖𝑖 + 𝐴𝐴𝑖𝑖𝐴𝐴𝑖𝑖,𝑙𝑙). (16) 

Comparing the equations (15) and (16), it can be found 

 𝛽𝛽𝑙𝑙(4𝐴𝐴𝑖𝑖𝐴𝐴𝑖𝑖 + 𝑔𝑔𝑖𝑖𝑖𝑖) + 4𝛽𝛽(𝐴𝐴𝑖𝑖,𝑙𝑙𝐴𝐴𝑖𝑖 + 𝐴𝐴𝑖𝑖𝐴𝐴𝑖𝑖,𝑙𝑙) = 0. (17) 

Multiplying (2.9) by 𝐴𝐴𝑖𝑖𝐴𝐴𝑖𝑖, we can see that 𝛽𝛽𝑙𝑙 = 0. Thus, 𝛽𝛽 must be constant. This completes the proof. 

 

 

Theorem 2.3  If the M-projective curvature tensor of (𝑉𝑉4,𝑔𝑔) is covariantly constant then the covariant 
derivative of 𝐴𝐴𝑖𝑖 vanishes.  

Proof. Since (𝑉𝑉4,𝑔𝑔) is a quasi Einstein then, we obtain from (1) and Theorem2.2, 

 𝑟𝑟 = 4𝛼𝛼 − 𝛽𝛽. (18) 

Comparing (4), (8) and (18), we can get 

  𝑀𝑀𝑖𝑖𝑖𝑖 = 𝛽𝛽
6

(𝑔𝑔𝑖𝑖𝑖𝑖 + 4𝐴𝐴𝑖𝑖𝐴𝐴𝑖𝑖).    (𝛽𝛽 ≠ 0) (19) 

By taking the covariant derivative of (19), since 𝑀𝑀𝑖𝑖𝑖𝑖,𝑙𝑙 = 0, we obtain 

                                                 𝐴𝐴𝑖𝑖,𝑙𝑙𝐴𝐴𝑖𝑖 + 𝐴𝐴𝑖𝑖𝐴𝐴𝑖𝑖,𝑙𝑙 = 0. (20) 

Finally, multiplying (20) by 𝐴𝐴𝑖𝑖, it can be seen that 

                                                       𝐴𝐴𝑖𝑖,𝑙𝑙 = 0. (21) 

Thus, the proof is completed.  
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Theorem 2.4  Let the M-projective curvature tensor of (𝑉𝑉4,𝑔𝑔) be divergence-free. The vector field 𝐴𝐴𝑙𝑙 is 
divergence-free if and only if 𝛽𝛽𝑙𝑙 is orthogonal to 𝐴𝐴𝑙𝑙.  

Proof. Multiplying the equation (13) by 𝑔𝑔ℎ𝑙𝑙  and assuming that the M-projective curvature tensor of 
(𝑉𝑉4,𝑔𝑔) is divergence-free, we get 

  

𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖,𝑙𝑙
𝑙𝑙 =

𝛼𝛼𝑖𝑖
3
𝑔𝑔𝑖𝑖𝑖𝑖 −

𝛼𝛼𝑖𝑖
3
𝑔𝑔𝑖𝑖𝑖𝑖 +

1
6

(𝛽𝛽𝑖𝑖𝐴𝐴𝑖𝑖𝐴𝐴𝑖𝑖 − 𝛽𝛽𝑖𝑖𝐴𝐴𝑖𝑖𝐴𝐴𝑖𝑖 + 𝑔𝑔𝑖𝑖𝑖𝑖𝐴𝐴𝑙𝑙𝛽𝛽𝑙𝑙𝐴𝐴𝑖𝑖 − 𝑔𝑔𝑖𝑖𝑖𝑖𝐴𝐴𝑙𝑙𝛽𝛽𝑙𝑙𝐴𝐴𝑖𝑖) 

 + 𝛽𝛽
6

(𝐴𝐴𝑖𝑖,𝑖𝑖𝐴𝐴𝑖𝑖 + 𝐴𝐴𝑖𝑖𝐴𝐴𝑖𝑖,𝑖𝑖 − 𝐴𝐴𝑖𝑖,𝑖𝑖𝐴𝐴𝑖𝑖 − 𝐴𝐴𝑖𝑖𝐴𝐴𝑖𝑖,𝑖𝑖 + 𝑔𝑔𝑖𝑖𝑖𝑖𝐴𝐴,𝑙𝑙
𝑙𝑙 𝐴𝐴𝑖𝑖 + 𝑔𝑔𝑖𝑖𝑖𝑖𝐴𝐴𝑙𝑙𝐴𝐴𝑖𝑖,𝑙𝑙 − 𝑔𝑔𝑖𝑖𝑖𝑖𝐴𝐴,𝑙𝑙

𝑙𝑙 𝐴𝐴𝑖𝑖 − 𝑔𝑔𝑖𝑖𝑖𝑖𝐴𝐴𝑙𝑙𝐴𝐴𝑖𝑖,𝑙𝑙).
 (22) 

Now, multiplying (22) by 𝑔𝑔𝑖𝑖𝑖𝑖, we find 

 𝑆𝑆𝑖𝑖,𝑙𝑙
𝑙𝑙 = 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑙𝑙

3
𝐴𝐴𝑙𝑙𝐴𝐴𝑖𝑖 −

𝛽𝛽𝑘𝑘
6

+ 𝛽𝛽
3

(𝐴𝐴,𝑙𝑙
𝑙𝑙 𝐴𝐴𝑖𝑖 − 𝐴𝐴𝑙𝑙𝐴𝐴𝑖𝑖,𝑙𝑙). (23) 

On the other hand, by taking the covariant derivative of (1) and after that multiplying the last equation by 
𝑔𝑔𝑖𝑖𝑙𝑙, we obtain  

 𝑆𝑆𝑖𝑖,𝑙𝑙
𝑙𝑙 = 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑙𝑙𝐴𝐴𝑙𝑙𝐴𝐴𝑖𝑖 + 𝛽𝛽(𝐴𝐴,𝑙𝑙

𝑙𝑙 𝐴𝐴𝑖𝑖 − 𝐴𝐴𝑙𝑙𝐴𝐴𝑖𝑖,𝑙𝑙). (24) 

Comparing the equations (23) and (24), one can find 

 4𝛽𝛽𝑙𝑙𝐴𝐴𝑙𝑙𝐴𝐴𝑖𝑖 + 4𝛽𝛽(𝐴𝐴,𝑙𝑙
𝑙𝑙 𝐴𝐴𝑖𝑖 − 𝐴𝐴𝑙𝑙𝐴𝐴𝑖𝑖,𝑙𝑙) + 𝛽𝛽𝑖𝑖 = 0. (25) 

Multiplying (25) by 𝐴𝐴𝑖𝑖, we obtain 

 𝐴𝐴,𝑙𝑙
𝑙𝑙 = − 3

4𝛽𝛽
(𝛽𝛽𝑙𝑙𝐴𝐴𝑙𝑙).       (𝛽𝛽 ≠ 0) (26) 

If we assume that 𝐴𝐴𝑙𝑙 is divergence-free then we get from (26),  𝛽𝛽𝑙𝑙𝐴𝐴𝑙𝑙 = 0. The converse is also true. Thus, 
the proof is completed. 

 

 

Theorem 2.5  Let the M-projective curvature tensor of (𝑉𝑉4,𝑔𝑔) be divergence-free. If the non-zero 
associated scalar 𝛽𝛽 of (𝑉𝑉4,𝑔𝑔) is constant then the vector field 𝐴𝐴𝑙𝑙 is divergence-free.  
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Proof. Let the M-projective curvature tensor of (𝑉𝑉4,𝑔𝑔) be divergence-free. Then from Theorem2.4, the 
equation (25) reduces to 

 4𝛽𝛽(𝐴𝐴,𝑙𝑙
𝑙𝑙 𝐴𝐴𝑖𝑖 − 𝐴𝐴𝑙𝑙𝐴𝐴𝑖𝑖,𝑙𝑙) = 0.    (𝛽𝛽 ≠ 0) (27) 

If we multiply (27) by 𝐴𝐴𝑖𝑖, we get 𝐴𝐴,𝑙𝑙
𝑙𝑙 = 0. This completes the proof.  

 

Theorem 2.6  Let the M-projective curvature tensor of (𝑉𝑉4,𝑔𝑔) be divergence-free. If the associated vector 
field 𝐴𝐴𝑙𝑙 of (𝑉𝑉4,𝑔𝑔) is also divergence-free then 𝛼𝛼𝑙𝑙 is orthogonal to 𝐴𝐴𝑙𝑙.  

Proof. Let (𝑉𝑉4,𝑔𝑔) be of divergence-free M-projective curvature tensor. Multiplying (1) by 𝑔𝑔𝑖𝑖𝑖𝑖, we obtain 

                                              𝑟𝑟 = 4𝛼𝛼 − 𝛽𝛽.          (28) 

By taking the covariant derivative of (28), one can get 

                                     𝑟𝑟,𝑖𝑖 = 4𝛼𝛼𝑖𝑖 − 𝛽𝛽𝑖𝑖 . (29) 

From the Ricci identity 𝑆𝑆𝑖𝑖,𝑙𝑙
𝑙𝑙 = 1

2
𝑟𝑟,𝑖𝑖 and the equation (24), we find 

 𝑟𝑟,𝑖𝑖 = 2(𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑙𝑙𝐴𝐴𝑙𝑙𝐴𝐴𝑖𝑖 + 𝛽𝛽(𝐴𝐴,𝑙𝑙
𝑙𝑙 𝐴𝐴𝑖𝑖 − 𝐴𝐴𝑙𝑙𝐴𝐴𝑖𝑖,𝑙𝑙)). (30) 

Comparing the equations (29) and (30) gives 

 2𝛼𝛼𝑖𝑖 = 𝛽𝛽𝑖𝑖 + 2𝛽𝛽𝑙𝑙𝐴𝐴𝑙𝑙𝐴𝐴𝑖𝑖 + 2𝛽𝛽(𝐴𝐴,𝑙𝑙
𝑙𝑙 𝐴𝐴𝑖𝑖 − 𝐴𝐴𝑙𝑙𝐴𝐴𝑖𝑖,𝑙𝑙). (31) 

And multiplying (31) by 𝐴𝐴𝑖𝑖, 

 (2𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖)𝐴𝐴𝑖𝑖 = −2𝛽𝛽𝐴𝐴,𝑙𝑙
𝑙𝑙 . (32) 

If we assume that the divergence of 𝐴𝐴𝑙𝑙 is zero then 

 (2𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖)𝐴𝐴𝑖𝑖 = 0. (33) 

From Theorem2.4 and the equation (33), 𝛼𝛼𝑖𝑖𝐴𝐴𝑖𝑖 = 0. This completes the proof. 
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3. Perfect Fluid Quasi Einstein Spacetime with the M-Projective Curvature Tensor 
 

In this section, we consider a perfect fluid (𝑉𝑉4,𝑔𝑔) with the M-projective curvature tensor. To find 
a model of universe, Einstein obtained the field equations of general relativity. The universe on a large 
scale shows isotropy and homogeneity and the matter contents of the universe(stars, galaxies, nebulas, 
etc.) can be assumed to be that of a perfect fluid. Assume that the Einstein’s field equations without the 
cosmological constant is given by 

                                      𝑆𝑆(𝑋𝑋,𝑌𝑌) − 𝑟𝑟
2
𝑔𝑔(𝑋𝑋,𝑌𝑌) = 𝑘𝑘𝑘𝑘(𝑋𝑋,𝑌𝑌), (34) 

where S and r denote the Ricci tensor and the scalar curvature, respectively and T is the energy 
momentum tensor. 

The energy momentum tensor T of a perfect fluid is given by [2] 

                      𝑘𝑘(𝑋𝑋,𝑌𝑌) = (𝜎𝜎 + 𝑝𝑝)𝐴𝐴(𝑋𝑋)𝐴𝐴(𝑌𝑌) + 𝑝𝑝𝑔𝑔(𝑋𝑋,𝑌𝑌), (35) 

where 𝜎𝜎 is the energy density, p is the isotropic pressure, 𝑔𝑔(𝑋𝑋,𝜌𝜌) = 𝐴𝐴(𝑋𝑋) and 𝜌𝜌 is a unit timelike 
vector field. 

Now, if we compare the equations (34) and (35) then we find 

 𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑘𝑘(𝜎𝜎 + 𝑝𝑝)𝐴𝐴𝑖𝑖𝐴𝐴𝑖𝑖 + (𝑘𝑘𝑝𝑝 + 𝑟𝑟
2
)𝑔𝑔𝑖𝑖𝑖𝑖 . (36) 

From (36), we get 

 𝑟𝑟 = 𝑘𝑘(𝜎𝜎 − 3𝑝𝑝). (37) 

Thus, putting (37) in (36), it can be found that 

 𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑘𝑘(𝜎𝜎 + 𝑝𝑝)𝐴𝐴𝑖𝑖𝐴𝐴𝑖𝑖 + 𝑖𝑖
2

(𝜎𝜎 − 𝑝𝑝)𝑔𝑔𝑖𝑖𝑖𝑖 . (38) 

For a perfect fluid (𝑉𝑉4,𝑔𝑔) admitting the M-projective curvature tensor, we get from (9)  

     𝑀𝑀𝑖𝑖𝑖𝑖 = 2
3
𝑆𝑆𝑖𝑖𝑖𝑖 −

𝑟𝑟
6
𝑔𝑔𝑖𝑖𝑖𝑖 .                                                                                               (39) 

Comparing the equations (18) and (37), we get 

 4𝛼𝛼 − 𝛽𝛽 = 𝑘𝑘(𝜎𝜎 − 3𝑝𝑝). (40) 

Also, considering the equations (1) and (36), we obtain 
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            −𝛼𝛼 + 𝛽𝛽 = 𝑖𝑖
2

(𝜎𝜎 + 3𝑝𝑝). (41) 

In this case, from (40) and (41), we can see that 

            𝜎𝜎 = 2𝛼𝛼+𝛽𝛽
2k

 (42) 

and 

                       𝑝𝑝 = 𝛽𝛽−2𝛼𝛼
2k

                                                               (43) 

If we multiply the equation (19) by 𝐴𝐴𝑖𝑖, we obtain 

𝑀𝑀𝑖𝑖𝑖𝑖𝐴𝐴𝑖𝑖 = −𝛽𝛽
2
𝐴𝐴𝑖𝑖 .                                                                                                       (44) 

Hence, we have the following theorem: 

 

Theorem 3.1  In a perfect fluid (𝑉𝑉4,𝑔𝑔) with the M-projective curvature tensor, −𝛽𝛽
2

  is an eigenvalue of 
this tensor corresponding to the eigenvector 𝐴𝐴𝑖𝑖.  

 

 

Theorem 3.2  Let (𝑉𝑉4,𝑔𝑔) be a perfect fluid spacetime with the M-projective curvature tensor. If (𝑉𝑉4,𝑔𝑔) 
describes  

    1.  a fluid of strings then 𝛼𝛼
2
,  

    2.  a fluid of cosmic walls then −𝛼𝛼
5
,  

    3.  a radiation fluid then −2𝛼𝛼,  

    4.  a dust then −𝛼𝛼  

 is an eigenvalue of the M-projective curvature tensor corresponding to the eigenvector 𝐴𝐴𝑖𝑖.  

Proof. Let (𝑉𝑉4,𝑔𝑔)  be a perfect fluid spacetime with the M-projective curvature tensor. Then, from 
Theorem3.1, we have (44). If (𝑉𝑉4,𝑔𝑔) describes   
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1. a fluid of strings, i.e., 𝜎𝜎 = −1
3
𝑝𝑝 then from (42) and (43), we get 𝛽𝛽 = −𝛼𝛼.   

Then 𝐴𝐴𝑖𝑖𝑀𝑀𝑖𝑖𝑖𝑖 = 𝛼𝛼
2
𝐴𝐴𝑖𝑖,  

2. a fluid of cosmic walls, i.e., 𝑝𝑝 = −2
3
𝜎𝜎 then from (42) and (43), we get 𝛽𝛽 = 2𝛼𝛼

5
.    

Then 𝐴𝐴𝑖𝑖𝑀𝑀𝑖𝑖𝑖𝑖 = −𝛼𝛼
5
𝐴𝐴𝑖𝑖,  

 
3. a radiation fluid, i.e., 𝜎𝜎 = 3𝑝𝑝,  from (42) and (43), we get 𝛽𝛽 = 4𝛼𝛼.  

Then 𝐴𝐴𝑖𝑖𝑀𝑀𝑖𝑖𝑖𝑖 = −2𝛼𝛼𝐴𝐴𝑖𝑖, 
 

4. a dust, i.e., 𝑝𝑝 = 0, then we get 𝛽𝛽 = 2𝛼𝛼. Thus, 𝐴𝐴𝑖𝑖𝑀𝑀𝑖𝑖𝑖𝑖 = −𝛼𝛼𝐴𝐴𝑖𝑖, 

 Thus, the proof is completed.  

 

Theorem 3.3  In a perfect fluid (𝑉𝑉4,𝑔𝑔) with the divergence-free M-projective curvature tensor, the 
following  

 𝐴𝐴,𝑙𝑙
𝑙𝑙 = −3(𝛽𝛽𝑙𝑙−2𝛼𝛼𝑙𝑙)

2𝛽𝛽
𝐴𝐴𝑙𝑙 

holds.  

Proof. Differentiating covariantly of the equation (8), we have 

 𝑀𝑀𝑖𝑖𝑖𝑖,𝑙𝑙 = 2
3

(𝑆𝑆𝑖𝑖𝑖𝑖,𝑙𝑙 −
𝑟𝑟,𝑙𝑙
4
𝑔𝑔𝑖𝑖𝑖𝑖). (45) 

Multiplying the equation (45) by 𝑔𝑔𝑖𝑖𝑙𝑙 and using the Ricci identity, we find 

 𝑀𝑀𝑖𝑖,𝑙𝑙
𝑙𝑙 = 1

6
𝑟𝑟,𝑙𝑙 . (46) 

Now, taking the covariant derivative of the equation (37), we have 

 𝑟𝑟,𝑙𝑙 = 𝑘𝑘(𝜎𝜎𝑙𝑙 − 3𝑝𝑝𝑙𝑙). (47) 

If we put the equation (47) in the equation (46), we get 

 𝑀𝑀𝑖𝑖,𝑙𝑙
𝑙𝑙 = 𝑖𝑖

6
(𝜎𝜎𝑙𝑙 − 3𝑝𝑝𝑙𝑙). (48) 

Now, assume that the M-projective curvature tensor is divergence-free. From the equation (48), we find  

 𝜎𝜎𝑙𝑙 = 3𝑝𝑝𝑙𝑙 , (49) 
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 and  

 𝑟𝑟,𝑙𝑙 = 0. (50) 

Taking the covariant derivative of the equation (38), we get 

 𝑆𝑆𝑖𝑖𝑖𝑖,𝑙𝑙 = 𝑘𝑘(𝜎𝜎𝑙𝑙 + 𝑝𝑝𝑙𝑙)𝐴𝐴𝑖𝑖𝐴𝐴𝑖𝑖 + 𝑘𝑘(𝜎𝜎 + 𝑝𝑝)(𝐴𝐴𝑖𝑖,𝑙𝑙𝐴𝐴𝑖𝑖 + 𝐴𝐴𝑖𝑖𝐴𝐴𝑖𝑖,𝑙𝑙) + 𝑖𝑖
2

(𝜎𝜎𝑙𝑙 − 𝑝𝑝𝑙𝑙)𝑔𝑔𝑖𝑖𝑖𝑖 . (51) 

Multiplying the equation (51) by 𝐴𝐴𝑖𝑖, it can be found 

 𝑆𝑆𝑖𝑖𝑖𝑖,𝑙𝑙𝐴𝐴𝑖𝑖 = −3𝑘𝑘𝑝𝑝𝑙𝑙𝐴𝐴𝑖𝑖 − 𝑘𝑘(𝜎𝜎 + 𝑝𝑝)𝐴𝐴𝑖𝑖,𝑙𝑙 . (52) 

Again, multiplying the equation (52) by 𝑔𝑔𝑖𝑖𝑙𝑙 and using the equations (42), (43) and (50) we obtain  

 𝐴𝐴,𝑙𝑙
𝑙𝑙 = −3(𝛽𝛽𝑙𝑙−2𝛼𝛼𝑙𝑙)

2𝛽𝛽
𝐴𝐴𝑙𝑙 (53) 

 Thus, the proof is completed.  
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Abstract 

Let Σ  denote the class of functions of the form ( )
0

1 k
k

k
f z a z

z

∞

=

= +∑  which are analytic in the 

punctured disc { }: 0 1 .z z= < <  We introduce and study some new families of meromorphic 

functions defined by the fractional derivative operator. A number of useful characteristics of functions 
in these families are obtained.  

 
          Keywords: Meromorphic, Coefficients estimates, Fractional Derivative Operator, Radii problems. 

 
1. Introduction 

 

Let  Σ  denote  the class of functions of the form 

1

0
( ) n

n
n

f z z a z
∞

−

=

= +∑                                                                           (1) 

which  are analytic in the punctured disc { }: 0 1z z= ∈ < < .  

The meromorphic analouge of the fractional derivative of order ,  0 1,α α≤ ≤ is defined in [2] for a function

( )f z  by 

( ) ( ) ( ) ( )1 2
2 1

0

1 1 ,1,1 ;1  ,
1 2

z

z
dD f z z z F f d
dz

αα α ξξ α α ξ ξ ξ
α

−−  = − − − −  Γ −   
∫  

where ( )f z  is analytic function in a simply connected domain of the z − plane containing the origin and 

the multiplicity of ( )z αξ −−  is removed by requiring ( )log z ξ− to be real when ( ) 0.z ξ− >  Γ  is Gamma 

function and ( )2 1 , , ,;F a b c z  is Gauss-Hypergeometric function. Using ( ) ,zD f zα  Noor, Ahmad and Khan [11] 

defined an operator ( ) : ,z f zαΩ Σ→Σ as follows: 
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( ) ( )
( ) ( )

( )
( )

( ) ( )

1 1

0 1

2
2

2
2

2,2 ; ,  2,3, 4,...

z z

nn
n

n n

f z zD f z

z a z

z f z

α αα

α

φ α α

∞
− +

= +

Γ −
Ω =

Γ

= +
−

= − ∗ ≠

∑  

where 

( ) ( )
( )

1 1

0 1

2
2,2 ;

2
nn

n n

z z zφ α
α

∞
− +

= +

− = +
−∑  

and ( )n
β  is Pochhammer symbol that is defined by 

( ) ( )
( ) ( ) ( )1 1 ,  ,  .

n

n
n n

β
β β β β β

β
Γ +

= = + + − ∈ ∈
Γ

     

We now define the following classes of functions. 

Let 1 1.B A− ≤ < ≤  A function 1

0
( ) n

n
n

f z z a z
∞

−

=

= + ∈Σ∑ is said to be in the class ( ), ,mT A Bα  if it satisfies 

the condition  

 
( )( )

( )
( )

1
( ) ( )

z z

z z

z f z f z

Bz f z A f z

α α

α α

′Ω +Ω
<

′Ω + Ω
                                                         (2) 

for all .z∈  

Furthermore, a function 1

1
( ) n

n
n

f z z a z
∞

−

=

= + ∈Σ∑  is said  to be  in the class *( , , )mT A Bα  if it satisfies  the 

condition (2).  
It should be remarked in passing that  the definition (2) is motivated  essentially by the recent work of 

Morga [10] and Srivastava and co-authors [12].  

In recent years, many important properties and characteristics of various  interesting  subclasses of  the 

class Σ of meromorphically functions were inverstigated extensively by (among others ) Aouf et al [1], 

Chen et al. [3], Cho and Owa [4], Dziok et al. [5], El-Ashwah and Aouf [6], He et al. [7], Liu and Srivastava 

[9], Joshi and Srivastava [8] and also [13]. 
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The main object  of this paper  is to present coefficients estimates, growth and distortion theorems and radii 

problems of functions in the classes  ( ), ,mT A Bα  and ( )* , ,mT A Bα  which we introduced here.  

1. Properties of the class *( , , )mT A Bα   

Theorem 1. Let  1

1
( ) n

n
n

f z z a z
∞

−

=

= +∑  be analytic in { }: 0 1z z= < < . Then *( ) ( , , )mf z T A Bα∈  if and 

only if  

 [ ] ( )
( )

1

1 1

2
(1 ) (1 )

2
n

n
n n

A n B a A B
α

∞
+

= +

− + − ≤ −
−∑                                             (3)                                                         

The result is sharp for the function ( )f z given by  

 
( )

( ) ( )
1 1

 2 ( )
( )

2 1 (1 )
nn

n

A B
f z z z

A n B
α− +

− −
= +

− + −  
        ( 1).n ≥                               (4)   

Proof.  Let 1 *( ) ( , , ).n
n m

k n
f z z a z T A Bα

∞
−

=

= + ∈∑  Then  

( ) ( )
( ) ( )

( )
( )

( )
( )

11

1 1

11

1 1

2
(1 )

2( )
.

2( )
( ) ( )

2

nn
n

nz z n

nz z n
n

n n

n a z
z f z f z

Bz f z A f z
A B A Bn a z

α α

α α

α

α

∞
++

= +
∞

++

= +

+
′ −Ω +Ω

=
′Ω + Ω

− + +
−

∑

∑
                                     (5) 

Since Re z z≤  for any z, choosing z to be real letting 1z −→  throuh real values (5) yields  

( )
( )

( )
( )

1 1

1 11 1

2 2
(1 ) ( ) ( ) ,

2 2
n n

n n
n nn n

n a A B A Bn a
α α

∞ ∞
+ +

= =+ +

+ ≤ − + +
− −∑ ∑  

which gives (3). 

On the other hand,we have that  
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( ) ( )
( ) ( )

( )
( )

( )
( )

1

1 1

1

1 1

2
(1 )

2( )
1.

2( )
( ) ( )

2

n
n

nz z n

z z n
n

n n

n a
z f z f z

Bz f z A f z
A B A Bn a

α α

α α

α

α

∞
+

= +
∞

+

= +

+
′ −Ω +Ω

≤ <
′Ω + Ω

− + +
−

∑

∑
 

This shows that *( ) ( , , )mf z T A Bα∈ . 

Next, we prove the following growth and distortion property for the class *( , , )mT A Bα .  

Theorem 2. If *( ) ( , , ),mf z T A Bα∈  then for 0 1z r< = <   

( )
( )

( )
( )

2 2

2 2

2 21 1( )
(2 ( )) 2 (2 ( )) 2

A B A B
r f z r

r A B r A B
α α− − − −

− ≤ ≤ +
− + − +

                           (6) 

and 

( )
( )

( )
( )

2 2
2 2

2 2

2 21 1( )
(1 ) 2 (1 ) 2

A B A B
f z

r B r B
α α− − − −

′− ≤ ≤ +
− −

                                     (7) 

Proof. Let *( ) ( , , )mf z T A Bα∈ . Then, we find from Theorem 1. that  

( )
( ) [ ] ( )

( )
12

1 12 1

22
(2 ( )) (1 ) (1 )

2 2
n

n n
n n n

A B a A n B a A B
α α

∞ ∞
+

= = +

− + ≤ − + − ≤ −
− −∑ ∑            

which yields  

                     
( )

( )
2

1 2

2
.

(2 ( )) 2n
n

A B
a

A B
α∞

=

− −
≤

− +∑                                                               (8) 

Also, by applying the triangle inequality, we have 

1

0 0

1( ) .nn
n n

n n
f z z a z a z

z

∞ ∞
−

= =

= + ≤ +∑ ∑  
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Since  1,z r= <  we can see that .nr r≤  Thus, we have 

0

1( ) n
n

f z r a
r

∞

=

≤ + ∑  

and 

0

1( ) .n
n

f z r a
r

∞

=

≥ − ∑  

From the inequality (8), we obtain the result of (6). 

On the other hand, we get 

( )
( )

( )
( ) [ ] ( )

( )
12 2

1 1 12 2 1

22 2
(1 ) (1 ) (1 ) (1 )

2 2 2
n

n n n
n n n n

A a B n a A n B a A B
α α α

∞ ∞ ∞
+

= = = +

− + − ≤ − + − ≤ −
− − −∑ ∑ ∑  

and, so from 
( )

( )
2

2

2
(1 ) 0

2
A

α
− ≥

−
 

( )
( )

( )
( )

2 2

1 12 2

2 2
(1 ) (1 ) .

2 2n n
n n

B n a A B A a

A B
α α

∞ ∞

= =

− ≤ − − −
− −

≤ −

∑ ∑  

Thus, we have 

( )
( )

2

1 2

2
.

(1 ) 2n
n

A B
n a

B
α∞

=

− −
≤

−∑                                                               (9) 

By applying the triangle inequality, we obtain 

2
0

1( ) n
n

f z n a
r

∞

=

′ ≤ +∑  

and 

2
0

1( ) .n
n

f z n a
r

∞

=

′ ≤ −∑  
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From the inequality (9), we obtain the result of (7). 

 

Finally, we determine the  radius of meromorphically starlikeness and convexity for functions in the class 
*( , , ).mT A Bα  

Theorem 3. Let *( ) ( , , ).mf z T A Bα∈  Then  

(i) ( )f z  is meromorphically starlike of order δ in 1,z r<  that is  

 
( )Re
( )

zf z
f z

δ
′ 

< − 
 

       ( )1z r<                                                        (10) 

where 0 1δ≤ <  and  

( )
( )

1
1

1
1 1

1

(1 )[(1 ) (1 )] 2
inf

( )( ) 2

n
n

n
n

A n B
r

A B n
δ

δ α

+
+

≥
+

 − − + − =  − + −  
 

(ii) ( )f z  is meromorphically convex of order δ in 2 ,z r<  that is 

                
( )Re 1
( )

zf z
f z

δ
′′ 

+ < − ′ 
             ( )2z r<                                                      (11) 

where 0 1δ≤ <  and  

( )
( )

1
1

1
2 1

1

(1 )[(1 ) (1 )] 2
inf

( )( ) 2

n
n

n
n

A n B
r

n A B n
δ

δ α

+
+

≥
+

 − − + − =  − + −  
. 

Each of these results is sharp  for the function ( )f z  given by (4). 

Proof. (i) From Theorem 1. we have  
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( )
( )

1 1

1 1 1

((1 ) (1 )] 2
1

(1 ) ( ) 2
n n

n n
n k n

A n Bn a z a
A B

δ
δ α

∞ ∞
+ +

= = +

− + −+
< ≤

− − −∑ ∑    ( )1 .z r<  

Therefore for 1z r<  we have 

1

1

1

1

( 1)
( ) / ( ) 1 1

( ) / ( ) (1 2 ) 2(1 ) [ (1 2 )]

n
n

n

n
n

n

n a z
zf z f z

zf z f z n a zδ δ δ

∞
+

=
∞

+

=

+
′ +

≤ <
′ − − − − − −

∑

∑
 

which shows that (10) is true       

(ii) It follows from Theorem 1. that  

( )
( )

1 1

1 1 1

((1 ) (1 )] 2( ) 1
(1 ) ( ) 2

n n
n n

n n n

A n Bn n a z a
A B

δ
δ α

∞ ∞
+ +

= = +

− + −+
< ≤

− − −∑ ∑     ( )2z r<  

Thus for   2z r< , we obtain  

1

1

1

1

( 1)
1 ( ) / ( ) 1 1

1 ( ) / ( ) (1 2 ) 2(1 ) [ (1 2 )]

n
n

n

n
n

n

n n a z
zf z f z

zf z f z n n a zδ δ δ

∞
+

=
∞

+

=

+
′′ ′+ +

≤ <
′′ ′+ − − − − − −

∑

∑
 

which shows that (11) is true. 

Sharpness can be verified  easily. 
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Abstract 
In this study, we obtained some sufficient conditions for univalence of analytic functions defined by Deniz-

Özkan differential operatör. 

 

1 Introduction  
 

Let A denote the class of functions f  of the form  

                                                                    ( )
2

n
n

n
f z z a z

∞

=

= +∑                                                                                 (1) 

which are analytic in the open disk  { }: 1E z z= ∈ < . 

       Let S  denote the subclass of A , which consists of functions of the form (1) that are univalent and 

normalized by the conditions ( )0 0f =  and ( )0 1f ′ =  in E . 

In [7], Deniz and Özkan defined the differential operator mDλ  (say: Deniz-Özkan differential operator) as 
follows: 

For the parametres 0λ ≥  and { }0 0m N N∈ = ∪  the differential operatör mDλ  on A  defined by  

                                                           0 ( ) ( )D f z f zλ =  

                                                 1 3 2( ) ( ) (2 1) ( ) ( )D f z z f z z f z zf zλ λ λ′′′ ′′ ′= + + +                                            (2) 

                                                     1( ) ( ( )m mD f z D D f zλ λ
−=  

for z U∈ . 

For a function  f  in A , from the definition of the differential operatör mDλ , we can easily see that                                                                                                                                                                                             
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2

( ) ( , ) ,m n
n n

n
D f z z B m a zλ λ

∞

=

= +∑                                                                 (3)  

where 2( , ) ( ( 1) 1) .m m
nB m n nλ λ= − +  

Also, ( ) .mD f z Aλ ∈  For the special cases of 0,1λ =  we obtain Salagean differential operator (see [13]). 

      In this paper we derive sufficient conditions of univalence for the generalized operator  ( ).mD f zλ  

Also, a number of known univalent conditions would follow upon specializing the parameters involved. In 

order to prove our results we need the following Lemmas. 

Lemma 1.1 [5] Let f A∈ .If for all  z E∈   

                                          ( ) ( )
( )

21 1
zf z

z
f z
′′

− ≤
′

,                                                                                    (4) 

then the function f  is univalent in E . 

Lemma 1.2 [10] Let f A∈ . If for all  z E∈  

                                                                   ( )
( )

2

2 1 1
z f z
f z
′

− ≤  ,                                                                                 (5) 

then the function f  is univalent in E . 

Lemma 1.3 [14]  Let µ  be a  real number 1
2

µ >  and f A∈ .If for all  z E∈  

                                                            ( ) ( )
( )

21 1 ,
zf z

z
f z

µ µ µ
′′

− + − ≤
′

,                                                                      (6) 

then the function f  is univalent in E . 

Lemma 1.4 [8] If  f S∈  (the class of univalent functions) and  

                                                             
( ) 1

1 n
n

n

z b z
f z

∞

=

= +∑ ,                                                                                       (7) 

then  ( ) 2

1
1 1n

n
n b

∞

=

− ≤∑ . 
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Lemma 1.5 [11]  Let v∈ , { }Re 0v ≥  and f A∈ . If for all z E∈  

                                                              
( )( ) ( )

( )

Re1
1,

Re( )

vz zf z
v f z

− ′′
≤

′
                                                      (8) 

then function  

                                                              ( ) ( )
1

1

0

z v
v

vF z v u f u du− 
′=  

 
∫  

is univalent in E . 

 2. Main Results  

In this section, we establish the sufficient conditions to obtain a univalence for analytic functions  

involving the differential operator (2). 

 Theorem 2. 1 Let f A∈ . If for all  z E∈   

                                                             ( )
2

( , ) 2 1 1.n n
n

B m n n aλ
∞

=

− ≤  ∑                                       (9) 

Then  ( )mD f zλ  is univalent in E . 

Proof. Let f A∈ . If for all  z E∈ , we have  

 ( ) ( )( )
( )( )

( ) ( )

( )
2 2

2

2 1 ,
1

1 ,

m n n
n

m
n n

n

n n B m az D f z
z

D f z nB m a

λ

λ

λ

λ

∞

=
∞

=

−′′
− ≤

′ −

∑

∑
            

the last inequality is less than 1 if the assertion (9) is hold. Thus in view of Lemma 1.1,  ( )mD f zλ  is 

univalent in E . 

Theorem 2. 2 Let f A∈ . If for all  z E∈  

                                                                        ( )
2

1( , ) 2 1 .
7n n

n
B m n n aλ

∞

=

− ≤  ∑                                      (10)  
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Then  ( )mD f zλ  is univalent in E . 

 Let f A∈ . It suffices to show that  

                                                                               
( )( )
( )( )

2

2 1
2

m

m

z D f z

D f z
λ

λ

′
≤ . 

Now  

                            
( )( )
( )( )

( )

( ) ( )

2
2

2
2

2 2

1 ,

2 2 1 2 , ,

m n n
n

mm

n n n n
n n

nB m az D f z

D f z B m a B m a

λ

λ

λ

λ λ

∞

=

∞ ∞

= =

+′
≤

   − −     
   

∑

∑ ∑
. 

The last inequality is less than 1 if the assertion (10) is hold. Thus in view of Lemma 1. 2, ( )mD f zλ  is 

univalent in E . 

Theorem 2. 3 Let f A∈ . If for all  z E∈  

                             ( ) ( ) ( )
2

12 1 2 1 , 2 1, .
2n n

n
n n B m aµ λ µ µ

∞

=

− + − ≤ − >  ∑                                            

(11) 

then  ( )mD f zλ  is univalent in E . 

Proof. Let f A∈ . Then for all z E∈ , we have  

                   

( ) ( )( )
( )( )

( ) ( )( )
( )( )

( ) ( )

( )

2 2

2

2

1 1 1 1

2 , 1

1 ,

m m

m m

n n
n

n n
n

z D f z z D f z
z z

D f z D f z

B m n n a

nB m a

µ λ λ

λ λ

µ µ

λ

λ

∞

=
∞

=

′′ ′′
− + − ≤ + + −

′ ′

−  
≤

−

∑

∑
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the last inequality is less than µ  if the assertion (11) is hold. Thus in view of Lemma 1. 3, ( )mD f zλ  is 

univalent in E . 

As applications of Theorems 2. 1, 2. 2 and 2.3, we have the following Theorem. 

Theorem 2. 4 Let f A∈ . If for all  z E∈  one of the inequality (9-11) holds then 

                                                             ( ) 2

1
1 1n

n
n b

∞

=

− ≤∑ ,                                                                                (12) 

where   
1

1 n
nm

n

z b z
Dλ

∞

=

= +∑ . 

Proof. Let f A∈ . Then in view of Theorems 2. 1, 2. 2 or 2. 3,  ( )mD f zλ  is Hence by Lemma 1. 4, we 

optain the result. 

Theorem 2. 5 Let f A∈ . If for all  z E∈   

                                         ( ) ( ) ( ) ( ) ( )
2

2 1 Re , Re , Re 0.m n
n

n n v B m a v vλ
∞

=

− + ≤ >  ∑                                        (13) 

Then  

 ( ) ( )
1

1

0

z v
v m

vG z v u D f z duλ
− ′ =   

 
∫  

is univalent in E . 

Let f A∈ . Then for all  z E∈ , 

                                  

( )

( )
( )( )
( )( )

( )

( )
( )( )
( )( )

( )

( ) ( )

( )

2Re 2Re

2

2

1 1
Re Re

1 ,
2

Re 1 ,

v vm m

m m

n n
n

n n
n

z D f z z D f zz z
v vD f z D f z

n n B m a

v nB m a

λ λ

λ λ

λ

λ

∞

=
∞

=

′′ ′′   − +
   ≤
   ′ ′   

−
≤

−

∑

∑

 

the last inequality is less than 1 if the assertion (13) is hold. Thus in view of Lemma 1. 5, ( )vG v  is univalent 

in E . 
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Abstract 

 

Diophantus (who was widely influenced by Mesopotamian mathematics) from Alexandria is 

defined as the father of algebra. Algebraic equations have been in the Diophantus’s book Arithmetica 

(included 130 equivalents and their solutions) which is first book on the theory of numbers. Diophantus 

Equations, also known as Diophantine equations, was named on Diophantus after A.D. third century.  

After him, this famous theory has been worked to extend and generalize more by a lot of 

mathematicians. 

 

The aim of this work is to get some new results on the special type of  D(2) Diophantine  pairs  

({2, a} where a is a positive integer). Many significant and useful results are obtained while working 

on the problem but some of them are shown in this work. Firstly, it is demonstrated that such type of 

pairs can not be extended to D(2) Diophantine quadruple even they are regular D(2) Diophantine 3-

tuples. These results are demonstrated by using solvability of the pell equations. Also, numerical results 

are given to support our obtained implications ( as we explained above) in this work too.  

 

          Keywords: D(n) Diophantine m-Tuples, Pell Equations, Natural Numbers, Regularity of D(n) 

Diophantine  Triples, Iteration, Primes 

 

1. Introduction 

 

The subject “Diophantine m-tuples” (also called as D(1)-sets or simply Diophantine m-tuples) was found 

out by Diophantus of Alexandria roughly five centuries after Euclid’s era. He didn’t just consider integer 

numbers of simply Diophantine m-tuples but also he worked on rational numbers for quadruples. This 

problem starts with Diophantine m-tuples with property D(1) and obtained many results on Diophantine 

D(1)-triples, Diophantine D(1)-quadruples, Diophantine D(1)—quintuples, Diophantine D(1)-sextuple, 

etc… even still some open problems in this topic with different perspectives, techniques and 

approximations  such as elliptic curves and their ranks, quadratic number fields, linear form and logarithms, 

etc. 
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There are some useful and basic results on D(1)-sets as follows: 

 Diophantine D(1) pair {𝑢, 𝑣} is extendable to Diophantine D(1) triple if 𝑢 + 𝑣 + 2𝑡 is in the D(1)-

set for 𝑡2 = 𝑢. 𝑣 + 1. 

 Diophantine D(1) triple {𝑢, 𝑣, 𝑤} is extendable to Diophantine D(1) quadruple as {𝑢, 𝑣, 𝑤, 𝑑+} and  

{𝑢, 𝑣, 𝑤, 𝑑−}  where equations  𝑡2 = 𝑢. 𝑣 + 1 , 𝑟2 = 𝑢. 𝑤 + 1 , 𝑠2 = 𝑤. 𝑣 + 1  (𝑟, 𝑠, 𝑡 ∈  𝑍+ ) are 

satisfied for 𝑑∓ = 𝑢 + 𝑣 + 𝑤 + 2𝑢𝑣𝑤 ∓ 2𝑟𝑠𝑡 and 𝑑− ≠ 0. 

 Numbers of Diophantine D(1) quintuples are most finitely many. 

 There aren’t any Diophantine D(1) sextuples. 

 All Diophantine D(1) quadruples are regular ( conjecture) 

… so on 

 

It is seen that above mentioned results were/are demonstrated for integers. It is also known that the subject 

“Diophantine m-tuples” is considered on commutative rings such as the set of rational numbers, the set of 

Gaussian integers and more… 

 

This theory still has unproved traditional problems such as either finite or infinite solutions, preparing an 

easy algorıthm to calculate solutions in practice, so on  for centuries. Since the descriptions are not simple, 

these problems have been indicated to Diophantine sets. Main problem is returned to classify and 

characterize D(n) Diophantine m-tuples. Immensely significant and useful results have been proved by 

using a lot of different methods such as hypergeometric method, linear forms in logarithms, elliptic curves, 

binary quadratic forms etc. in recent years.  

 

The purpose of this work is to mention some useful and basic notations firstly. Then, It is to give some 

numerical calculations and theories ( to generalize results in our next study) for certain types of pairs of 

the Diophantine D(2) sets. It is also used number theoreticals’ techniques in the work.  One may consider 

other types of D(2) or D(n) for natural number n. 

 

2. Preliminaries 

 

Definition. A Diophantine m-tuples with the property D(r) for an integer r is an m-tuples of distinct positive 

integers   such that   is always a square of an integer for every i  j. 

Specifically, it is called Diophantine D(r) – triple for m=3, Diophantine D(r) – quadruple for m=4. 

 

Definition. If  Diophantine - triple   satisfies the following condition 

 

then, Diophantine - triple is named as regular. 
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Definition. (Quadratic Residue) Assume that   be an odd prime, .  We call that  is a 

quadratic residue    if  a nonzero number   is a square . Otherwise, it is defined as 

quadratic non-residue. 

  

Definition. Legendre Symbol) Legendre symbol is defined as following equation for prime : 

                                          

 

Theorem. (Quadratic Reciprocity Theorem and Quadratic Reciprocity Law) If    are distinct odd 

primes, then we have following result. 

 

Also, let a,b be odd numbers such that they are coprimes.  Followings are satisfied. 

               and                 

 

 

3. Main Results 

 

Used Technique: 

In this work, the techniques and notations such as quadratic congruence’s  solutions, quadratic 

reciprocity theorem, Legendre symbol, etc  are used from number theory. For solving Diophantine 

equations ax2+bxy+cy2=n  (where n is non-zero, b is zero,  a is positive integer and discriminant is  greater 

than zero  and  nonsquare),  “Determination of Stolt fundamental solutions method” (found out by  Bengt 

Stolt) is used. Readers can be found more information about this method in the paper  “On fundamental 

solutions of binary quadratic form equations” ( ref [21] ). 
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3.Main Results 

 In this work we consider a type of  Diophantine D(2) pairs which are started with number two (2) 

and continues with positive integers. Even we consider this type of diophantine D(2) sets, there are many 

( finitely number) different kinds of  Diophantine D(2) pairs as follows too: 

{1, 2}  ,  {1, 7}  , {1, 14} … … … , {2, 7}  ,  { 2, 17}  , {2, 31}  … … 

{ 7, 14}  , { 7, 17}    , { 7, 41} …  …  … , { 14, 23} ,  { 14, 41} , { 14,73} … … 

…  …  …   …   … 

If we investigate Diophantine D(2) sets ( pairs, triples, quadruples, quintuples or more), it is easily 

seen that some positive integers have not been in such sets. There are a lot of  integers not belong to 

Diophantine D(2) sets. In the following theorem, we demonstrate some of them with theoritical proofs. 

Note: Following theorem can be extended for other numbers as well 

Theorem 1. Following statements are true and satisfied. 

i. D(2) Diophantine sets don’t contain numbers that include the number 3 or any multiple of 3. 

ii. D(2) Diophantine sets do not have numbers containing the number 4 or any multiple of 4. 

iii. D(2) Diophantine sets have not got numbers including the number 5 or any multiple of 5.  

iv. …. 

 

Proof.  

i.  Assuming that  3𝑛 (𝑛 ∈ ℤ+) and  𝑘 (𝑘 ∈ ℤ+) be in the Diophantine D(2) sets. Then following equation 

has to be satisfied for some integers 𝒜. 

3𝑛𝑘 + 2 = 𝒜2 

 If we deduce 3𝑛𝑘 + 2 = 𝒜2 in  (mod 3), then we get 

𝒜2 ≡ 2(𝑚𝑜𝑑 3) 

 To see solvability of  quadratic congruence 𝒜2 ≡ 2(𝑚𝑜𝑑 3), we have to consider residue classes 

of (mod 3)  (i.e.  {0, 1, 2} ) and evaulate whether or not these numbers satisfy the  

𝒜2 ≡ 2(𝑚𝑜𝑑 3). If we put {0, 1, 2} into the 𝒜2 ≡ 2(𝑚𝑜𝑑 3) respectively, then we have a contradiction.  

Hence , there isn’t any Diophantine   𝐷(2) set  contain numbers that include the numer 3 or any 

multiple of 3. 
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ii. Supposing  that  𝑡 (𝑡 ∈ ℤ+) and 5𝑢 (𝑢 ∈ ℤ+)  be  integers  in the Diophantine  𝐷(2) set. So, we obtain 

5𝑡𝑢 + 2 = ℬ2 

for at least an integer ℬ. Similarly, we have 

ℬ2 ≡ 2(𝑚𝑜𝑑 5) 

Using Legendre symbol and its properties, we get  

(
2

5
) = (−1)52−1 8⁄ =  −1                                                                                     

It implies that there isn’t any  ℬ integer holds quadratic congruence ℬ2 ≡ 2(𝑚𝑜𝑑 5). Therefore, there is 

no Diophantine  𝐷(2) sets  include numbers 5 or multiple of 5.                                                  

iii. Proof is left for readers. 

 

Theorem 2. The set {2, 7} is a Diophantine D(2) pair and extendable to a Diophantine D(2) triple. 

Proof. First of all show whether or not  {2, 7} is Diophantine D(2) pair. If definition of the Diophantine 

D(2) set is applied to {2, 7}, then we have 2.7 + 2 = (±4)2 . It implies that {2, 7} is a Diophantine D(2) 

pair.  

Assuming that 𝑑  be the smallest positive integer that makes {2, 7, 𝑑}  Diophantine D(2) triple. Then, 

following equations are satisfied for some 𝑋, 𝑌 integers. 

2𝑑 + 2 = 𝑋2        and          7𝑑 + 2 = 𝑌2 

It is seen  that 𝑑 = 17 is the smallest positive integer so that it makes 𝑋 and 𝑌  values integers in the given 

equations. So, Diophantine {2, 7} pair can be extended to Diophantine D(2) triple as {2, 7, 17}. 

 

Theorem 3. The set {2, 7, 17} is regular Diophantine D(2) triple but can not be extended to Diophantine 

D(2) quadruple. 

Proof.  By using regularity condition determined  for Diophantine D(n) triples, it is easily seen that 

{2, 7, 17} is a Diophantine D(2) regular triple. 

Supposing that  {2, 7, 17} can  be  extended for any positive integer 𝑤 so that  {2, 7, 17, 𝑤}  is a Diophantine 

𝐷(2) quadruple. Then, there exist 𝑋, 𝑌, 𝑍 integers such that; 

2𝑤 + 2 = 𝑋2 

7𝑤 + 2 = 𝑌2 
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17𝑤 + 2 = 𝑍2 

If we simplify and edit these equations, then we obtain following Diophantine equations. 

7𝑋2 − 2𝑌2 = 10 

17𝑋2 − 2𝑍2 = 30 

17𝑌2 − 7𝑍2 = 20. 

We can give fundamental solutions of them using Stolt fundamental solution technique as we mentioned 

above.  

For 7𝑋2 − 2𝑌2 = 10 , we get Pell equation 𝑥2 − 56𝑌2 = 280 using the transformation 𝑥 =

14𝑋,   𝑦 = 𝑌. It is also obtained that there are two Stolt fundamental solutions of Pell equation as (28, 3) 

and (−28, 3). Using them,  we get two (2) fundamental solutions for 7𝑋2 − 2𝑌2 = 10 as  (2, 3) and 

(−2, 3).  

In the same manner; 

For 17𝑋2 − 2𝑍2 = 30 , we get Pell equation 𝑥2 − 136𝑍2 = 2040 using the transformation 𝑥 =

34𝑋,   𝑧 = 𝑍. Then, we get two Stolt fundamental solutions of Pell equation as (136, 11) and (−136, 11). 

Considering them,  we obtain two (2) fundamental solutions for 17𝑋2 − 2𝑍2 = 30  as  (4, 11)  and 

(−4, 11).  

For 17𝑌2 − 7𝑍2 = 20, we have Pell equation 𝑦2 − 476𝑍2 = 1360  applying the transformation 

𝑦 = 34𝑌,   𝑧 = 𝑍 . Then, we get two Stolt fundamental solutions of  Pell equation as (136, 6)  and 

(−136, 6).So, we obtain two (2) fundamental solutions for 17𝑌2 − 7𝑍2 = 20 as  (4, 6) and (−4, 6) by 

using them. 

  If we consider the above solutions and write them interchangeably in the equations, it is seen that 

there is no common solution that makes X, Y and Z be integers at the same time. 

Hence, there isn’t any such positive integer 𝑤.  Therefore, {2, 7, 17}   can not be extended to 

Diophantine D(2) quadruple. 

 

Theorem 4. The set {2, 17} is a Diophantine D(2) pair. Also, it is extendable to a Diophantine D(2) triple. 

Proof. Let us consider  {2, 17}. Is it  Diophantine D(2) pair? . From the definition of the Diophantine D(2) 

set, then we obtain  2.17 + 2 = (±6)2 . It gives us that  {2, 17} is a Diophantine D(2) pair.  

Supposing  that 𝑒  be the smallest positive integer that makes {2, 7, 𝑒} Diophantine D(2) triple. Then, 

following equations are satisfied for some 𝑋, 𝑌 integers. 

2𝑒 + 2 = 𝐴2        and          17𝑒 + 2 = 𝐵2. 
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We can easily see that  𝑒 = 31 is the smallest positive integer so that it makes 𝐴 and 𝐵  values integers in 

the given equations. Hence, Diophantine {2, 17}  pair is extendable to Diophantine D(2) triple as 

{2, 17, 31}. 

Theorem 5. The set {2, 17, 31} is a regular Diophantine D(2) 3-tuples even it isn’t extended to 

Diophantine D(2) 4-tuples. 

Proof. From the regularity condition mentioned in preliminaries, it is obtained that {2, 17, 31}  is a 

Diophantine D(2) regular triple. 

Supposing that  {2, 17, 31} can  be  extended for any positive integer 𝜕 so that  {2, 17, 31, 𝜕}  is a 𝐷(2) 

Diophantine quadruple. So, there are 𝐴, 𝐵, 𝐶 integers such that; 

2𝜕 + 2 = 𝐴 

17𝜕 + 2 = 𝐵2 

31𝜕 + 2 = 𝐶2 

By dropping 𝜕, following Diophantine equations are obtained. 

17𝐴2 − 2𝐵2 = 30 

31𝐴2 − 2𝐶2 = 58 

31𝐵2 − 17𝐶2 = 28 

By using Stolt fundamental solution technique, we have results as follows: 

For 17𝐴2 − 2𝐵2 = 30, we get Pell equation 𝑎2 − 136𝐵2 = 2040 using the transformation 𝑎 =

34𝐴,   𝑏 = 𝐵. It is also obtained that there are two Stolt fundamental solutions of Pell equation as (136, 11) 

and  (−136, 11). Using them,  we have two fundamental solutions for 17𝐴2 − 2𝐵2 = 30 as  (4, 11) and 

(−4, 11).  

Similarly; 

For  31𝐴2 − 2𝐶2 = 58 , Pell equation 𝑎2 − 248𝐶2 = 7192  using the transformation 𝑎 =

62𝐴,   𝑐 = 𝐶 . Then, we have  two Stolt fundamental solutions of Pell equation as (372, 23)  and 

(−372, 23). Using them,  we obtain two (2) fundamental solutions for 31𝐴2 − 2𝐶2 = 58 as  (6, 23) and  

(−6, 23).  

For 31𝐵2 − 17𝐶2 = 28, we obtain two fundamental solutions as (6, 8) and (−6, 8). 

  If we consider the above solutions and write them interchangeably in the equations, it is obtained 

that there is no common solution that makes A, B and C be integers at the same time. 
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So, there is no such positive integer 𝜕.  Therefore, {2,17, 31}   is not  extended to Diophantine D(2) 

quadruple. 

 

Theorem 6. The set {2, 31} is a diophantine D(2) pair extendable to a Diophantine D(2) triple as {2, 31, 49}  

. 

Proof. In a similar way of the proofs of Theorem 2 and Theorem 4, it is easily to got result. So, proof is left 

for readers. 

Theorem 7. The set {2, 31, 49}  is a regular Diophantine D(2) triple although it is not extendable to 

Diophantine D(2) quadruple. 

Proof. Using similarity of  previous proofs, proof of the Theorem 7 can be easily obtained by readers. 

Hence, proof is left for readers. 

 

 

5. Conclusion 

 

In this study, it is proven that a special type of Diophantine D(2) pairs ( i.e. ({2, a} where a is a 

positive integer) can be extended to Diophantine D(2) regular triples but not extendable to Diophantine 

D(2) quadruple. This work gives us a new idea to get more general results on such pairs for our next work 

and it forms the basis for our next study. Therefore, all of them will be contributed more to the literature of 

this subject. We also kindly recommend readers to follow the continuation of this work. 

 

Acknowledgement: The study is supported by Scientific Research Project with number KLUBAP-
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Abstract 

The quantile regression is one of the well-known regression methods  to describe data including outliers 

when the conditions of ordinary linear regression are not met such as linearity, homoscedasticity or 

normality assumptions. Then, this idea has been recently combined by the neural network model, which is 

a popular machine learning method applied in many fields, and later, the quantile regression neural network 

model has been developed to use the advantage of both popular approaches. Hereby, in this study, we 

implement this novel approach in the representation of complex biological network which includes outliers. 

In our analyses, we generate outliers under different dimensions and topologies. Later, we evaluate the 

performance of suggested approach in generated biological networks. Finally, we assess the results by 

accuracy and sensitivity measures.    

          Keywords: Quantile regression, Outlier detection, Artificial neural networks, Biological networks. 

1. Introduction 

 

The quantile regression is a very important modelling tool to describe data having anomalies via specific   

loss function. Briefly, this regression presents the relationship between a set of predictor (independent) 

variables and particular percentiles or "quantiles" of a dependent variable, generally taken as the median. 

This description can be challenging when the number of parameter is greater than the number of 

observations values. More recently, quantile regression neural networks (QRNN) has been developed and 

applied environmental sciences (Cannon, 2011; Cannon, 2018), but, this model has not been yet 

implemented for the construction of biological networks. Hence, in this work, we consider quantile 

regression neural networks (QRNN) in the description of biological networks which includes outliers in 

observations.   

 

Artificial neural network is a very important mathematical expression that enables us to presents the 

estimated data more accurately (McCulloch and Walter Pitts, 1943). Basically, this models creates a 

computational model for neural networks based on algorithm, called, the threshold logic. However, more 

recently, nonparametric regression models under Generalized Additive Models (GAM) such as multivariate 

adaptive regression splines (MARS) are applied in place of the artificial neural networks as performed in 

the studies of Schmidt-Hieber (2020) and Bauer and Kohler (2019). Although these complex non-

parametric regression models are successful in the presentation of various datasets, they have some 
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limitations when data have outlier values. To solve this problem, Cannon (2011, 2018) has proposed 

quantile regression neural network. This model can detect outlier values via regression and can perform 

computationally faster regression procedure. In this regression, the conditional median has a crucial role to 

minimize the mean absolute error in the estimation and to predict the data. For this reason, asymmetric 

weights via positive/negative errors are used by controlling the conditional median under distinct shape of 

data distribution.   

 

Biological networks are one of modelling fields when the distribution of data is very different and its 

structure is nonlinear. Protein-protein interaction (PPI) networks are special types of networks in biological 

systems. More recently, Ayyıldız et al. (2018), Kaygusuz et al. (2021) and Seçilmiş et al. (2022) have 

suggested loop based multivariate adaptive regression spline, neural networks and random forest, 

respectively, to present underlying systems. Kaygusuz and Purutçuoğlu (2022a, 2022b) have proposed 

bootstrap procedure in order to improve the performance of models under PPI systems under various model 

selection criteria. In this work, we suggest quantile regression neural networks for biological networks 

while data have outlier values. 

 

Accordingly, the organization of the paper is as follows. In the second section, we define quantile regression 

and in the third section we give the definition of quantile regression neural networks. The fourth section 

includes data analysis for the proposed model. Lastly, we represent the fifth section for the conclusion and 

future work.  

 

2.Quantile regression  

 

Quantile regression models the relationship between a set of predictor (independent) variables and specific 

percentiles  or "quantiles"  of a  dependent variable, most often the median. The aim of quantile regression 

is to estimate a given quantile such as the median of Y conditional on X. In other words, the conditional 

distribution function Y given  X=x is found as follows: 

 

         𝐹(𝑌|𝑋 = 𝑥) = 𝑃(𝑌 < 𝑦|𝑋 = 𝑥)                                                                                             (1) 

 

while 𝜏 -th conditional quantile function 

   𝑞𝜏(𝑥) = inf(  𝑌  ∈   𝑅 
  ;  𝐹(𝑌|𝑋 = 𝑥) > 𝜏).                                                                                    (2) 

Traditional regression models estimate the conditional mean of the dependent variable   𝑌𝑛+1 given the 

features   𝑋𝑛+1 = 𝑋 by minimizing the sum of squared residuals on the n training points so that the mean 

µ under estimated model parameter can be found as below: 

µ̂  (𝑥) = µ(𝑥,   𝜃 
 ) and  𝜃 

 = 𝑎𝑟𝑔𝑚𝑖𝑛 
1

𝑛
∑  𝑛

𝑖=1   
  (  𝑌𝑖 − µ(   𝑋𝑖 ; 𝜃 )) 

2  .                                                 (3) 

 

Here, 𝜃 is the estimator of regression model  and µ(𝑥; 𝜃 ) is te estimator of the regression function when 

argmin(.) denotes the set of values where the function gives the minimum. Thus we can calculate  a 

conditional quantile function   𝑞𝜏(𝑥) of    𝑌𝑛+1  given    𝑋𝑛+1 = 𝑋 via 
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�̂�  (𝑥) = 𝑓(𝑥,   𝜃 
 ) while   𝜃 

 = 𝑎𝑟𝑔𝑚𝑖𝑛 
1

𝑛
∑  𝑛

𝑖=1   
    ⍴

𝜏
(  𝑌𝑖 − µ(   𝑋𝑖 ; 𝜃 )) 

2                                          (4) 

 

in  which 𝑓(𝑥,   𝜃 
 )  is regression function and    ⍴

𝜏
 is a loss function which is defined as below. 

 

     ⍴𝜏 (u)={
𝜏𝑢     

(1 − 𝜏)𝑢
𝑖𝑓 𝑢 > 1

  𝑖𝑓 𝑢 < 1
}.                                                                                                       (5) 

 

In Equation 5, 𝜏 lies on  0 < 𝜏 < 1, So, if  x(t)  shows an independent variable, b and 𝑚𝑖 
 present the  

intercept  and the slope, respectively, we can define the quantile regression by 

 

y(t)=𝑓(∑  𝑚𝑖 
 𝑥 𝑖

 𝑙
𝑖=1 (𝑡) + 𝑏).                                                                                                           (6)   

 

Hence, the quantile regression error function (E) can be computed by 

 

   E = 1/N(∑     ⍴ (𝑦𝑁
𝑡=1 (𝑡)-y(t))                                                                                                      (7) 

 

for N observational datasets. 

    

3. Quantile regression neural networks (QRNN)   

   

Artificial neural networks have a lot of attention due to its success in applicational area such as signal 

progressing, machine learning and bioinformatics (Goodfellow et al., 2016; Lecun et al., 2015). On the 

other hand, in this work, we study classical artificial neural network for the quantile regression.  The 

quantile regression estimation process starts with the central median case in which the median regressor 

estimator minimizes a sum of absolute errors, as opposed to ordinay least square (OLS) approach that 

minimizes the sum of squared errors. Hence, Quantile Regression Neural Network (QRNN) combines  

quantile regression (QR), which can model data with non-homogeneous variance, with neural network 

(NN) approach, which  can capture nonlinear patterns in the data succesfully. 

 

 
 

Figure 1 An example of the architecture of  artificial neural network with one hidden  layer. 
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In QRNN, if  x(t) denotes the input vector and y(t) is  the output vector, the output from the jth hidden layer, 

i.e.,  g(t) vector,  can have a hyperbolic tangent (tanh) activation function as shown in Equation 8. Indeed, 

in the calculation, other functions can be also selected such as sigmoid or rectified linear activation 

functions. 

 

   𝑔𝑗
 (𝑡) = tanh  ( ∑ 𝑥𝑖

 (𝑡)𝑙
𝑖=1 𝑤𝑖𝑗

(ℎ)
+ 𝑏 𝑗

(ℎ)
).                                                                                    (8) 

 

in which 𝑤𝑖𝑗
(ℎ)

 is hidden layers weights vector and 𝑏 𝑗
(ℎ)

  is a hidden layer bias vector. So, the estimated 

output layer of transfer function has the following form.  

 

 

𝑓𝑖
(1)(𝑥) = 𝑓(∑ 𝑔 𝑗

 (𝑡) 𝑤 𝑗
(0)𝑑

𝑗=1  + 𝑏  
(0)

) ,                                                                                        (9) 

 

where   𝑤 𝑗

(0)
 represents the output layer vector and 𝑏  

(0)
  is the output layer bias vector.                                     

 

Accordingly, in modeling via QRNN, we construct a regression model per protein separately in such a way 

that each protein is taken as response in the QRNN and the remaining proteins are used for predictors of 

the selected response. Then, the regression coefficients are computed. These coefficient values are the 

weigths in the neural network. Finally, we repeat this process for every protein in the system sequentially 

so that the total number of regression models can be equal to the total number of proteins in the system. In 

this network construction, we interpret the regression coefficients as the strength of the interaction between 

proteins while each response protein can autoregulate as well. Hereby, we compute our models with an 

intercept term. In the assessment of the model, we consider that coefficients having values greater than 0.1 

in absolute value can be taken as zero, otherwise, they can set to one. By this way, we can convert the 

estimated coefficients as binary value so that the generated adjacency matrix can be compared with the true 

adjacency matrix of the network. 

 

4. Data analyses 

 

4.1. Description of the data 

 

In the application of QRNN in PPI networks,  we use four different simulated datasets. We generate data 

under the following scenerious: 

 

a) We generate system with 12 and 24 proteins where each protein has 100 observations. In the first 12-

protein system, we simulate multivariate normally distributed data whose 10 proteins have random 

topology and 2 proteins have scale-free topology. In the second dataset, we have  20 proteins, which 

are random, and  4 proteins, which are sclae-free. By this way we aim to generate 2 systems having 

outliers under mixture distribution and outliers ratios are not greather than % 25 of the data. 

b) We simulate mixture data with the above scenerios, but, with the following composition: 10 proteins 

from scale-free network and 2 proteins from random network. And in the fourth data set, we take 20 
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proteins from scale-free network and 4 proteins from random network. By this way, we can generate 

2 more data sets whose dimensions are 12 and 24, respectively. 

 

4.2. Results 

 

The regression coefficients of quantile regression neural networks from different scales of biological data 

such as random network and scale-free network are presented  in Tables 1, 2, 3 and 4 while the observations 

of networks are 100 and the numbers of variable 12 and 24 as described  in the previous section. For the 

first two datasets, we estimate the intercept via the notation of  𝛽0  and estimated coefficients of 11 

independent variables via the notations of  𝛽𝑖  (𝑖 = 1, 2, … , 10) for totally 11 cases. Here, for 12-protein 

system, since we consider each protein as a responce once, we can use 11 predictors for each protein. On 

the other side, since we repeat this process sequentially for each protein in the system as described in 

previous section, we construct 11 different models in the end. The underlying distinct models are shown as 

case i (i=1, 2, ..., 11) in Tables 1 and 2. Similarly, for the second data set, we estimate an intercept (  𝛽0) as 

before and coeffcients of 23 indepedent variables for totally 24-protein systems. Finally, as we construct 

the model for each protein in the system separately, indeed, we generate 23 distinct models, i.e., case j (j=1, 

2, ..., 23), in Tables 3 and 4. In all these tabulated values, 𝜏 value in QRNN is taken 0.5 which implies the  

median.   

 
Coeff. case1 case2 case3 case4 case5 case6 case7 case8 case9 case10 case11 

    𝜷𝟎 0.135  -0.392 -1.096 -1.417 -0.255 -0.037 0.148 -0.751 0.094 -0.393 -0.254 

    𝜷𝟏 0.424  -0.169 1.3402   -0.279 0.376 -0.562 -0.198 0.353 0.260 -0.169 0.376 

    𝜷𝟐 0.739 0.184 -0.995  -0.473 -0.267 0.129 0.388 -0.638 -0.057 0.183 -0.267 

    𝜷𝟑 0.107 -1.038 -0.128  -0.983 -0.685 -0.057 -0.155 0.175 0.021 -1.038 -0.685 

    𝜷 𝟒 -0.093 0.333 -0.186 -0.368 -1.102 -0.181 1.938 -5.075 -0.259 0.333 -1.102 

    𝜷𝟓 0.141 -0.396  1.078 -0.333 -0.424 -0.946 -0.135 1.711 -1.123 -0.396 -0.423 

    𝜷𝟔 0.110  0.250 -0.820 -0.271 -0.317 0.224 -0.867 0.282 -0.559 0.250 -0.317 

    𝜷 𝟕 0.249  0.268  -0.757 -0.499 -0.057 0.371 0.649 -1.551 -0.115 0.268 -0.057 

    𝜷𝟖 -0.041 0.326 -1.669 -0.392 -0.763 0.109 -0.326 -0.693 -0.458 0.326 -0.763 

    𝜷𝟗 -0.061 -0.119 -0.849 0.260 -0.117 -0.087 0.008 -0.903 -0.239 -0.119 -0.117 

      𝜷𝟏𝟎 0.258  0.145 -0.693 -0.171 -0.127 0.061 0.259 -0.320 0.228 0.145 -0.127 

     𝜷𝟏𝟏  -0.580 0.120 0.039 -0.048 -0.871 -0.549 -0.411 0.182 -0.170 0.120 -0.870 

 

Table 1  Regression coefficients of QRNN for scale-free structural 10 proteins and random network 

structural 2 proteins while the sample size per protein is n=100. 
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Coeff. case1 case2 case3 case4 case5 case6 case7 case8 case9 case10 case11 

    𝜷𝟎 0.228   0.777 -1.500 -1.036 -0.063 -0.220 -0.205 0.067 0.442  0.212 -0.254 

    𝜷𝟏 0.539   1.34 -0.525    0.136 0.249  0.341  0.030 -0.106 0.094 -0.943 0.376 

    𝜷𝟐 0.888 -0.608 -1.046  -0.170  0.762 0.356 -0.142  0.730 -1.127 -0.555 -0.267 

    𝜷𝟑 -0.112 -0.599 -0.641  -0.275  0.063 -1.235 -0.057 0.840 0.398 1.824 -0.685 

    𝜷 𝟒 -0.139 1.121 -0.775  0.275  -0.09   0.302 -0.499 1.120 -1.763 0.172 -1.102 

    𝜷𝟓 0.753 -0.377  0.344 -0.91  -0.17  0.044 -0.835 0.115 -0.925 -0.460 -0.423 

    𝜷𝟔 0.174 -0.378  0.043 -0.366  0.356 -1.336 -1.209 0.285 0.632 0.901 -0.317 

    𝜷 𝟕 -0.702  -0.930  -1.167 -0.541 -0.335 0.061 -0.120  0.420 0.067 0.705 -0.057 

    𝜷𝟖 -0.585 -0.786 -0.661 -0.182  0.786 0.181 -0.439  0.491 -0.765 0.688 -0.763 

    𝜷𝟗  0.095  0.750 -0.403  0.372  0.367  0.173 -0.160 -0.004 -0.929 -0.805 -0.117 

      𝜷𝟏𝟎 0.254 0.437 -0.072 -0.067  -0.17 -0.284 -0.274 -0.165 0.907 0.018 -0.127 

      𝜷𝟏𝟏   0.004 -0.140 -0.378  0.53  0.058  0.138  0.031 -0.198 -0.020 -0.322 -0.870 

   

Table 2  Regression coefficients of QRNN for random network structural 10 proteins and scale-free 

structural 2 proteins while the sample size per protein is n=100. 

 
weights case1 case2 case3 case4 case5 case6 case7 case8 case9 case10 case11 

    𝜷𝟎 1.006   -1.69  1.006 -1.405 -0.343 0.797 -0.056 0.193 -0.280  2.010  -1.871 

    𝜷𝟏 0.006  -0.19 0.006    0.150 1.204 -0.072 -2.097 -0.356 -0.078 1.303  -0.840 

    𝜷𝟐 1.131 1.105 1.131   0.212  0.462 -0.552 -1.139  1.470 0.239 -1.883 0.238 

    𝜷𝟑  0.576 -0.186 0.576  -0.167 -0.652 -0.144 -0.700 -0.286 2.478 2.842 -0.215 

    𝜷 𝟒 -0.116 0.839 -0.117  -0.58  -0.499  -0.698 1.942 0.727 -1.020 0.442  1.517 

    𝜷𝟓 -0.016 -1.068 -0.016 -0.56 1.236 -0.824 -0.019 -0.026 -0.233 -2.409 1.176 

    𝜷𝟔 -0.102  0.142  -0.10   0.430 -0.801 0.733 0.024 0.126 0.248 -0.877 -1.048 

    𝜷 𝟕 -0.068  -0.107  -0.068 -0.715  0.402 0.044 -0.241  0.881 0.799 0.552 0.005 

    𝜷𝟖  0.134 -0.034  0.134 -0.923  0.265 2.023 -0.757  0.205  0.582 -0.366 -1.118 

    𝜷𝟗  0.100  0.015  0.100  0.324  -1.75  -1.859 1.694 -0.077 -1.078 -0.840 -1.006 

    𝜷𝟏𝟎 0.624 0.211  0.625  0.646 0.084 -0.528 1.099 1.059 0.371 0.397 0.604 

    𝜷𝟏𝟏  0.155 -0.597  0.155  -1.10 -0.062 -0.415 -0.377   0.146  0.886 -0.573 -0.543 

    𝜷𝟏𝟐 -0.114   0.135 -1.114 -1.218 -1.273 -0.220  0.486 0.492 0.408 -2.123  1.214 

    𝜷𝟏𝟑 0.996  -0.41   -0.996    0.556 0.710 -1.350  0.024  0.014 -1.715 1.598 -0.417 

    𝜷 𝟏𝟒 0.141 -0.218 0.141  -0.691  -0.85  0.838 -2.403  0.560 0.606 -0.987 0.245 

    𝜷𝟏𝟓 0.888  -0.366 0.888  -0.189  0.041 -1.342  0.455 -0.409 1.257 0.455 -0.614 

    𝜷𝟏𝟔 -0.215 -0.860 -0.216  0.178  0.035  -0.011  0.214 0.344 0.033 -0.269 0.864 

    𝜷 𝟏𝟕  0.434 -0.796 0.434 -0.438 -0.237   0.061  0.093 -0.145 0.101 1.530 0.191 

    𝜷𝟏𝟖 -0.400 -0.427   -0.39   0.159 -0.369  0.611  1.163 0.550 0.076 0.987 2.554 

    𝜷𝟏𝟗 0.108  0.370  1.108  0.004 -0.103  0.058  1.345 0.231 1.259 0.202 0.245 

    𝜷𝟐𝟎  0.126  -0.369   0.126  0.228  0.105 -0.573 -0.136 -0.749  -2.138 1.248 -1,396 

    𝜷𝟐𝟏 -0.412  0.304 -0.412  -0.17  0.181  0.317  0.132  0.953 1.000 -0.247 -0.301 

    𝜷𝟐𝟐  0.157  0.179  0.156 -0.172 -0.051  0.265  0.126 -0.171 -0.044  0.184 0.215 

    𝜷𝟐𝟑 -0.048 -0.205 -0.048  -0.11  -0.051 -0.043 -0.263 0.032 -0.041 -0.299 -0.016 
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Coeff. case12 case13 case14 case15 case16 case17 case18 case19 case20 case21 case22 

    𝜷𝟎 -1.785  -0.896  0.775 -1.994 -0.393 -1.768 0.687 0.437 -0.319 -1.135 -0.349 

    𝜷𝟏 -0.521   0.880 0.926   -1.148 1.126 -0.514  0.895 2.332 -0.922 -0.509 -0.278 

    𝜷𝟐 0.923 -0.199 -1.785  -0.347  1.365 3.725  1.138 -0.757 0.339  0.145  0.549 

    𝜷𝟑 1.146 -0.826 -0.030  1.141  0.233 -0.029 -0.011 0.194 0.705 -0.131  0.131 

    𝜷 𝟒 -1.082  0.639 -0.692  0.219 -0.125   1.652  0.189 0.566  0.312 0.920 0.275 

    𝜷𝟓 1.183 0.139  -0.976 0.206  0.324 -1.259 -0.311 -1.198 -0.063  0.713 -0.409 

    𝜷𝟔 1.866 -0.685 -0.055  0.537  1.859 -0.292  0.339 -0.218 0.007 -0.635 -0.157 

    𝜷 𝟕 -1.123 -0.149  -0.863  0.502 0.263 1.154 1.270 -0.975 0.492 0.003  0.307 

    𝜷𝟖 -0.253 -0.008 -0.760  1.024  0.922 -1.825  0.020 -0.458  0.210 -0.677  0.603 

    𝜷𝟗 -0.591  0.184  0.959 -0.042   0.040 -1.023  -0.375 0.295  0.065 -0.610 -0.002 

    𝜷𝟏𝟎  -1.664 0.035  -1.017 0.475 -0.384 1.778  0.311 1.327 1.745 0.366  0.541 

    𝜷𝟏𝟏  3.339  0.627 -1.571  0.125 -0.011 -1.620  -0.341 -0.990 0.262 -0.329  0.863 

    𝜷𝟏𝟐  -2.193   0.326 -0.462  1.066 0.194 0.819 0.655 0.971 1.175  0.736 -0.479 

    𝜷𝟏𝟑  1,151  0.179 1.657    0.856 -0.081  1.771  -1.007 0.366 0.802 -0.253 0.728 

    𝜷 𝟏𝟒 -0.671 -1.022 -0.134  0.706  0.322 0.367 2.667 -0.434 -0.689  0.148 -1.300 

    𝜷𝟏𝟓  -1.007  0.654 0.724  -0.033 -0.688 -0.831 2.328 -0.297 0.517 -0.373  0.672 

    𝜷𝟏𝟔  -0.316 -0.182 0.558 -0.719  2.274  -0.680 0.188 -1.569 -0.003 0.524 0.283 

    𝜷 𝟏𝟕 0.531 -0.243  -0.463 0.244 -0.388  0.492 -1.187 -0.903 -0.223  0.116  0.041 

    𝜷𝟏𝟖  -0.948 -1.021 -0.285 1.203  0.420 -0.064 0.815 0.083 -0.185 1.549 -0.330 

    𝜷𝟏𝟗  -3.099 0.509 -1.058 0.734 0.005 -0.034  0.716 -0.762 -0.186 0.149  0.334 

    𝜷𝟐𝟎  3.606 -0.551 1.450 -1.457 -1,510 1.589 -0.294  1.362  0.900 -0.847  0.315 

    𝜷𝟐𝟏  0.905 -0.054  0.385 -0.066  0.525  0.238 -0.773 1.330 -0.018 -0.182  0.676 

    𝜷𝟐𝟐   1.015 -0.143    1.024 -0.095 -0.142 3.026  0.103 1.005 -0.813 0.130 -0.893 

    𝜷𝟐𝟑  -0.119 -0.069 -0.029 -0.033  0.042 -0.068   -0.109 -0.228 -0.124 -0.428 -0.021 

 

Table 3  Regression coefficients of QRNN for scale-free structural 20 proteins and random network 

structural 4 proteins while the sample size per protein is n=100. 

 
Coeff. case1 case2 case3 case4 case5 case6 case7 case8 case9 case10 case11 

    𝜷𝟎 0.420 -0.431  -0.759 0.492 -0.167 1.572 0.998 -2.081 0.757 -0.630  -0.630 

    𝜷𝟏 0.612  0.514 -0.423    0.612 0.234 -0.201 0.978 0.621 -0.035 -0.852  -0.852 

    𝜷𝟐 0.118 -1.278 -0.334   0.118  0.146 1.617 -1.067  1.364 0.221 -1.156 -1.156 

    𝜷𝟑 -0.025  0.139 -0.572  -0.025 -0.285  0.406 -2.178  0.378 0.574 2.014 2.014 

    𝜷 𝟒 0.886 -0.475  1.012  0.885 -0.383   0.003 -2.649 -0.484  0.941 -0.668 -0.668 

    𝜷𝟓 0.376 -1.070 -1.130  0.376 -1.837  0.451  0.725 1.108  -2.322 0.657 0.657 

    𝜷𝟔 -1.692  0.105 -0.131  -1.692 -0.821 -0.347 -1.894 -0.839 0.894 3.898 3.898 

    𝜷 𝟕 1.261  -0.189   0.292 1.261  0.616 -3.251 1.248  2.284 1.225 -0.331 -0.332 

    𝜷𝟖 -0.137 -0.609  0.210 -0.137  0.199  -0.151 -2.324  0.924  -0.596 1.149  1.149 

    𝜷𝟗  0.638  0.153  0.832  0.638  0.475  0.322 0.713  0.959 -2.817  0.365 0.365 

    𝜷𝟏𝟎 -2.099    -0.027  0.200 -2.099 -1.007 -1.111 0.689 -0.234 1.512 0.356 0.356 

    𝜷𝟏𝟏  0.833 1.182 -0.399  0.833  0.589  0.760 1.037   0.314 -3.522  0.231 0.232 

    𝜷𝟏𝟐 -0.543  -0.187 -1.541 -0.544  -1.083  0.531  0.076 0.549 -2.001   0.697  0.697 
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    𝜷𝟏𝟑 0.695  0.838   -0.102    0.695 0.292 -0.094  0.520 -0.593 -2.311 -0.321 -0.321 

    𝜷 𝟏𝟒 1.624 -1.067 -0.315  1.624  0.212  0.446 -1.111  0.182 -0.965 -0.803 -0.802 

    𝜷𝟏𝟓 0.842 -1.370 0.461  0.842  0.436 -0.214  0.418  0.186 -1.438 0.104  0.104 

    𝜷𝟏𝟔 -0.081 2.736  0.333 -0.082 -0.935 -0.743  0.558 0.724 0.307 1.442 1.442 

    𝜷 𝟏𝟕 -2.062  0.763 0.408 -2.061 -0.518  -0.369  0.497 -0.093 0.299 -0.311 -0.311 

    𝜷𝟏𝟖 1.956  0.784  -1.956   1.956 -0.099 -0.755 -0.550 0.668 -0.171 -0.444 0.444  

    𝜷𝟏𝟗 -0.779  0.386 -0.474 -0.779  0.277  0.048  0.287 -1.389 0.931 -0.332 -0.332 

    𝜷𝟐𝟎 -0.467   0.474   0.560 -0.467 -0.330 -1.434 0.736 -0.080  -0.376 -0.254 -0.254 

    𝜷𝟐𝟏 -0.404  0.127 -0.536  0.404 -0.987  0.180 -1.631 -0.001 0.713 -0.550 -0.550 

    𝜷𝟐𝟐  0.681 -0.320 -0.591 0.681 -0.192  0.743 -0.453 1.848 -0.629 -1.030 -1.031 

    𝜷𝟐𝟑 -0.152 -0.185 -0.249 -0.153  -0.064 -0.094  0.006 -0.302 -1.265   0.219 0.219 

 
Coeff. case12 case13 case14 case15 case16 case17 case18 case19 case20 case21 case22 

    𝜷𝟎 -0.213  0.214  0.172 0.730 -1.883 -0.127 -0.169 -0.946 -0.453 5.613 5.613 

    𝜷𝟏 0.618   1.096 0.042   0.094 -1.860 -0.236  -1.406 -0.574  0.464  0.513 0.514 

    𝜷𝟐 0.391 0.279 0.186 0.248 -1.023 0.462  0.391 -0.122 1.604 -4.468 -4.468 

    𝜷𝟑 -0.125 -0.368 0.542  0.109 -0.039 -0.393 -0.883 -0.088 0.241 -2.711 -2.712 

    𝜷 𝟒 -1.835  -0.598 0.061  0.779  0.218  -0.155 -0.830 -0.425  0.161 -2.703 -2.703 

    𝜷𝟓 -0.216 -0.001  -0.617 -0.033 -0.314 -0.343 -0.141 0.310 -0.006 -1.721 -1.722 

    𝜷𝟔 -0.294 -0.648 0.242  1.235 -0.692  0.528  0.053 0.809 -0.061 -2.290 -2.290 

    𝜷 𝟕 -0.043 -0.354  0.249 -0.381 -0.359 0.721 0.103 -0.519 -0.225 1.897 1.897 

    𝜷𝟖 0.801 1.422 0.266 -0.608  2.082 0.472  0.238 0.839  0.609 -2.967 -2.967 

    𝜷𝟗 -0.413  0.030 -0.492 0.329  0.696 -0.538  -0.271 0.684 -0.513 4.518 4.518 

    𝜷𝟏𝟎  -0.155 -0.312  1.544  0.045   0.913 -0.051  0.373 0.730 -0.823 1.865  1.865 

    𝜷𝟏𝟏  0.293  -0.286 -0.558 0.321 -0.402 -0.318  0.281 -1.312 -0.734 -0.421 -0.421 

    𝜷𝟏𝟐  0.877  0.076 -0.183 -1.471 1.069 -0.961 -0.319 -0.417 0.018 -3.033 -3.033 

    𝜷𝟏𝟑  0.147  0.851 -0.211    0.475 1.741  1.950  -0.045 -0.021 0.705 -0.494 0.493 

    𝜷 𝟏𝟒 0.111  0.458 1.060  -2.219   3.411 -0.741 -0.304 -0.283 -0.897 -3.394 -3.394 

    𝜷𝟏𝟓  -0.955 -0.053 1.026  1.679 2.324 0.827 -0.361 0.798 0.241 -2.123 -2.123 

    𝜷𝟏𝟔  0.369  0.348 -0.150 -0.243 -2.183  -0.673 0.251 -0.014 0.146 -0.147 -0.147 

    𝜷 𝟏𝟕 -1.327  0.379 -0.580 -0.963 0.100  0.040 -1.474 -2.097 -0.005  2.861  2.860 

    𝜷𝟏𝟖  -0.367 -0.034  0.121 0.783 0.174 0.982 0.206 0.524 -0.664 0.939 0.939 

    𝜷𝟏𝟗  -0.239 0.133  0.407 0.919 0.082 0.847  0.015 -0.256 -0.342 -5.137 -5.137 

    𝜷𝟐𝟎  0.187 0.458 0.104 -0.541 -0,502 -0.083 -0.556  0.048 -0.003 0.363  0.363 

    𝜷𝟐𝟏  -0.137 0.038 -0.266 -0.582  0.283 -0.657 -0.332 0.585 -0.010 0.071  0.071 

    𝜷𝟐𝟐   0.496 -0.446  -0.158 -0.035 0.054 -0.448  0.085 0.078  0.171 -6.406 -6.406 

    𝜷𝟐𝟑  -0.088 0.207 0.229 -0.096  0.091  0.176   -0.143 -0.080 -0.243 -0.232 -0.232 

 

Table 4  Regression coefficients of QRNN for random network structural 20 proteins and scale free 

structural 4 proteins while the sample size per protein is n=100. 
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Once the estimated networks are constructed, we convert the strength of the interaction into binary forms 

in such a way that the values less that the absolute value of 0.1 are set to zero and the values greater than 

this threshold are equated to one, as stated beforehand. In this calculation, the threshold value is chosen by 

considering the average of estimated regression coefficients from both systems. The accuracy and 

sensitivity measures computed from the comparison of estimated systems via the actual system are shown 

in Table 5. In the table, the first column indicates the 12-protein system and the second column presents 

the 24-protein system. Thereby, for example, 0.934 and 0.912 imply the accuracy and senstivity value, 

respecitvely, computed under 12 –protein system where 10 proteins have scale-free and 2 proteins have 

random network structure, and similarly, 0.829  and 0.789 refer to the accuracy and sensitivity value, in 

order, found under 24-protein system where 20 proteins have scale-free and 4 proteins have random 

network structure. Accordingly, the tabulated results indicate that both accuracy and sensitivity values are 

high in modelling via QRNN. Therefore, we believe that the proposal QRNN model can be a promising 

alternative model in the estimation of the network structures when the system has outliers or it is generated 

as a mixture of different network topologies. 

 
 Measures p=10 p=20 

 Scale-free  Accuracy 0.934 0.829 

  Sensitivity 0.912 0.789 

Random     Accuracy 0.917 0.953 

                      Sensitivity 0.891 0.912 

 

Table 5 Accuracy and sensitivity measures of simulated 4 data sets which are modelled by quantile 

regression neural networks. 

 

 

5. Conclusion 

 

In this study, we have proposed quantile regression neural networks when networks system have outlier 

values. We have performed QRNN for each protein in the system as a separate regression and evaluates the 

regression coefficients as the strenghth of the interactions between proteins The results have shown 

acceptable success via QRNN although all the simulated data have outlier values. This outcome indicates 

that QRNN can be used to infer complex PPI structures which have anomalies under different topologies 

of networks. Whereas, in order to get a general conclusion, we think to extend the study via a comprehensive 

simulation scenarios and real data analyses which will be done as future work.  
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Abstract 

Riesz space and statistical convergence are the natural and efficient tools in the theory of 

functional analysis. The statistical convergence is handled with the natural density of subsets on the 

natural numbers. Natural density of sets value over the closed interval [0,1]. In this work, we aim to 

introduce a concept of vector valued density on Riesz spaces, and so, we define a statistical 

convergence by utilizing the new density. In addition to the fact that results obtained in the settings of 

Riesz spaces will shed light on the case of convergences on Riesz spaces and Banach lattices.  

 

          Keywords: Riesz space, Riesz valued density, weak order unit. 

 

1. Introduction 

 

Riesz space and statistical convergence are the natural and efficient tools in the theory of 

functional analysis. Riesz space that was introduced by F. Riesz in [18] is an ordered vector space having 

many applications in measure theory, operator theory, and applications in economics (cf. [1,2,24] ). On 

the other hand, the statistical convergence is a generalization of the ordinary convergence of a real 

sequence, and the idea of statistical convergence was firstly introduced by Zygmund [25]. After then, Fast  

[10] and Steinhaus [21] independently improved that idea. Several applications and generalizations of the 

statistical convergence of sequences have been investigated by several authors (cf. [10,12,16,21,23]). In 

general, the statistical convergence is handled with the natural density of subsets on the natural numbers 

ℕ. Natural density of sets value over the closed interval [0,1]. In this work, we aim to introduce a concept 

of vector valued density on Riesz spaces. In the settings of Riesz spaces will shed light on the case of 

convergences on Riesz spaces and Banach lattices (cf. [4,5,17,23]). The study related to this papers are 

done by Schmidt in [14,19], where vector measures are introduced in Riesz spaces, and done by Tan in 

[22], where some properties of Riesz space valued measures are obtained. 

The generalized asymptotic density was investigated by Buke [7], and Freedman and Sember [11] 

introduce a general concept of density. We remind that the natural (or, asymptotic) density of a subset 𝐾 

of natural numbers is defined by 

𝛿(𝐾): = lim
𝑛→∞

 
1

𝑛
|{𝑘 ≤ 𝑛: 𝑘 ∈ 𝐴}| 
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where the vertical bar of sets will stand for the cardinality of the given sets. We refer the reader to an 

exposition on the natural density of sets to [7,10,11,12,16]. In the same way, a sequence 𝑥 = (𝑥𝑘) is 

called statistical convergent to 𝐿 provided that 

lim
𝑛→∞

 
1

𝑛
|{𝑘 ≤ 𝑛: |𝑥𝑘 − 𝐿| ≥ 𝜀}| = 0 

for each 𝜀 > 0. Then it is written by 𝑆 − lim𝑥𝑘 = 𝐿. 

Recall that a real vector space 𝐸 with an order relation "s" is called an ordered vector space if, for each 

𝑥, 𝑦 ∈ 𝐸 with 𝑥 ≤ 𝑦, 𝑥 + 𝑧 ≤ 𝑦 + 𝑧 and 𝛼𝑥 ≤ 𝛼𝑦 hold for all 𝑧 ∈ 𝐸 and 𝛼 ∈ ℝ+. An ordered vector space 

𝐸  is called a Riesz space or a vector lattice if, for any two vectors 𝑥, 𝑦 ∈ 𝐸 , the infimum and the 

supremum 

𝑥 ∧ 𝑦 = inf{𝑥, 𝑦}  and  𝑥 ∨ 𝑦 = sup{𝑥, 𝑦} 

exist in 𝐸, respectively. The order convergence is the basic tool of Riesz spaces.  

Definition 1.1. A sequence (𝑥𝑛) of a Riesz space is said to be order convergent to a vector 𝑥 (in symbols 

𝑥𝑛 →
o

𝑥 ) whenever there exists another sequence (𝑦𝑛) with 𝑦𝑛 ↓ 0 and |𝑥𝑛 − 𝑥| ≤ 𝑦𝑛 for all indices 𝑛. 

Recall that a Riesz space 𝐸 is called Archimedean whenever 
1

𝑛
𝑥 ↓ 0 holds in 𝐸 for each 𝑥 ∈ 𝐸+. 

Every Riesz space is not Archimedean. To see this, we give the following example. 

Example 1.2. Consider the Riesz space 𝐸: = ℝ2 with lexicographical ordering: (𝑥1, 𝑥2) ≤ (𝑦1, 𝑦2) if and 

only if 𝑥1 < 𝑦1 or 𝑥1 = 𝑦1  and 𝑥2 ≤ 𝑦2. Then 𝐸 is not Archimedean because, for the positive element 

(1,1) ∈ 𝐸, we have 
1

𝑛
(1,1) ↓, but 

1

𝑛
(1,1) ≠ 0 

A subset 𝐼 of a Riesz space 𝐸 is said to be a solid set if, for each 𝑥 ∈ 𝐸 and 𝑦 ∈ 𝐼 with |𝑥| ≤ |𝑦|, it 

follows that 𝑥 ∈ 𝐼. A solid vector subspace is called an order ideal. A positive element 𝑒 in a Riesz space 

𝐸 is called order unit (or, strong order unit) if the principal ideal 𝐼𝑒: = {𝑥 ∈ 𝐸: ∃𝜆 > 0 with |𝑥| ≤ 𝜆𝑒} 

generated by 𝑒 is the whole space 𝐸, i.e., if, for every 𝑥 ∈ 𝐸, there exists some positive scalar 𝜆 > 0, 

depending upon 𝑥, such that |𝑥| ≤ 𝜆𝑒( cf. [15, Def.21.4])). We refer the reader for an exposition on the 

order unit to [1,2,3,15,17]. 

Example 1.3. Consider a compact Hausdorff space 𝐾. Then any strictly positive function 𝑇 ∈ 𝐶(𝐾) is a 

strong order unit. Indeed, take 𝜆: = min𝑥∈𝐾  𝑇(𝑥) for 𝑇 ∈ 𝐶(𝐾). Then, we have 𝜆 > 0 and 𝑇 ≤ 𝜆 ⋅ 𝟙𝐾 . i.e., 

𝑇 is a strong unit of 𝐶(𝐾). 
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Not all Riesz spaces have order unit elements. To see this, we proceed by contraposition as 

follows example. 

Example 1.4. Take 𝑝 ∈ [1, ∞). Then the Riesz spaces 𝑐0 and ℓ𝑝 do not have order units. 

Assume that 𝐸 is a Riesz space and ℱ is an algebra of subsets of any nonempty set 𝑋. Then a set 

function 𝜇: ℱ → 𝐸 is called a Riesz space valued measure or additive measure whenever 𝜇 is additive for 

each disjoint elements in ℱ, i.e., 𝜇(𝐴 ∪ 𝐵) = 𝜇(𝐴) + 𝜇(𝐵) for all sets 𝐴 ∩ 𝐵 = ∅. The space of additive 

measures is an ordered vector space with the order, 𝜇1 ≤ 𝜇2 if and only if 𝜇1(𝐴) ≤ 𝜇2(𝐴) for every 𝐴 in 

ℱ. Moreover, if the supremum sup𝐵∈ℱ  |𝜇(𝐵)| exists in 𝐸 then the Riesz space valued measure 𝜇 is called 

order bounded. Generally, the space 𝑎(ℱ, 𝐸) of Riesz space valued measures fails to be a Riesz space. 

But, the space oba (ℱ, 𝐸) a Dedekind complete Riesz space whenever 𝐸 is a Dedekind complete Riesz 

space. We refer the reader for more information on Riesz space valued measure to [6,14,19,22]. Unless 

otherwise stated, we consider all algebras as infinite. 

2. Riesz valued density 

 

In this section, we introduce a new concept of density on Riesz spaces with respect to order unit 

elements. 

Definition 2.1. Let 𝐸 be a Riesz space with an order unit 𝑒 and ℱ be an subfield of 𝒫(ℕ) which contains 

all the finite subsets of ℕ. Then a Riesz space valued measure 𝜇: ℱ → [0, 𝑒] is called Riesz valued density 

if it holds the following properties: 

a) 𝜇(𝑘) = 0 for all 𝑘 ∈ ℕ; 

b) (b) 𝜇(𝐴) + 𝜇(𝐵) − 𝜇(𝐴 ∩ 𝐵) ≤ 𝑒 for all 𝐴, 𝐵 ⊆ ℕ 

c) (c) 𝜇(𝐴) = 𝑒 − 𝜇(ℕ ∖ 𝐴). 

Remark 2.2. Let 𝜇: ℱ → [0, 𝑒] be a Riesz valued density. 

i. It follows from Definition 2.1(𝑎) that (𝐴) = 𝜇(𝐵) whenever the symmetric difference 𝐴 △ 𝐵 is 

finite (or equivalently, 𝐴 ∼ 𝐵 ). 

ii. (ii) 𝜇(𝐴) ≤ 𝜇(𝐵) whenever 𝐴 ⊆ 𝐵  because 𝜇  is finitely additive. Specially, 𝜇(𝐴) = 0 whenever 

𝐴 ⊆ 𝐵 and 𝜇(𝐵) = 0 holds for 𝐴, 𝐵 ∈ ℱ. 

iii. (iii) By property (𝑖𝑖), 𝜇(𝐴𝑛) ↓ 0 in ℱ implies that 𝜇(𝐴𝑛) ↓ 0 in [0, 𝑒]. 

iv. (iv) A measure 𝛾: ℱ → [0, 𝑒], defined by 𝛾(𝐴) = sup𝐵∈ℱ  𝜇(𝐴 ∩ 𝐵) for each 𝐴 ∈ ℱ, is the smallest 

Riesz valued density majorizing 𝜇. 

v. It follows from [19, Cor.2.2] that every Riesz valued density has a Jordan decomposition such that 

𝜇 = 𝜇+ + 𝜇−. 
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Riesz valued density is an extension of natural density. To see this, consider the Riesz space 𝐸 as real 

numbers ℝ with the order unit 1 . However, the converse does not need to hold in general. To see this, we 

consider [6] for the next example. 

 Example 2.3. Take the algebra ℱ: = 𝒫(ℕ) with a sequence (𝑥𝑛) that is a pairwise disjoint nonempty sets 

in ℱ. Now, choose points of the sequence and for each 𝑛 denote the function from ℱ to ℝ by 

𝑞𝑛(𝐴): = {
1, 𝑥𝑛 ∈ 𝐴
0, 𝑥𝑛 ∉ 𝐴

 

for all 𝐴 ∈ ℱ. Hence, 𝑞𝑛 is a real valued measure for each 𝑛 ∈ ℕ. Let us define another function 𝑢: ℱ →

ℝ such that 

𝑢(𝐴): = ∑  

∞

𝑛=1

𝜋𝑛

4𝑛
𝑞𝑛(𝐴) 

for every 𝐴 ∈ ℱ. Thus, 𝑢 is finitely additive. Moreover, the sequence (
𝜋𝑛

4𝑛) is linearly independent over 

the rational field, and it can be imbedded the Hamel base ℬ for the real numbers. Next, take the Riesz 

space 𝐸: = ℝ with an order unit 𝑒, and define the Riesz space valued function 𝑣: ℬ → 𝐸 such that 

𝑣(𝑥): = {

1

𝑛
𝑒, 𝑥 ∈ (

𝜋𝑛

4𝑛
)

0, 𝑥 ∈ ℱ ∖ (
𝜋𝑛

4𝑛
)

 

for all 𝑥 ∈ ℬ . It follows from the dominatedness of ℬ  in real numbers that 𝑣  has a positive linear 

extension �̂� to all real numbers (cf. [2, Thm.1.10]). Let us define a positive measure 𝜇: ℱ → [0, 𝑒] by 

𝜇(𝐴): = �̂�(𝑢(𝐴)). Then, 𝜇 is a Riesz valued density. But, it is not natural density. 

Recall that a Riesz space 𝐸 has the 𝑃𝑅-property whenever there exists an increasing sequence ℎ𝑛  of 

positive elements in 𝐸 such that, for each 𝑥 ∈ 𝐸, there are some scalar 𝜆 > 0 and 𝑛𝑥 such that |𝑥| ≤ 𝜆ℎ𝑛𝑥
 

(cf. [20,22]). 

Lemma 2.4. Every Riesz space with an order unit has the PR-property. 
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Abstract 

Complex uncertain variables are measurable functions from an uncertainty space to the set of 

complex numbers and are utilized to model complex uncertain quantities. The main aim of this study 

is to investigate rough statistical convergence of order α (     ) for complex uncertain double 

sequences and work various convergence concepts such as, rough statistical convergence of order α, 

rough statistical convergence of order α almost surely, rough statistical convergence of order α in 

measure, rough statistical convergence of order α in mean, rough statistical convergence of order α in 

distribution of complex uncertain double sequences. We also obtain some relationships among them. 

 

          Keywords: Statistical convergence, rough statistical convergence, complex uncertain sequence, 

uncertainty theory. 

 

1. Introduction 

 

Zygmund [1] used the term "almost convergence" to describe the concept of statistical convergence. It 

was formally presented by Fast [2]. The thought of statistical convergence of double sequences was 

proposed by Mursaleen and Edely [3]. 

The theory of uncertainty play a vital role not only in pure mathematics. The majority of human 

decisions are made in the face of uncertainty. A specific sort of mathematical measure can be used to 

represent the performance of an uncertainty. Fuzziness is another paradigm for uncertainty pioneered by 

Zadeh [4] in 1965 using membership functions. Fuzzy set theory and probability theory are undeniably 

valuable tools for dealing with uncertainty. However, in real life, natural language expressions such as 

"middle age", "about 30 kilometers", "about 15 degrees Celsius" and "roughly 6 kilograms" are 

commonly employed to represent imperfect knowledge or facts. But, multiple studies have demonstrated 

that such utterances are neither random nor fuzzy. These facts encourage the development of uncertainty 

theory as an axiomatic mathematics branch for representing human uncertainty. To model uncertainty, 

Liu [5] established an uncertainty theory that is a branch of mathematics based on normality, 

monotonicity, self-duality, countable subadditivity, and product measure axioms. Liu [5] defined the 

concept of uncertain variables as a function from a measurable space to ℝ. If real numbers are rebuild 
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with a set of complex numbers, it is named a complex uncertain variable which was worked by Peng [6]. 

Recently, various researchers have also done significant studies based on complex uncertain variables, 

such as (see [7-13]). The conception of rough convergence was first investigated by Phu [14] in finite-

dimensional normed spaces. Phu [15] expanded the results given in [14] to infinite-dimensional normed 

spaces. In [16], Aytar investigated rough statistical convergence. The notion of λ-statistical convergence 

was examined by Mursaleen [17]. Das et al. [18] expanded these ideas in 2015, including rough λ-

statistical convergence in probability. Also Maity [19] proposed the notion of rough statistical 

convergence of order   (     ). Rough convergence of double sequences was investigated by Malik 

and Maity [20-21]. Debnath and Das [22] examined some features of rough statistical convergence of 

complex uncertain sequences. 

For the purpose of delve deeper into uncertainty theory, we defined rough statistical convergence of 

order α for complex uncertain double sequences and worked on some convergence conceptions such as 

rough statistical convergence of order α almost surely, rough statistical convergence of order α in 

measure, rough statistical convergence of order α in mean, rough statistical convergence of order α in 

distribution of complex uncertain double sequences, obtaining some inter-relationships between them. 

 

2. Main Results 

 

Definition 2.1: Let r be a non-negative real number. A complex uncertain sequence *   + is called to be 

rough statistical (rst) convergent almost surely of order   to   with roughness degree r provided that for 

any event   with  ( )    such that 

 

   
     

 

(  ) 
|*(   )         ‖   ( )   ( )‖     +|    

 

for every    . If the above equation holds,   is an rough statistical limit point of *   + which is usually 

no more unique (for      ). So, we have to consider r-statistical limit set of  *   + of order   itendified 

by 

 

   
      

 (   )  {      
     

 

→      }  
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Example 2.1. Consider the uncertainty space (     )  It becomes   *         +  with  ( )  

∑   (   )         We determine a complex uncertain variable by 

 

   ( )  {
  (  )               

         
 

for           and 

 

   ( )  {
  (   )           

         
 

 

for           and      Then,    
     

 

→       where 

 

   
      

 (   )  {
                                                   
         ,       -             

 

 

Additionally, we get that the sequence *   + is not rough convergent a.s. of order   to  , hovewer it is rst-

convergent a.s. of order   to   for any    . 

Theorem 2.1.  

i. If    
     

 

→           , then     
     

 

→              where      

ii. If    
     

 

→            and    
     

 

→             then          
     

 

→                 where 

       

Proof. It is obvious, so omitted. 

Theorem 2.2. The r-statistical limit set of a complex uncertain sequence of order   is convex. 

Proof. Presume that          
      

 (   ) for the complex uncertain double sequence *   + and let 

    be given. Determine 

  ( )  *(   )       ‖      ‖     +, 
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and 

 

  ( )  {(   )       ‖      ‖     }  

 

Since          
      

 (   )  we get  (  ( ))    and  (  ( ))     So, we acquire 

 

‖    [(   )      ]‖  ‖(   )(      )   (      )‖       

 

for all (   )    
 ( )    

 ( ) and every   ,   -  Since  (  
    

 )     we obtain 

 

 *(   )       ‖    ,(   )      -‖     +     

 

namely, [(   )      ]     
      

 
(   )  which gives the convexity of the set    

      
 (   )  

Definition 2.2: A complex uncertain sequence *   + is named to be rough statistical convergent in 

measure of order   to   with roughness degree r provided that for       such that 

 

   
     

 

(  ) 
|*(   )          *  ‖   ( )   ( )‖   +     +|    

 

for every    . We write    
      

 

→         

Example 2.2. Contemplate the uncertainty space (     ) to be   **         + with 
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 ( )  

{
 
 

 
          

   

 (   )   
                 

   

 (   )   
     

            
   

 (   )   
                  

   

 (   )   
    

                         

 

 

and think the uncertain variable *   + determined by 

 

   ( )  {
  (   )           

          
 

 

for           and    ( )     for            Also take      Then, we obtain 

 

   
     

 

(  ) 
|*(   )          *  ‖   ( )   ( )‖   +     +|     

 

for every     and    . This demonstrates that *   + is rst-convergent in measure of order   to   for 

     In addition, for     
 

 
  the sequence *   + is not rough convergent in measure of order   to  , 

hovewer it is rst-convergent in measure of order   to    

Theorem 2.3. If    
      

 

→         and     
      

 

→          then  *‖     ‖       +     

Proof. Assume that     be any two positive real numbers and let 

 

(   )  {(   )        .‖      ‖     
 

 
/  

 

 
}

 {(   )        .‖      ‖     
 

 
/  

 

 
} 

 

(because the asymptotic density of both sets is equal to one, the existence of (   ) is assured). So, 
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 *‖     ‖         +   .‖      ‖     
 

 
/   .‖      ‖     

 

 
/     

 

This means that  *‖     ‖       +     

Theorem 2.4.   

i.    
      

 

→            
      

 

→        , where      

ii.    
      

 

→        and    
      

 

→               
      

 

→           

iii.    
      

 

→        and    
      

 

→               
      

 

→           

iv.    
      

 

→         then for all     there exists a (   )       so that any     

 

   
     

 

(  ) 
|*(   )          *‖       ‖      +   +|     

 

Proof. Let     be any positive real number. Then for 

i. The proof is self-evident, thus it is removed. 

ii. When    , then the claim is obvious. So, presuming    , then 

 

*(   )        (‖       ‖  | |   )   +

 {(   )        (‖     ‖    
 

| |
)   }  

 

As a result,     
      

 

→          

iii.  (‖(       )  (   )‖         )   (‖(     )  (     )‖         )  

 .‖     ‖     
 

 
/   .‖     ‖     

 

 
/  

This implies 
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*(   )        (‖(       )  (   )‖         )   +

 {(   )        .‖     ‖     
 

 
/  

 

 
}

 {(   )        .‖     ‖     
 

 
/  

 

 
}  

 

Hence,        
      

 

→           

iv. Similar to the preceding evidence and hence omitted. 

v. Now, select (   )       be such that  .‖     ‖        
 

 
/  

 

 
 (existence of (   ) is 

guaranteed). Then the claim is obvious from the inequality 

 

 (‖       ‖      )   .‖     ‖     
 

 
/   .‖     ‖     

 

 
/

 
 

 
  .‖     ‖    

 

 
/  

Hence, we obtain 

 

   
     

 

(  ) 
|*(   )          *‖       ‖      +   +|     

 

Theorem 2.5. Rough statistical convergence in measure of order   does not imply rough statistical 

convergence a.s of order  . 

 

Example 2.3. Contemplate the uncertainty space (     ) to be   *         + with 

 

 ( )  

{
 
 

 
          

   

 (   )   
                 

   

 (   )   
 
 

 
 

            
   

 (   )   
                  

   

 (   )   
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and think about the uncertain variable *   + identified by 

 

   ( )  {
  (   )               

         
 

 

Also take    ( )     

Then, for any      we get 

 

 *  ‖   ( )   ( )‖   +   *    +  
   

 (   )   
  

 

Then, the sequence *   + is rst-convergent of order   to   for   
 

 
  But it is not rst-convergent a.s. of 

order   to    

 

Definition 2.3: Assume that             be the complex uncertainty distributions of complex uncertain 

variables        A complex uncertain sequence *   + is defined as rough statistical convergence in 

distribution of order   to   with roughness degree r if for      

 

   
     

 

(  ) 
|*(   )       ‖   ( )   ( )‖     +|     

 

for every     and for all x at which  ( ) is continuous. 

 

Example 2.4. Contemplate the uncertainty space (     ) to be   *         + with 

 

 ( )  

{
 
 

 
          

   

 (   )   
                 

   

 (   )   
 
 

 
 

            
   

 (   )   
                  

   

 (   )   
 
 

 
                         

 

 

and think about the uncertain variable *   + determined by 

 

   ( )  {
  (   )               
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for           and    ( )     for            Also take      Then, for            we 

have the uncertainty distribution of uncertain variable *   + as 

 

   ( )     (    )  

{
 
 

 
 

             
             

  
   

 (   )   
        (   )      

           (   )    

          

 

   ( )  {
                  
                 

                           
 

 

In addition, the complex uncertainty distribution of uncertain variable   is 

 

 ( )  {
                  
                 

                           
 

 

Thus, we get 

 

   
     

 

(  ) 
|*(   )       ‖   ( )   ( )‖     +|     

 

for    . Also, we have that the sequence *   + is not rough convergent in distribution of order   to  , 

but it is rst-convergent in distribution of order   to   for     
 

 
  

 

Definition 2.4: A sequence *   + is said to have rough statistical convergence in mean of order   to   

with roughness degree r if and only if  

 

   
     

 

(  ) 
|*(   )        ,‖   ( )    ( )‖-     +|     

 

for every     and      
 

Example 2.4. Contemplate the uncertainty space (     ) to be   *         + with 
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 ( )  

{
 
 

 
          

   

 (   )   
                 

   

 (   )   
     

            
   

 (   )   
                  

   

 (   )   
     

                         

 

 

and think about the uncertain variable *   + determined by 

 

   ( )  {
  (   )            

           
 

 

for           and    ( )     for            Also take      Then, for            we 

have the uncertainty distribution of uncertain variable *   + as 

 

   ( )     (    )  

{
 
 

 
 

             
             

  
   

 (   )   
        (   )      

           (   )    

          

 

   ( )  {
                  
                 

                           
 

 

In addition, the complex uncertainty distribution of uncertain variable   is 

 

 ( )  {

                  
                 

                           
 

 

Thus, we get for           
 

 ,‖   ( )    ( )‖-  
(   ) 

 (   )   
  

 

So, we get 

   
     

 

(  ) 
|*(   )        ,‖   ( )    ( )‖-     +|     
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for every     and      Also, we acquire that the sequence *   + is not rough statistical convergence 

in mean of order   to    but it rough statistical convergence in mean of order   to   for     
 

 
  

 

Theorem 2.6. Rough statistical convergence in mean of order   does not imply rough statistical 

convergence a.s of order  . 

Example 2.5. Contemplate the uncertainty space (     ) to be   *         + with 

 

 ( )  

{
 
 

 
          

   

 (   )   
                 

   

 (   )   
     

            
   

 (   )   
                  

   

 (   )   
     

                         

 

 

and think about the uncertain variable *   + defined by 

 

   ( )  {
  (   )            

          
 

 

and    ( )     The uncertainty distribution of an uncertain variable *   + is thus obtained as 

 

   ( )     (    )  

{
 
 

 
 

             
             

  
   

 (   )   
                

                 

 

 

for u,v=1,2,…. In addition, the complex uncertainty distribution of uncertain variable   is 

 

 ( )  {
                  
                 

                           
 

 

Thus, we get 

 

   
     

 

(  ) 
|*(   )        *  ‖   ( )   ( )‖   +     +|     
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for        but 

 

   
     

 

(  ) 
|*(   )        *‖   ( )   ( )‖   +     +|     

 

Theorem 2.7. Rough statistical convergence in distribution of order   does not imply rough statistical 

convergence in mean of order  . 

Proof. It is quite simple to demonstrate from the preceding example, thus it has been removed. 

Definition 2.4: A sequence *   + is said to be rough   -statistical convergence in measure of order   to 

   with roughness degree r provided that for        
 

   
     

 

(   ) 
|*           (‖     ‖     )   +|     

 

In that case, we write    
     

 

→        
 

Definition 2.5: A sequence *   + is said to be rough (   )-summable in measure of order   to    with 

roughness degree r if 

 

   
     

 

(   ) 
∑  (‖     ‖     )    

         

 

 

In that case, we write    
  [    ]

 

→          
 

Theorem 2.8. For any complex uncertain sequence *   + the following are equivalent: 

i.    
     

 

→        

ii.    
  [    ]

 

→          
 

Proof. ( )  (  )  First assume that    
     

 

→        Then, we can write 
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(   ) 
∑  (‖     ‖     )

         

 
 

(   ) 
∑  (‖     ‖     )

           (‖     ‖    ) 
 
 

 
 

(   ) 
∑  (‖     ‖     )  

           (‖     ‖    ) 
 
 

 

(   ) 
|*      

     (‖     ‖     )     +  
 

 
|  
 

 
  

 

( )  (  )  Now assume that condition (  ) holds. Then, 

 

∑  (‖     ‖     )

         

 ∑  (‖     ‖     )

           (‖     ‖    )  

  |*           (‖     ‖     )+   |  
 

Hence 

 
 

(   ) 
∑  (‖     ‖     )  

         

 

(   ) 
|*           (‖     ‖     )+   |  

 

As a result    
     

 

→        This completes the proof of the theorem. 

 

Theorem 2.9. If    
     

 

→       and    
     

 

→        then  *‖     ‖       +     
 

3. Conclusion 

 

The notion of rough statistical convergence of complex uncertain sequence has been worked by Debnath 

and Das [23]. In this study, for the first time, we define the concept of rough statistical convergence of 

order α (     )  for complex uncertain double sequences, which is the generalization of 

convergence concepts of complex uncertain variables. These results unify and generalize the existing 

results. It may attract the future researcher’s in this direction. 
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Abstract 

In this study, we aim to propose rough statistical   -convergence of double sequences of order 

α (     )  in normed linear spaces (NLS). We obtain some fundamental features and also 

established some examples to show that this new convergence type is more generalized than the 

rough statistical convergence. In addition, we demonstrate the consequences related to statistically 

  -bounded sets of order α and sets of rough statistically   -convergent sequences of order α. 

 

          Keywords: Rough statistical convergence, rough statistical limit points, normed linear space. 

 

1. Introduction 

 

The thought of statistical convergence of double sequences was proposed by Mursaleen and Edely [1]. 

The conception of statistical convergence of a double sequence is a generalization of the convergence of a 

double sequence in Pringsheim’s sense [2]. Rough statistical convergence for single sequences was 

introduced by Aytar [3] utilizing the notion of natural density, which is a generalization of the rough 

convergence of single sequences [4]. Also Maity [5] proposed the notion of rough statistical convergence 

of order   (     ). Rough convergence of double sequences was investigated by Malik and Maity 

[6]. The authors extended this idea in [7] and examined rough statistical convergence for double 

sequences in NLS. The statistical convergence was worked in random normed spaces [8]. In the study [9], 

the authors investigated rough statistical  -convergence of order   (     ) for single sequences in 

NLS. In this work, we extend the concepts in [9] to double sequences and obtain significant results. 

 

2. Main Results 

 

Definition 2.1: A sequence   *   + in an NLS (  ‖ ‖) is named to be rough   -convergent to 

    provided that for each     there exist     and      so that ‖       ‖       for all 

        

Definition 2.2: A sequence   *   +  in an NLS (  ‖ ‖)  is named to be rough statistically   -

convergent to     provided that for each     there is a     so that 
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|*        ‖       ‖     +|     

 

where   is known as      ( 
 )-limit of a sequence   *   +  

Remark 2.1. For the case      , the notion of rough statistical   -convergence agrees with the 

statistical   -convergence. 

Definition 2.3: A sequence   *   +  in an NLS (  ‖ ‖)  is named to be rough statistically   -

convergent of order   (     ) to     provided that for each     there is a     so that 

 

   
     

 

(  ) 
|*        ‖       ‖     +|     

 

where   is denoted as      
 (  )-limit of a sequence w. We denote    

     
 (  )

→           

In general, the      
 (  ) -limit of a sequence may not be unique. Hence, we contemplate   

   
 (  )-limit set of a sequence   *   + as 

 

     
 (  )      {     

     
 (  )

→         }  

 

The sequence   *   + is named to be      
 (  )-convergent so that      

 (  )         But 

the rough limit set is empty for unbounded sequence. 

Example 2.1. Take      Determine the subsequent sequence 

 

      {
(  )              
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Let      then 

 

     
 (  )      {

      
,       -               

 

 

and            for all      So, this sequence is divergent in ordinary sense since it is 

unbounded. In addition, the sequence is not    
 (  )-convergent for any  . 

Definition 2.4: A point   is named to be rough statistically   -cluster point of order   (     ) of a 

sequence   *   + in an NLS (  ‖ ‖) provided that for each     there is a     so that 

 

   
     

 

(  ) 
|*        ‖       ‖     +|     

 

Definition 2.5: A sequence   *   + is named to be statistically   -bounded provided that there is a 

     so that 

 

   
     

 

  
|*        ‖     ‖    +|     

 

Definition 2.5: A sequence   *   + is named to be statistically   -bounded of order  (     ) 

provided that there is a      so that 

 

   
     

 

(  ) 
|*        ‖     ‖    +|     

 

As a result of above definitions, we acquired the subsequent significant results on rough statistical   -

convergence. 
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Theorem 2.1. Each rough   -convergent sequence is also rough statistically   -convergent of order 

 (     ), but converse can be not true. 

Proof. Presume that the sequence   *   + be rough   -convergent in a NLS (  ‖ ‖)  Then, for each 

    and some     there is a      so that ‖       ‖      for all         

The set *        ‖       ‖     + has finitely many terms. So, 

 

   
     

 

(  ) 
|*        ‖       ‖     +|     

 

As a result, the sequence   *   + is rough statistically   -convergent of order  (     )  

The contrary part is false that can be verified by the subsequent example. 

Example 2.2. Take      Contemplate (  ‖ ‖) with usual norm. Determine a sequence 

 

      {
            
            

 

 

For     and some      we acquire 

 

 (    )  *        ‖       ‖     +  *        ‖ 
    ‖       +

 *        ‖     ‖   +  *           
      +  

 

Therefore, 

 

   
     

 

(  ) 
| (    )|     

     

√  

(  ) 
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So,   *   + is rough statistically   -convergent of order   to    for   
 

 
  

Now, we examine the algebraic feature of rough statistically   -convergent sequences of order  (  

   )  

Theorem 2.2. Assume that   *   + and   *   + be two sequences in a in a NLS (  ‖ ‖) and 

(     ) be given. For some     the subsequent supplies: 

1) When    
     

 (  )
→           and     then     

     
 (  )

→             

2) When    
     

 (  )
→           and    

     
 (  )

→           then (       )
     

 (  )
→        (     )  

Proof. 1) When      then it is obvious. 

Consider      As    
     

 (  )
→            then for given     and some      we obtain the set 

 

 (    )  {        ‖        ‖  
   

| |
}             

     

| (    )|

(  ) 
    

 

Let (   )   (    )   Then 

 

‖          ‖  | |‖ 
       ‖  | | (

   

| |
)       

 

This gives that 

 

   
     

 

(  ) 
|{        ‖          ‖  

   

| |
}|     

 

i.e. 
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(  ) 
|{        ‖          ‖  

   

| |
}|     

 

As a result,     
     

 (  )
→             

2) As    
     

 (  )
→           and    

     
 (  )

→            then for given     and some      we obtain the set 

  (    )  {        ‖ 
       ‖  

   

 
}             

     

|  (    )|

(  ) 
    

 

  (    )  {        ‖ 
       ‖  

   

 
}             

     

|  (    )|

(  ) 
    

 

Take (   )    (    )
    (    )

   Then 

 

‖  (       )  (     )‖  ‖ 
       ‖  ‖ 

       ‖  
   

 
 
   

 
      

 

This gives that 

 

   
     

 

(  ) 
|*        ‖  (       )  (     )‖     +|     

 

i.e. 

 

   
     

 

(  ) 
|*        ‖  (       )  (     )‖     +|     
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As a result, we acquire (       )
     

 (  )
→        (     )  

Theorem 2.3. Assume that         then     
      

 
 where     

 
 and     

 
 denotes the sets 

of all rough statistically   -convergent of orders     respectively. 

Proof. Take   *   + as a sequence in a NLS (  ‖ ‖)  When         then for each     and 

some     with the limit point    we obtain 

 

   
     

 

(  ) 
|*        ‖       ‖     +|

    
     

 

(  ) 
|*        ‖       ‖     +|  

 

So, we have     
      

   

Theorem 2.4. A sequence   *   + as a sequence in an NLS (  ‖ ‖) is statistically   -bounded of 

order   (     ) iff      
         for some      

Proof. Assume that the sequence   *   + is statistically   -bounded of order   (     )  then 

there is a      so that 

 

   
     

 

(  ) 
|*        ‖     ‖    +|     

 

Consider   *        ‖     ‖    +  Determine       *‖ 
    ‖ (   )   

 +  Since 

 

         
            

         

 

But, presume that       
        for some      Then, for all     there is a     so that 

         
       Then 
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(  ) 
|*        ‖       ‖     +|     

 

So,   *   + is statistically   -bounded of order    

Theorem 2.5. When    {     } is a subsequence of a sequence   *   + then 

 

     
           

        

 

Theorem 2.6. Assume that the sequence   *   + is sequence in an NLS (  ‖ ‖)  Then,      
  

    (the rough statistical limit set of order  (     )) is convex. 

Proof. Take             
      and    . For the convexity of the set      

       we have 

to prove that ,(   )      -       
      for some   (   )  We determine 

 

  (    )  {(   )      ‖ 
       ‖  

   

 (   )
}  

 

  (    )  {(   )      ‖ 
       ‖  

   

  
}  

 

Since            
       we obtain 

 

   
     

|  (    )|

(  ) 
    
     

|  (    )|

(  ) 
    

 

Take (   )    (    )
    (    )

   Then 
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‖      ,(   )      -‖  ‖(   )( 
       )   ( 

       )‖

 (   )‖        ‖   ‖ 
       ‖       

 

As 

 

   
     

|  (    )
    (    )

 |

(  ) 
    

we get 

   
     

|*(   )      ‖      ,(   )      -‖     +|

(  ) 
    

 

i.e. 

 

,(   )      -       
       

 

Hence,      
      is a convex set. 

Theorem 2.7. A sequence   *   +  is sequence in an NLS (  ‖ ‖)  is rough statistically   -

convergent of order   (     )  to     provided that for some     iff there is a sequence 

  *   +  in   that is rough statistically   -convergent of order   (     )  to   and ‖      

     ‖    for all        

Proof. Assume that    
     

 (  )
→           Then, for all     and some     we obtain 

 

   
     

 

(  ) 
|*        ‖       ‖     +|     

 

Now, we identify the sequence as 
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      {

       ‖       ‖    

       
       
‖       ‖

           

                                      
   

 

Then, we acquire 

 

        {

       ‖       ‖    

       

‖       ‖
(‖       ‖   )           

                                      
   

 

so that ‖       
    ‖    for all        Moreover, 

 

‖       ‖  {
       ‖       ‖    

‖       ‖              

                                      
   

 

According to definition of       and utilizing 

 

   
     

 

(  ) 
|*        ‖       ‖     +|     

 

that demonstrate that the sequence   *   + is rough statistically   -convergent of order   (     ) 

to    

As the sequence   *   +  is rough statistically   -convergent of order   (     )  to   then for 

    we acquire 

 

   
     

 

(  ) 
|*        ‖       ‖     +|     
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For some     and the sequence   *   +  with ‖       
    ‖   , the subsequent inclusion 

supplies 

 

*        ‖       ‖     +  *        ‖ 
      ‖     +  

 

So, we have 

 

   
     

 

(  ) 
|*        ‖       ‖     +|     

 

Theorem 2.8. The set      
      (rough statistical   -limit set of order   (     )) is closed. 

Proof. i) When      
         then we have not to prove anything. 

ii) When      
         then consider a sequence   *   +       

      so that          

for        It is adequate to denote that         
       

As           then for given     there are   
 
   
 
   so that 

 

‖        ‖  
   

 
 

 

For     
 
     

 
  Now, select         so that      

 
      

 
  Then, we get 

 

‖          ‖  
   

 
  

Also as   *   +       
       we get            

       Obviously, 
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(  ) 
|{        ‖           ‖  

   

 
}|     

 

We demonstrate the inclusion 

 

{        ‖           ‖  
   

 
}  *        ‖        ‖     +  

 

Take 

 

(   )  {        ‖           ‖  
   

 
}  ‖           ‖  

   

 
  

 

So, 

 

‖        ‖  ‖ 
            

         
          ‖

 ‖           ‖  ‖ 
       ‖  ‖ 

          ‖  

 

Utilizing equation 

 

   
     

 

(  ) 
|{        ‖           ‖  

   

 
}|    

 

and Theorem 2.7 we acquire ‖           ‖  
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Thus, 

 

‖        ‖  
   

 
 
   

 
 
   

 
      

 

This gives that 

 

(   )  {        ‖        ‖  
   

 
}  

 

Hence, we obtain 

 

{        ‖           ‖  
   

 
}  *        ‖        ‖     +  

 

As a result, 

*        ‖        ‖     +  {        ‖ 
          ‖  

   

 
}  

Now, 

 

   
     

 

(  ) 
|*        ‖        ‖     +|

    
     

 

(  ) 
|{        ‖           ‖  

   

 
}|  

 

Utilizing the equation 
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(  ) 
|{        ‖           ‖  

   

 
}|     

 

we get 

 

   
     

 

(  ) 
|*        ‖        ‖     +|     

 

Theorem 2.9. Assume that      be the set of all rough statistical   -cluster points of order   

(     ) for a sequence   *   + in an NLS (  ‖ ‖)  Then, for an arbitrary        and      

we get ‖   ‖    for all        
       

Proof. We prove by contradiction method. For given   (     )  we put a point        and 

       
      so that ‖   ‖     By selecting   (‖   ‖   )    we have the subsequent 

inclusion 

 

*        ‖       ‖     +  *        ‖ 
      ‖   +  

 

As         then 

 

   
     

 

(  ) 
|*        ‖       ‖   +   |  

 

So we get 

   
     

 

(  ) 
|*        ‖       ‖     +   | 

that is a contradiction to        
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Theorem 2.10. Presume that   *   + be a sequence in a strictly convex NLS (  ‖ ‖)  Take     

and      When any            
      with ‖     ‖      then   *   +  is rough 

statistically   -convergent of order   (     ) to (     )    

Proof. Take        and            
      so that ‖     ‖      Then, we acquire 

 

‖    ‖           ‖    ‖            (2.1) 

 

and by triangle inequality, we acquire 

 

‖     ‖  ‖    ‖  ‖    ‖

    ‖    ‖  ‖    ‖ 
         (2.2) 

 

Hence, we obtain from (2.1) and (2.2) we get ‖    ‖  ‖    ‖     Also, 

 

 

 
(     )  

 

 
,(    )  (    )-        (2.3) 

 

and utilizing ‖     ‖      we acquire 
(     )

 
    

From equation (2.3) and from strictly convexity of the NLS (  ‖ ‖), we obtain  

3. Conclusion 

 

In this study, we examine rough statistical   -convergence and rough statistical   -cluster points  

of double sequences of order α (     ) in a (NLS). We obtain various significant results. 
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Abstract 

In this study, a numerical approach for the solution of a lake pollution model is investigated. A 

system of ordinary differential equations is considered for modelling the phenomena. Artificial neural 

networks are used for obtaining the approximate solutions. As an activation function tangent hyperbolic 

function used. Illustrations are presented in order to show the results of approximation.  

 

          Keywords: Lake pollution model, artificial neural networks, deep learning, machine learning. 

 

1. Introduction 

 

Pollution of water resources has a great importance in environmental pollution. In this study, we consider 

a numerical solution of a compartment model the pollution in the interconnected three lakes with channels 

by using artificial neural network. The proposed system of differential equations modeling three artificial 

lakes is given by [1] as follows. 

 
𝑑𝑥1(𝑡)

𝑑𝑡
=

𝐹21

𝑉2
𝑥2(𝑡) +

𝐹31

𝑉3
𝑥3(𝑡) + 𝑓(𝑡) −

𝐹12

𝑉1
𝑥1(𝑡) −

𝐹13

𝑉1
𝑥1(𝑡),  

𝑑𝑥2(𝑡)

𝑑𝑡
=

𝐹12

𝑉1
𝑥1(𝑡) +

𝐹32

𝑉3
𝑥3(𝑡) −

𝐹21

𝑉2
𝑥2(𝑡) −

𝐹23

𝑉2
𝑥2(𝑡), (1) 

𝑑𝑥3(𝑡)

𝑑𝑡
=

𝐹13

𝑉1
𝑥1(𝑡) +

𝐹23

𝑉2
𝑥2(𝑡) −

𝐹31

𝑉3
𝑥3(𝑡) −

𝐹32

𝑉3
𝑥3(𝑡),  

with the initial conditions 𝑥1(0) = 𝑝1, 𝑥2(0) = 𝑝2 and 𝑥3(0) = 𝑝3. Where 𝑥1(𝑡), 𝑥2(𝑡) and 𝑥3(𝑡) denote 

the amount of pollutant in each lake at time t. 𝑓(𝑡) is the rate of pollutant which enters the Lake 1 per unit 

time t.  𝐹𝑖𝑗 denotes the amount of water flowing from lake i to lake j and 𝑉𝑖 is the volume of lake i.  

 
Figure 1. Illustration of the interconnected lakes 1, 2, 3, and flows 𝐹12, 𝐹13, 𝐹21, 𝐹23, 𝐹31, 𝐹32 [1]. 
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Also note that it is assumed to ensure the constant volume in each lake as follows.  

𝐹12 = 𝐹21 + 𝐹31 − 𝐹13, 
(2) 

𝐹23 = 𝐹12 + 𝐹32 − 𝐹21. 

The organization of the paper is the following. Initially, preliminaries about artificial neural 

networks are given. Then the numerical method for finding the approximate solution of the problem is 

proposed. Afterward, numerical results of the problem are illustrated by figures. The paper finalizes with 

the concluding remarks and brief discussion of results. 

 

 

2. Preliminaries 

 

Artificial Neural Networks 

 

One of the latest products of people's efforts to research and imitate nature is artificial neural 

network technology. Artificial neural networks are programs designed to simulate the way the simple 

biological nervous system works. This simulation contains nerve cells (neurons) and these neurons are 

connected to each other in various ways to form an artificial neural network. These networks have the 

capacity to learn, memorize and reveal the relationship between data [2]. 

In general, an artificial neural network is defined as a system or mathematical model that consists 

of a large number of non-linear artificial cells that can be arranged in a single layer or multilayer and work 

in parallel. The weights between cells are adjusted by various learning rules to meet the desired design 

objectives. With this structure, artificial neural networks are parallel processors that collect information in 

the learning process and store this information with the help of its weights. Recently, various artificial 

 
Figure 2. Model of Neuron in Neural Network, source: (https://dzone.com/articles/the-artificial-

neural-networks-handbook-part-4) 
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neural networks and learning algorithms have been developed. It is necessary to select or develop the 

appropriate neural network structure and learning algorithm for any application [3]. 

Model of neuron in neural network is given in the Figure 2, the constant b is called the bias or the 

threshold value of activation function. Generally, the activation function is a nonlinear function [4]. 

 

Specifying Ordinary Differential Equations by Artificial Neural Networks 

 

The continuous dynamics of hidden units using an ordinary differential equation (ODE) specified 

by a neural network are parametrized as follows:  
𝑑𝐡(𝑡)

𝑑𝑡
= 𝑓(𝐡(𝑡), 𝑡, 𝜃). 

Starting from the input layer h(0), we can define the output layer h(T) to be the solution to this ODE initial 

value problem at some time T. This value can be computed by a black-box differential equation solver, 

which evaluates the hidden unit dynamics f wherever necessary to determine the solution with the desired 

accuracy [5].  

 

3. Solution Procedure 

 

Neural ordinary differential equations [5] are deep learning operations defined by the solution of an 

ordinary differential equation. More specifically, neural ordinary differential equation is an operation that 

can be used in any architecture and, given an input, defines its output as the numerical solution of the 

ordinary differential equation 

𝑥′ = 𝑓(𝑡, 𝑥, 𝜃) 

for the time horizon (𝑡0, 𝑡1) and the initial condition 𝑥(𝑡0) = 𝑥0. The right-hand side 𝑓(𝑡, 𝑥, 𝜃)  of the 

ordinary differential equation depends on a set of trainable parameters 𝜃, which the model learns during 

the training process. Here, 𝑓(𝑡, 𝑥, 𝜃) is modeled with a model function containing nonlinear activations and 

fully connected operations. The initial condition 𝑥0 is either the input of the entire architecture, as in the 

case of the investigated model (1), or is the output of a previous operation [6]. 

This study focuses how to train a neural network with neural ordinary differential equations to learn 

the pollution dynamics x of a given physical system, described by (1): 

𝑥′ = 𝐴𝑥, 

where A is a 3-by-3 matrix. 

The neural network of (1) takes as input an initial condition and computes the ordinary differential 

equation solution through the learned neural ordinary differential equation model. The neural ordinary 

differential equation operation, given an initial condition, outputs the solution of an ordinary differential 

equation model. Particularly, in this study a block with a fully connected layer, a tanh layer, and another 

fully connected layer are specified as the ordinary differential equation model. 
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The model (1) is solved numerically with the explicit Runge-Kutta (4,5) pair of Dormand and Prince 

[7]. The backward pass uses automatic differentiation to learn the trainable parameters 𝜃  by 

backpropagating through each operation of the ordinary differential equation solver. The learned 

function 𝑓(𝑡, 𝑥, 𝜃) is used as the right-hand side for computing the solution of the same model for additional 

initial conditions [6]. 

 

4. Numerical Experiment 

 

In this section, to show the accuracy and efficiency of the presented method, the model (1) is solved 

with artificial neural network. The parameters are chosen the same as in [1], as 𝑉1 = 2900, 𝑉2 = 850, 𝑉3 =
1180, 𝐹12 = 24, 𝐹13 = 22, 𝐹21 = 14 𝐹23 = 18, 𝐹31 = 32, 𝐹32 = 8. The pollutant function 𝑓(𝑡) = 100. 
Besides, the initial conditions are given by 𝑥1(0) = 0, 𝑥2(0) = 0 and 𝑥3(0) = 0. Numerical calculations 

and plottings were performed using MATLAB software. 

 

Example: By adapting the parameters the model (1) turns into the following differential equation system 

  
𝑑𝑥1(𝑡)

𝑑𝑡
=

14

850
𝑥2(𝑡) +

32

1180
𝑥3(𝑡) + 100 −

46

2900
𝑥1(𝑡),  

𝑑𝑥2(𝑡)

𝑑𝑡
=

24

2900
𝑥1(𝑡) +

8

1180
𝑥3(𝑡) −

32

850
𝑥2(𝑡), (3) 

𝑑𝑥3(𝑡)

𝑑𝑡
=

22

2900
𝑥1(𝑡) +

18

850
𝑥2(𝑡) −

40

1180
𝑥3(𝑡).  

The results obtained by artificial neural networks are illustrated in Figure 5. Regarding the graphical 

representation, we observe the numerical solutions of ordinary differential equation system (3) proposed 

by artificial neural networks, and the exact solutions are in good agreement.  

Figure 4 presents the change in the value of loss function while iterations during machine learning 

process.  

 

Figure 3. Structure of the neural network [6]. 
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Figure 4. Change of the loss function 

 

 
(a) 

 
(b) 

 
(c) 

Figure 5. Graphical representation of predicted and exact solutions of the system (3); (a) the function 

𝑥1(𝑡) (pollution in Lake 1), (b) the function 𝑥2(𝑡) (pollution in Lake 2), and (c) the function 𝑥3(𝑡) 

(pollution in Lake 3). 

 

5. Conclusion 

 

In this study, we propose an artificial neural network in order to solve the lake pollution system 

given by [1]. The method has a relatively good approximation and some advantages by using machine 

learning algorithms. The method is applicable for further problems and their applications at interdiciplinary 

area. 

494



 

6th INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 

21-24 June 2022, Istanbul, Turkey 

 

 

ICOM 2022 

ISTANBUL / TURKEY 

 

References 

 

1. Hatipoğlu, V. F. (2021). A novel model for the contamination of a system of three artificial 

lakes. Discrete & Continuous Dynamical Systems-S, 14(7), 2261. 

2. Yegnanarayana, B. (2009). Artificial neural networks. PHI Learning Pvt. Ltd.. 

3. Hassoun, M. H. (1995). Fundamentals of artificial neural networks. MIT press. 

4. Walczak, S. (2018). Artificial neural networks. In Encyclopedia of Information Science and 

Technology, Fourth Edition (pp. 120-131). IGI global. 

5. Chen, R. T., Rubanova, Y., Bettencourt, J., & Duvenaud, D. K. (2018). Neural ordinary differential 

equations. Advances in neural information processing systems, 31. 

6. https://www.mathworks.com/help/deeplearning/ug/dynamical-system-modeling-using-neural-

ode.html. 

7. Shampine, L. F., & Reichelt, M. W. (1997). The matlab ode suite. SIAM journal on scientific 

computing, 18(1), 1-22. 

495



 

6th INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 

21-24 June 2022, Istanbul, Turkey 

 

 

ICOM 2022 

ISTANBUL / TURKEY 

Solutions of fractional-order differential equation on harmonic waves and linear wave equation  

Taylan Demir1, Shkelqim Hajrulla2, Pınar Doğan3 

1Department of Mathematics, Çankaya University, Ankara, Turkey, 
2Department of Computer Engineering, Epoka University, Tiran, Albania, 

3Department of Mathematics, Çankaya University, Ankara, Turkey 

E-mail:  demir.taylan96@gmail.com, shhajrulla@epoka.edu.al, p.dogann@gmail.com 

 

Abstract 

In this thesis, we will define harmonic waves, linear wave equationon physical problem. [1]-[2] 

Initially, we will interrupt physical meaning of harmonic waves on time dependent and we will mantion 

that physical interpretation of linear wave equation with calculating. [1]-[2] After that, we will use 

many definitions of fractional derivative in order to need to apply on harmonic and linear waves 

equation.[3]-[4] Therefore, definitions of fractional-order derivative will mentioned in our thesis after 

interpreting harmonic waves and linear wave equation.  

          Keywords: Riemann-Liouville fractional derivative, Grünwald-Letnikov fractional derivative, 

harmonic waves, Linear wave, Oscillation, time-dependent equation.  

 

1. Introduction 

 

Harmonic Waves  

 

 First of all, we know that first dimensional and second dimensional wave equation but we can use 

only Grünwald-Letnikov and Riemann-Liouville fractional derivative on 1-dimensional harmonic waves. 

Therefore, we consider 1-dimensional waves solutions for using definitions of fractional derivative. 

Initially, a harmonic wave is defined as a harmonic is a wave with a frequency, which is a positive integer 

multiple of the fundamental frequency, that is the frequency of the original periodic signal, such as a 

sinusoidal wave [1]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: A harmonic wave which moves to the right direction on 1-dimensional. 
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Also, green wave indicate itself image at 𝑡 = 0 and blue wave define itself image at some later time. 

Generally we define the displacement of the curve at 𝑡 = 0; 

𝑦 = 𝑐𝑠𝑖𝑛 (
2𝜋

𝜆
𝑥)        (1) 

𝑐 is named the amplitude of the wave, and 𝜆 is a wavelength of the wave. When wave moves to the right 

with a v velocity, wave function is defined at later t time as: 

𝑦 = 𝑐𝑠𝑖𝑛 [
2𝜋

𝜆
(𝑥 − 𝑣𝑡)]        (2) 

Distance of the two different all waves are called as a period and it is shown as T. Period, velocity and 

wavelength are related with together: 

𝑣 =
𝜆

𝑇
        (3) 

𝜆 = 𝑣𝑇        (4) 

When we use (3) and (4) for substituting this into the (1), we write as: 

𝑦 = 𝑐𝑠𝑖𝑛 [2𝜋 (
𝑥

𝜆
−

𝑡

𝑇
)]        (5) 

We are able to easily express the harmonic wave function by defining two quantities called wave number 

𝑘 and angular frequency 𝜔: 

𝑘 ≡
2𝜋

𝜆
        (6) 

𝜔 ≡
2𝜋

𝑇
        (7) 

Eqn (6) and Eqn(7) can related with Eqn (5): 

𝑦 = 𝑐𝑠𝑖𝑛 [(
2𝜋

𝜆
𝑥 −

2𝜋

𝑇
𝑡)]        (8) 

 

𝑦 = 𝑐𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡)        (9) 

Frequency is the number of waves passing a fixed place for a length of time and the formula is shown as 

below: 

𝑓 =
1

𝑇
          (10) 

 

𝑓 is hertz (Hz) or 𝑠−1. Using Equations (6), (7) and (10), we can write the phase velocity v in the alternative 

forms as [1]:  

𝑣 =
𝜔

𝑘
        (11) 

𝑣 = 𝜆𝑓        (12) 

Wave functions that is given by equation (9) considers that the y displacement is zero at 𝑥 = 0 and 𝑡 = 0. 
We define the wave function as below if and only if transverse displacement is not zero at 𝑥 = 0 and 𝑡 = 0 

𝑦 = 𝑐𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡 − 𝜙)        (13)         
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𝜙  is a wave constant. 

 

2. Preliminaries 

 

Using definitions of Fractional derivatives on Harmonic Waves solutions: 

 

 The wavelength, frequency and 1-dimensional wave was defined. Now, there are several method of 

solutions on harmonic wave solutions. We need to some definitions from fractional calculus. Especially, 

not only 1-dimensional both also 2-dimensional wave solutions are mentioned to solve different methods. 

We say that,  

𝑦 = 𝑐𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡)        (14) 

is harmonic wave functions and this function always dependent on time variable. Especially, we use 

Riemann-Liouville and Grünwald-Letnikov that are in the fractional calculus for identifying transverse 

velocity 𝑣𝑦  and transverse acceleration 𝑎𝑦.  

Definition of Riemann-Liouville and Grünwald-Letnikov definition on transverse velocity:  

 Riemann-Liouville and Grünwald-Letnikov definition are applied when we assume that only 1-

dimensional wave. In (14) when 𝑥 is a constant. We use fractional derivative and fractional integral to 

define both transverse velocity and transverse acceleration: 

𝑣𝑦 =
𝑑𝑦

𝑑𝑡
 

𝑎𝑦 =
𝑑𝑣𝑦

𝑑𝑡
 

Grünwald-Letnikov definition is [1,3,4]:  

𝐼𝑡
1𝑦(𝑡) =

1

Γ(1)
∫(𝑡 − 𝜏)1−1𝑦(𝜏)𝑑𝜏 = 𝑣𝑦(𝑡)

𝑡

0

0         (15) 

Take the fractional Integral of order 𝜙 on (15)  0 < 𝜙 < 1: 

𝐼𝑡
𝜙

𝑦(𝑡) =
1

Γ(𝜙)
∫(𝑡 − 𝜏)𝜙−1

𝑡

𝛼

𝛼 𝑦(𝜏) = 𝑣𝑦(𝑡)        (16) 

𝐼𝑡
1𝑣𝑦(𝑡) =

1

Γ(1)
∫(𝑡 − 𝜏)1−1𝑦(𝜏)𝑑𝜏 = 𝑎𝑦(𝑡)

𝑡

0

0         (17) 

Take the fractional Integral of order 𝜙 on (15)  0 < 𝜙 < 1: 

𝐼𝑡
𝜙

𝑣𝑦(𝑡) =
1

Γ(𝜙)
∫(𝑡 − 𝜏)𝜙−1

𝑡

𝛼

𝑣𝑦(𝑡)𝑑𝜏𝛼 = 𝑎𝑦(𝑡)        (18) 

 

Riemann-Liouville fractional derivative definition is [1,3,4]: 

𝐷𝑡
𝜙

𝑦(𝑡) =
1

Γ(𝑛 − 𝜙)
(

𝑑

𝑑𝑥
)

𝑛

∫(𝑡 − 𝜏)𝑛−𝜙−1𝑦(𝜏)𝑑𝜏

𝑡

𝛼

𝛼 = 𝑣𝑦(𝑡)        (19) 
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0 < 𝜙 < 1: 

𝐷𝑡
𝜙

𝑣𝑦(𝑡) =
1

Γ(𝑛 − 𝜙)
(

𝑑

𝑑𝑥
)

𝑛

∫(𝑡 − 𝜏)𝑛−𝜙−1𝑣𝑦(𝜏)𝑑𝜏

𝑡

𝛼

𝛼 = 𝑎𝑦(𝑡)        (19) 

 

3. Solutions of fractional-order differential equation on linear wave equation: 

 

Definition: In this part, we will mention that the concept of the wave function to represent waves travelling 

on a string. Wave functions of 𝑢(𝑥, 𝑡) is a solution of an equation called the linear wave equation [2].  This 

solution comes from different methods. Particularly, this method will be mentioned. The linear wave 

equation is: 

𝜕2𝑢

𝜕𝑥2
=

1

𝑣2

𝜕2𝑢

𝜕𝑡2
        (20) 

Initially, first method is Nigmatullin’s fractional diffusion equation that is linear wave equation and this 

wave equation form is similar as Eqn (20). Let we look at detail: 

𝐷𝑡
𝛼𝑢(𝑥, 𝑡) = 𝜆2

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
,      (𝑡 > 0,   − ∞0 < 𝑥 < ∞);    (21) 

lim
𝑥→±∞

𝑢(𝑥, 𝑡) = 0;    [ 𝐷𝑡
𝛼−1𝑢(𝑥, 𝑡)] = 𝜑(𝑥).         (22)0  

and 𝑡 = 0  in Eqn (22). Also, order of derivative 0 < 𝛼 < 1.  An equation (21) was mentioned by 

Nigmatullin [5] and by Westerlund [6] and studied by Mainardi [7]We will give a basic solution of the 

problem (21) demonstrating once again the advantage of using the Mittag-Leffler function in two 

parameters [3]. And we generally define Mittag-Leffler function as: 

𝐸𝛼,𝛽(𝑧) = ∑
𝑧𝑘

Γ(𝛼𝑘 + 𝛽)
,          (𝛼 > 0,    𝛽 > 0)        (23)

∞

𝑘=0

 

When we consider that the boundary conditions of Eqn. (22), take the Fourier transformation with respect 

to x variable then we write as: 

𝐷𝑡
𝛼ṹ(𝛽, 𝑡) + 𝜆2𝛽2

0 ṹ(𝛽, 𝑡) = 0        (24) 

[ 𝐷𝑡
𝛼−1ṹ(𝑥, 𝑡)] = 𝜑1(𝛽).         (25)0  

when 𝑡 = 0 is in Eqn. (25). Also 𝛽 is the Fourier transform parameter. Now, when we take the Laplace 

transform of Eqn. (24) and apply the initial conditions of (25) then we satisfy: 
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Ṹ(𝛽, 𝑠) =
𝜑(𝛽)

𝑠𝛼 + 𝜆2𝛽2
        (26) 

If inverse Laplace transform of (26) using  

∫ 𝑒−𝑝𝑡𝑡𝛼𝑘+𝛽−1𝐸𝛼,𝛽
(𝑘)(±𝛼𝑡𝛼)𝑑𝑡 =

𝑘! 𝑝𝛼−𝛽

(𝑝𝛼 ∓ 𝛼)𝑘+1
,          (𝑅𝑒(𝑝) > |𝛼|

1
𝛼⁄ )        (27)

∞

0

 

therefore; 

ṹ(𝛽, 𝑡) = 𝜑(𝛽)𝑡𝛼−1𝐸𝛼,𝛼(−𝜆2𝛽2𝑡𝛼),        (28) 

After that, the inverse Fourier transform is produced from the initial value problem of (21) and (22). 

𝑢(𝑥, 𝑡) = ∫ 𝐺(𝑥 − 𝜉, 𝑡)𝜑(𝜉)𝑑𝜉,          (29)

∞

−∞

 

𝐺(𝑥, 𝑡) =
1

𝜋
∫ 𝑡𝛼−1𝐸𝛼,𝛼(−𝜆2𝛽2𝑡𝛼)𝑐𝑜𝑠𝛽𝑥𝑑𝛽,          (30)

∞

0

 

Take the Laplace transform of (30) then we write as; 

𝐿 {
1

𝜋
∫ 𝑡𝛼−1𝐸𝛼,𝛼(−𝜆2𝛽2𝑡𝛼)

∞

0

𝑐𝑜𝑠𝛽𝑥𝑑𝛽} 

𝑔(𝑥, 𝑠) =
1

𝜋
∫

cos(𝛽𝑥) 𝑑𝛽

𝜆2𝛽2 + 𝑠𝛼
=

1

2𝜆
𝑠−𝛼 2⁄ 𝑒−|𝑥|𝜆−1𝑠𝛼 2⁄

∞

0

        (31) 

and inverse Laplace transform of (31) is: 

𝐺(𝑥, 𝑡) =
1

4𝜆𝜋𝑖
∫ 𝑒𝑠𝑡𝑠−

𝛼

2 exp(−|𝑥|𝜆−1𝑠𝛼 2⁄ ) 𝑑𝑠        (32)

𝐵𝑟

 

Use the substitution of 𝜎 = 𝑠𝑡 and 𝑧 = |𝑥|𝜆−1𝑡−𝑝  and after we use this substitution in (32) we satisfy, 

𝐺(𝑥, 𝑡) =
𝑡1−𝑝

2𝜆

1

2𝜋𝑖
∫ 𝑒𝜎−𝑧𝜎𝑝 𝑑𝜎

𝜎𝑝
=

1

2𝜆
𝑡𝑝−1𝑊(−𝑧, −𝑝, 𝑝),          𝑧 =

|𝑥|

𝜆𝑡𝑝
        (33)

𝐻𝑎
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Also, 𝑤(𝑧, 𝜆, 𝜇) is defined as the Wright function and it is same as 𝑊(−𝑧, −𝑝, 𝑝). Wright function is 

defined as: 

𝑊(𝑧; 𝜁, 𝜂) = ∑
𝑧𝑘

𝑘! Γ(𝜁𝑘 + 𝜂)
        (34)

∞

𝑘=0

 

And the fourier cosine-transform of the function 𝑢1(𝛽) = 𝑡𝛼−1𝐸𝛼,𝛼(−𝜆2𝛽2𝑡𝛼) is evaluated. Finally, when 

we use 𝛼 = 1 in (33) then the fractional Green function (33) is the form [3]: 

𝐺(𝑥, 𝑡) =
1

2𝜆√𝜋𝑡
exp (−

𝑥2

4𝜆2𝑡
)        (35) 

 

4. Using Fractional-order partial differential equations on linear wave equations 

 

The Mainardi’s fractional diffusion linear wave equation [7] is: 

𝐷𝑡
𝛼𝑢(𝑥, 𝑡) = 𝜆2

0

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
,        (|𝑥| < ∞, 𝑡 > 0)        (36)  

𝑢(𝑥, 0) = 𝑓(𝑥)        (|𝑥| < ∞)        (37) 

lim
𝑥→∓∞

𝑢(𝑥, 𝑡) = 0,          (𝑡 > 0)        (38) 

where 0 < 𝛼 < 1. The Laplace transform of the formula: 

𝐿{ 𝐷𝑡
𝜎𝑚𝑓(𝑡); 𝑠0 } = 𝑠𝜎𝑚𝐹(𝑠) − ∑ 𝑠𝜎𝑚−𝜎𝑚−𝑘[ 𝐷𝑡

𝜎𝑚−𝑘−1
𝑓(𝑡)0 ]|𝑡=0       (39)

𝑚−1

𝑘=0

 

𝐷𝑡
𝜎𝑚−𝑘−1

≡ 𝐷𝑡
𝛼𝑚−𝑘−1

𝐷𝑡
𝛼𝑚−𝑘−1 … 𝐷𝑡

𝛼1 ,      (𝑘 = 0,1, … , 𝑚 − 1)    (40)𝛼𝛼𝛼𝛼  

Then; 

𝐿{ 𝐷𝑡
𝛼𝑦(𝑡); 𝑠0 } = 𝑠𝛼𝑌(𝑠) − 𝑠𝛼−1𝑦(0),        (41) 

When (36) and (38) then we satisfy: 

𝑠𝛼 ṹ(𝑥, 𝑠) − 𝑠𝛼−1𝑓(𝑥) = 𝜆2ṹ𝑥𝑥(𝑥, 𝑠)    |𝑥| < ∞    (42) 

lim
𝑥→∓∞

ṹ(𝑥, 𝑠) = 0,      (𝑡 > 0)    (43) 

After that, when we apply exponential fourier transform to equation (42) and utilizing the boundary 

conditions (43), we obtain:  

𝑈(𝛽, 𝑠) =
𝑠𝛼−1

𝑠𝛼 + 𝜆2𝛽2
𝐹(𝛽),        (44) 

and 𝑈(𝛽, 𝑝) and 𝐹(𝛽) are the Fourier transforms of ṹ(𝑥, 𝑠) and 𝑓(𝑥). When we take the inverse Laplace 

transform of the fraction  

𝑠𝛼−1 (𝑠𝛼 + 𝜆2𝛽2)⁄         (45) 

and this Laplace transform of the fraction (45) is 𝐸𝛼,1(−𝜆2𝛽2𝑡𝛼). And finally, the inversion of the Fourier 

and the Laplace transform gives the solution below: 

501



 

6th INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 

21-24 June 2022, Istanbul, Turkey 

 

 

ICOM 2022 

ISTANBUL / TURKEY 

𝑢(𝑥, 𝑡) = ∫ 𝐺(𝑥 − 𝜉, 𝑡)𝑓(𝜉)𝑑𝜉,          (46)

∞

−∞

 

𝐺(𝑥, 𝑡) =
1

𝜋
∫ 𝐸𝛼,1(−𝜆2𝛽2𝑡𝛼) cos(𝛽𝑥) 𝑑𝛽 =

1

2𝜆
𝑡−𝑝𝑊(−𝑧, −𝑝, 1 − 𝑝),          (47)

∞

0

 

and 𝑊(𝑧, 𝜆, 𝜇) is the Wright function. 

 

5. Conclusions 

 

 In our thesis, 1-dimensional Harmonic wave and linear wave equation is defined and there are 

several method in fractional order ordinary and partial differential equations are used on both harmonic and 

linear wave equation [1]-[2]-[3]-[4]. However, only we use Riemann-Liouville and Grünwald-Letnikov 

definitions of fractional calculus for solution 1-dimensional Harmonic wave because, we consider only one 

variable of t in function. Also, Nigmatullin’s and Mainardi’s fractional diffusion equation are applied for 

solvin linear wave equation [5]-[6]-[7]. 

 

6. References 

 

1. Serway, Raymond A. “Physics For Scientists & Engineers with Modern Physics” Edition: 3 James 

Madison University pg: 441-446 

2. Serway, Raymond A. “Physics For Scientists & Engineers with Modern Physics” Edition: 3 James 

Madison University pg: 447-449 

3. Podlubny, I. (1998). Fractional differential equations: An introduction to fractional derivatives, 

fractional differential equations, to methods of their solution and some of their applications. 

Mathematics in science and engineering. Edited by William F. Ames, Georgia Instute of Technology 

San Diego: Academic Press. 

4. Constantin Milici, Gheorghe Drăgănescu, J. Tenreiro Machado. “Introduction to Fractional Differential 

Equations” vol. 25 series editor by Albert C. J. Luo, Southern Illinois University, Edwardsville, IL, 

USA. Springer.  

5. R. R. Nigmmatullin, The realization of the generalized transfer equation in a medium with fractal 

geometry, Phys. Sta. Sol. (b), vol. 133, 1986, pp. 425-430. 

6. S. Westerlund. Dead matter has memory! Physica Scripta, vol. 43, 1991, pp. 174-179. 

502



 

6th INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 

21-24 June 2022, Istanbul, Turkey 

 

 

ICOM 2022 

ISTANBUL / TURKEY 

7. F. Mainardi, On the initial value problem for the fractional diffusion-wave equation, in: S. Rionero and 

T. Ruggeri (eds.), Waves and Stability in Continuous Media, World Scientific, Singapore, 1994, pp. 

246-251. 

 

503



 

6th INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 

21-24 June 2022, Istanbul, Turkey 

 

 

ICOM 2022 

ISTANBUL / TURKEY 
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Abstract 

In this thesis, we will define harmonic waves, linear wave equationon physical problem. [1]-[2] 

Initially, we will interrupt physical meaning of harmonic waves on time dependent and we will mantion 

that physical interpretation of linear wave equation with calculating. [1]-[2] After that, we will use 

many definitions of fractional derivative in order to need to apply on harmonic and linear waves 

equation.[3]-[4] Therefore, definitions of fractional-order derivative will mentioned in our thesis after 

interpreting harmonic waves and linear wave equation.  

          Keywords: Riemann-Liouville fractional derivative, Grünwald-Letnikov fractional derivative, 

harmonic waves, Linear wave, Oscillation, time-dependent equation.  

 

1. Introduction 

 

Harmonic Waves  

 

 First of all, we know that first dimensional and second dimensional wave equation but we can use 

only Grünwald-Letnikov and Riemann-Liouville fractional derivative on 1-dimensional harmonic waves. 

Therefore, we consider 1-dimensional waves solutions for using definitions of fractional derivative. 

Initially, a harmonic wave is defined as a harmonic is a wave with a frequency, which is a positive integer 

multiple of the fundamental frequency, that is the frequency of the original periodic signal, such as a 

sinusoidal wave [1]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: A harmonic wave which moves to the right direction on 1-dimensional. 
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Also, green wave indicate itself image at 𝑡 = 0 and blue wave define itself image at some later time. 

Generally we define the displacement of the curve at 𝑡 = 0; 

𝑦 = 𝑐𝑠𝑖𝑛 (
2𝜋

𝜆
𝑥)        (1) 

𝑐 is named the amplitude of the wave, and 𝜆 is a wavelength of the wave. When wave moves to the right 

with a v velocity, wave function is defined at later t time as: 

𝑦 = 𝑐𝑠𝑖𝑛 [
2𝜋

𝜆
(𝑥 − 𝑣𝑡)]        (2) 

Distance of the two different all waves are called as a period and it is shown as T. Period, velocity and 

wavelength are related with together: 

𝑣 =
𝜆

𝑇
        (3) 

𝜆 = 𝑣𝑇        (4) 

When we use (3) and (4) for substituting this into the (1), we write as: 

𝑦 = 𝑐𝑠𝑖𝑛 [2𝜋 (
𝑥

𝜆
−

𝑡

𝑇
)]        (5) 

We are able to easily express the harmonic wave function by defining two quantities called wave number 

𝑘 and angular frequency 𝜔: 

𝑘 ≡
2𝜋

𝜆
        (6) 

𝜔 ≡
2𝜋

𝑇
        (7) 

Eqn (6) and Eqn(7) can related with Eqn (5): 

𝑦 = 𝑐𝑠𝑖𝑛 [(
2𝜋

𝜆
𝑥 −

2𝜋

𝑇
𝑡)]        (8) 

 

𝑦 = 𝑐𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡)        (9) 

Frequency is the number of waves passing a fixed place for a length of time and the formula is shown as 

below: 

𝑓 =
1

𝑇
          (10) 

 

𝑓 is hertz (Hz) or 𝑠−1. Using Equations (6), (7) and (10), we can write the phase velocity v in the alternative 

forms as [1]:  

𝑣 =
𝜔

𝑘
        (11) 

𝑣 = 𝜆𝑓        (12) 

Wave functions that is given by equation (9) considers that the y displacement is zero at 𝑥 = 0 and 𝑡 = 0. 
We define the wave function as below if and only if transverse displacement is not zero at 𝑥 = 0 and 𝑡 = 0 

𝑦 = 𝑐𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡 − 𝜙)        (13)         
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𝜙  is a wave constant. 

 

2. Preliminaries 

 

Using definitions of Fractional derivatives on Harmonic Waves solutions: 

 

 The wavelength, frequency and 1-dimensional wave was defined. Now, there are several method of 

solutions on harmonic wave solutions. We need to some definitions from fractional calculus. Especially, 

not only 1-dimensional both also 2-dimensional wave solutions are mentioned to solve different methods. 

We say that,  

𝑦 = 𝑐𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡)        (14) 

is harmonic wave functions and this function always dependent on time variable. Especially, we use 

Riemann-Liouville and Grünwald-Letnikov that are in the fractional calculus for identifying transverse 

velocity 𝑣𝑦  and transverse acceleration 𝑎𝑦.  

Definition of Riemann-Liouville and Grünwald-Letnikov definition on transverse velocity:  

 Riemann-Liouville and Grünwald-Letnikov definition are applied when we assume that only 1-

dimensional wave. In (14) when 𝑥 is a constant. We use fractional derivative and fractional integral to 

define both transverse velocity and transverse acceleration: 

𝑣𝑦 =
𝑑𝑦

𝑑𝑡
 

𝑎𝑦 =
𝑑𝑣𝑦

𝑑𝑡
 

Grünwald-Letnikov definition is [1,3,4]:  

𝐼𝑡
1𝑦(𝑡) =

1

Γ(1)
∫(𝑡 − 𝜏)1−1𝑦(𝜏)𝑑𝜏 = 𝑣𝑦(𝑡)

𝑡

0

0         (15) 

Take the fractional Integral of order 𝜙 on (15)  0 < 𝜙 < 1: 

𝐼𝑡
𝜙

𝑦(𝑡) =
1

Γ(𝜙)
∫(𝑡 − 𝜏)𝜙−1

𝑡

𝛼

𝛼 𝑦(𝜏) = 𝑣𝑦(𝑡)        (16) 

𝐼𝑡
1𝑣𝑦(𝑡) =

1

Γ(1)
∫(𝑡 − 𝜏)1−1𝑦(𝜏)𝑑𝜏 = 𝑎𝑦(𝑡)

𝑡

0

0         (17) 

Take the fractional Integral of order 𝜙 on (15)  0 < 𝜙 < 1: 

𝐼𝑡
𝜙

𝑣𝑦(𝑡) =
1

Γ(𝜙)
∫(𝑡 − 𝜏)𝜙−1

𝑡

𝛼

𝑣𝑦(𝑡)𝑑𝜏𝛼 = 𝑎𝑦(𝑡)        (18) 

 

Riemann-Liouville fractional derivative definition is [1,3,4]: 

𝐷𝑡
𝜙

𝑦(𝑡) =
1

Γ(𝑛 − 𝜙)
(

𝑑

𝑑𝑥
)

𝑛

∫(𝑡 − 𝜏)𝑛−𝜙−1𝑦(𝜏)𝑑𝜏

𝑡

𝛼

𝛼 = 𝑣𝑦(𝑡)        (19) 
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0 < 𝜙 < 1: 

𝐷𝑡
𝜙

𝑣𝑦(𝑡) =
1

Γ(𝑛 − 𝜙)
(

𝑑

𝑑𝑥
)

𝑛

∫(𝑡 − 𝜏)𝑛−𝜙−1𝑣𝑦(𝜏)𝑑𝜏

𝑡

𝛼

𝛼 = 𝑎𝑦(𝑡)        (19) 

 

3. Solutions of fractional-order differential equation on linear wave equation: 

 

Definition: In this part, we will mention that the concept of the wave function to represent waves travelling 

on a string. Wave functions of 𝑢(𝑥, 𝑡) is a solution of an equation called the linear wave equation [2].  This 

solution comes from different methods. Particularly, this method will be mentioned. The linear wave 

equation is: 

𝜕2𝑢

𝜕𝑥2
=

1

𝑣2

𝜕2𝑢

𝜕𝑡2
        (20) 

Initially, first method is Nigmatullin’s fractional diffusion equation that is linear wave equation and this 

wave equation form is similar as Eqn (20). Let we look at detail: 

𝐷𝑡
𝛼𝑢(𝑥, 𝑡) = 𝜆2

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
,      (𝑡 > 0,   − ∞0 < 𝑥 < ∞);    (21) 

lim
𝑥→±∞

𝑢(𝑥, 𝑡) = 0;    [ 𝐷𝑡
𝛼−1𝑢(𝑥, 𝑡)] = 𝜑(𝑥).         (22)0  

and 𝑡 = 0  in Eqn (22). Also, order of derivative 0 < 𝛼 < 1.  An equation (21) was mentioned by 

Nigmatullin [5] and by Westerlund [6] and studied by Mainardi [7]We will give a basic solution of the 

problem (21) demonstrating once again the advantage of using the Mittag-Leffler function in two 

parameters [3]. And we generally define Mittag-Leffler function as: 

𝐸𝛼,𝛽(𝑧) = ∑
𝑧𝑘

Γ(𝛼𝑘 + 𝛽)
,          (𝛼 > 0,    𝛽 > 0)        (23)

∞

𝑘=0

 

When we consider that the boundary conditions of Eqn. (22), take the Fourier transformation with respect 

to x variable then we write as: 

𝐷𝑡
𝛼ṹ(𝛽, 𝑡) + 𝜆2𝛽2

0 ṹ(𝛽, 𝑡) = 0        (24) 

[ 𝐷𝑡
𝛼−1ṹ(𝑥, 𝑡)] = 𝜑1(𝛽).         (25)0  

when 𝑡 = 0 is in Eqn. (25). Also 𝛽 is the Fourier transform parameter. Now, when we take the Laplace 

transform of Eqn. (24) and apply the initial conditions of (25) then we satisfy: 

507



 

6th INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 

21-24 June 2022, Istanbul, Turkey 

 

 

ICOM 2022 

ISTANBUL / TURKEY 

Ṹ(𝛽, 𝑠) =
𝜑(𝛽)

𝑠𝛼 + 𝜆2𝛽2
        (26) 

If inverse Laplace transform of (26) using  

∫ 𝑒−𝑝𝑡𝑡𝛼𝑘+𝛽−1𝐸𝛼,𝛽
(𝑘)(±𝛼𝑡𝛼)𝑑𝑡 =

𝑘! 𝑝𝛼−𝛽

(𝑝𝛼 ∓ 𝛼)𝑘+1
,          (𝑅𝑒(𝑝) > |𝛼|

1
𝛼⁄ )        (27)

∞

0

 

therefore; 

ṹ(𝛽, 𝑡) = 𝜑(𝛽)𝑡𝛼−1𝐸𝛼,𝛼(−𝜆2𝛽2𝑡𝛼),        (28) 

After that, the inverse Fourier transform is produced from the initial value problem of (21) and (22). 

𝑢(𝑥, 𝑡) = ∫ 𝐺(𝑥 − 𝜉, 𝑡)𝜑(𝜉)𝑑𝜉,          (29)

∞

−∞

 

𝐺(𝑥, 𝑡) =
1

𝜋
∫ 𝑡𝛼−1𝐸𝛼,𝛼(−𝜆2𝛽2𝑡𝛼)𝑐𝑜𝑠𝛽𝑥𝑑𝛽,          (30)

∞

0

 

Take the Laplace transform of (30) then we write as; 

𝐿 {
1

𝜋
∫ 𝑡𝛼−1𝐸𝛼,𝛼(−𝜆2𝛽2𝑡𝛼)

∞

0

𝑐𝑜𝑠𝛽𝑥𝑑𝛽} 

𝑔(𝑥, 𝑠) =
1

𝜋
∫

cos(𝛽𝑥) 𝑑𝛽

𝜆2𝛽2 + 𝑠𝛼
=

1

2𝜆
𝑠−𝛼 2⁄ 𝑒−|𝑥|𝜆−1𝑠𝛼 2⁄

∞

0

        (31) 

and inverse Laplace transform of (31) is: 

𝐺(𝑥, 𝑡) =
1

4𝜆𝜋𝑖
∫ 𝑒𝑠𝑡𝑠−

𝛼

2 exp(−|𝑥|𝜆−1𝑠𝛼 2⁄ ) 𝑑𝑠        (32)

𝐵𝑟

 

Use the substitution of 𝜎 = 𝑠𝑡 and 𝑧 = |𝑥|𝜆−1𝑡−𝑝  and after we use this substitution in (32) we satisfy, 

𝐺(𝑥, 𝑡) =
𝑡1−𝑝

2𝜆

1

2𝜋𝑖
∫ 𝑒𝜎−𝑧𝜎𝑝 𝑑𝜎

𝜎𝑝
=

1

2𝜆
𝑡𝑝−1𝑊(−𝑧, −𝑝, 𝑝),          𝑧 =

|𝑥|

𝜆𝑡𝑝
        (33)

𝐻𝑎
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Also, 𝑤(𝑧, 𝜆, 𝜇) is defined as the Wright function and it is same as 𝑊(−𝑧, −𝑝, 𝑝). Wright function is 

defined as: 

𝑊(𝑧; 𝜁, 𝜂) = ∑
𝑧𝑘

𝑘! Γ(𝜁𝑘 + 𝜂)
        (34)

∞

𝑘=0

 

And the fourier cosine-transform of the function 𝑢1(𝛽) = 𝑡𝛼−1𝐸𝛼,𝛼(−𝜆2𝛽2𝑡𝛼) is evaluated. Finally, when 

we use 𝛼 = 1 in (33) then the fractional Green function (33) is the form [3]: 

𝐺(𝑥, 𝑡) =
1

2𝜆√𝜋𝑡
exp (−

𝑥2

4𝜆2𝑡
)        (35) 

 

4. Using Fractional-order partial differential equations on linear wave equations 

 

The Mainardi’s fractional diffusion linear wave equation [7] is: 

𝐷𝑡
𝛼𝑢(𝑥, 𝑡) = 𝜆2

0

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
,        (|𝑥| < ∞, 𝑡 > 0)        (36)  

𝑢(𝑥, 0) = 𝑓(𝑥)        (|𝑥| < ∞)        (37) 

lim
𝑥→∓∞

𝑢(𝑥, 𝑡) = 0,          (𝑡 > 0)        (38) 

where 0 < 𝛼 < 1. The Laplace transform of the formula: 

𝐿{ 𝐷𝑡
𝜎𝑚𝑓(𝑡); 𝑠0 } = 𝑠𝜎𝑚𝐹(𝑠) − ∑ 𝑠𝜎𝑚−𝜎𝑚−𝑘[ 𝐷𝑡

𝜎𝑚−𝑘−1
𝑓(𝑡)0 ]|𝑡=0       (39)

𝑚−1

𝑘=0

 

𝐷𝑡
𝜎𝑚−𝑘−1

≡ 𝐷𝑡
𝛼𝑚−𝑘−1

𝐷𝑡
𝛼𝑚−𝑘−1 … 𝐷𝑡

𝛼1 ,      (𝑘 = 0,1, … , 𝑚 − 1)    (40)𝛼𝛼𝛼𝛼  

Then; 

𝐿{ 𝐷𝑡
𝛼𝑦(𝑡); 𝑠0 } = 𝑠𝛼𝑌(𝑠) − 𝑠𝛼−1𝑦(0),        (41) 

When (36) and (38) then we satisfy: 

𝑠𝛼 ṹ(𝑥, 𝑠) − 𝑠𝛼−1𝑓(𝑥) = 𝜆2ṹ𝑥𝑥(𝑥, 𝑠)    |𝑥| < ∞    (42) 

lim
𝑥→∓∞

ṹ(𝑥, 𝑠) = 0,      (𝑡 > 0)    (43) 

After that, when we apply exponential fourier transform to equation (42) and utilizing the boundary 

conditions (43), we obtain:  

𝑈(𝛽, 𝑠) =
𝑠𝛼−1

𝑠𝛼 + 𝜆2𝛽2
𝐹(𝛽),        (44) 

and 𝑈(𝛽, 𝑝) and 𝐹(𝛽) are the Fourier transforms of ṹ(𝑥, 𝑠) and 𝑓(𝑥). When we take the inverse Laplace 

transform of the fraction  

𝑠𝛼−1 (𝑠𝛼 + 𝜆2𝛽2)⁄         (45) 

and this Laplace transform of the fraction (45) is 𝐸𝛼,1(−𝜆2𝛽2𝑡𝛼). And finally, the inversion of the Fourier 

and the Laplace transform gives the solution below: 
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𝑢(𝑥, 𝑡) = ∫ 𝐺(𝑥 − 𝜉, 𝑡)𝑓(𝜉)𝑑𝜉,          (46)

∞

−∞

 

𝐺(𝑥, 𝑡) =
1

𝜋
∫ 𝐸𝛼,1(−𝜆2𝛽2𝑡𝛼) cos(𝛽𝑥) 𝑑𝛽 =

1

2𝜆
𝑡−𝑝𝑊(−𝑧, −𝑝, 1 − 𝑝),          (47)

∞

0

 

and 𝑊(𝑧, 𝜆, 𝜇) is the Wright function. 

 

5. Conclusions 

 

 In our thesis, 1-dimensional Harmonic wave and linear wave equation is defined and there are 

several method in fractional order ordinary and partial differential equations are used on both harmonic and 

linear wave equation [1]-[2]-[3]-[4]. However, only we use Riemann-Liouville and Grünwald-Letnikov 

definitions of fractional calculus for solution 1-dimensional Harmonic wave because, we consider only one 

variable of t in function. Also, Nigmatullin’s and Mainardi’s fractional diffusion equation are applied for 

solvin linear wave equation [5]-[6]-[7]. 
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Abstract 

In this paper, we presented the concepts of deferred invariant, strongly deferred invariant and 

deferred invariant statistical convergence in the Wijsman sense for double set sequences. Also, basic 

theorems associated with these concepts is given.   

 

Keywords: Deferred Cesàro mean, deferred statistical convergence, invariant mean, Wijsman 

convergence, double sequences of sets. 

 

1. Introduction and Backgrounds 

Küçükaslan and Yılmaztürk [1] presented the concept of deferred statistical convergence long 

after Agnew [2] mainly introduced the concept of deferred Cesàro mean for real or complex-valued 

sequences. Then, Nuray [3] gave the concepts of strongly deferred invariant and deferred invariant 

statistical convergence using the term invariant mean. Also, the concepts of deferred Cesàro mean and 

deferred statistical convergence were extended to the double sequences by Da adur and Sezgek [4, 5]. 

Furthermore, Savaş [6] presented the concepts of strongly double deferred invariant and double deferred 

invariant statistical convergence. 

Recently, for sequences of sets, the concepts of Wijsman strongly deferred Cesàro summability 

and Wijsman deferred statistical convergence were introduced by Altınok et al. [7]. Then, Gülle [8] 

studied on the concepts of strongly deferred invariant and deferred invariant statistical convergence of 

order  in the Wijsman sense for sequences of sets. In [9], by extending to the double sequences of sets, 

Ulusu and Gülle also presented the concepts of Wijsman deferred Cesàro summability and Wijsman 

deferred statistical convergence. 

More information on these concepts can be found in [10-21]. 

For a metric space (𝒴, 𝑑), 𝜌(𝑦, 𝑈) denote the distance from the point 𝑦 to the set 𝑈 where  

𝜌𝑦(𝑈) ∶= 𝜌(𝑦, 𝑈) = inf
𝑢∈𝑈

𝑑(𝑦, 𝑢) 

for any 𝑦 ∈ 𝒴 and any non-empty 𝑈 ⊆ 𝒴. 
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For a non-empty set 𝒴 , let a function 𝑔: ℕ → 2𝒴  (the power set of  𝒴 ) is defined by                  

𝑔(𝑖) = 𝑈𝑖 ∈ 2𝒴 for each 𝑖 ∈ ℕ. Then, the sequence {𝑈𝑖} = {𝑈1, 𝑈2, … } is called sequence of sets. 

Throughout the study, (𝒴, 𝑑) will be considered as a metric space and 𝑈, 𝑈𝑖𝑗 (𝑖, 𝑗 ∈ ℕ) as any non-

empty closed subsets of 𝒴. 

The double sequence {𝑈𝑖𝑗} is said to be Wijsman convergent to the set 𝑈 if  

lim
𝑖,𝑗→∞

𝜌𝑦(𝑈𝑖𝑗) = 𝜌𝑦(𝑈) 

for each 𝑦 ∈ 𝒴 and it is denoted by 𝑈𝑖𝑗 ⟶
𝑊2

𝑈. 

Let 𝜎 be a mapping of the set of positive integers into itself. A continuous linear functional 𝜙        

on ℓ∞, the space of real bounded sequences, is called an invariant mean or a 𝜎-mean if and only if  

 𝜙(𝑥𝑖) ≥ 0, when the sequence (𝑥𝑖) has 𝑥𝑖 ≥ 0 for all 𝑖,  

 𝜙(𝑒) = 1, where 𝑒 = (1,1,1, … ), and  

 𝜙(𝑥𝜎(𝑖)) = 𝜙(𝑥𝑖)  for all  (𝑥𝑖) ∈ ℓ∞.  

The mappings 𝜎 are assumed to be one to one and 𝜎𝑖(𝑘) ≠ 𝑘 for all positive integers 𝑖 and 𝑘, 

where 𝜎𝑖(𝑘) denotes the 𝑖 th iterate of the mapping 𝜎 at 𝑘. Thus, 𝜙 extends the limit functional on 𝑐, the 

space of convergent sequences, in the sense that 𝜙(𝑥𝑖) = lim𝑥𝑖 for all (𝑥𝑖) ∈ 𝑐. 

The double sequence {𝑈𝑖𝑗} is said to be Wijsman strongly invariant convergent to the set 𝑈 if for 

each 𝑦 ∈ 𝒴   

lim
𝑚,𝑛→∞

1

𝑚𝑛
∑

𝑚,𝑛

𝑖,𝑗=1,1

|𝜌𝑦(𝑈𝜎𝑖(𝑘)𝜎𝑗(𝑡)) − 𝜌𝑦(𝑈)| = 0 

uniformly in 𝑘, 𝑡. 

The double sequence {𝑈𝑖𝑗} is said to be Wijsman invariant statistically convergent to the set 𝑈 if 

for every 𝛿 > 0 and each 𝑦 ∈ 𝒴 

lim
𝑚,𝑛→∞

1

𝑚𝑛
|{(𝑖, 𝑗): 𝑖 ≤ 𝑚, 𝑗 ≤ 𝑛, |𝜌𝑦(𝑈𝜎𝑖(𝑘)𝜎𝑗(𝑡)) − 𝜌𝑦(𝑈)| ≥ 𝛿}| = 0 

uniformly in 𝑘, 𝑡. 

The deferred Cesàro mean 𝐷𝜑,𝜓 of a double real sequence x = (𝑥𝑖𝑗) is defined by   

(𝐷𝜑,𝜓x)𝑚𝑛 =
1

𝜑(𝑚)𝜓(𝑛)
∑

𝑟𝑚

𝑖=𝑝𝑚+1

  ∑

𝑠𝑛

𝑣=𝑞𝑛+1

𝑥𝑖𝑗 ∶= ∑ 𝑥𝑖𝑗

𝑟𝑚,𝑠𝑛

𝑖=𝑝𝑚+1
𝑣=𝑞𝑛+1

, 
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where {𝑝(𝑚)}, {𝑟(𝑚)}, {𝑞(𝑛)} and {𝑠(𝑛)} are sequences of non-negative integers satisfying following 

conditions:  

                              𝑝(𝑚) < 𝑟(𝑚), lim
𝑚→∞

𝑟(𝑚) = ∞;     𝑞(𝑛) < 𝑠(𝑛), lim
𝑛→∞

𝑠(𝑛) = ∞                          (1.1) 

and 

                                         𝑟(𝑚) − 𝑝(𝑚) = 𝜑(𝑚);     𝑠(𝑛) − 𝑞(𝑛) = 𝜓(𝑛).                                       (1.2) 

Note here that the method 𝐷𝜑,𝜓 is openly regular for any selection of the above sequences of 

integers. 

           Throughout the paper, unless otherwise specified, {𝑝(𝑚)} , {𝑟(𝑚)} , {𝑞(𝑛)}  and {𝑠(𝑛)}  are 

considered as sequences of non-negative integers satisfying (1.1) and (1.2). 

A double sequence 𝜃2 = {(𝑖𝑚, 𝑗𝑛)} is called double lacunary sequence if there exists increasing 

integers sequences (𝑖𝑚) and (𝑗𝑛) of integers such that  

𝑖0 = 0,  ℎ𝑚 = 𝑖𝑚 − 𝑖𝑚−1 → ∞   and  𝑗0 = 0,  ℎ̅𝑛 = 𝑗𝑛 − 𝑗𝑛−1 → ∞  as  𝑚, 𝑛 → ∞. 

 

2. Main Results 

In this section, we presented the concepts of deferred invariant, strongly deferred invariant and 

deferred invariant statistical convergence in the Wijsman sense for double set sequences. Also, basic 

theorems associated with these concepts is given. 

Definition 2.1 The double set sequence {𝑈𝑖𝑗} is said to be 

 deferred invariant convergent to the set 𝑈 in the Wijsman sense if for each 𝑦 ∈ 𝒴   

lim
𝑚,𝑛→∞

1

𝜑(𝑚)𝜓(𝑛)
 ∑ 𝜌𝑦(𝑈𝜎𝑖(𝑘)𝜎𝑗(𝑡))

𝑟𝑚,𝑠𝑛

𝑖=𝑝𝑚+1
𝑣=𝑞𝑛+1

= 𝜌𝑦(𝑈) 

uniformly in 𝑘, 𝑡 and the notation 𝑈𝑖𝑗 ⟶
𝑊2𝐷𝜎

𝑈 is used. 

 strongly deferred invariant convergent to the set 𝑈 in the Wijsman sense if for each 𝑦 ∈ 𝒴   

lim
𝑚,𝑛→∞

1

𝜑(𝑚)𝜓(𝑛)
 ∑ |𝜌𝑦(𝑈𝜎𝑖(𝑘)𝜎𝑗(𝑡)) − 𝜌𝑦(𝑈)|

𝑟𝑚,𝑠𝑛

𝑖=𝑝𝑚+1
𝑣=𝑞𝑛+1

= 0 

uniformly in 𝑘, 𝑡 and the notation 𝑈𝑖𝑗 ⟶
𝑊2[𝐷𝜎]

𝑈 is used. 

The class of all double set sequences that strongly deferred invariant convergent in the Wijsman 

sense will be denoted by {𝑊2[𝐷𝜎]}. 

514



 

6th INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 

21-24 June 2022, Istanbul, Turkey 

 

 

ICOM 2022 

ISTANBUL / TURKEY 

Remark 2.1    

 For 𝑝(𝑚) = 0, 𝑟(𝑚) = 𝑚  and 𝑞(𝑛) = 0, 𝑠(𝑛) = 𝑛 , the concepts of deferred invariant and 

strongly deferred invariant convergence in the Wijsman sense coincide with the concepts of 

invariant and strongly invariant convergence in the Wijsman sense for double set sequences in 

[16]. 

 For 𝑝(𝑚) = 𝑖𝑚−1, 𝑟(𝑚) = 𝑖𝑚  and 𝑞(𝑛) = 𝑗𝑛−1, 𝑠(𝑛) = 𝑗𝑛  where {(𝑖𝑚, 𝑗𝑛)} is a double lacunary 

sequence, the concepts of deferred invariant and strongly deferred invariant convergence in the 

Wijsman sense coincide with the concepts of lacunary invariant and strongly lacunary invariant 

convergence in the Wijsman sense for double set sequences in [16]. 

Theorem 2.1 If  {𝑈𝑖𝑗}, {𝑉𝑖𝑗} and {𝑍𝑖𝑗} are double set sequences such that 𝑈𝑖𝑗 ⊂ 𝑉𝑖𝑗 ⊂ 𝑍𝑖𝑗 for all 𝑖, 𝑗 ∈ ℕ, 

then  

𝑈𝑖𝑗 ⟶
𝑊2[𝐷𝜎]

𝑉  and  𝑍𝑖𝑗 ⟶
𝑊2[𝐷𝜎]

𝑉 ⇒ 𝑉𝑖𝑗 ⟶
𝑊2[𝐷𝜎]

𝑉. 

Proof. Assume that 𝑈𝑖𝑗 ⊂ 𝑉𝑖𝑗 ⊂ 𝑍𝑖𝑗, 𝑈𝑖𝑗 ⟶
𝑊2[𝐷𝜎]

𝑉 and 𝑍𝑖𝑗 ⟶
𝑊2[𝐷𝜎]

𝑉. For all 𝑖, 𝑗 ∈ ℕ, 

𝑈𝑖𝑗 ⊂ 𝑉𝑖𝑗 ⊂ 𝑍𝑖𝑗 ⇒ 𝑈𝜎𝑖(𝑘)𝜎𝑗(𝑡) ⊂ 𝑉𝜎𝑖(𝑘)𝜎𝑗(𝑡) ⊂ 𝑍𝜎𝑖(𝑘)𝜎𝑗(𝑡)      (for all 𝑘, 𝑡) 

⇒ 𝜌𝑦(𝑍𝜎𝑖(𝑘)𝜎𝑗(𝑡)) ≤ 𝜌𝑦(𝑉𝜎𝑖(𝑘)𝜎𝑗(𝑡)) ≤ 𝜌𝑦(𝑈𝜎𝑖(𝑘)𝜎𝑗(𝑡))     (for each 𝑦 ∈ 𝒴)                             

⇒ |𝜌𝑦(𝑍𝜎𝑖(𝑘)𝜎𝑗(𝑡)) − 𝜌𝑦(𝑉)| ≤ |𝜌𝑦(𝑉𝜎𝑖(𝑘)𝜎𝑗(𝑡)) − 𝜌𝑦(𝑉)| ≤ |𝜌𝑦(𝑈𝜎𝑖(𝑘)𝜎𝑗(𝑡)) − 𝜌𝑦(𝑉)|      

is hold. Thus, we have   

1

𝜑(𝑚)𝜓(𝑛)
∑

𝑟(𝑚),𝑠(𝑛)

𝑖=𝑝(𝑚)+1
𝑗=𝑞(𝑛)+1

|𝜌𝑦(𝑍𝜎𝑖(𝑘)𝜎𝑗(𝑡)) − 𝜌𝑦(𝑉)| 

≤
1

𝜑(𝑚)𝜓(𝑛)
∑

𝑟(𝑚),𝑠(𝑛)

𝑖=𝑝(𝑚)+1
𝑗=𝑞(𝑛)+1

|𝜌𝑦(𝑉𝜎𝑖(𝑘)𝜎𝑗(𝑡)) − 𝜌𝑦(𝑉)| 

≤
1

𝜑(𝑚)𝜓(𝑛)
∑

𝑟(𝑚),𝑠(𝑛)

𝑖=𝑝(𝑚)+1
𝑗=𝑞(𝑛)+1

|𝜌𝑦(𝑈𝜎𝑖(𝑘)𝜎𝑗(𝑡)) − 𝜌𝑦(𝑉)|. 

Hence, by our assumption, we get that 𝑉𝑖𝑗 ⟶
𝑊2[𝐷𝜎]

𝑉.  
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Definition 2.2 The double set sequence {𝑈𝑖𝑗} is said to be deferred invariant statistically convergent to the 

set 𝑈 in the Wijsman sense if for every 𝛿 > 0 and each 𝑦 ∈ 𝒴  

lim
𝑚,𝑛→∞

1

𝜑(𝑚)𝜓(𝑛)
|{(𝑖, 𝑗): 𝑝(𝑚) < 𝑖 ≤ 𝑟(𝑚), 𝑞(𝑛) < 𝑗 ≤ 𝑠(𝑛), |𝜌𝑦(𝑈𝜎𝑖(𝑘)𝜎𝑗(𝑡)) − 𝜌𝑦(𝑈)| ≥ 𝛿}| = 0 

uniformly in 𝑘, 𝑡 and the notation 𝑈𝑖𝑗 ⟶
𝑊2𝐷𝑆𝜎

𝑈 is used. 

The class of all double sequences of sets that deferred invariant statistically convergent in the 

Wijsman sense is denoted by {𝑊2𝐷𝑆𝜎}. 

Remark 2.2  

 For 𝑝(𝑚) = 0, 𝑟(𝑚) = 𝑚 and 𝑞(𝑛) = 0, 𝑠(𝑛) = 𝑛 , the concept of deferred invariant statistical 

convergence in the Wijsman sense coincides with the concept of invariant statistical convergence 

in the Wijsman sense for double set sequences in [16]. 

 For 𝑝(𝑚) = 𝑖𝑚−1, 𝑟(𝑚) = 𝑖𝑚  and 𝑞(𝑛) = 𝑗𝑛−1, 𝑠(𝑛) = 𝑗𝑛  where {(𝑖𝑚, 𝑗𝑛)} is a double lacunary 

sequence, the concept of deferred invariant statistical convergence in the Wijsman sense coincides 

with the concept of lacunary invariant statistical convergence in the Wijsman sense for double set 

sequences in [16].  

Theorem 2.2 If {𝑈𝑖𝑗}, {𝑉𝑖𝑗} and {𝑍𝑖𝑗} are double set sequences such that 𝑈𝑖𝑗 ⊂ 𝑉𝑖𝑗 ⊂ 𝑍𝑖𝑗 for all 𝑖, 𝑗 ∈ ℕ, 

then  

𝑈𝑖𝑗 ⟶
𝑊2𝐷𝑆𝜎

𝑉  and  𝑍𝑖𝑗 ⟶
𝑊2𝐷𝑆𝜎

𝑉 ⇒ 𝑉𝑖𝑗 ⟶
𝑊2𝐷𝑆𝜎

𝑉. 

Proof. Assume that 𝑈𝑖𝑗 ⊂ 𝑉𝑖𝑗 ⊂ 𝑍𝑖𝑗 , 𝑈𝑖𝑗 ⟶
𝑊2𝐷𝑆𝜎

𝑉  and 𝑍𝑖𝑗 ⟶
𝑊2𝐷𝑆𝜎

𝑉 . With the same approximation of 

Theorem 2.1, we have  

|𝜌𝑦(𝑍𝜎𝑖(𝑘)𝜎𝑗(𝑡)) − 𝜌𝑦(𝑉)| ≤ |𝜌𝑦(𝑉𝜎𝑖(𝑘)𝜎𝑗(𝑡)) − 𝜌𝑦(𝑉)| ≤ |𝜌𝑦(𝑈𝜎𝑖(𝑘)𝜎𝑗(𝑡)) − 𝜌𝑦(𝑉)|. 

Then, for every 𝛿 > 0 we can write   

{(𝑖, 𝑗): 𝑝(𝑚) < 𝑖 ≤ 𝑟(𝑚), 𝑞(𝑛) < 𝑗 ≤ 𝑠(𝑛), |𝜌𝑦(𝑉𝜎𝑖(𝑘)𝜎𝑗(𝑡)) − 𝜌𝑦(𝑉)| ≥ 𝛿} 

 = {(𝑖, 𝑗): 𝑝(𝑚) < 𝑖 ≤ 𝑟(𝑚), 𝑞(𝑛) < 𝑗 ≤ 𝑠(𝑛), 𝜌𝑦(𝑉𝜎𝑖(𝑘)𝜎𝑗(𝑡)) ≥ 𝜌𝑦(𝑉) + 𝛿}            

 ∪ {(𝑖, 𝑗): 𝑝(𝑚) < 𝑖 ≤ 𝑟(𝑚), 𝑞(𝑛) < 𝑗 ≤ 𝑠(𝑛), 𝜌𝑦(𝑉𝜎𝑖(𝑘)𝜎𝑗(𝑡)) ≤ 𝜌𝑦(𝑉) − 𝛿}    

 ⊂ {(𝑖, 𝑗): 𝑝(𝑚) < 𝑖 ≤ 𝑟(𝑚), 𝑞(𝑛) < 𝑗 ≤ 𝑠(𝑛), 𝜌𝑦(𝑈𝜎𝑖(𝑘)𝜎𝑗(𝑡)) ≥ 𝜌𝑦(𝑉) + 𝛿}           

∪ {(𝑖, 𝑗): 𝑝(𝑚) < 𝑖 ≤ 𝑟(𝑚), 𝑞(𝑛) < 𝑗 ≤ 𝑠(𝑛), 𝜌𝑦(𝑍𝜎𝑖(𝑘)𝜎𝑗(𝑡)) ≤ 𝜌𝑦(𝑉) − 𝛿}.  
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Hence, the following inequality is hold:   

1

𝜑(𝑚)𝜓(𝑛)
|{(𝑖, 𝑗): 𝑝(𝑚) < 𝑖 ≤ 𝑟(𝑚), 𝑞(𝑛) < 𝑗 ≤ 𝑠(𝑛), |𝜌𝑦(𝑉𝜎𝑖(𝑘)𝜎𝑗(𝑡)) − 𝜌𝑦(𝑉)| ≥ 𝛿}| 

                ≤
1

𝜑(𝑚)𝜓(𝑛)
|{(𝑖, 𝑗): 𝑝(𝑚) < 𝑖 ≤ 𝑟(𝑚), 𝑞(𝑛) < 𝑗 ≤ 𝑠(𝑛), |𝜌𝑦(𝑈𝜎𝑖(𝑘)𝜎𝑗(𝑡)) − 𝜌𝑦(𝑉)| ≥ 𝛿}| 

+
1

𝜑(𝑚)𝜓(𝑛)
|{(𝑖, 𝑗): 𝑝(𝑚) < 𝑖 ≤ 𝑟(𝑚), 𝑞(𝑛) < 𝑗 ≤ 𝑠(𝑛), |𝜌𝑦(𝑍𝜎𝑖(𝑘)𝜎𝑗(𝑡)) − 𝜌𝑦(𝑉)| ≥ 𝛿}|. 

So, by our assumption, we get that 𝑉𝑖𝑗 ⟶
𝑊2𝐷𝑆𝜎

𝑉.  

Now, we will examine relations between the concepts of 𝑊2[𝐷𝜎] -convergence and 𝑊2𝐷𝑆𝜎 - 

convergence for double set sequences. 

Theorem 2.3 If a double set sequences {𝑈𝑖𝑗} is 𝑊2[𝐷𝜎]- convergent to a set 𝑈 , then the sequence 

is𝑊2𝐷𝑆𝜎 -convergent to same set.  

Proof. Suppose that 𝑈𝑖𝑗 ⟶
𝑊2[𝐷𝜎]

𝑈. For every 𝛿 > 0 and each 𝑦 ∈ 𝒴, we can write the following inequality   

∑

𝑟(𝑚),𝑠(𝑛)

𝑖=𝑝(𝑚)+1
𝑗=𝑞(𝑛)+1

|𝜌𝑦(𝑈𝜎𝑖(𝑘)𝜎𝑗(𝑡)) − 𝜌𝑦(𝑈)| 

≥ ∑

𝑟(𝑚),𝑠(𝑛)

𝑖=𝑝(𝑚)+1
𝑗=𝑞(𝑛)+1

|𝜌𝑦(𝑈
𝜎𝑖(𝑘)𝜎𝑗(𝑡)

)−𝜌𝑦(𝑈)|≥𝛿

|𝜌𝑦(𝑈𝜎𝑖(𝑘)𝜎𝑗(𝑡)) − 𝜌𝑦(𝑈)|                                                         

≥ 𝛿 |{(𝑖, 𝑗): 𝑝(𝑚) < 𝑖 ≤ 𝑟(𝑚), 𝑞(𝑛) < 𝑗 ≤ 𝑠(𝑛), |𝜌𝑦(𝑈𝜎𝑖(𝑘)𝜎𝑗(𝑡)) − 𝜌𝑦(𝑈)| ≥ 𝛿}| 

and so   

1

𝛿

1

𝜑(𝑚)𝜓(𝑛)
∑

𝑟(𝑚),𝑠(𝑛)

𝑖=𝑝(𝑚)+1
𝑗=𝑞(𝑛)+1

|𝜌𝑦(𝑈𝜎𝑖(𝑘)𝜎𝑗(𝑡)) − 𝜌𝑦(𝑈)| 

≥
1

𝜑(𝑚)𝜓(𝑛)
|{(𝑖, 𝑗): 𝑝(𝑚) < 𝑖 ≤ 𝑟(𝑚), 𝑞(𝑛) < 𝑗 ≤ 𝑠(𝑛), |𝜌𝑦(𝑈𝜎𝑖(𝑘)𝜎𝑗(𝑡)) − 𝜌𝑦(𝑈)| ≥ 𝛿}|. 

Hence, by our assumption, we get that 𝑈𝑖𝑗 ⟶
𝑊2𝐷𝑆𝜎

𝑈.  
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The converse of Theorem 2.3  is provided when the double set sequence {𝑈𝑖𝑗}  is bounded. 

Otherwise it is not provided. 

The double sequence {𝑈𝑖𝑗}  is called bounded if sup𝑖,𝑗 𝜌𝑦(𝑈𝑖𝑗) < ∞  for each 𝑦 ∈ 𝒴 . Also,                

𝐿∞
2  denotes the class of all bounded double sequences of sets. 

Theorem 2.4 If a double set sequence {𝑈𝑖𝑗} ∈ 𝐿∞
2  is 𝑊2𝐷-convergent to a set 𝑈, then the sequence is 

𝑊2[𝐷𝜎]-convergent to same set.  

Proof. Suppose that {𝑈𝑖𝑗} ∈ 𝐿∞
2  and 𝑈𝑖𝑗 ⟶

𝑊2𝐷𝑆𝜎

𝑈. Since {𝑈𝑖𝑗} ∈ 𝐿∞
2 , there is a  𝒦 > 0 such that for all 

𝑖, 𝑗 ∈ ℕ and each 𝑦 ∈ 𝒴  

|𝜌𝑦(𝑈𝜎𝑖(𝑘)𝜎𝑗(𝑡)) − 𝜌𝑦(𝑈)| ≤ 𝒦 

uniformly in 𝑘, 𝑡. Thus, for every 𝛿 > 0 we have   

1

𝜑(𝑚)𝜓(𝑛)
∑

𝑟(𝑚),𝑠(𝑛)

𝑖=𝑝(𝑚)+1
𝑗=𝑞(𝑛)+1

|𝜌𝑦(𝑈𝜎𝑖(𝑘)𝜎𝑗(𝑡)) − 𝜌𝑦(𝑈)| 

=
1

𝜑(𝑚)𝜓(𝑛)
∑

𝑟(𝑚),𝑠(𝑛)

𝑖=𝑝(𝑚)+1
𝑗=𝑞(𝑛)+1

|𝜌𝑦(𝑈
𝜎𝑖(𝑘)𝜎𝑗(𝑡)

)−𝜌𝑦(𝑈)|≥𝛿

|𝜌𝑦(𝑈𝜎𝑖(𝑘)𝜎𝑗(𝑡)) − 𝜌𝑦(𝑈)|                                                               

+
1

𝜑(𝑚)𝜓(𝑛)
∑

𝑟(𝑚),𝑠(𝑛)

𝑖=𝑝(𝑚)+1
𝑗=𝑞(𝑛)+1

|𝜌𝑦(𝑈
𝜎𝑖(𝑘)𝜎𝑗(𝑡)

)−𝜌𝑦(𝑈)|<𝛿

|𝜌𝑦(𝑈𝜎𝑖(𝑘)𝜎𝑗(𝑡)) − 𝜌𝑦(𝑈)|                                                           

≤
𝒦

𝜑(𝑚)𝜓(𝑛)
|{(𝑖, 𝑗): 𝑝(𝑚) < 𝑖 ≤ 𝑟(𝑚), 𝑞(𝑛) < 𝑗 ≤ 𝑠(𝑛), |𝜌𝑦(𝑈𝜎𝑖(𝑘)𝜎𝑗(𝑡)) − 𝜌𝑦(𝑈)| ≥ 𝛿}| + 𝛿 

for each 𝑦 ∈ 𝒴. Hence, by our assumption, we get that 𝑈𝑖𝑗 ⟶
𝑊2[𝐷]𝜎

𝑈.  

Corollary 2.1 𝐿∞
2 ∩ {𝑊2[𝐷𝜎]} = 𝐿∞

2 ∩ {𝑊2𝐷𝑆𝜎}.  
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Some Novelty Inequalities Using Uniformly Exponentially (𝛚𝟏, 𝛚𝟐, 𝐡𝟏, 𝐡𝟐)-Convex Functions 
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Abstract 

            In this paper, the authors define a new generic class of functions called it uniformly exponentially 

(ω1, ω2, h1, h2) -convex. A useful integral identity pertaining to generalized integral operators via 

differentiable function is also found. Applying this as an auxiliary result, we establish some new bounds on 

Hermite-Hadamard type integral inequality for differentiable functions that are in absolute value at certain 

powers uniformly exponentially (ω1, ω2, h1, h2)-convex. Our results include several new and known 

results as particular cases. Finally, some applications of presented results for special means and error 

estimates for the mixed trapezium and midpoint formula have been analyzed.  

 

           Keywords: Hermite-Hadamard inequality, uniformly exponentially (ω1, ω2, h1, h2)-convexity, 

generalized integral operators, special means, error estimation.  

 

1. Introduction 

 

Convex functions and their generalizations have various applications in the fields of pure and applied 

sciences. Due to these applications, it is the most attractive area for researchers now a days. The class of 

convex functions is well known in the literature and is usually defined in the following way: 

 

Definition 1. Let J be an interval in ℝ. A function ψ ∶  J →  ℝ, is said to be convex on J, if the inequality 

ψ(tξ1 + (1 − t)ξ2) ≤ tψ(ξ1) + (1 − t)ψ(ξ2)                                               (1) 

holds for all ξ1, ξ2  ∈ J and t ∈ [0, 1]. Also, we say that ψ is concave, if the inequality in (1) holds in the 

reverse direction. The following inequality, named Hermite-Hadamard inequality (or H-H inequality), is 

one of the most famous inequalities in the literature for convex functions. 

Theorem 1. Let  ψ ∶  J →  ℝ  be a convex function and ξ1, ξ2  ∈ J  with ξ1 < ξ2 . Then the following 

inequality holds: 

ψ(
ξ1 + ξ2
2

) ≤
1

ξ2 − ξ1
∫ ψ(t)dt
ξ2

ξ1

 ≤
ψ(𝜉1) + ψ(ξ2)

2
.                                           (2) 
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This inequality (2) is also known as trapezium inequality. 

The trapezium inequality has remained an area of great interest due to its wide applications in the field of 

mathematical analysis. Authors of recent decades have studied (2) in the premises of newly invented 

definitions due to motivation of convex function. Interested readers see the references  [1-8]. 

Also, lets define a function ϕ: [0, +∞[ ⟶ [0,+∞[, which is constructed from the work of Sarikaya et al. 

[9], and fulfills the following four conditions: 

∫
ϕ(τ)

τ
dτ < +∞,

1

0

 

1

𝒜1
≤

ϕ(τ1)

ϕ(τ2)
≤ 𝒜1 for 

1

2
≤

τ1

τ2
≤ 2,                                                       (3) 

ϕ(τ2)

τ2
2 ≤ 𝒜2

ϕ(τ1)

τ1
2  for τ1 ≤ τ2 

and  

|
ϕ(τ2)

τ2
2 −

ϕ(τ1)

τ1
2 | ≤ 𝒜3|τ2 − τ1|

ϕ(τ2)

τ2
2  for 

1

2
≤

τ1

τ2
≤ 2, 

where 𝒜1, 𝒜2 and 𝒜3 > 0 are independent of τ1, τ2 > 0.  

Moreover, Sarikaya et al. [9] used the above function in order to define the following fractional integral 

operators. 

Definition 2. The generalized left-side and right-side fractional integrals are given as follows: 

Iϕa1
+
 ψ(x) = ∫

ϕ(x − t)

x − t
ψ(t)dt       (x > a1)                                               (4)

x

a1

 

and 

Iϕa2
−
 ψ(x) = ∫

ϕ(t − x)

t − x
ψ(t)dt       (x < a2)

a2

x

,                                             (5) 

respectively. 
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The most important feature of generalized integrals is that; they produce 

Riemann-Liouville fractional integrals, k-Riemann-Liouville fractional integrals, Katugampola fractional 

integrals, conformable fractional integrals, Hadamard fractional integrals, etc. 

Definition 3. [10] A function ψ ∶  J ⊆ ℝ →  ℝ, is called exponentially convex if 

ψ(tξ1 + (1 − t)ξ2) ≤ t
ψ(ξ1)

eωξ1
+ (1 − t)

ψ(ξ2)

eωξ2
                                             (6)   

holds true for all ξ1, ξ2 ∈ J, ω ∈ ℝ , and t ∈ [0, 1].  

Definition 4. [11] Let J be a convex set in ℝ. A function ψ ∶  J →  ℝ  is said to be uniformly convex with 

modulus Φ: [0, +∞) ⟶ [0,+∞), if Φ is increasing, Φ vanishes only at 0, and   

ψ(tξ1 + (1 − t)ξ2) ≤ t ψ(ξ1) + (1 − t)ψ(ξ2) − t(1 − t)Φ(|ξ2 − ξ1|)             (7) 

holds for all ξ1, ξ2 ∈ J, and t ∈ [0, 1].  

We are now in the position to introduce a new generic class of functions called uniformly exponentially 

(ω1, ω2, h1, h2)-convex function. 

Definition 5. Let ψ ∶  J →  ℝ , h1, h2: [0 ,1] ⟶ [0,+∞) and Φ: [0, +∞) ⟶ [0, +∞) is an increasing 

function, and vanishes only at 0. If ψ satisfies the following inequality, 

ψ(tξ1 + (1 − t)ξ2) ≤ h1(t)
ψ(ξ1)

eω1ξ1
+ h2(t)

ψ(ξ2)

eω2ξ2
− h1(t)h2(t)Φ(|ξ2 − ξ1|),          (8) 

for all ξ1, ξ2 ∈  J, ω1, ω2  ∈ ℝ, and t ∈ [0, 1], then ψ is called uniformly exponentially (ω1, ω2, h1, h2) − 

convex function with modulus Φ. 

Remark 1. Some special cases of Definition 5 are: 

i. if we take h1(t) = t, h2(t) = 1 − t,  ω1 = ω2 = 0, then we have Definiton 4. 

ii. if we choose h1(t) = t, h2(t) = 1 − t,ω1 = ω2 = 0, Φ(t) = γt, then we get the class of 

approximate uniformly convex function. 

iii. if we take h1(t) = t, h2(t) = 1 − t,  ω1 = ω2 = 0, Φ(t) = γt
2,  then we obtain the class of 

strongly uniformly convex function.  

iv. if we choose h1(t) = h2(t) = 1 , then we have the class of uniformly exponentially (ω1, ω2)– 

convex function with modulus Φ. 

v. if we take h1(t) = h(t),  h2(t) = h(1 − t), then we get the class of  uniformly exponentially 

(ω1, ω2, h)–convex function with modulus Φ.  
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vi. if we choose h1(t) = (1 − t)s, h2(t) = ts, then we obtain the class of  uniformly exponentially 

(s, ω1, ω2)–convex function with modulus Φ.  

Motivated by the above results, we will establish in Section 2 an integral identity with three parameters 

pertaining to generalized integral operators. Applying this as an auxiliary result, we will derive some new 

bounds on Hermite-Hadamard type integral inequality for differentiable functions that are in absolute value 

at certain powers uniformly exponentially (ω1, ω2, h1, h2)-convex. Our results will include several new 

and known results as particular cases. In Section 3, some applications of presented results for special means 

and error estimates for the mixed trapezium and midpoint formula will be given. 

 

2. Main Results  

 

Throughout this study, let J =  [ξ1, ξ2], J
∘ = (ξ1, ξ2) with ξ1 < ξ2,  L(J) is the set of all integrable functions 

on J and λ ∈ (0, 1]. For all t ∈  [0, 1], we define 

Λ(t) ∶= ∫
ϕ((λ

ξ1+ξ2

2
− ξ1)

u

λ
)

u

t

0

du < +∞ 

and 

Δ(t) ∶= ∫
ϕ((ξ2 − λ

ξ1+ξ2

2
)
u

λ
)

u

t

0

du < +∞. 

 

For establishing some new results regarding general fractional integrals we 

need to prove the following lemma. 

 

Lemma 1. Let ψ ∶  J →  ℝ be a differentiable function on  J°. If ψ′ ∈ L(J) and α, β ∈ ℝ, then the following 

identity for generalized fractional integrals holds: 

 

αψ(ξ1) + βψ(ξ2)

2
+
λ

2
[

Λ(λ)

λ (
ξ1+ξ2

2
) − ξ1

+
Δ(λ)

ξ2 − λ(
ξ1+ξ2

2
)
−
α + β

λ
]ψ(λ (

ξ1 + ξ2
2

))

−
λ

2
[

1

λ (
ξ1+ξ2

2
) − ξ1

∙ Iϕ
λ(
ξ1+ξ2
2

)
−
 ψ(ξ1) +

1

ξ2 − λ (
ξ1+ξ2

2
)
∙ Iϕ
λ(
ξ1+ξ2
2

)
+
 ψ(ξ2)] 

 

= (
λ(
ξ1+ξ2
2

)−ξ1

2
) ∙ ∫ [

λΛ((1−t)λ)

λ(
ξ1+ξ2
2

)−ξ1
− α]ψ′ (ξ1t + λ(1 − t) (

ξ1+ξ2

2
)) dt

1

0
                  (9)  

+(
ξ2 − λ(

ξ1+ξ2

2
)

2
) ∙ ∫ [β −

λΔ(λt)

ξ2 − λ(
ξ1+ξ2

2
)
]ψ′ (λ (

ξ1 + ξ2
2

) t + (1 − t)ξ2) dt
1

0

.         

524



 

6th INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 

21-24 June 2022, Istanbul, Turkey 

 

 

ICOM 2022 

ISTANBUL / TURKEY 

 

Proof.  We denote 

Pψ,Λ,Δ (λ, α, β, ξ1, ξ2) ∶=  (
λ (

ξ1+ξ2

2
) − ξ1

2
) ∙ ∫ [

λΛ((1 − t)λ)

λ (
ξ1+ξ2

2
) − ξ1

− α]ψ′ (ξ1t + λ(1 − t) (
ξ1 + ξ2
2

)) dt
1

0

 

+(
ξ2 − λ (

ξ1+ξ2

2
)

2
) ∙ ∫ [β −

λΔ(λt)

ξ2 − λ(
ξ1+ξ2

2
)
]ψ′ (λ (

ξ1 + ξ2
2

) t + (1 − t)ξ2) dt.
1

0

    (10) 

 

Integrating by parts (10) and changing the variables of integration, we have 

 

Pψ,Λ,Δ (λ, α, β, ξ1, ξ2) 

= (
λ(

ξ1+ξ2

2
) − ξ1

2
) [(

λ

λ (
ξ1+ξ2

2
) − ξ1

) ∫ Λ(λ(1 − t))ψ′ (ξ1t + λ(1 − t) (
ξ1 + ξ2
2

)) dt
1

0

− α∫ ψ′ (ξ1t + λ(1 − t) (
ξ1 + ξ2
2

)) dt
1

0

]

+ (
ξ2 − λ(

ξ1+ξ2

2
)

2
) [β∫ ψ′ (λ (

ξ1 + ξ2
2

) t + (1 − t)ξ2) dt
1

0

− (
λ

ξ2 − λ(
ξ1+ξ2

2
)
)∫ Δ(λt)

1

0

ψ′ (λ (
ξ1 + ξ2
2

) t + (1 − t)ξ2) dt]

= (
λ (

ξ1+ξ2

2
) − ξ1

2
){(

λ

λ (
ξ1+ξ2

2
) − ξ1

)[Λ(λ(1 − t))
ψ(ξ1t + λ(1 − t) (

ξ1+ξ2

2
))

ξ1 − λ (
ξ1+ξ2

2
)

|
1
 
0

−
1

λ (
ξ1+ξ2

2
) − ξ1

∫
ϕ((λ (

ξ1+ξ2

2
) − ξ1) (1 − t))

1 − t

1

0

ψ(ξ1t + λ(1 − t) (
ξ1 + ξ2
2

))dt]

−
α

λ (
ξ1+ξ2

2
) − ξ1

[ψ(λ (
ξ1 + ξ2
2

)) − ψ(ξ1)]} 
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+(
ξ2 − λ(

ξ1+ξ2

2
)

2
)

{
 
 

 
 

(
λ

ξ2 − λ(
ξ1+ξ2

2
)
)

[
 
 
 
 

−Δ(λt)
ψ (λ (

ξ1+ξ2

2
) t + (1 − t)ξ2)

λ (
ξ1+ξ2

2
) − ξ2

|
1
 
0

+
1

λ (
ξ1+ξ2

2
) − ξ2

∫

ϕ((ξ2 − λ(
ξ1+ξ2

2
)) t)

t
ψ (λ (

ξ1 + ξ2
2

) t + (1 − t)ξ2) dt
1

0

]
 
 
 
 

+
β

ξ2 − λ (
ξ1+ξ2

2
)
[ψ(ξ2) − ψ(λ (

ξ1 + ξ2
2

))]

}
 
 

 
 

= 

= 
αψ(ξ1) + βψ(ξ2)

2
+ +

λ

2
[

Λ(λ)

λ (
ξ1+ξ2

2
) − ξ1

+
Δ(λ)

ξ2 − λ (
ξ1+ξ2

2
)
−
α + β

λ
]ψ(λ (

ξ1 + ξ2
2

))

−
λ

2
[

1

λ (
ξ1+ξ2

2
) − ξ1

∙ Iϕ
λ(
ξ1+ξ2
2

)
−
 ψ(ξ1) +

1

ξ2 − λ (
ξ1+ξ2

2
)
∙ Iϕ
λ(
ξ1+ξ2
2

)
+
 ψ(ξ2)]. 

 

The proof of Lemma 1 is completed. 

 

Remark 2. Taking  λ = 1 and ϕ(t) = t in Lemma 1, we get [8, Lemma 2.1]. 

 

Theorem 2. Let ψ ∶  J →  ℝ be a differentiable function on  J°and α, β ∈ [0, 1]. If |ψ′|q is a uniformly 

exponentially (ω1, ω2, h1, h2) − convex function with modulus Φ on J for q > 1 and p−1 + q−1 = 1, then 

the following inequality for generalized fractional integrals holds: 

 

|Pψ,Λ,Δ (λ, α, β, ξ1, ξ2)|

≤ (
λ (

ξ1+ξ2

2
) − ξ1

2
) √AΛ(α, λ, p)

p

∙ [
|ψ′ (λ (

ξ1+ξ2

2
))|

q

eω1λ(
ξ1+ξ2
2

)
∙ H1 +

|ψ′(ξ1)|
q

eω2ξ1
∙ H2 − Gh1h2 ∙ Φ (|λ (

ξ1 + ξ2
2

) − ξ1|)]

1

q

       (11) 
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                          +(
ξ2 − λ (

ξ1+ξ2

2
)

2
) ∙ √BΔ(β, λ, p)

p

∙ [
|ψ′(ξ2)|

q

eω1ξ2
∙ H1 +

|ψ′ (λ (
ξ1+ξ2

2
))|

q

eω2λ(
ξ1+ξ2
2

)
∙ H2 − Gh1h2 ∙ Φ (|ξ2 − λ (

ξ1 + ξ2
2

)|)]

1

q

,          

where 

AΛ(α, λ, p) ∶= ∫ |
λΛ((1 − t)λ)

λ (
ξ1+ξ2

2
) − ξ1

− α|

p

dt
1

0

,      BΔ(β, λ, p) ∶= ∫ |β −
λΔ(t)

ξ2 − λ (
ξ1+ξ2

2
)
|

p

dt
1

0

,        (12)  

 

H1 ∶= ∫ h1(t)dt
1

0

,          H2 ∶= ∫ h2(t)dt
1

0

,           Gh1h2 ∶= ∫ h1(t)h2(t)dt
1

0

.                 (13) 

 

 

Proof.  From Lemma 1, uniformly exponentially (ω1, ω2, h1, h2)- convexity of |ψ′|q, Hölder’s inequality 

and properties of the modulus, we have 

 

|Pψ,Λ,Δ (λ, α, β, ξ1, ξ2)|

≤ (
λ (

ξ1+ξ2

2
) − ξ1

2
)∫ |

λΛ((1 − t)λ)

λ (
ξ1+ξ2

2
) − ξ1

− α| ∙ |ψ′ (ξ1t + λ(1 − t) (
ξ1 + ξ2
2

))| dt
1

0

+(
ξ2 − λ(

ξ1+ξ2

2
)

2
)∫ |β −

λΔ(t)

ξ2 − λ (
ξ1+ξ2

2
)
| |ψ′ (λ (

ξ1 + ξ2
2

) t + (1 − t)ξ2)| dt 
1

0

≤ (
λ (

ξ1+ξ2

2
) − ξ1

2
)(∫ |

λΛ((1 − t)λ)

λ (
ξ1+ξ2

2
) − ξ1

− α|

p

dt
1

0

)

1

p

∙ (∫ |ψ′ (ξ1t + λ(1 − t) (
ξ1 + ξ2
2

))|

q

dt
1

0

)

1

q

+ (
ξ2 − λ(

ξ1+ξ2

2
)

2
)(∫ |β −

λΔ(t)

ξ2 − λ(
ξ1+ξ2

2
)
|

p

dt
1

0

)

1

p

∙ (∫ |ψ′ (λ (
ξ1 + ξ2
2

) t + (1 − t)ξ2)|
q

dt
1

0

)

1

q
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≤ (
λ(

ξ1+ξ2

2
) − ξ1

2
) √AΛ(α, λ, p)

p
∙ [∫ {

h1(t) |ψ
′ (λ (

ξ1+ξ2

2
))|

q

eω1λ(
ξ1+ξ2
2

)
+
h2(t)|ψ

′(ξ1)|
q

eω2ξ1

1

0

− h1(t)h2(t)Φ(|λ (
ξ1 + ξ2
2

) − ξ1|)} dt]

1

q

+ (
ξ2 − λ(

ξ1+ξ2

2
)

2
) √BΔ(β, λ, p)

p

∙ [∫ {
h1(t)|ψ

′(ξ2)|
q

eω1ξ2
+
h2(t) |ψ

′ (λ (
ξ1+ξ2

2
))|

q

eω2λ(
ξ1+ξ2
2

)
− h1(t)h2(t)Φ(|ξ2 − λ (

ξ1 + ξ2
2

)|)}dt
1

0

]

1

q

= (
λ(

ξ1+ξ2

2
) − ξ1

2
) √AΛ(α, λ, p)

p

∙ [
|ψ′ (λ (

ξ1+ξ2

2
))|

q

eω1λ(
ξ1+ξ2
2

)
∙ H1 +

|ψ′(ξ1)|
q

eω2ξ1
∙ H2 − Gh1h2 ∙ Φ (|λ (

ξ1 + ξ2
2

) − ξ1|)]

1

q

+ (
ξ2 − λ(

ξ1+ξ2

2
)

2
) ∙ √BΔ(β, λ, p)

p

∙ [
|ψ′(ξ2)|

q

eω1ξ2
∙ H1 +

|ψ′ (λ (
ξ1+ξ2

2
))|

q

eω2λ(
ξ1+ξ2
2

)
∙ H2 − Gh1h2 ∙ Φ (|ξ2 − λ (

ξ1 + ξ2
2

)|)]

1

q

.     

 

The proof of Theorem 2 is completed. 

 

Corollary 1. Choosing λ = 1 and ϕ(t) = t in Theorem 2, we have 
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|
α

2
ψ(ξ1) +

2 − α − β

2
ψ(

ξ1 + ξ2
2

) +
β

2
ψ(ξ2) −

1

ξ2 − ξ1
∫ ψ(t)dt
ξ2

ξ1

|

≤ (
ξ2 − ξ1
4

)  ∙
1

√p + 1
p ∙ √αp+1 + (1 − α)p+1

p

∙ [
|ψ′ (

ξ1+ξ2

2
)|
q

eω1(
ξ1+ξ2
2

)
∙ H1 +

|ψ′(ξ1)|
q

eω2ξ1
∙ H2 − Gh1h2 ∙ Φ (|

ξ2 − ξ1
2

|)]

1

q

+ (
ξ2 − ξ1
4

) 
1

√p + 1
p √βp+1 + (1 − β)p+1

p

∙ [
|ψ′(ξ2)|

q

eω1ξ2
∙ H1 +

|ψ′ (
ξ1+ξ2

2
)|
q

eω2(
ξ1+ξ2
2

)
∙ H2 − Gh1h2 ∙ Φ (|

ξ2 − ξ1
2

|)]

1

q

.                               (14) 

 

Corollary 2. Taking  α = β = 1 in Corollary 1, we get 

 

|
ψ(ξ1) + ψ(ξ2)

2
−

1

ξ2 − ξ1
∫ ψ(t)dt
ξ2

ξ1

|

≤ (
ξ2 − ξ1
4

) ∙
1

√p + 1
p ∙ [

|ψ′ (
ξ1+ξ2

2
)|
q

eω1(
ξ1+ξ2
2

)
∙ H1 +

|ψ′(ξ1)|
q

eω2ξ1
∙ H2 − Gh1h2 ∙ Φ (|

ξ2 − ξ1
2

|)]

1

q

+ (
ξ2 − ξ1
4

) 
1

√p + 1
p [

|ψ′(ξ2)|
q

eω1ξ2
∙ H1 +

|ψ′ (
ξ1+ξ2

2
)|
q

eω2(
ξ1+ξ2
2

)
∙ H2 − Gh1h2 ∙ Φ (|

ξ2 − ξ1
2

|)]

1

q

.  (15) 

 

Corollary 3. Choosing  α = β = 0 in Corollary 1, we obtain 
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|ψ (
ξ1 + ξ2
2

) −
1

ξ2 − ξ1
∫ ψ(t)dt
ξ2

ξ1

|

≤ (
ξ2 − ξ1
4

)  ∙
1

√p + 1
p ∙ [

|ψ′ (
ξ1+ξ2

2
)|
q

eω1(
ξ1+ξ2
2

)
∙ H1 +

|ψ′(ξ1)|
q

eω2ξ1
∙ H2 − Gh1h2 ∙ Φ (|

ξ2 − ξ1
2

|)]

1

q

+ (
ξ2 − ξ1
4

) 
1

√p + 1
p

∙ [
|ψ′(ξ2)|

q

eω1ξ2
∙ H1 +

|ψ′ (
ξ1+ξ2

2
)|
q

eω2(
ξ1+ξ2
2

)
∙ H2 − Gh1h2 ∙ Φ (|

ξ2 − ξ1
2

|)]

1

q

.                                 (16) 

Corollary 4. Taking |ψ′| ≤ K in Theorem 2, we have  

|Pψ,Λ,Δ (λ, α, β, ξ1, ξ2)|

≤ (
λ (

ξ1+ξ2

2
) − ξ1

2
) √AΛ(α, λ, p)

p

∙ [Kq (
H1

eω1λ(
ξ1+ξ2
2

)
∙ +

H2

eω2ξ1
) − Gh1h2 ∙ Φ (|λ (

ξ1 + ξ2
2

) − ξ1|)]

1

q

+ (
ξ2 − λ(

ξ1+ξ2

2
)

2
) √BΔ(β, λ, p)

p

∙ [Kq (
H1

eω1ξ2
+

H2

eω2λ(
ξ1+ξ2
2

)
) − Gh1h2 ∙ Φ (|ξ2 − λ(

ξ1 + ξ2
2

)|)]

1

q

.                              (17) 

 

 

Theorem 3.  Let ψ ∶  J →  ℝ be a differentiable function on  J°and α, β ∈ [0, 1]. If |ψ′|q is a uniformly 

exponentially (ω1, ω2, h1, h2) −  convex function with modulus Φ  on J  for q ≥ 1,  then the following 

inequality for generalized fractional integrals holds: 
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|Pψ,Λ,Δ (λ, α, β, ξ1, ξ2)|

≤ (
λ (

ξ1+ξ2

2
) − ξ1

2
) (AΛ(α, λ, 1))

1−
1

q

∙ [
|ψ′ (λ (

ξ1+ξ2

2
))|

q

eω1λ(
ξ1+ξ2
2

)
∙ CΛ(α, λ, h1) +

|ψ′(ξ1)|
q

eω2ξ1
∙ DΛ(α, λ, h2) − EΛ(α, λ, h1, h2 )

∙ Φ (|λ (
ξ1 + ξ2
2

) − ξ1|)]

1

q

+ (
ξ2 − λ (

ξ1+ξ2

2
)

2
) ∙ (BΔ(β, λ, 1))

1−
1

q

∙ [
|ψ′(ξ2)|

q

eω1ξ2
∙ KΔ(β, λ, h1) +

|ψ′ (λ (
ξ1+ξ2

2
))|

q

eω2λ(
ξ1+ξ2
2

)
∙ LΔ(β, λ, h2) − MΔ(β, λ, h1, h2 )

∙ Φ (|ξ2 − λ(
ξ1 + ξ2
2

)|)]

1

q

,                                                                                               (18) 

where  

 

CΛ(α, λ, h1) ∶= ∫ |
λΛ((1 − t)λ)

λ (
ξ1+ξ2

2
) − ξ1

− α| h1(t)dt

1

0

,                                           (19) 

DΛ(α, λ, h2) ∶= ∫ |
λΛ((1 − t)λ)

λ (
ξ1+ξ2

2
) − ξ1

− α| h2(t)dt,

1

0

                                               (20) 

EΛ(α, λ, h1, h2 ) ∶= ∫ |
λΛ((1 − t)λ)

λ (
ξ1+ξ2

2
) − ξ1

− α| h1(t)h2(t)dt,

1

0

                         (21) 

KΔ(β, λ, h1) ∶= ∫ |β −
λΔ(t)

ξ2 − λ (
ξ1+ξ2

2
)
| h1(t)dt

1

0

,                                          (22) 

LΔ(β, λ, h2) ∶= ∫ |β −
λΔ(t)

ξ2 − λ(
ξ1+ξ2

2
)
| h2(t)dt,

1

0

                                          (23) 
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MΔ(β, λ, h1, h2 ) ∶= ∫ |β −
λΔ(t)

ξ2 − λ(
ξ1+ξ2

2
)
| h1(t)h2(t)dt.

1

0

                       (24) 

Proof.  From Lemma 1, uniformly exponentially (ω1, ω2, h1, h2)- convexity of |ψ′|q, the well-known 

power mean inequality and properties of the modulus, we have 

|Pψ,Λ,Δ (λ, α, β, ξ1, ξ2)|

≤ (
λ (

ξ1+ξ2

2
) − ξ1

2
)∫ |

λΛ((1 − t)λ)

λ (
ξ1+ξ2

2
) − ξ1

− α| ∙ |ψ′ (ξ1t + λ(1 − t) (
ξ1 + ξ2
2

))| dt
1

0

+(
ξ2 − λ(

ξ1+ξ2

2
)

2
)∫ |β −

λΔ(t)

ξ2 − λ (
ξ1+ξ2

2
)
| |ψ′ (λ (

ξ1 + ξ2
2

) t + (1 − t)ξ2)| dt 
1

0

≤ (
λ (

ξ1+ξ2

2
) − ξ1

2
)(∫ |

λΛ((1 − t)λ)

λ (
ξ1+ξ2

2
) − ξ1

− α| dt
1

0

)

1−
1

q

∙ (∫ |
λΛ((1 − t)λ)

λ (
ξ1+ξ2

2
) − ξ1

− α| |ψ′ (ξ1t + λ(1 − t) (
ξ1 + ξ2
2

))|

q

dt
1

0

)

1

q

+ (
ξ2 − λ (

ξ1+ξ2

2
)

2
)(∫ |β −

λΔ(t)

ξ2 − λ(
ξ1+ξ2

2
)
| dt

1

0

)

1−
1

q

∙ (∫ |β −
λΔ(t)

ξ2 − λ (
ξ1+ξ2

2
)
| |ψ′ (λ (

ξ1 + ξ2
2

) t + (1 − t)ξ2)|
q

dt
1

0

)

1

q
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                           ≤ (
λ (

ξ1+ξ2

2
) − ξ1

2
) [AΛ(α, λ, 1)]

1−
1

q ∙ [∫ |
λΛ((1 − t)λ)

λ (
ξ1+ξ2

2
) − ξ1

− α|{
h1(t) |ψ

′ (λ (
ξ1+ξ2

2
))|

q

eω1λ(
ξ1+ξ2
2

)

1

0

+
h2(t)|ψ

′(ξ1)|
q

eω2ξ1
− h1(t)h2(t)Φ(|λ (

ξ1 + ξ2
2

) − ξ1|)} dt]

1

q

+ (
ξ2 − λ (

ξ1+ξ2

2
)

2
) [BΔ(β, λ, p)]

1−
1

q

∙ [∫ |β −
λΔ(t)

ξ2 − λ (
ξ1+ξ2

2
)
| {
h1(t)|ψ

′(ξ2)|
q

eω1ξ2
+
h2(t) |ψ

′ (λ (
ξ1+ξ2

2
))|

q

eω2λ(
ξ1+ξ2
2

)

1

0

− h1(t)h2(t)Φ(|ξ2 − λ (
ξ1 + ξ2
2

)|)} dt]

1

q

= (
λ (

ξ1+ξ2

2
) − ξ1

2
) (AΛ(α, λ, 1))

1−
1

q

∙ [
|ψ′ (λ (

ξ1+ξ2

2
))|

q

eω1λ(
ξ1+ξ2
2

)
∙ CΛ(α, λ, h1) +

|ψ′(ξ1)|
q

eω2ξ1
∙ DΛ(α, λ, h2) − EΛ(α, λ, h1, h2 )

∙ Φ (|λ (
ξ1 + ξ2
2

) − ξ1|)]

1

q

+ (
ξ2 − λ(

ξ1+ξ2

2
)

2
) ∙ (BΔ(β, λ, 1))

1−
1

q

∙ [
|ψ′(ξ2)|

q

eω1ξ2
∙ KΔ(β, λ, h1) +

|ψ′ (λ (
ξ1+ξ2

2
))|

q

eω2λ(
ξ1+ξ2
2

)
∙ LΔ(β, λ, h2) − MΔ(β, λ, h1, h2 )

∙ Φ (|ξ2 − λ (
ξ1 + ξ2
2

)|)]

1

q

. 

The proof of Theorem 3 is completed. 

 

Corollary 5. Taking λ = 1 and ϕ(t) = t in Theorem 3, we have 
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|
α

2
ψ(ξ1) +

2 − α − β

2
ψ(

ξ1 + ξ2
2

) +
β

2
ψ(ξ2) −

1

ξ2 − ξ1
∫ ψ(t)dt
ξ2

ξ1

|

≤ (
ξ2 − ξ1
4

) (
1 − 2α + 2α2

2
)

1−
1

q

                                                                                               (25)

∙ [
|ψ′ (

ξ1+ξ2

2
)|
q

eω1(
ξ1+ξ2
2

)
CΛ(α, 1, h1) +

|ψ′(ξ1)|
q

eω2ξ1
DΛ(α, 1, h2) − EΛ(α, 1, h1, h2 )Φ(|

ξ2 − ξ1
2

|)]

1

q

+ (
ξ2 − ξ1
4

) ∙ (
1 − 2β + 2β2

2
)

1−
1

q

∙ [
|ψ′(ξ2)|

q

eω1ξ2
KΔ(β, 1, h1) +

|ψ′ (
ξ1+ξ2

2
)|
q

eω2(
ξ1+ξ2
2

)
LΔ(β, 1, h2) − MΔ(β, 1, h1, h2 )Φ(|

ξ2 − ξ1
2

|)]

1

q

.  

 

Corollary 6. Choosing q = 1  in Theorem 3, we get 

|Pψ,Λ,Δ (λ, α, β, ξ1, ξ2)|

≤ (
λ (

ξ1+ξ2

2
) − ξ1

2
)                                                                                                                                          (26)

∙ [
|ψ′ (λ (

ξ1+ξ2

2
))|

eω1λ(
ξ1+ξ2
2

)
∙ CΛ(α, λ, h1) +

|ψ′(ξ1)|

eω2ξ1
∙ DΛ(α, λ, h2) − EΛ(α, λ, h1, h2 ) ∙ Φ (|λ (

ξ1 + ξ2
2

) − ξ1|)]

+ (
ξ2 − λ(

ξ1+ξ2

2
)

2
)

∙ [
|ψ′(ξ2)|

eω1ξ2
∙ KΔ(β, λ, h1) +

|ψ′ (λ (
ξ1+ξ2

2
))|

e
ω2λ(

ξ1+ξ2
2

)
∙ LΔ(β, λ, h2) − MΔ(β, λ, h1, h2 )

∙ Φ (|ξ2 − λ(
ξ1 + ξ2
2

)|)].                                                                                                

Corollary 7. Taking |ψ′| ≤ K in Theorem 3, we obtain  
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|Pψ,Λ,Δ (λ, α, β, ξ1, ξ2)|

≤ (
λ (

ξ1+ξ2

2
) − ξ1

2
) (AΛ(α, λ, 1))

1−
1

q                                                                                                 (27)

∙ [
Kq

eω1λ(
ξ1+ξ2
2

)
CΛ(α, λ, h1) +

Kq

eω2ξ1
DΛ(α, λ, h2) − EΛ(α, λ, h1, h2 )Φ(|λ (

ξ1 + ξ2
2

) − ξ1|)]

1

q

+ (
ξ2 − λ(

ξ1+ξ2

2
)

2
) ∙ (BΔ(β, λ, 1))

1−
1

q

∙ [
Kq

eω1ξ2
KΔ(β, λ, h1) +

Kq

eω2λ(
ξ1+ξ2
2

)
LΔ(β, λ, h2) − MΔ(β, λ, h1, h2 )Φ(|ξ2 − λ(

ξ1 + ξ2
2

)|)]

1

q

.   

3. Applications 

 

Consider the following special means for different positive real numbers ξ1 < ξ2: 
 

 Arithmetic mean:  A(ξ1, ξ2) =
ξ1+ξ2

2
; 

 The harmonic mean: H(ξ1, ξ2) =
2

1

ξ1
+
1

ξ2

; 

 The logarithmic mean: L(ξ1, ξ2) =
ξ2−ξ1

lnξ2−lnξ1
; 

 The k–generalized log–mean: Lk(ξ1, ξ2) = [
ξ2
k+1−ξ1

k+1

(k+1)(ξ2−ξ1)
]

1

k
,   k ∈ ℤ\{−1, 0}. 

 

Using the results obtained in the previous section, we give some applications to special means. 

 

Proposition 1. Let 0 < ξ1 < ξ2 ,  ω1, ω2  ∈ ℝ
− , n ≥ 2, n ∈ ℕ  and α, β ∈ [0, 1] . Then for  q > 1  and 

p−1 + q−1 = 1, the following inequality holds: 
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|A(αξ1
n, βξ2

n) +
2 − α −  β

2
An(ξ1, ξ2) − Ln

n (ξ1, ξ2)|

≤
ξ2 − ξ1

4√2
q
 √p + 1
p

∙ {√αp+1 + (1 − α)p+1
p

[
nqA(n−1)q(ξ1, ξ2)

eω1(
ξ1+ξ2
2

)
+
nqξ1

(n−1)q

eω2ξ1
−
ξ2 − ξ1
6

]

1

q

+ √βp+1 + (1 − β)p+1
p

[
nqξ2

(n−1)q

eω1ξ2
+
nqA(n−1)q(ξ1, ξ2)

eω2(
ξ1+ξ2
2

)
−
ξ2 − ξ1
6

]

1

q

}. 

Proof. Taking ψ(t) = tn, n ≥ 2, n ∈ ℕ , h1(t) = t, h2(t) = (1 − t),  and Φ(t) = t  in Corollary 1, we 

obtain the result. 

 

Proposition 2. Let 0 < ξ1 < ξ2, ω1, ω2  ∈ ℝ
− and α, β ∈ [0, 1]. Then for  q > 1 and p−1 + q−1 = 1, the 

following inequality holds: 

 

|
1

H (
ξ1

α
,
ξ2

β
)
+
2 − α −  β

2

1

A(ξ1, ξ2)
−

1

L(ξ1, ξ2)
|

≤
ξ2 − ξ1

4√p + 1
p

∙ {√αp+1 + (1 − α)p+1
p

[
1

H(A2q(ξ1, ξ2)e−ω1A
(ξ1,ξ2), ξ1

2q
e−ω2ξ1)

−
ξ2 − ξ1
12

]

1

q

+ √βp+1 + (1 − β)p+1
p

[
1

H(ξ2
2q
e−ω1ξ2 , A2q(ξ1, ξ2)e−ω2A

(ξ1,ξ2))
−
ξ2 − ξ1
12

]

1

q

}. 

 

Proof. Choosing ψ(t) =
1

t
,  h1(t) = t, h2(t) = (1 − t), and Φ(t) = t in Corollary 1, we obtain the result. 

 

Next, we provide some new error estimates for the mixed trapezium and 

midpoint formula. Let 𝒫  be the partition of the points ξ1  =  x0  <   x1  < . . . < 
xk  =  ξ2 of the interval J. Let consider the following quadrature formula: 

∫ ψ(t)dt
ξ2

ξ1

= TM(ψ,𝒫; α, β) + E(ψ,𝒫; α, β), 

where 

TM(ψ,𝒫; α, β) ∶=∑[
α

2
ψ(xi) +

2 − α − β

2
ψ(

 xi +  xi+1
2

) +
β

2
ψ(xi+1)] (xi+1 −  xi)

k

i=0
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is the mixed trapezium and midpoint version and E(ψ,𝒫; α, β)  is denote their 

associated approximation error. 

 

Proposition 3. Let ψ ∶ J →  ℝ be a differentiable function on J∘and α, β ∈ [0, 1]. If |ψ′|q is a uniformly 

exponentially (ω1, ω2, h1, h2) − convex function with modulus Φ on J for q > 1 and 
1

p
+

1

q
= 1, then the 

following inequality holds: 

 

|E(ψ,𝒫; α, β)| ≤  
1

4√2
q

∙ √p + 1
p

∙∑(xi+1 − xi)
2

{
 

 

√αp+1 + (1 − α)p+1
p

k

i=1

∙ [
|ψ′ (

xi+xi+1

2
)|
q

eω1(
xi+xi+1

2
)
+
|ψ′(xi)|

q

eω2xi
−
1

3
∙ Φ (|

xi+1 − xi
2

|)]

1

q

+ √βp+1 + (1 − β)p+1
p

∙ [
|ψ′(xi+1)|

q

eω1xi+1
+
|ψ′ (

xi+xi+1

2
)|
q

eω2(
xi+xi+1

2
)
−
1

3
∙ Φ (|

xi+1 − xi
2

|)]

1

q

}
 

 

. 

Proof. Applying Corollary 1 for h1(t) = t, h2(t) = (1 − t), on the subintervals (xi, xi+1) of the partition 

𝒫, we have 

 

|
α

2
ψ(xi) +

2 − α − β

2
ψ (

xi + xi+1
2

) +
β

2
ψ(xi+1) −

1

xi+1 − xi
∫ ψ(t)dt
xi+1

xi

|

≤ (
xi+1 − xi

4
) ∙

1

√2
q

∙ √p + 1
p

∙

{
 

 

√αp+1 + (1 − α)p+1
p

∙ [
|ψ′ (

xi+xi+1

2
)|
q

eω1(
xi+xi+1

2
)
+
|ψ′(xi)|

q

eω2xi
−
1

3
∙ Φ (|

xi+1 − xi
2

|)]

1

q

+ √βp+1 + (1 − β)p+1
p

∙ [
|ψ′(xi+1)|

q

eω1xi+1
+
|ψ′ (

xi+xi+1

2
)|
q

eω2(
xi+xi+1

2
)
−
1

3
∙ Φ (|

xi+1 − xi
2

|)]

1

q

}
 

 

. 

Hence, 
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|E(ψ,𝒫; α, β)| = |∫ ψ(t)dt
ξ2

ξ1

− TM(ψ,𝒫; α, β)|

≤∑|{∫ ψ(t)dt
xi+1

xi

− (
α

2
ψ(xi) +

2 − α − β

2
ψ(

xi + xi+1
2

) +
β

2
ψ(xi+1)) (xi+1 −  xi)}|

k

i=0

≤
1

4√2
q

∙ √p + 1
p

∙∑(xi+1 − xi)
2

{
 

 

√αp+1 + (1 − α)p+1
p

k

i=1

∙ [
|ψ′ (

xi+xi+1

2
)|
q

eω1(
xi+xi+1

2
)
+
|ψ′(xi)|

q

eω2xi
−
1

3
∙ Φ (|

xi+1 − xi
2

|)]

1

q

+ √βp+1 + (1 − β)p+1
p

∙ [
|ψ′(xi+1)|

q

eω1xi+1
+
|ψ′ (

xi+xi+1

2
)|
q

eω2(
xi+xi+1

2
)
−
1

3
∙ Φ (|

xi+1 − xi
2

|)]

1

q

}
 

 

. 

 

4. Conclusion 

In this paper, we established an integral identity with three parameters via generalized integral operators. 

Using this as an auxiliary result, we derived some new bounds on Hermite-Hadamard type integral 

inequality for differentiable functions that are in absolute value at certain powers uniformly exponentially 

(ω1, ω2, h1, h2)-convex. Our results included several new and known results as particular cases. Moreover, 

some applications of presented results for special means and error estimates for the mixed trapezium and 

midpoint formula are found. To the best of our knowledge, these results are new in the literature. Studies 

relating convexity may have useful applications, such as maximizing the likelihood from multiple linear 

regressions involving Gauss-Laplace distribution. Finally, we can observe that the new defined class is a 

new powerful type of convex functions to investigate various inequalities in the field of real analysis. 
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Abstract 

In this work, some properties of -g-Rad-supplemented modules are studied. Every ring has an 

unity and every module is an unitary left module, in this work. It is proved that a direct sum of two -g-

Rad-supplemented modules is -g-Rad-supplemented. 

Keywords: Essential Submodules, g-Small Submodules, g-Supplemented Modules, -g-Supplemented 

Modules. 

 

2020 Mathematics Subject Classification: 16D10, 16D80. 

 

1. INTRODUCTION 

Throughout this paper all rings will be associative with identity and all modules will be unital left 

modules. 

Let R be a ring and M be an R-module. We will denote a submodule N of M by N≤M. Let M be an R-

module and N≤M. If L=M for every submodule L of M such that M=N+L, then N is called a small 

submodule of M and denoted by NM. Let M be an R-module and N≤M. If there exists a submodule K of 

M such that M=N+K and NK=0, then N is called a direct summand of M and it is denoted by M=NK. 

For any R-module M, we have M=M0. The intersection of all maximal submodules of M is called the 

radical of M and denoted by RadM. If M have no maximal submodules, then it is defined RadM=M. M is 

said to be semilocal if M/RadM is semisimple. A submodule N of an R-module M is called an essential 

submodule of M and denoted by NM in case KN≠0 for every submodule K≠0, or equivalently, K=0 for 

every K≤M with NK=0. Let M be an R-module and K be a submodule of M. K is called a generalized 

small (or briefly, g-small) submodule of M if for every essential submodule T of M with the property 

M=K+T implies that T=M, then we write KgM. It is clear that every small submodule is a generalized 

small submodule but the converse is not true in general. Let M be an R-module. M is called a hollow 

module if every proper submodule of M is small in M. M is called a generalized hollow (or briefly, g-

hollow) module if every proper submodule of M is g-small in M. Here it is clear that every hollow module 

is generalized hollow. The converse of this statement is not always true. M is called a local module if M 

has the largest submodule, i.e. a proper submodule which contains all other proper submodules. M is said 

to be generalized local (briefly, g-local) if M has a large proper essential submodule which contain all 

proper essential submodules of M or M have no proper essential submodules. Let U and V be submodules 
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of M. If M=U+V and V is minimal with respect to this property, or equivalently, M=U+V and UVV, 

then V is called a supplement of U in M. M is said to be supplemented if every submodule of M has a 

supplement in M. If every submodule of M has a supplement that is a direct summand in M, then M is 

called a -supplemented module. Let M be an R-module and U;V≤M. If M=U+V and M=U+T with TV 

implies that T=V, or equivalently, M=U+V and UVgV, then V is called a g-supplement of U in M. M is 

said to be g-supplemented if every submodule of M has a g-supplement in M. M is said to be -g-

supplemented if every submodule of M has a g-supplement that is a direct summand in M. Let M be an R-

module and U,V≤M. If M=U+V and UV≤RadV, then V is called a generalized (radical) supplement 

(briefly, Rad-supplement) of U in M. M is said to be generalized (radical) supplemented (briefly, Rad-

supplemented) if every submodule of M has a Rad-supplement in M. M is said to be generalized (radical) 

-supplemented (briefly, Rad--supplemented) if every submodule of M has a Rad-supplement that is a 

direct summand in M. The intersection of all essential maximal submodules of an R-module M is called 

the generalized radical of M and denoted by RadgM. If M have no essential maximal submodules, then 

we denote RadgM =M. An R-module M is said to be g-semilocal if M/RadgM is semisimple. Let M be an 

R-module and U,V≤M. If M=U+V and UV≤RadgV, then V is called a generalized radical supplement (or 

briefly, g-radical supplement) of U in M. M is said to be generalized radical supplemented (briefly, g-

radical supplemented) if every submodule of M has a g-radical supplement in M. 

 More informations about supplemented modules are in [1] and [11]. More results about -

supplemented modules are in [3]. Generalized (radical) supplemented modules are studied in [10]. Rad-

-supplemented modules are studied in [2] and [9]. G-small submodules, g-supplemented modules and g-

radical supplemented modules are studied in [4], [5] and [6]. More informations about -g-supplemented 

modules are in [7].  

 

2. -g-RAD-SUPPLEMENTED MODULES 

Definition 2.1. Let M be an R-module. If every submodule of M has a g-radical supplement that is a 

direct summand in M, then M is called a -g-Rad-supplemented module. (See [8]) 

 

Proposition 2.2. Every -g-supplemented module is -g-Rad-supplemented. 

Proof. Let M be a -g-supplemented module and U≤M. Since M is -g-supplemented, U has a g-

supplement V that is a direct summand in M. Here M=U+V and UVgV. Since UVgV, 

UV≤RadgV. Hence V is a g-radical supplement of U in M. Thus M is -g-Rad-supplemented. 

 

Proposition 2.3. Let M=UV. If U and V are -g-supplemented, then M is -g-supplemented. 

Proof. Since U and V is -g-supplemented, by [7], M is -g-supplemented. Then by Proposition 2.2, M is 

-g-Rad-supplemented. 

541



 

6
th

 INTERNATIONAL HYBRID CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 

21-24 June 2022, Istanbul, Turkey 

 

 

ICOM 2022 

ISTANBUL / TURKEY 

Corollary 2.4. Let M=M1M2...Mn. If Mi is -g-supplemented for every i=1,2,...,n, then M is -g-

Rad-supplemented. 

Proof. Clear from Proposition 2.3. 

 

Proposition 2.5. Let M be -g-supplemented module and K be a submodule of M. If (X+K)/K is a direct 

summand of M/K for every direct summand X of M, then M is -g-Rad-supplemented. 

Proof. By [7], M/K is -g-supplemented. Then by Prposition 2.3, M is -g-Rad-supplemented, as 

desired. 

 

Proposition 2.6. Let M be a distributive -g-supplemented R-module. Then every factor module of M is 

-g-Rad-supplemented. 

Proof. By [7], every factor module of M is -g-supplemented. Then by Prposition 2.3, every factor 

module of M is -g-Rad-supplemented, as desired. 

 

Corollary 2.7. Let M be a distributive -g-supplemented R-module. Then every direct summand of M is 

-g-Rad-supplemented. 

Proof. Clear from Proposition 2.6, since every direct summand of M is isomorphic to a factor module of 

M. 

 

Corollary 2.7. Let M be a distributive -g-supplemented R-module. Then every homomorphic image of 

M is -g-Rad-supplemented. 

Proof. Clear from Proposition 2.6, since every homomorphic image of M is isomorphic to a factor module 

of M. 

 

Proposition 2.8. Let M be a ⊕−g−supplemented R−module with (D3) property. Then every direct 

summand of M is ⊕−g−Rad-supplemented. 

Proof. By [7], every direct summand of M is -g-supplemented. Then by Prposition 2.3, every direct 

summand of M is -g-Rad-supplemented, as desired. 

 

Proposition 2.9. Let M be a ⊕−g−supplemented R−module with (D3) property. Then M/K is ⊕−g−Rad-

supplemented for every direct summand K of M. 

Proof. By [7], M/K is -g-supplemented. Then by Prposition 2.3, M/K is -g-Rad-supplemented, as 

desired. 

 

Proposition 2.10. Let M be a ⊕−g−supplemented R−module with SSP property. Then M/K is ⊕−g−Rad-

supplemented for every direct summand K of M. 
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Proof. By [7], M/K is -g-supplemented. Then by Prposition 2.3, M/K is -g-Rad-supplemented, as 

desired. 

 

Corollary 2.11. Let M be a ⊕−g−supplemented R−module with SSP property. Then every direct 

summand of M is -g-Rad-supplemented. 

Proof. Let U be a direct summand of M and M=UV with V≤M. By proposition M/V is -g-Rad-

supplemented. Then by M/V=(U+V)/VU/(UV)=U/0U, U is -g-Rad-supplemented, as desired. 

 

Proposition 2.12. Let M be an R-module and M=M1M2. If M1 and M2 are -g-Rad-supplemented, then 

M is also -g-Rad-supplemented. 

Proof. Let U be any submodule of M. Since M2 is -g-Rad-supplemented, (M1+U)M2 has a g-radical 

supplement X that is a direct summand of M2. Since X is a g-radical supplement of (M1+U)M2 in M2, 

M2=(M1+U)M2+X and (M1+U)X=(M1+U)M2X≤RadgX. By M2=(M1+U)M2+X, 

M=M1+M2=M1+(M1+U)M2+X=M1+U+X. Since M1 is -g-Rad-supplemented, (U+X)M1 has a g-

radical supplement Y that is a direct summand of M1. Since Y is a g-radical supplement of (U+X)M1 in 

M1, M1=(U+X)M1+Y and (U+X)Y=(U+X)M1Y≤RadgY. By M1=(U+X)M1+Y, 

M=M1+U+X=(U+X)M1+Y+U+X=U+X+Y. Since (M1+U)X≤RadgX and (U+X)Y≤RadgY, 

U(X+Y)≤(U+Y)X+(U+X)Y≤(M1+U)X+(U+X)Y≤RadgX+RadgY≤Radg(X+Y). Hence X+Y is a g-

radical supplement of U in M. Since X is a direct summand of M2 and Y is a direct summand of M1, XY 

is a direct summand of M=M1M2. Hence M is -g-Rad-supplemented.  

 

References: 

1. Clark, J., Lomp, C., Vanaja, N., Wisbauer, R. 2006. Lifting Modules Supplements and Projectivity In 

Module Theory, Frontiers in Mathematics, Birkhauser, Basel. 

2. Çalışıcı, H., Türkmen, E. 2010. Generalized -Supplemented Modules, Algebra and Discrete 

Mathematics, 10(2), 10-18. 

3. Harmancı, A., Keskin, D., Smith, P. F. 1999. On -Supplemented Modules, Acta Mathematica 

Hungarica, 83(1-2), 161-169. 

4. Koşar, B., Nebiyev, C., Pekin, A. 2019. A Generalization of g-Supplemented Modules, Miskolc 

Mathematical Notes, 20(1), 345-352. 

5. Koşar, B., Nebiyev, C., Sökmez, N. 2015. g-Supplemented Modules, Ukrainian Mathematical Journal, 

67(6), 861-864.  

6. Nebiyev, C., Ökten, H. H. 2017. Weakly g-Supplemented Modules, European Journal of Pure and 

Applied Mathematics, 10(3), 521-528. 

7. Nebiyev, C., and Ökten, H. H. Some Properties of -g-Supplemented Modules, Miskolc Mathematical 

Notes (Accepted). 

543



 

6
th

 INTERNATIONAL HYBRID CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 

21-24 June 2022, Istanbul, Turkey 

 

 

ICOM 2022 

ISTANBUL / TURKEY 

8. Nebiyev, C., Özdemir, H. B. 2020. -g-Rad-Supplemented Modules, Presented in ‘9th International 

Eurasian Conference on Mathematical Sciences and Applications (IECMSA-2020)’.  

9. Talebi, Y., Hamzekolaei, A. R. M., Tütüncü, D. K. 2009. On Rad--Supplemented Modules, Hadronic 

Journal, 32, 505-512. 

10. Wang, Y., Ding, N. 2006. Generalized Supplemented Modules, Taiwanese Journal of Mathematics, 

10(6), 1589-1601. 

11. Wisbauer, R. 1991. Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia. 

     

544



6th INTERNATIONAL CONFERENCE ON MATHEMATICS
“An Istanbul Meeting for World Mathematicians”

21-24 June 2022, Istanbul, Turkey

ICOM 2022
ISTANBUL / TURKEY

Some Theorems on Absolute Matrix Summability

Hikmet Seyhan Özarslan1, Sultan Kalender2

1,2Mathematics, Erciyes University, Turkey
E-mail(s):  seyhan@erciyes.edu.tr, sultan.sgr@icloud.com

Abstract

In this paper, two theorems on absolute Riesz summability factors of  infinite series are
generalized to  the , n k

A p  summability method by using almost increasing sequences.

Keywords: Riesz mean, almost increasing sequences, infinite series, absolute matrix
summability.

1. Introduction

Let na be a given infinite series with the partial sums ( ) and  np be a sequence of positive
numbers such that

0

n

n v
v

P p


  as  n , ( 0,  1).i iP p i   

The series na is said to be summable , n k
N p , 1k  , if  [1]
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Let ( )nvA a be a normal matrix, i.e., a lower triangular matrix of nonzero diagonal entries and let

( )n be any sequence of positive real numbers. The series na is said to be summable , n k
A p 

1k  , if [2]
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where

0
( )

n

n nv v
v

A s a s


 , 0,1, ...n 

A positive sequence  nb is said to be almost increasing if there exist a positive increasing sequence

 nc and two positive constants K and L such that  n n nKc b Lc  [3].

Theorem 1.1 ([4]). Let ( )nX be an almost increasing sequence, and let there be sequence ( )n and

( )n such that

n n   , (1)

n  as ,n (2)

1
,n n

n

n X




   (3)

(1)n nX O  as ,n (4)
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1
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n
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p
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then, the series n na  is summable , n k
N p , 1.k 

Theorem 1.2 ([4]). Let ( )nX be an almost increasing sequence, and let the conditions (1)-(4) , (6)
be satisfied. If  the conditions

1
,                           (7)n n n

n

P X 




  

1
( )                   (8)
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O X as m
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are satisfied, then the series n na  is summable , n k
N p , 1.k 
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2. Main Results

Many works on almost increasing sequences have been done, see ([5-16]). The aim of this paper is
to generalize Theorem 1.1 and Theorem 1.2 to the , n k

A p  summability method.  Before
stating our theorems, we must first introduce some further notations.  Given a normal matrix

( )nvA a , two lower semimatrices ( )nvA a and  ( )nvA a are defined as follows:

n

nv ni
i v

a a


 , , 0,1,2...n v  (9)


1,nv nv n va a a   , 

00 00 00a a a  , 1,2...n  (10)

0 0
( )

n n

nvn nv v v
v v

A s a s a a
 

   (11)

 
0

ˆ .
n

n nv v
v

A s a a


  (12)

Theorem 2.1. Let ( )nvA a be a positive normal matrix such that

0 1na  , 0,1...n  (13)

1,n v nva a  for 1,n v  (14)

.n
nn

n

p
a O

P

 
  
 

(15)

Let ( )nX be an almost increasing sequence and n n

n

p

P

 
 
 

be a non-increasing sequence. If the

conditions (1)-(4) and
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 as m (17)

are satisfied, then the series n na  is summable , n k
A p  , 1.k 
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Theorem 2.2. Let ( )nX be an almost increasing sequence and ( )nvA a be a positive normal matrix

as  in Theorem 2.1. Let n n

n

p

P

 
 
 

be a non- increasing sequence. If the conditions (1)-(4) , (7), (17)

and

1

1
( )

k km
nn n

m
n n n

sp
O X

P P






 
 

 
 as m (18)

are  satisfied, then the series n na  is summable , n k
A p  , 1k  .

In order to prove the theorems, we require the following lemmas.

Lemma 2.1 ([4]). Let ( )nX be an almost increasing sequence. If the conditions (2) and (3) are
satisfied, then we have

(1)n nnX O  as ,n (19)

1
.n n

n

X 




  (20)

Lemma 2.2 ([4]). Let ( )nX be an almost increasing sequence. If the conditions (2) and (7)  are
satisfied, then we have

(1)n n nP X O  as ,n (21)

1
.n n n

n

p X 




  (22)

3. Proof of Theorem 2.1

Let ( )nM denotes A-transform of the series n na  . Then, by (11) and (12), we have


1

.
n

nvn v v
v

M a a
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By Abel’s transformation, we get three part as in the following
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To prove Theorem 2.1, by Minkowski’s inequality, it is sufficient to show that
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From Hölders’s inequality, we obtain
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Here, we have

  
, 1 1, , 1 1, 1 1,( )nv nv n v nv n v n v n vv nv n va a a a a a a a a              (23)

by (10)  and (9) . Then, by using (14), (13) , (9), we get
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Thus, from (24), (15), we have
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Here, we know that
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  by  (23)  and (14), then
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by Abel’s transformation, and using the conditions (1) , (17) , (20) and (4).

Again, we obtain
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Here by (10), (9), (14) , we get , 1ˆ .n v nna a  Then, by (15) and (1), we obtain
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Using the fact that 
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by Abels’s transformation, and using the conditions (16), (3) , (20), (19) .

Finally, we have
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as in ,1nM . This completes the proof of Theorem 2.1.

4. Proof of  Theorem 2.2

Using Lemma 2.2 and proceeding as in the proof of Theorem 2.1, replacing
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 , Theorem 2.2 can be proved easily.

If we take n
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 , then Theorem 2.1 and Theorem 2.2 reduce to Theorem 1.1

and Theorem 1.2, respectively.
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Abstract 
In the scope of this study, a statistical assessment of earthquake behaviors in the Çaldıran Fault 

Zone and its surroundings is achieved by using the seismotectonic b-value of Gutenberg-Richter 
relation, probability, and return periods of the earthquakes. Multiple parameters evaluation between 
these variables is considered for the possible future earthquake forecasting and current hazard assessment. 
For the analyses, a homogeneous database including 6169 earthquakes with 1.0≤Md≤ 5.6 between July 12, 
1975 and December 29, 2021 was used. Completeness magnitude is estimated as 2.6 for the study region 

and the b-value of magnitude-frequency distribution is calculated as 1.070.09. This result shows that the 
b-value of the study area is well represented by the Gutenberg-Richter scaling law. Regional distribution 
of b-value indicates that the areas having the lower b-values (<1.0) are generally observed in all parts of 
the study region including the Çaldıran fault consisting of Alaçayır, Hidirmenteş and Gülderen segments, 
Hasan Timur fault, Dorutay fault, and Saray fault zone. The probabilities earthquake occurrences with 
Md=6.0 in Tr = 10, 20, 50, 70 and 100 years are estimated as about 4 %, 7 %, 18 %, 23 % and 32 %, 
respectively. Also, the return periods of Md=5.0, 5.5, and 6.0 earthquakes are calculated as about 29, 90, 
and 300 years, respectively. The results of probabilities and return periods suggest that earthquake 
occurrences ranging from 3.0-4.5 magnitude levels are more likely than those of the other occurrences in 
the short term. Çaldıran Fault zone and its adjacent region are very active seismically and tectonically, and 
many strong/destructive earthquakes occurred in the historical and instrumental periods; the last of these 
major earthquakes occurred on November 24, 1976 (MS=7.3). As a remarkable fact, the results of the 
present study can be used as a promising guide for earthquake forecasting and further hazard potential in 
this part of Turkey in the intermediate and long terms.   

 
          Keywords: Çaldıran Fault zone, b-value, earthquake probability, return period, seismic hazard. 

1. Introduction 
 

Earthquakes are one of the most destructive and dangerous natural disasters. It is well known that 
region-time occurrences are not random and they generally occur without any indicators. Hence, statistical 
studies on the region-time distributions of earthquake activity are one of the most significant processes for 
future earthquake potential. It is assumed that Earth’s structure is very complex and earthquake occurrences 
show chaotic process and therefore, forecasting of earthquakes can be attributed to a statistical basis. 
Earthquake forecasting techniques are generally considered in two classes. The first one considers the 
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empirical measurements of precursory changes, while the second approach uses statistical patterns of 
seismic activity. For this purpose, many authors have used different algorithms and parameters for 
seismicity analyses of different parts of the world. Some sample parameters are seismotectonic b-value, 
earthquake probability, return period, and Coulomb failure. Taking into account the statistical basis, 
statistical behaviors of seismic parameters become very important in the earthquake hazard and for the 
forecasting of possible future earthquakes. Thus, these types of studies indicate that considering the fractal 
behaviors of earthquake occurrences may be correlated with the seismogenic stress situations during the 
earthquake activity and may be related to the next possible earthquake occurrences. 

It is well known that the East Anatolian Plateau (EAP) is one of the most active seismotectonic 
regions of Turkey and has an important seismotectonic potential concerning occurrences of strong/large 
earthquakes in the intermediate and long terms. EAP is a part of the Alpine-Himalayan orogenic system 
and the N-S compressional tectonic regime which originated from the northward motion of the Arabian 
plate and southward motion of the Eurasian plate causes high seismic activity in the region. Main tectonics 
in and around the EAP are shown in Fig. 1. The Çaldıran fault (CF) is one of the strike-slip faults systems 
in EAP and is located in the east of the Karlıova triple-junction (KTJ). This fault system has a right-lateral 
strike-slip mechanism and extends eastward to the North Tabriz fault and westward to Erciş and Tutak 
faults, considered the southern boundary of the Caucasus block. According to detailed mapping, The CF is 
divided into three individual segments called Gülderen, Hıdırmenteş, and Alaçayır sections. The GPS-
derived slip rate for this fault system has been calculated as 11.9 mm yr-1 [1], 8 mm yr-1 [2], 7.2 - 8.3 mm 
yr-1 [3], and 3.27 mm yr-1 [4]. The CF caused many destructive earthquakes in the instrumental and 
historical periods. According to the earthquake catalog of the Disaster and Emergency Management 
Authority (AFAD), the CF and its surroundings experienced many destructive earthquakes in the past and 
recent years such as 1664, 1779, and 1872. The last of these devastating earthquakes occurred on 24 
November 1976 Çaldıran (MS=7.3, surface wave magnitude) with an approximately 52 km-long surface 
rupture [5], [6]. The previous destructive earthquakes in the past give an opinion for future seismicity. 
Using these past events, the main aim of this study is to explore statistically for possible future earthquake 
forecasting and hazard evaluation by performing seismotectonic b-value of Gutenberg-Richter relation, 
probability, and return periods of the earthquakes around the CF.  

 
2. Earthquake Catalog and Analysis Methods 
 

A part of the data is obtained from [7] for the time period from 1970 to 2006. This catalog is 
homogeneous for duration magnitude, Md, and contains 83 events. Also, the earthquakes between 2006 and 
2022 are provided from KOERI, and there are 6086 events in this time period. The shallow earthquakes 
(depth<70 km) are used to achieve the statistical analyses since the seismogenic depth is given between 40 
and 45 km for this part of the East Anatolian Region (EAR) [8]. Thus, a database consisting of 6169 

earthquakes from November 29, 1970, to December 29, 2021, with a magnitude range of 1.0Md5.6 is 
obtained. Epicenter distributions of the catalog are plotted in Fig. 2.  
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Figure 1. (Top) Main tectonic structures in Eastern Turkey [7]. The black rectangular frame depicts the 
study area. (Down) The morphological structure of the Çaldıran Fault Zone [6]. Abbreviations: EACP: 
Eastern Anatolian Contractional Province; NAFZ: North Anatolian Fault Zone; KTJ: Karlıova Triple 
Junction; EAP: East Anatolian Plateau; EAFZ: East Anatolian Fault Zone; NEAFZ, Northeast Anatolian 
Fault Zone; BZTZ: Bitlis-Zagros Thrust Zone; DSFZ: Dead Sea Fault Zone. 

 

 

Figure 2. Epicenter distributions of the 6169 earthquakes with 1.0≤Md≤ 5.6 between 1970 and 2021. Also, 
the fault plane solution shows the 1976 Çaldıran earthquake (Ms=7.3). 
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Seismotectonic b-value of Gutenberg-Richter Relation, Probability and Return Periods of the 
Earthquakes 
 

[9] defines a relation that gives the magnitude-frequency variations of earthquake distributions as 
follows:     

bMaMN )(log10                                                                                                                                                                 (1) 

According to this equation, N(M) is the cumulative number of earthquakes during a specific time period 
with magnitudes larger than or equal to M, and the a-value and b-value are positive constants. a-value is 
related to the time interval of the catalog, the size of the study region, and the number of earthquakes. On 
the other hand, the seismotectonic b-value is calculated from the slope of the Gutenberg-Richter relation 
and associated with the relative numbers of small and large events. Detailed region-time analyses of 
seismicity show that earthquake distributions display chaotic properties, and these properties are complex 
statistical tools for the description of the earthquake occurrences and their randomness. b-value is one of 
the best-known and most frequently used tools in earthquake statistics. b-value changes affect some 
important factors that as the tectonic features, anisotropic structure, and stress heterogeneities. It is very 
important to note that the b-value and stress distribution show a negative correlation. This negative 
correlation stems from crack density, geological complexity, material properties, thermal gradient, fault 
length, strain circumstances, seismic wave velocity changes and attenuation, and slip distribution [10], [11]. 
In the different parts of the world, generally b-value changes from 0.3 to 2.0 with a 0.1 average [12], [13].   

The other earthquake statical parameter is the probability which corresponded to the different 
magnitude sizes within any period and is calculated from the following equation [14]:  

TrMNeMP *)(1)(                                                                                                                                                                 (2) 

Here, P(M) is the probability that shows occurred specific event in the future in specific Tr years. 
N(M) and M are taken from Gutenberg-Richter relation. On the other hand, return periods of any 
earthquakes for different magnitudes can be calculated from the following formula [14]:  

)(/1 MNQ                                                                                                                                                                                 (3) 

For high-quality and reliable results, magnitude completeness (Mc-value) is the other important 
parameter in the statistical seismicity analyses. Mc-value is the minimum magnitude of complete recording 
and can be estimated from the magnitude-frequency distribution [15]. This magnitude level contains 90 % 
of the earthquakes in the catalog and temporal variations in Mc-value can affect the results of the seismicity 
parameters, especially in b. Therefore, the maximum number of earthquakes in the catalog was aimed to be 
used for correct results for the analysis of all statistical parameters. Therefore, this type of estimation must 
be considered in the first stage of the analysis.  
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3. Results and Discussions 
 

The magnitude completeness value and the seismotectonic b-value of the Gutenberg-Richter relation 

are shown in Fig. 3a. The average Mc-value for all catalogs is taken as 2.6 and the b-value is calculated as 

1.07 ± 0.09. On the other hand, the regional variation of the b-value is also given in Fig 3b. The b-value 
map is plotted by using a moving window technique in ZMAP with a sample of 1100 earthquakes per 

window and prepared by grid cell spacing of 0.02 in longitude and latitude. The regional change of 
seismotectonic b-value is calculated between 0.75 and 1.21. According to [13], the average value of the b-
value is 1.0 for different seismic regions. Considering this criterion, the b-value map is evaluated. Firstly, 
the larger b-values (>1.0) are calculated and estimated in and around the eastern part of the Lake Van 
including the Erciş fault zone. Secondly, the regions with the lower b-values (< 1.0) are generally observed 
in all parts consisting of the Çaldıran fault, Hasan Timur Lake fault, Dorutay fault, and Saray fault zone. 
Finally, the b-value variation presents a good correlation with regional seismic activity.   

 

Figure 3. (a) Magnitude Completeness-value and seismotectonic b-value with standard deviations and a-
value. (b) The variation in b-value for the study region. 
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The probability and return periods (or recurrence time) of earthquakes for different magnitudes are 
shown in Fig. 4. These parameters are very important for the definition of the statistical behaviors of 
earthquake occurrences. Probabilities of the earthquakes for different magnitude levels indicate great values 
ranging from 70-100 % for the earthquakes of 1.0 to 4.5 (Fig. 4a). The probabilities of earthquakes with Md 

= 5.0, 5.5 and 6.0 for Tr = 10 are calculated as approximately 30 %, 11 %, and 4 %, respectively. On the 
contrary, Md = 5.0, 5.5 and 6.0 for Tr = 100 are determined as about 97 %, 68 %, and 32 %, respectively. 
In Fig. 4b, the small return periods (<1.0 years) are calculated for the magnitude levels between 1.0 and 
3.5, while the great return periods than 90 years can be considered for the magnitude levels bigger than 5.5. 
These outputs can provide valuable results to describe the statistical behaviors of strong earthquake 
occurrences in the study area. 

 

 
 

Figure 4. (a) Probability of earthquakes for different magnitudes. Tr values show the specific times (10, 
20, 30, 40, 50, 60, 70, 80, 90 and 100 years). (b) Return periods for different magnitudes. 
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4. Conclusions 
 
In this study, seismotectonic b-value, earthquake probability, and return periods are investigated 

statistically for the seismic forecasting of the earthquakes around the Çaldıran Fault zone. For this purpose, 
we use a homogeneous catalog including 6169 shallow events with 1.0≤Md≤ 6.6 from 1975 to 2021. We 
perform our analyses in a rectangular region covered by coordinates 38.6°N and 39.3°N in latitude and 
43.4°E and 44.8°E in longitude. The areas with small b-values cover the Çaldıran fault, Hasan Timur Lake 
fault, Dorutay fault, and Saray fault zone, whilst high b-values are especially observed around the Erciş 
fault zone. On the other hand, the regional changes of the return periods for the earthquakes are estimated 
as relatively smaller, generally changing between 5 and 35 years around the eastern part of the Lake Van 
including the Erciş fault for the moderate magnitude values. Return periods for Md = 6.0 magnitude size 
show about 300 years. Finally, these detailed statistical analyses based on the seismotectonic b-value, 
probability, and return periods for earthquakes indicate that there exists an earthquake potential in the near 
future. 

 
Acknowledgment: Some figures were drawn with ZMAP and GMT [16], [17].  
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Abstract 

The statistical convergence is handled with the natural density of subsets on the natural 

numbers. Recently, the statistical convergence on Riesz spaces with the order convergence have been 

attracted the attention of many authors. In this work, we aim to introduce a concept of statistical 

convergence on Riesz spaces with respect to the Riesz valued density. Also, we give some result 

between this concept and the statistically order convergence. In the settings of Riesz spaces will shed 

light on the case of convergences on Riesz spaces. 

 

          Keywords: Riesz space, Riesz valued density, weak order unit. 

 

1. Introduction 

 

Riesz space and statistical convergence are the natural and efficient tools in the theory of 

functional analysis. Riesz space that was introduced by F. Riesz in [18] is an ordered vector space having 

many applications in measure theory, operator theory, and applications in economics (cf. [1,2,24] ). On 

the other hand, the statistical convergence is a generalization of the ordinary convergence of a real 

sequence, and the idea of statistical convergence was firstly introduced by Zygmund [25]. After then, Fast 

[10] and Steinhaus [21] independently improved that idea. Several applications and generalizations of the 

statistical convergence of sequences have been investigated by several authors (cf. [10,12,16,21,23]). In 

general, the statistical convergence is handled with the natural density of subsets on the natural numbers 

ℕ. Natural density of sets value over the closed interval [0,1]. In this work, we aim to introduce a concept 

of vector valued density on Riesz spaces. In the settings of Riesz spaces will shed light on the case of 

convergences on Riesz spaces and Banach lattices (cf. [4,5,17,23]). The study related to this papers are 

done by Schmidt in [14,19], where vector measures are introduced in Riesz spaces, and done by Tan in 

[22], where some properties of Riesz space valued measures are obtained. 

The generalized asymptotic density was investigated by Buke [7], and Freedman and Sember [11] 

introduce a general concept of density. We remind that the natural (or, asymptotic) density of a subset 𝐾 

of natural numbers is defined by 

𝛿(𝐾): = lim
𝑛→∞

 
1

𝑛
|{𝑘 ≤ 𝑛: 𝑘 ∈ 𝐴}| 
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where the vertical bar of sets will stand for the cardinality of the given sets. We refer the reader to an 

exposition on the natural density of sets to [7,10,11,12,16]. In the same way, a sequence 𝑥 = (𝑥𝑘) is 

called statistical convergent to 𝐿 provided that 

lim
𝑛→∞

 
1

𝑛
|{𝑘 ≤ 𝑛: |𝑥𝑘 − 𝐿| ≥ 𝜀}| = 0 

for each 𝜀 > 0. Then it is written by 𝑆 − lim𝑥𝑘 = 𝐿. 

Recall that a real vector space 𝐸 with an order relation "s" is called an ordered vector space if, for each 

𝑥, 𝑦 ∈ 𝐸 with 𝑥 ≤ 𝑦, 𝑥 + 𝑧 ≤ 𝑦 + 𝑧 and 𝛼𝑥 ≤ 𝛼𝑦 hold for all 𝑧 ∈ 𝐸 and 𝛼 ∈ ℝ+. An ordered vector space 

𝐸  is called a Riesz space or a vector lattice if, for any two vectors 𝑥, 𝑦 ∈ 𝐸 , the infimum and the 

supremum 

𝑥 ∧ 𝑦 = inf{𝑥, 𝑦}  and  𝑥 ∨ 𝑦 = sup{𝑥, 𝑦} 

exist in 𝐸, respectively. The order convergence is the basic tool of Riesz spaces.  

Definition 1.1. A sequence (𝑥𝑛) of a Riesz space is said to be order convergent to a vector 𝑥 (in symbols 

𝑥𝑛 →
o

𝑥 ) whenever there exists another sequence (𝑦𝑛) with 𝑦𝑛 ↓ 0 and |𝑥𝑛 − 𝑥| ≤ 𝑦𝑛 for all indices 𝑛. 

A subset 𝐼 of a Riesz space 𝐸 is said to be a solid set if, for each 𝑥 ∈ 𝐸 and 𝑦 ∈ 𝐼 with |𝑥| ≤ |𝑦|, it 

follows that 𝑥 ∈ 𝐼. A solid vector subspace is called an order ideal. A positive element 𝑒 in a Riesz space 

𝐸 is called order unit (or, strong order unit) if the principal ideal 𝐼𝑒: = {𝑥 ∈ 𝐸: ∃𝜆 > 0 with |𝑥| ≤ 𝜆𝑒} 

generated by 𝑒 is the whole space 𝐸, i.e., if, for every 𝑥 ∈ 𝐸, there exists some positive scalar 𝜆 > 0, 

depending upon 𝑥, such that |𝑥| ≤ 𝜆𝑒( cf. [15, Def.21.4])). We refer the reader for an exposition on the 

order unit to [1,2,3,15,17]. 

Definition 1.2. Let 𝐸 be a Riesz space with an order unit 𝑒 and ℱ be an subfield of 𝒫(ℕ) which contains 

all the finite subsets of ℕ. Then a Riesz space valued measure 𝜇: ℱ → [0, 𝑒] is called Riesz valued density 

if it holds the following properties: 

a) 𝜇(𝑘) = 0 for all 𝑘 ∈ ℕ; 

b) (b) 𝜇(𝐴) + 𝜇(𝐵) − 𝜇(𝐴 ∩ 𝐵) ≤ 𝑒 for all 𝐴, 𝐵 ⊆ ℕ 

c) (c) 𝜇(𝐴) = 𝑒 − 𝜇(ℕ ∖ 𝐴). 

2. Riesz valued statistical convergence 

Definition 2.1. Let 𝜇 be a Riesz valued density on a Riesz space 𝐸 with an order unit 𝑒. Then, a real 

valued sequence (𝑥𝑛) is said to be Riesz valued statistical convergent to 𝑥 if, for every 𝜀 > 0, we have 
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inf{𝜆 > 0: 𝜇(𝐴𝜀) ≤ 𝜆𝑒} = 0 

where 𝐴𝜀 = {𝑛 ∈ ℕ: |𝑥𝑛 − 𝑥| ≥ 𝜀}. In this case, we write 𝑥𝑛 ⟶
Rv-st 

𝑥. 

In order to simplify the presentation, we take 𝑑(𝐴𝜀): = inf{𝜆 > 0: 𝜇(𝐴𝜀) ≤ 𝜆𝑒}. Naturally, one can 

wonder that 𝑑(𝐴𝜀) = 0 implies 𝜇(𝐴𝜀) = 0, or not. 

Remark 2.2. It can be seen that 𝑑(𝐴𝜀) = 0 does not implies inf𝜆  𝜆𝑒 = 0, and so, 𝜇(𝐴𝜀) need not be 0 in 

arbitrary Riesz spaces. However, it is clear that 𝑑(𝐴𝜀) = 0 implies 𝜇(𝐴𝜀) = 0 in Archimedean Riesz 

spaces. In that case, the Riesz valued statistical convergence and measure statistical convergence are 

coincide. 

Example 2.3. Let 𝐸 be a Banach lattice with order unit 𝑒. Then it follows from [2, Cor.4.4] that the 

formula 

∥ 𝑥 ∥∞= in 𝑓{𝜆 > 0: |𝑥| ≤ 𝜆𝑒} 

defines a norm on 𝐸, and it is equivalent to the original norm of 𝐸. A real valued sequence (𝑥𝑛) is Riesz 

valued statistical convergent to 𝑥 whenever ∥∥𝜇(𝐴𝜀)∥∥∞
= 0 for every 𝜀 > 0, where 𝐴𝜀 = {𝑛 ∈ ℕ: |𝑥𝑛 −

𝑥| ≥ 𝜀}. 

Theorem 2.4. Let 𝜇 be a Riesz valued density on a Riesz space 𝐸 with an order unit e. If a sequence (𝑥𝑛) 

is Riesz valued statistical convergent with respect to the Riezs valued density, then its limit is unique. 

Proof: Suppose that 𝑥𝑛 ⟶
Rv−st

𝑥, 𝑥𝑛 ⟶
Rv-st 

𝑦  and 𝑥 ≠ 𝑦 . Therefore, from the definition of Riesz valued 

statistical convergence, we have 

𝐴𝜀

2
= {𝑛 ∈ ℕ: |𝑥𝑛 − 𝑥| ≥

𝜀

2
} 

and 

𝐵𝜀

2
= {𝑛 ∈ ℕ: |𝑥𝑛 − 𝑦| ≥

𝜀

2
} 

such that 𝜇 (𝐴𝜀

2
) = 𝜇 (𝐵𝜀

2
) = 0 for every 𝜀 > 0. Let be |𝑥 − 𝑦| = 𝜀 > 0. From the triangle inequility, we 

can write 

|𝑥𝑛 − 𝑥| + |𝑥𝑛 − 𝑦| ≥ |𝑥 − 𝑦| = 𝜀 
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If we take 𝑛 ∉ 𝐴𝜀

2
, then |𝑥𝑛 − 𝑥| <

𝜀

2
 for every 𝜀 > 0 and also 𝑛 ∈ 𝐵𝜀

2
. Therefore, |𝑥𝑛 − 𝑥| ≥

𝜀

2
 for every 

𝜀 > 0. Since 𝐴𝜀

2
∪ 𝐵𝜀

2
= ℕ, we have 𝜇 (𝐴𝜀

2
∪ 𝐵𝜀

2
) = 𝑒. From the equility of definition 2.1 (c), considering 

of 𝜇 (𝐴𝜀

2

𝜀

2) = 0, we can conclude 𝜇 (ℕ ∖ 𝐴𝜀

2
) = 𝑒. Since 𝐴𝜀

2

𝑐 = ℕ ∖ 𝐴𝜀

2
⊆ 𝐵𝜀

2
, obviously 𝐵𝜀

2
= 𝑒 which is a 

contradiction and this implies 𝑥 = 𝑦. Hence, we conclude that Riesz valued statistical convergence limit 

is unique. This completes the proof of theorem. 

Theorem 2.5. Let 𝜇 be a Riesz valued density on a Riesz space 𝐸 with an order unit e. If a sequence (𝑥𝑛) 

in 𝐸 converges in order to 𝑥, then Riesz valued statistical limit of (𝑥𝑛) is 𝑥. 

Proof: Suppose that 𝑥𝑛 →𝑜 𝑥. Then, there exists a sequence 𝑦𝑛 ↓ 𝜃 such that |𝑥𝑛 − 𝑥| ≤ 𝑦𝑛 holds for all 

𝑛. That means, since 𝑦𝑛 ↓ 𝜃, the set 

𝐴𝜀 = {𝑛 ∈ ℕ: |𝑥𝑛 − 𝑥| ≥ 𝜀} 

has finite number of terms. Since every finite subset of ℕ has 𝜇 Riesz valued density zero and therefore 

𝜇(𝐴𝜀) = 0, that is 𝑥𝑛 ⟶
Rv-st 

𝑥. 
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Abstract 
We introduce the strophoidal hypersurfaces in four-dimensional Euclidean space 𝔼ସ. We give 

some notions of a Euclidean space. Indicating a rotational hypersurface, we obtain the strophoidal 
hypersurface, and compute its geometric elements, such as Gauss map, Gaussian curvature, mean 
curvature. Then, we serve some relations between the curvatures of the hypersurfaces.  

 
Keywords: four-space, rotational hypersurface, strophoidal hypersurface, Gauss map, Gaussian 

curvature, mean curvature. 

 
1. Introduction 
 
In the literature we meet some papers such as [1,3,5,6,7], and also books such as [2,4,8,9] about hyper-
surfaces. 

 
We introduce the strophoid-rotational (we called it as strophoidal) hypersurface in Euclidean 4-

space 𝔼ସ. We indicate the notions of four-dimensional Euclidean geometry in Section 2. In Section 3, we 
recall rotational hypersurface. We construct the stropho-rotational hypersurface, and calculate its curvatures 
in Section 4. Finally, we give the conclusion. 
 
2. Preliminaries 
 

In 𝔼ାଵ , to find the curvature formulas ℭ , 𝑖 = 0,1, … , 𝑛, we take the characteristic polynomial 
𝑃𝐒(𝜆) = 0 of shape operator 𝐒: 

 

det(𝐒 − 𝜆𝐼) = (−1)



ୀ

𝑠𝜆ି = 0, 

 
where 𝐼 indicates the identity matrix. Therefore, we obtain the following curvature formulas 
 

ቀ
𝑛
𝑖

ቁ ℭ = 𝑠.  
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Here, ቀ
𝑛
0

ቁ ℭ = 𝑠 = 1. 𝑘-th fundamental form of hypersurface 𝑀 is given by  

 
I(𝐒ିଵ(𝑋), 𝑌) = 〈𝐒ିଵ(𝑋), 𝑌〉. 

 
Therefore, we present the following 
 

(−1)



ୀ

ቀ
𝑛
𝑖

ቁ ℭ  I(𝐒ିଵ(𝑋), 𝑌) = 0. 

 
In this work, with its transpose, we identify a vector (a, b, c, d). 

 
Let 𝖝 = 𝖝(𝑢, 𝑣, 𝑤)  be an immersion of a hypersurface 𝑀ଷ  of 𝔼ସ . Dot product of the vectors           

�⃗� = (𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ) and �⃗� = (𝑦ଵ, 𝑦ଶ, 𝑦ଷ, 𝑦ସ) in 𝔼ସ is given by as follows 
 

�⃗� ∙ �⃗� = 𝑥ଵ𝑦ଵ + 𝑥ଶ𝑦ଶ + 𝑥ଷ𝑦ଷ + 𝑥ସ𝑦ସ. 
 

Vector product of �⃗� = (𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ),  �⃗� = (𝑦ଵ, 𝑦ଶ, 𝑦ଷ, 𝑦ସ),  𝑧 = (𝑧ଵ, 𝑧ଶ, 𝑧ଷ, 𝑧ସ)  in 𝔼ସ  is defined by the 
following determinant 
 

�⃗� × �⃗� × 𝑧 = ተ

𝑒ଵ

𝑥ଵ

𝑦ଵ

𝑧ଵ

𝑒ଶ

𝑥ଶ

𝑦ଶ

𝑧ଶ

𝑒ଷ

𝑥ଷ

𝑦ଷ

𝑧ଷ

𝑒ସ

𝑥ସ

𝑦ସ

𝑧ସ

ተ. 

 
The Gauss map of 𝖝 is obtained by 
 

𝒢 =
𝖝௨ × 𝖝௩ × 𝖝௪

‖𝖝௨ × 𝖝௩ × 𝖝௪‖
,                                                                 (2.1)  

 
where 𝖝௨ = 𝑑𝖝/𝑑𝑢. We construct the following 
 

  det(I) = อ
𝐸 𝐹 𝐴
𝐹 𝐺 𝐵
𝐴 𝐵 𝐶

อ = (𝐸𝐺 − 𝐹ଶ)𝐶 − 𝐸𝐵ଶ + 2𝐹𝐴𝐵 − 𝐺𝐴ଶ, 

 

    det(II) = อ
𝐿 𝑀 𝑃
𝑀 𝑁 𝑇
𝑃 𝑇 𝑉

อ = (𝐿𝑁 − 𝑀ଶ)𝑉 − 𝐿𝑇ଶ + 2𝑀𝑃𝑇 − 𝑁𝑃ଶ, 

 

det(III) = อ
𝑋 𝑌 𝑂
𝑌 𝑍 𝑅
𝑂 𝑅 𝑆

อ = (𝑋𝑍 − 𝑌ଶ)𝑆 − 𝑋𝑅ଶ + 2𝑌𝑂𝑅 − 𝑍𝑂ଶ.  
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Here, the components are obtained by the following 
 
      𝐸 = 𝖝௨ ∙ 𝖝௨,     𝐹 = 𝖝௨ ∙ 𝖝𝒗,      𝐺 = 𝖝௩ ∙ 𝖝௩,       𝐴 = 𝖝௨ ∙ 𝖝௪,       𝐵 = 𝖝௩ ∙ 𝖝𝒘,      𝐶 = 𝖝௪ ∙ 𝖝௪, 
 
      𝐿 = 𝖝௨௨ ∙ 𝒢,     𝑀 = 𝖝௨௩ ∙ 𝒢,      𝑁 = 𝖝௩௩ ∙ 𝒢,       𝑃 = 𝖝௨௪ ∙ 𝒢,       𝑇 = 𝖝௩௪ ∙ 𝒢,      𝑉 = 𝖝௪௪ ∙ 𝒢, 
 
      𝑋 = 𝒢௨ ∙ 𝒢௨,      𝑌 = 𝒢௨ ∙ 𝒢𝒗,      𝑍 = 𝒢௩ ∙ 𝒢𝒗,       𝑂 = 𝒢௨ ∙ 𝒢𝒘,       𝑅 = 𝒢௩ ∙ 𝒢𝒘,       𝑆 = 𝒢௪ ∙ 𝒢𝒘. 
 

Next, we obtain the curvature formulas for a hypersurface 𝖝(𝑢, 𝑣, 𝑤) in 𝔼ସ. Using the polynomial 
of characteristic 𝑃𝐒(𝜆) = 𝑎𝜆ଷ + 𝑏𝜆ଶ + 𝑐𝜆 + 𝑑 = 0 , we find the curvature formulas: ℭ = 1  (by 
definition), 

 

ℭଵ = −
𝑏

ቀ
3
1

ቁ 𝑎
,   ℭଶ =

𝑐

ቀ
3
2

ቁ 𝑎
,   ℭଷ = −

𝑑

ቀ
3
3

ቁ 𝑎
.                                         (2.2) 

 
Theorem 3.1. Any hypersurface Mଷ in 𝔼ସ, the fundamental forms and the curvatures are related by the 
following 

 
ℭIV − 3ℭଵIII + 3ℭଶII − ℭଷI = 0. 

 
Proof. See [6] for details. 

 
3. Rotational Hypersurfaces 
 

We introduce a kind of rotational hypersurface having generating strophoid curve in 𝔼ସ. 
 

Assume that 𝛾: 𝐼 ⟶ Π be a space curve for 𝐼 ⊂ ℝ, ℓ be a line in Π. A rotational hypersurface is 
served by a rotation of the generating curve 𝛾 about axis ℓ in 𝔼ସ. 

 
Supposing ℓ is the line spanned by axis 𝑥ସ, we give the following orthogonal matrix 

 

𝒜(𝑣, 𝑤) = ൮

cos𝑣 cos𝑤 −sin𝑣 −cos𝑣 sin𝑤 0
sin𝑣 cos𝑤 cos𝑣 −sin𝑣 sin𝑤 0

sin𝑤 0 cos𝑤 0
0 0 0 1

൲, 

 
 
where 𝑣, 𝑤 ∈ ℝ.  
 

𝒜 is found by the following 
 

𝒜ℓ = ℓ,   𝒜௧𝒜 = 𝒜𝒜௧ = ℐସ,   𝑑𝑒𝑡 𝒜 = 1.  
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There exists a Euclidean transformation so that the axis ℓ transformes to the axis 𝑥ସ of 𝔼ସ, while 
the axis of rotation is ℓ. The generating curve 𝛾 is given by the following 

 
𝛾(𝑢) = ൫𝑓(𝑢), 0, 0, 𝑔(𝑢)൯,    ∀𝑢 ∈ 𝐼 

 
where 𝑓(𝑢), 𝑔(𝑢): 𝐼 ⊂ ℝ ⟶ ℝ are the derivativable functions. Then, the rotational hypersurface is served 
by the following 
 

ℛ(𝑢, 𝑣, 𝑤) =  𝐴(𝑣, 𝑤). 𝛾(𝑢)௧, 
 
where 0 ≤ 𝑣, 𝑤 < 2𝜋. 

 
Therefore, we re-write rotational hypersurface as follows 

 
ℛ(𝑢, 𝑣, 𝑤) = (𝑓(𝑢) cos𝑣 cos𝑤, 𝑓(𝑢) sin𝑣 cos𝑤, 𝑓(𝑢) sin𝑤, 𝑔(𝑢)). 

 

4. Strophoidal Hypersurfaces 
 

In 𝔼ସ, with the helps of the matrix 𝒜, and the generating curve γ and the translation on 𝑥ସ, we reveal 
strophoidal hypersurface 𝒮(𝑢, 𝑣, 𝑤) having strophoid curve. 

 
Considering the strophoid curve in 𝔼ସ 

 

𝓈(𝑢) = ൭𝑎
 uଶ − 1

 uଶ + 1
, 0, 0, 𝑎𝑢 ቆ

 uଶ − 1

 uଶ + 1
ቇ൱ ,   𝑎 ∈ ℝ, 

 
we compute the Gauss map, and also find the curvatures ℭୀଵ,ଶ,ଷ of the strophoidal hypersurface. 

 
Drawing its graphics with projection from four-space to three-space, we reveal the Gauss map of 

the strophoidal hypersurface. 
 

In 𝔼ସ,  rotating the strophoid curve 𝓈(𝑢)  about axis ℓ = (0, 0, 0, 1)  by using orthogonal 
matrix 𝒜(𝑣, 𝑤), and taking 𝑎 = 1 on 𝓈(𝑢), we obtain the strophoidal hypersurface given by as follows 

 

𝒮(𝑢, 𝑣, 𝑤) = ቆ 
 uଶ − 1

 uଶ + 1
 cos𝑣 cos𝑤,

 uଶ − 1

 uଶ + 1
 sin𝑣 cos𝑤,

 uଶ − 1

 uଶ + 1
 sin𝑤,

𝑢( uଶ − 1)

 uଶ + 1
ቇ.            (4.1) 

  
 

Choosing 𝑤 =  𝜋/4 in hypersurface (4.1), we projected the surfaces into 3-space. See Figure 1. 
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Figure 1. Projections of 𝒮(𝑢, 𝑣, 𝑤)  
Left: into 𝑥ଵ𝑥ଶ𝑥ସ-space, Right: into 𝑥ଶ𝑥ଷ𝑥ସ-space 

 
 

We get the following first quantities 
 

I =

⎝

⎜
⎜
⎜
⎜
⎛

1 + ൬
2𝑢

𝑢ଶ + 1
൰

ଶ

0 0

0 ቆ
𝑢ଶ − 1

𝑢ଶ + 1
cos 𝑤ቇ

ଶ

0

0 0 ቆ
𝑢ଶ − 1

𝑢ଶ + 1
ቇ

ଶ

⎠

⎟
⎟
⎟
⎟
⎞

, 

 
by using the first differentials with respect to 𝑢, 𝑣, 𝑤 of (4.1). 
 

Using the Gauss map formula (2.1) on (4.1), we have the Gauss map of the stropho-rotational 
hypersurface (4.1), as follows 

 

𝒢 = −
1

(𝑢ଶ + 1)(𝑢ସ + 6𝑢ଶ + 1)ଵ/ଶ
൮

(𝑢ସ + 4𝑢ଶ − 1) cos𝑣 cos𝑤

(𝑢ସ + 4𝑢ଶ − 1)sin𝑣 cos𝑤

(𝑢ସ + 4𝑢ଶ − 1)sin𝑤
−4𝑢

൲. 

 
Computing the second differentials of (4.1), we have the following second quantities 

  

570



 
6th INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 
21-24 June 2022, Istanbul, Turkey 

 

 
ICOM 2022 

ISTANBUL / TURKEY 

II = ൭

𝐿 0 0
0  𝒻cosଶ𝑤 0
0 0 𝒻

൱, 

where 
 

𝐿 = −
4(3𝑢ଶ + 1)

(𝑢ସ + 6𝑢ଶ + 1)ଵ/ଶ(𝑢ଶ + 1)ଶ
,  

 
 

𝒻 = −
(𝑢ଶ − 1)(𝑢ସ + 4𝑢ଶ − 1)

(𝑢ସ + 6𝑢ଶ + 1)ଵ/ଶ(𝑢ଶ + 1)ଶ
. 

 
Theorem 4.1. The strophoidal hypersurface (4.1) in 𝔼ସ has the following curvatures 

 

ℭଵ = −
2(𝑢଼ + 10𝑢 + 30𝑢ସ − 6𝑢ଶ − 3)

3(𝑢ସ + 6𝑢ଶ + 1)ଷ/ଶ(𝑢ଶ − 1)
, 

 

ℭଶ =
(𝑢ସ + 4𝑢ଶ − 1)(𝑢଼ + 10𝑢 + 48𝑢ସ − 18𝑢ଶ − 9)

3(𝑢ସ + 6𝑢ଶ + 1)ଶ(𝑢ଶ − 1)ଶ
, 

 

ℭଷ = −
4(3𝑢ଶ + 1)(𝑢ସ + 4𝑢ଶ − 1)ଶ

(𝑢ସ + 6𝑢ଶ + 1)ହ/ଶ(𝑢ଶ − 1)ଶ
. 

 
Proof. Computing eqs. (2.2) on (4.1), we reveal the curvatures. 
 
Corollary 4.1. The strophoidal hypersurface (4.1) is 1-minimal iff the real roots of ℭଵ = 0 are given by 

 
𝑢 = ±0.6301900660364116 … 

 
Corollary 4.2. The strophoidal hypersurface (4.1) is 2-minimal iff the real roots of ℭଶ = 0 are given by 

 
𝑢 = ±0.4858682717566457 or 𝑢 = ±0.7774752857703741 … 

 
Corollary 4.3. The strophoidal hypersurface (4.1) is 3-minimal iff the real roots of ℭଷ = 0 are given by 

 
𝑢 = ±0.4858682717566457 … 

 
  

571



 
6th INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 
21-24 June 2022, Istanbul, Turkey 

 

 
ICOM 2022 

ISTANBUL / TURKEY 

5. Conclusion 
 

Strophoidal hypersurfaces have never been worked up till now. We have revealed some results of 
the strophoidal hypersurfaces as in [6]. 
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Abstract 

Infectious diseases are diseases caused by small organisms such as bacteria, viruses, 
fungi or parasites that enter the body. There are many different types of infectious diseases 
and ways of transmission. Moreover, these diseases have important negative impacts on 
community health.  In this study, we aim to deal with contagious SVIR model with Caputo-
Fabrizio derivative,then we give special solution and the stability analysis. 

           Keywords: Caputo-Fabrizio derivative, SVIR model, stability analysis. 
          Acknowledgement: Caputo-Fabrizio derivative, SVIR model, stability analysis. The study is                  
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1. Introduction 
 

Vaccination is a fundamental component of an individual's right of health and is one of the most 
successful measures of preventive medicine. All over the world, vaccine avoidable diseases have been 
greatly reduced by routine vaccination programs, and approximately 2-3 million deaths are prevented 
each year through vaccination. Taking into consideration these facts, we will present a fractional 
vaccination in a fundamental SIR model given in [1]. 

Systems with complicated dynamics can be efficaciously represented with fractional derivatives 
because of their the memory and hereditary belongings. These operators have large spectrum of 
implementations such as defining many real world problems such as diabetes, polio, covid19 diseases, 
financial problems, heat and mass transport models [2], [3], [4], [5], [6], [7]. Other applications of 
fractional derivatives, among others, in [8], [9], [10], [11], [12], [13], [14], [15] and references therein. In 
this work, we study a SVIR epidemic model in term of the Caputo-Fabrizio (CF) fractional derivative. 

Here, we tackle a SVIR model equipped with vaccination strategies established by [1] of the 
following integer order form:  
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= ,

= ,

= ,

= .

dS b bS cSI ds
dt
dV dS eVI kV bV
dt
dI bSI eVI mI bI
dt
dR kV mI bR
dt

− − −

− − −

+ − −

+ −

                                                                                       (1) 

where all parameters are positive. , , ,S V I R  stand for susceptible, vaccinated, infected and recovered 
individuals, respectively. If = 0d , there are no vaccination in model [1]. m  is recovering ratio of 
infected persons, b  is the human death ratio of the inhabitants, d  is the ratio of susceptible people who 
dispose of vaccination procedure, e  is the spread ratio when contact with infected individual and 
susceptible individual once inoculation, β  is the mean ratio for susceptible peoples who gain immunity 
and transport recovering people, c  is spread ratio of when contact with infected persons and susceptible 
persons. 

 
2. Basic definitions 
 

We give some necessary definitions: 

Definition 1: [16] Let <a b , ( )1 ,g H a b∈  and [ ]0,1α ∈ , the Caputo-Fabrizio derivative is given by 

 ( ) ( ) ( )0 = exp ,
1 1

t
CF '

t
a

M t xD g t g x dxα α
α

α α
− − − − ∫                                                              (2) 

where ( )M α  is a normalization function satisfying ( ) ( )0 = 1 = 1M M . If ( )1 ,g H a b∉  this derivative 

can be rearranged as below: 

 ( ) ( ) ( ) ( )( )0 = exp .
1 1

t
CF

t
a

M t xD g t g t g x dxα α α
α

α α
− − − − − ∫                                             (3) 

Remark 1: If [ )1= 0,ασ
α
−

∈ ∞ , [ ]1= 0,1
1

α
σ
∈

+
, then Eq. (3) is of the form: 

                                ( ) ( ) ( )0 = exp ,
t

CF '
t

a

N t xD g t g x dxα α
α α

− −  ∫                                                                  
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with ( ) ( )0 = = 1N N ∞ .  Additionally,  

                                 ( )
0

1 exp = .lim
t x x t

α
δ

α α→

− − −  
          

The related integral of the new derivative was given by Nieto and Losada [17]. 

Definition 2: Let 0 < < 1α  and g  be a function. The fractional integral of order α  is defined by [17]:  

 ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

0

2 1 2= , 0.
2 2

t

tI g t g t g s ds t
M M

α α α
α α α α
−

+ ≥
− − ∫                                    (4) 

Moreover, the below result holds 

                                ( )
( ) ( ) ( ) ( )

2 1 2 = 1,
2 2M M

α α
α α α α
−

+
− −

  

then ( ) 2=
2

M α
α−

 for 0 < < 1α . Using the above results, another form of the new Caputo derivative of 

order   given as [17]:  

 ( ) ( )0
1= exp .

1 1

t
CF '

t
a

t xD g t g x dxα α
α α

− − − − ∫                                                                 (5) 

 3.  SVIR model with Caputo-Fabrizio derivative 
 
Now, we rearrange Eq. (1) using CF derivative: 

 

( )
( )
( )
( )

0

0

0

0

= ,

= ,

= ,

= .

CF
t

CF
t

CF
t

CF
t

D S t b bS cSI dS

D V t dS eVI kV bV

D I t bSI eVI mI bI

D R t kV mI bR

α

α

α

α

− − −

− − −

+ − −

+ −

                                                                           (6) 

 3.1 Derivation of special solution 
 

In this part, benefiting from Sumudu transform with an iterative method, we provide a special 
solution of the Eq. (6). First, we give Sumudu transform:  
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Theorem 1: [18] Suppose that for  the function ( )f t , CF derivative  exists, then Sumudu transform of 

the CF derivative for the function ( )f t  defined by  

                               ( ) ( )( ) ( ) ( )( ) ( )
0

0
= .

1
CF

t

SF f t f
ST D f t M

u
α α

α α
−

− +
  

In order to get an iterative solution of the model (6), we apply Sumudu transform on both sides of the 
Eq.(6), then we have 

 

( ) ( )( ) ( ) { }

( ) ( )( ) ( ) { }

( ) ( )( ) ( ) { }

( ) ( )( ) ( ) { }

0
= ( ) ,

1
0

= ( ) ,
1

0
= ( ) ,

1
0

= .
1

SF S s S
M SL b S b cI d

s
SF V s V

M SL dS V eI k b
s

SF I s I
M SL I cS eV m b

s
SF R s R

M SL kV mI bR
s

α
α α

α
α α

α
α α

α
α α

−
− + +

− +
−

− + +
− +

−
+ − −

− +
−

+ −
− +

                                              (7) 

  Rearranging, we find  

 

( )( ) ( ) ( ) { }

( )( ) ( ) ( ) { }

( )( ) ( ) ( ) { }

( )( ) ( ) ( ) { }

1= 0 ( ) ,

1= 0 ( ) ,

1= 0 ( ) ,

1= 0 .

sSF S t S SL b S b cI d
M

sSF V t V SL dS V eI k b
M

sSF I t I SL I cS eV m b
M

sSF R t R SL kV mI bR
M

α α
α

α α
α

α α
α

α α
α

− +
+ − + +

− +
+ − + +

− +
+ + − −

− +
+ + −

                                         (8) 

Taking the inverse Sumudu transform on both sides of the Eq. (8), we find  
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( ) ( ) ( ) { }

( ) ( ) ( ) { }

( ) ( ) ( ) { }

( ) ( ) ( ) { }

1

1

1

1

1= 0 ( ) ,

1= 0 ( ) ,

1= 0 ( ) ,

1= 0 .

sS t S SL SL b S b cI d
M

sV t V SL SL dS V eI k b
M

sI t I SL SL I cS eV m b
M

sR t R SL SL kV mI bR
M

α α
α

α α
α

α α
α

α α
α

−

−

−

−

 − + + − + + 
  
 − + + − + + 
  
 − + + + − − 
  
 − + + + − 
  

                                     (9) 

The recursive formula can be obtained as 

 

( ) ( ) ( ) { }

( ) ( ) ( ) { }

( ) ( ) ( ) { }

( ) ( ) ( ) { }

1
1

1
1

1
1

1
1

1= 0 ( ) ,

1= 0 ( ) ,

1= 0 ( ) ,

1= 0 .

n n n n

n n n n n

n n n n n

n n n n n

sS t S SL SL b S b cI d
M

sV t V SL SL dS V eI k b
M

sI t I SL SL I cS eV m b
M

sR t R SL SL kV mI bR
M

α α
α

α α
α

α α
α

α α
α

−
+

−
+

−
+

−
+

 − + + − + + 
  
 − + + − + + 
  
 − + + + − − 
  
 − + + + − 
  

                              (10) 

Thus, the solution of (10) is given by  

                               

( ) ( )

( ) ( )

( ) ( )

( ) ( )

= ,lim

= ,lim

= ,lim

= .lim

n
n

n
n

n
n

n
n

S t S t

V t V t

I t I t

R t R t

→∞

→∞

→∞

→∞

  

3.2 Stability analysis and iterative solutions for the proposed model 
 

Suppose that a Banach space X  endowed with a norm defined by [ ] ( ){ },= :max t a bx x t x X∈ ∈  

and K  be a self-map of X .  Let ( )1 = ,n ny g K y+  be particular recursive procedure. Assume that ( )F K  

be the fixed-point set of K  such that this is nonempty and ny  converges to a point ( )p F K∈ . Let 
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{ }nx X⊂  and define ( )1= ,n n ne x g K x+ − .  The iterative method ( )1 = ,n ny g K y+  is said to be K - stable 

if lim = 0nn
e

→∞
, which implies that lim =n

n
x p

→∞
. Without any loss of generality, the sequence { }nx  is 

bounded, otherwise the sequence will diverge. If all these conditions are satisfied for 1 =n ny Ky+  known as 
Picard's iteration, hence the iteration is K -stable. Now, we will state the theorem below. 

Theorem 2: [19] Let ( ), .X  be a Banach space and K  be a self-map on X  such that 

                               x y xK K A x K a x y− ≤ − + −     

for all ,x y  in X  where 0 , 0 1A a≤ ≤ ≤ . Suppose that K  is Picard K -stable. 

 Now, we consider following recursive formula Eq. (10) connected  to the Eq. (6) 

                                    

( ) ( ) ( ) { }

( ) ( ) ( ) { }

( ) ( ) ( ) { }

( ) ( ) ( ) { }

1
1

1
1

1
1

1
1

1= 0 ( ) ,

1= 0 ( ) ,

1= 0 ( ) ,

1= 0 .

n n n n

n n n n n

n n n n n

n n n n n

sS t S SL SL b S b cI d
M

sV t V SL SL dS V eI k b
M

sI t I SL SL I cS eV m b
M

sR t R SL SL kV mI bR
M

α α
α

α α
α

α α
α

α α
α

−
+

−
+

−
+

−
+

 − + + − + + 
  
 − + + − + + 
  
 − + + + − − 
  
 − + + + − 
  

 

where 
( )

1 s
M
α α
α

− +  is the fractional Lagrange multiplier.  

Theorem 3: Let T  be a self-map defined by 
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( )( ) ( ) ( ) ( ) { }

( )( ) ( ) ( ) ( ) { }

( )( ) ( ) ( ) ( ) { }

( )( ) ( ) ( ) ( )

1
1

1
1

1
1

1
1

1= = ( ) ,

1= = ( ) ,

1= = ( ) ,

1= =

n n n n n

n n n n n n

n n n n n n

n n n n n

sT S t S t S t SL SL b S b cI d
M

sT V t V t V t SL SL dS V eI k b
M

sT I t I t I t SL SL I cS eV m b
M

sT R t R t R t SL SL kV mI
M

α α
α

α α
α

α α
α

α α
α

−
+

−
+

−
+

−
+

 − + + − + + 
  
 − + + − + + 
  
 − + + + − − 
  

− +
+ + −{ } .nbR

  
 
  

  

is T - stable in ( )1 ,L a b  if 

                                

( )( )
( )( )

( )

( )

1 1 2 2 3

1 2 3 3 4 4

1 1 2 2 3

5 4 2 5

1 2 3

1 < 1,

1 < 1,

1 < 1,

1 < 1,

b d f cM f cM f

dg b k g eM g eM g

b m h cM h cM h
eM h eM h

bk kk mk

− + − −

− − + − −

 − + + + 
−  + 
− + +

  

where 1 2 3 1 2 3 4 1 2 3 4 5 1 2 3, , , , , , , , , , , , , ,f f f g g g g h h h h h k k k  are functions 
( )

1 1 .sSL
M
α α
α

−  − +
  
 

  

Proof: In the beginning step, we show that T   has fixed point. To get this, we evaluate the following 
iterations for all ( ),m n ∈ ×  .  
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( )( ) ( )( ) ( ) ( ) ( ) { }

( ) { }

( )( ) ( )( ) ( ) ( ) ( ) { }

( ) { }

( )( )

1

1

1

1

1= ( )

1 ( ) ,

1= ( )

1 ( ) ,

n m n m n n

m m

n m n m n n n

m m m

n m

sT S t T S t S t S t SL SL b S b cI d
M

sSL SL b S b cI d
M

sT V t T V t V t V t SL SL dS V eI k b
M

sSL SL dS V eI k b
M

T I t T I

α α
α

α α
α

α α
α

α α
α

−

−

−

−

 − + − − + − + + 
  

 − + − − + + 
  

 − + − − + − + + 
  

 − + − − + + 
  

− ( )( ) ( ) ( ) ( ) { }

( ) { }

( )( ) ( )( ) ( ) ( ) ( ) { }

( ) { }

1

1

1

1

1= ( )

1 ( ) ,

1=

1 .

m n n n

m m m

n m n m n n n

m m m

st I t I t SL SL I cS eV m b
M

sSL SL I cS eV m b
M

sT R t T R t R t R t SL SL kV mI bR
M

sSL SL kV mI bR
M

α α
α

α α
α

α α
α

α α
α

−

−

−

−

 − + − + + − − 
  

 − + − + − − 
  

 − + − − + + − 
  

 − + − + − 
  

         (11) 

Without loss of generality, applying the norm of the first Eq. (11), we find 

 

( )( ) ( )( ) ( ) ( ) ( ) { }

( ) { }

1

1

1= ( )

1 ( )

n m n m n n

m m

sT S t T S t S t S t SL SL b S b cI d
M

sSL SL b S b cI d
M

α α
α

α α
α

−

−

 − + − − + − + + 
  

 − + − − + + 
  

        (12) 

By the application of triangular identity, Eq. (12) gives  

 

( )( ) ( )( ) ( ) ( ) ( ) { }

( ) { }

1

1

1 ( )

1                           ( ) .

n m n m n n

m m

sT S t T S t S t S t SL SL b S b cI d
M

sSL SL b S b cI d
M

α α
α

α α
α

−

−

 − + − ≤ − + − + + 
  

 − + − − + + 
  

      (13) 

After some calculations, Eq. (13) is converted to  
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( )( ) ( )( ) ( ) ( )

( )
( ) ( )
( ) ( )

1 1                                    

n m n m

n m n m

n n m m n m

T S t T S t S t S t

a S S S SsSL SL
bS I I bI S SM

θα α
α

−

− ≤ −

  − − − − − +   +    − − − −      

                                          

(14) 

Because of similar behavior of solutions, we get 

                                 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

= ,

= ,

= .

n m n m

n m m

n m n m

S t S t V t V t

S t S t I t I t

S t S t R t R t

− −

− −

− −

  

Replacing this in the Eq. (14), we find   

( )( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( ){ }1 1 .

n m n m

n m n n m m n m

T S t T S t S t S t

sSL SL b d S S cS S S cI S S
M
α α
α

−

− ≤ −

  − +  + − + − − − − −  
    

          (15) 

Because ,n mS I  are bounded, we describe two different positive constants 1 2 3 4 5, , , ,M M M M M  for all t  
such that  

 

1

2

3

4

< ,

< ,

< ,

< .

n

m

n

n

S M

I M

I M

V M

                                                                                                          (16) 

Using the Eqs. (15) and (16), we get  

   ( )( ) ( )( ) ( )( ){ } ( ) ( )1 1 2 2 31n m n mT S t T S t b d f cM f cM f S t S t− ≤ − + − − −               (17) 

where 1 2 3, ,f f f  are functions from 
( )

1 1 sSL SL
M
α α
α

−
  − +  
  

    
. Repeating the same procedure, we have  
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( )( ) ( )( ) ( )( ){ } ( ) ( )

( )( ) ( )( ) ( ) ( ) ( )

( )( ) ( )( ) ( ){ } ( ) ( )

1 2 3 3 4 4

1 1 2 2 3

5 4 2 5

1 2 3

1 ,

1 ,

1 ,

n m n m

n m n m

n m n m

T V t T V t dg b k g eM g eM g V t V t

b m h cM h cM h
T I t T I t I t I t

eM h eM h

T R t T R t bk kk mk R t R t

− ≤ − − + − − −

  − + + +  − ≤ − −  + −   

− ≤ − + + −

          (18) 

where  

                                 

( )( )
( )( )

( )

( )

1 1 2 2 3

1 2 3 3 4 4

1 1 2 2 3

5 4 2 5

1 2 3

1 < 1,

1 < 1,

1 < 1,

1 < 1.

b d f cM f cM f

dg b k g eM g eM g

b m h cM h cM h
eM h eM h

bk kk mk

− + − −

− − + − −

 − + + + 
−  + 
− + +

  

Thus, T  has a fixed point. In order to show that the conditions in Theorem 2 is satisfied by T , suppose 
that Eqs. (17) and (18) hold, let   

                                 ( )= 0,0,0,0a   

and 

                             

( )( )
( )( )

( )

( )

1 1 2 2 3

1 2 3 3 4 4

1 1 2 2 3

5 4 2 5

1 2 3

1 < 1,

1 < 1,
=

1 < 1,

1 < 1.

b d f cM f cM f

dg b k g eM g eM g
A b m h cM h cM h

eM h eM h
bk kk mk

 − + − −

− − + − −


  − + + + 

−  + 
 − + +

  

This shows that the conditions Theorem 2 holds for the mapping T , then T  is Picard T -stable.   

 3.3 Uniqueness of the special solution 
 
In this part, we give the conditions for the uniqueness of special solution to Eq. (6). First, we suppose that 
the Eq. (6) has an exact solution due to which the special solution converges for a large number .m   

We consider a Hilbert space ( ) ( )( )2= , 0,H L a b T×  which can be given as the set of those functions.  

                                ( ) [ ]: , 0, , < .v a b T uvdudv× → ∞∫∫   
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Now, we take into consideration the following operator:  

                                ( )

( ),
( ),

, , , =
( ),

.

b S b cI d
dS V eI k b

T S V I R
I cS eV b

kV mI bR
α

− + +
 − + +
 + − −
 + −

  

We aim to prove the inner product of 

                                ( ) ( )( )11 12 21 22 31 32 41 42 1 2 3 4, , , , , , ,T W W W W W W W W w w w w− − − −   

where ( )11 12,W W , ( )21 22,W W , ( )31 32,W W  and ( )41 42,W W  are special solution of the model. However  

 

( ) ( )( )
( ) ( )( )( )

( ) ( ) ( )( )( )
( ) ( ) ( )( )( )

( ) ( ) ( )( )

11 12 21 22 31 32 41 42 1 2 3 4

11 12 31 32 1

11 12 21 22 31 32 2

31 32 11 12 21 22 3

21 22 31 32 41 42 4

, , , , , , ,

, ,

, ,
    =

, ,

, .

T W W W W W W W W w w w w

W W b c W W d w

d W W W W e W W k b w

W W c W W e W W m b w

k W W m W W b W W w

− − − −

 − − + −

 − − − − + +

 − − + − − −


− + − − −

                                    (19) 

We consider the first Eq. of (19) without loss of generality  

 

( ) ( )( )( )
( )( ) ( ) ( )( )
( )( )

11 12 31 32 1

11 12 1 11 12 31 32 1

11 12 1

,

    = , ,

 , .

W W b c W W d w

W W b w W W c W W w

W W d w

− − + − +

− − + − − −

+ − −

                                         (20) 

Because the same role is played both the solution, suppose that    

                                   11 12 21 22 31 32 41 42.W W W W W W W W− ≅ − ≅ − ≅ −    

Then the Eq. (20) becomes  

 
( ) ( )( )( )
( )( ) ( )( ) ( )( )
11 12 31 32 1

2
11 12 1 11 12 1 11 12 1

,

   , , , .

W W b c W W d w

W W b w c W W w W W d w

− − + − +

≅ − − + − − + − −
                          (21) 

In the light of norm and inner product relation, we obtain   
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( ) ( )( )( )
( )( ) ( )( ) ( )( )

( )

11 12 31 32 1

2
11 12 1 11 12 1 11 12 1

2
11 12 1 11 12 1 11 12 1

1 11 12 1

,

    , , ,

    

    =

W W b c W W d w

b W W w c W W w d W W w

b W W w c W W w d W W w

b cw d W W w

− − + − +

≅ − − + − − + − −

≤ − + − + −

+ + −

                          (22) 

where 1 11 12= .w W W−  By the similar way, we have  

 

( ) ( ) ( )( )( )

( )

11 12 21 22 31 32 2

2
21 22 2 21 22 2

21 22 2 21 22 2

2 21 22 2

,

    

   = ,

d W W W W e W W k b w

d W W w e W W w

k W W w b W W w

d ew k b W W w

− − − − + +

≤ − + −

+ − + −

+ + + −

                                                 (23) 

( ) ( ) ( )( )( )

( )

31 32 11 12 21 22 3

2 2
31 32 3 31 32 3

31 32 3 31 32 3

3 3 31 32 3

,

    

    = ,

W W c W W e W W b w

c W W w e W W w

W W w b W W w

cw ew m b W W w

α

α

− − + − − −

≤ − + −

+ − + −

+ + + −

                                                            (24) 

( ) ( ) ( )( )

( )

21 22 31 32 41 42 4

41 42 4 41 42 4 41 42 4

41 42 4

,

    

    = .

k W W W W b W W w

k W W w W W w b W W w

k m b W W w

α

α

− + − − −

≤ − + − + −

+ + −

                                                (25) 

Considering the Eqs. (22), (23), (24), (25) with the Eq. (19) we have   

                         

( ) ( )( )
( )

( )
( )

( )

11 12 21 22 31 32 41 42 1 2 3 4

1 11 12 1

2 21 22 2

3 3 31 32 3

41 42 4

, , , , , , ,

,

,
    

,

.

T W W W W W W W W w w w w

b cw d W W w

d ew k b W W w

cw ew m b W W w

k m b W W w

− − − −

 + + −

 + + + −≤ 
 + + + −

 + + −
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Using large number ik  for = 1, 2,3,4i  all of solutions converge to exact solution, benefiting from the 

topology concept, we can find for almost small parameters il  for = 1,2,3,4.i   

 

( )

( )

( )

( )

1
11 12

1 1

2
21 22

2 2

3
31 32

3 3 3

4
41 42

4

, < ,
4

, < ,
4

, < ,
4

, < .
4

lS W S W
b cw d w

lV W V W
d ew k b w

lI W I W
cw ew m b w

lR W R W
k m b w

− −
+ +

− −
+ + +

− −
+ + +

− −
+ +

                                                    (26) 

Using triangular identity and taking ( )1 2 3 4= max , , , ,L l l l l  we have 

 

( )
( )
( )
( )

1 11 12 1

2 21 22 2

3 3 31 32 3

41 42 4

< ,

< ,

< ,

< .

a bw W W w L

w a W W w L

bw w a W W w L

a W W w L

θ

θ ξ β

ξ η

β η

+ + −

+ + + −

+ + + −

+ + −

                                                                 (27) 

Because L  is very small positive parameter, we conclude on the based of the topology idea that 

                                 

( )
( )
( )
( )

1 11 12 1

2 21 22 2

3 3 31 32 3

41 42 4

= 0,

= 0,

= 0,

= 0.

b cw d W W w

d ew k b W W w

cw ew m b W W w

k m b W W w

+ + −

+ + + −

+ + + −

+ + −

  

But it is clear that   

                                   

1

2

3 3

0,

0,

0,
0

b cw

d ew k b

cw ew m b
k m b

θ+ + ≠

+ + + ≠

+ + + ≠
+ + ≠

                                                                                      (28) 
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and 1 2 3 40, 0, 0, 0.w w w w≠ ≠ ≠ ≠  So, we have  

                                      

11 12

21 22

31 32

41 42

= 0,

= 0,

= 0,

= 0,

W W

W W

W W

W W

−

−

−

−

  

which yields 11 12= ,W W  21 22= ,W W  31 32= ,W W  41 42= .W W  This completes the proof.  

 4. Conclusion 
 

In this study, we firstly rearrange communicable SVIR model using Caputo-Fabrizo derivative. It 
is clear that generally it is a difficult to obtain the solution of non-linear equations, here we give a special 
solution and stability analysis for this extended model. 
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Abstract
In this study, by taking into consideration the suitable inverse system theory

established for the topological category whose objects are ditopological plain texture
spaces and morphisms are bicontinuous point functions satisfying a compatibility
condition, we proved a representation theorem for the infinite ditopological products
of the objects in that category via inverse limits.

Keywords : Inverse system, ditopology, plain texture, directed set, inverse
limit, category, covariant functor

1. Introduction

An effective method in order to derive a new space from two or more spaces is the
theory of inverse systems which was presented in [2] for some classical categories.

Recently, the theory of inverse systems and inverse limits is handled in [7] first-
time, in the categories of some special textures. It is seen in [8] that a method used
to construct a new ditopological space is the theory of ditopological inverse systems
and their limit spaces under the name ditopological inverse limits as the subspaces
of ditopological product spaces described in [4,6].

Particularly, in [8] we gave a detailed analysis of the theory of ditopological
inverse systems and inverse limits insofar as the category ifPDitop whose objects
are the ditopological texture spaces which have plain texturing and morphisms are
the bicontinuous, special (w-preserving) point functions, is concerned.

Our main aim in this work is to give a characterization theorem which states
that any cartesian product of the objects of ifPDitop can be written in terms of
the finite cartesian product of those objects, via inverse limit operation.

2. Background

Texture: If S is a set, a texturing S on S is a subset of P(S) which is a point-
separating, complete, completely distributive lattice containing S and ∅, and for
which meet coincides with intersection and finite joins with union. The pair (S, S)
is then called a texture.

For a texture (S, S), most properties are conveniently defined in terms of the
p-sets and q-sets:

Ps =
⋂
{A ∈ S | s ∈ A}, Qs =

∨
{A ∈ S | s /∈ A}

Plain Texture: The texture (S, S) is called plain if S is closed under arbitrary unions,
equivalently if Ps 6⊆ Qs for all s ∈ S.
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Point Function Between Textures: If (S, S), (T,T) are textures and ϕ : S →
T a point function between the base sets of textures satisfying the compatibility
condition Ps 6⊆ Qs′ =⇒ Pϕ(s) 6⊆ Qϕ(s′), that is ϕ is called ω-preserving. In
addition, the following equalities define the inverse image with respect to ϕ for
each B ∈ T.

ϕ←B =
∨
{Pu | ϕ(u) ∈ B} =

⋂
{Qv | ϕ(v) /∈ B}

Ditopological Space: Since a texturing S need not be closed under the operation of
taking the set-complement, the notion of topology is replaced by that of dichoto-
mous topology or ditopology [4,6], namely a pair (τ, κ) of subsets of S, where the set
of open sets τ satisfies

(1) S, ∅ ∈ τ ,
(2) G1, G2 ∈ τ =⇒ G1 ∩G2 ∈ τ and
(3) Gi ∈ τ , i ∈ I =⇒

∨
iGi ∈ τ ,

and the set of closed sets κ satisfies the dual conditions
A ditopological texture space with respect to a ditopology (τ, κ) on the texture

(S, S) is denoted by (S, S, τ, κ).

An adequate introduction to the theory of ditopological spaces and the motiva-
tion for its study may be obtained from [4,6].

Product Ditopology: Let (Sj , Sj , τj , κj)j∈J be ditopological spaces and (S, S) the
product [4] of the textures (Sj , Sj)j∈J . Then the ditopology (τ, κ) on (S, S) with
subbase {Π←j G = E(j,G) | G ∈ τj , j ∈ J} and cosubbase {π←j K = E(j,K) | K ∈
κj , j ∈ J} is called the product ditopology on (S, S). In this case, the ditopological
space (S, S, τ, κ) is called the product of the family (Sj , Sj , τj , κj)j∈J , and is denoted
by (

∏
j∈J

Sj ,
⊗
j∈J

Sj ,
⊗
j∈J

τj ,
⊗
j∈J

κj).

Bicontinuity: An ω-preserving point function between the ditopological texture
spaces, is called bicontinuous if the inverse image of every open set is open and the
inverse image of every closed set is closed.

The Category ifPDitop : Objects are ditopological plain texture spaces and mor-
phisms are ω-preserving, bicontinuous point functions.

Specifically, the reader may consult [3] for terms from lattice theory not men-
tioned here. In addition, we follow the terminology of [1] for all the general concepts
relating to category theory.

3. The Theory of Inverse Systems For Ditopological Spaces

Let us recall the notions of inverse system and their inverse limits constructed
in ifPDitop, in the light of [8]. Before everything, note that the following:

Remark 3.1. The inverse systems constructed by the objects and morphisms of
the category ifPDitop, which are the bonding maps satisfying some conditions,
have an inverse limit space described as in [8, Definition 4.1], since ifPDitop has
products and equalizers. Also, the uniqueness of the limit space in the category
ifPDitop was mentioned in [8]. Hence, the operation lim

←
will be meaningful for

the inverse systems mentioned in the context of that category.
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Notation: According to the major theorem given as [8, Theorem 4.6], for the
directed set Λ take the inverse system {(Sα, Sα, τα, κα), ϕαβ}α≥β constructed in if-
PDitop, over Λ. In this case, the notations (τ∞, κ∞) and (S∞, S∞, τ∞, κ∞) will be
used as inverse limit ditopology and (ditopological) inverse limit space, respectively,
where S∞ = lim

←
{Sα}, in the remainder of paper.

Now let ’s take a glimpse of the mappings between inverse systems: Let two
inverse systems A = {(Sα, Sα, τα, κα), ϕαβ}α≥β and B = {(Tα,Tα, τ ′α, κ′α), ψαβ}α≥β
described in ifPDitop. Take into consideration [7, Definition 3.9] which introduces
the notion inverse system of mappings or mapping of inverse systems denoted by
{tα} : A → B, consisting of the components tα ∈ Mor ifPDitop, satisfying the
equality ψβα ◦ tβ = tα ◦ϕβα. Hence, by recalling the notion inverse limit space with
the notation S∞ defined as in [7, Definition 4.1] and the map t∞ = lim

←
{tα}α∈Λ

defined in [7, Theorem 4.14], called inverse limit map of the inverse system {tα} of
mappings, now let ’s focus on the following crucial theorem proved in [8, Theorem
4.24]:

Theorem 3.2. Let {tα} : {(Sα, Sα, τα, κα), ϕβα}β≥α → {(Tα,Tα, τ ′α, κ′α), ψβα}β≥α
be an inverse system of mappings in ifPDitop, over a directed set Λ. Then there
exists a unique map t∞ ∈ Mor ifPDitop between the spaces (S∞, S∞, τ∞, κ∞) and
(T∞,T∞, τ

′
∞, κ

′
∞) having the property that for each α ∈ Λ, tα ◦ µα = ηα ◦ t∞.

In this case,

i) If each tα is an ifPDitop-isomorphism, t∞ is an ifPDitop-isomorphism.
ii) If each tα ◦ µα is surjective, t∞(S∞) is jointly dense in T∞.

Notation: In this study, InvifPDitop denotes the category whose objects are the
inverse systems constructed by the objects of category ifPDitop and morphisms
are the mappings of inverse systems, described as in Theorem 3.2, namely, the
inverse systems of ifPDitop-morphisms defined between the objects of ifPDitop.

Now, let ’s recall the notion of inverse limit map peculiar to texture theory,
introduced in [7, Theorem 4.14].

Note from that Remark 3.1, the inverse systems which are the objects of InvifPDitop

have a unique inverse limit space as an object of ifPDitop. With the reference to
this fact, we have the following immediately from [8].

Theorem 3.3. The limit operation lim
←

of assigning an inverse limit in ifPDitop

to each object in InvifPDitop and an inverse limit map t∞ ∈ Mor ifPDitop to each
inverse system {tα}α ∈ Mor InvifPDitop of maps tα ∈ Mor ifPDitop, forms the
covariant functor lim

←
: InvifPDitop → ifPDitop.

4. Ditopological Textural Product As an Inverse Limit in ifPDi-
top

It is clear that the notion of inverse limit as an object of ifPDitop for any
inverse system which is the object of InvifPDitop is derived from the products as
the objects of ifPDitop.

Conversely, by applying the limit operation to the objects of InvifPDitop, one
can express as in [5] infinite ditopological cartesian products [4], of the spaces which
are the objects of Ob ifPDitop in terms of the finite cartesian products of those
objects in ifPDitop, as follows:
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Theorem 4.1. Any arbitrary textural product of the objects in ifPDitop is exactly
the inverse limit space of the inverse system consisting of finite products of those
objects.

Proof. Let (Xs, Ss, τs, κs) ∈ Ob ifPDitop, s ∈ Λ and Γ be directed by the set
inclusion, that is J ≤ I ⇐⇒ J ⊆ I for every I, J ∈ Γ. Now assume J ≤ I,
for any J ∈ Γ. If x = {xs}s∈I ∈

∏
s∈I

Xs = XI then xs ∈ Xs for all s ∈ I. In

this case, {xs}s∈J ∈
∏
s∈J

Xs = XJ by the facts that if s ∈ J then s ∈ I and

xs ∈ Xs for all s ∈ I. Therefore, for J ≤ I, describe the mapping ϕIJ : XI → XJ ,
{xs}s∈I 7→ {xs}s∈J .

It is easy to show that ϕIJ is ω-preserving and bicontinuous for J ≤ I.

Furthermore, note that the mappings ϕIJ for J ≤ I are the bonding maps: Indeed,
for the mapping ϕII : XI → XI , the equality ϕII({xs}s∈I) = {xs}s∈I is clear and
so ϕII is the identity idXI

. In addition, for K ≥ I ≥ J , let ’s prove ϕIJ ◦ ϕKI =
ϕKJ . If {xs}s∈K ∈ XK then (ϕIJ ◦ ϕKI)({xs}s∈K) = ϕIJ(ϕKI({xs}s∈K)) =
ϕIJ({xs}s∈I) = {xs}s∈J = ϕKJ({xs}s∈K).

Consequently, it is clear that {(XI , SI , τI , κI), ϕIJ}I≥J ∈ Ob InvifPDitop.

Let us prove that the inverse limit space of {(XI , SI , τI , κI), ϕIJ}I≥J over Γ is
ifPDitop-isomorphic to the arbitrary ditopological product space constructed on
the set

∏
s∈Λ

Xs:

Consider a mapping between lim
←
{XI}I∈Γ and

∏
s∈Λ

Xs:

If {xI} ∈ lim
←
{XI}I∈Γ then {xI} ∈

∏
I∈Γ

XI and so xI ∈ XI for every I ∈ Γ. Now,

for any s ∈ Λ let Is = {s} ∈ Γ, so by the fact XIs =
∏
z∈Is

Xz =
∏

z∈{s}
Xz = Xs, we

have x{s} = xIs ∈ Xs, s ∈ Λ. Thus {xIs} ∈
∏
s∈Λ

Xs and finally, we can define the

mapping ψ : lim←{XI}I∈Γ →
∏
s∈Λ

Xs, {xI}I∈Γ 7→ {xIs}s∈Λ It is easy to verify that

ψ is well-defined. In addition, it can be showed that ψ is an ifPDitop-isomorphism,
that is ω-preserving and bijective.

Now, if consider the product ditopological spaces (XI , SI , τI , κI) for I ∈ Γ, with
the plain texturings then the product texturing

⊗
I∈Γ

SI and product ditopology

(
⊗
I∈Γ

τI ,
⊗
I∈Γ

κI) can be constructed over the product set
∏
I∈Γ

XI in a suitable way.

Therefore, the restricted texturing and ditopology will be taken over the subset
lim
←
{XI}I∈Γ of

∏
I∈Γ

XI . Shortly, if we use the notations T = (
⊗
I∈Γ

SI)|lim
←
{XI}I∈Γ

, V =

(
⊗
I∈Γ

τI)|lim
←
{XI}I∈Γ

and Z = (
⊗
I∈Γ

κI)|lim
←
{XI}I∈Γ

for the induced texturing, topology

and cotopology, respectively, then now we will prove that ψ is bicontinuous with
respect to the ditopologies (

⊗
s∈Λ

τs,
⊗
s∈Λ

κs) and (V,Z):

Let G ∈
⊗
s∈Λ

τs = τΛ and ψ−1[G] 6⊆ Q{xI}I∈Γ
. In this case, G 6⊆ Qψ({xI}I∈Γ) and

so G 6⊆ Q{xIs}s∈Λ
. Thus, there exists B ∈ BτΛ , the base for the product topology τΛ

such that B ⊆ G and B 6⊆ Qψ({xI}I∈Γ). Note here that B =
⋂

j∈J0⊆Λ

π−1
j [Gj ], where
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Gj ∈ τj and j ∈ J0 for the finite set J0 ⊆ Λ. Thus, we have ψ−1(
⋂

j∈J0⊆Λ

π−1
j [Gj ]) ⊆

ψ−1[G] and so
⋂
j∈J0

(πj ◦ ψ)−1[Gj ] ⊆ ψ−1[G].

On the other hand, the equality πj◦ψ = πIj |lim
←
{XI}I∈Γ

is obvious by the definition

of projection map πIj :
∏
I∈Γ

XI → XIj = Xj and by the facts that j ∈ Λ and

Ij = {j} ⊆ Λ which means that Ij ∈ Γ for j ∈ J0.

Additionally, if take ϕ as the inverse of ψ, then we have πIj |lim
←
{XI}I∈Γ

◦ ϕ = πj .

Here, the restriction πIj |lim
←
{XI}I∈Γ

is bicontinuous since Ij . projection map πIj is

bicontinuous.

Hence, if A =
⋂
j∈J0

(πj ◦ ψ)−1[Gj ] =
⋂
j∈J0

(πIj |lim
←
{XI}I∈Γ

)−1[Gj ] then A ∈ BV.

Here, BV denotes the base for the topology V. In this case, A ⊆ ψ−1[G].

In addition, because of the fact A 6⊆ Q{xI}I∈Γ
that we have ψ−1[G] ∈ V and so

ψ is continuous.

Dually, it is easy to verify that ψ is cocontinuous by dealing with the closed sets.
Then ψ is bicontinuous. As the final step, that the map ϕ as the inverse of ψ is
bicontinuous can be shown similarly. �

The above theorem could be also stated for the subcategory ifPDicomp2 con-
sisting of dicompact [4] and bi-T2 (bi-Hausdorff) objects of the category ifPDitop.
Hence, with the above arguments we have:

Corollary 4.2. The infinite ditopological products of the objects which belong to
ifPDicomp2 can be expressed via inverse limits, in terms of the finite ditopological
products in ifPDicomp2 of those objects.
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Abstract 

In this study, we define special functions on fractional calculus because, gamma function [1]-

[3]-[4]-[7], beta function [2]-[6], Integral function [5], Mittag-Leffler and Integration of the Mittag-

Leffler function [3]-[7] are related with fractional derivatives and fractional Integrals [7]-[8]. Also, 

matlab program is used in some parts. As a reason of, we can describe geometrical meaning of special 

functions and fractional-order derivative. After we use definition of Grünwald-Letnikov fractional-

order derivative and fractional integral [7]-[8], we establish a connection definition of Grünwald-

Letnikov with Riemann-Liouville definition [7]-[8]. 

          Keywords: Gamma function, beta function, integral function, Mittag-Leffler function, Integration 

of the Mittag-Leffler function Grünwald-Letnikov and Riemann-Liouville definitions. 

 

1. Introduction 

 

Gamma Function 

 

In this here, special functions will be defined. Especially, gamma function and other special function will 

used with definition of the fractional-derivative and fractional- integral [7,8]. However, only we aim using 

special functions on Grünwald-Letnikov and Riemann-Liouville definitions. Previously, the gamma 

function is generally shown as [7,8]: 

Γ(𝑘) = ∫ 𝑒−𝑡𝑡𝑘−1𝑑𝑡

∞

0

        (1.1) 

or we can define the gamma function from (1.1) [1,3,4]: 

Γ(𝑘) = lim
𝑎→∞

∫ 𝑒−𝑡𝑡𝑘−1𝑑𝑡        (1.2)

𝑎

0

 

from (1.1) converging in the right half of the complex plane 𝑅𝑒(𝑧) > 0. So, we say that; 

let k is defined complex-coordinate system in (1.1) then we put 𝑥 + 𝑖𝑦 instead of k in (1.1). Hence, we 

write as: 
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Γ(𝑥 + 𝑖𝑦) = ∫ 𝑒−𝑡𝑡𝑥+𝑖𝑦−1𝑑𝑡 = ∫ 𝑒−𝑡𝑡𝑥−1𝑒𝑖𝑦𝑙𝑜𝑔(𝑡)𝑑𝑡        (1.3)

∞

0

∞

0

 

and from the rule that: Euler equation: 𝑒𝑖𝑦𝑙𝑜𝑔(𝑡) = cos(𝑦𝑙𝑜𝑔(𝑡)) + 𝑖𝑠𝑖𝑛(𝑦𝑙𝑜𝑔(𝑡)) 

Γ(𝑥 + 𝑖𝑦) = ∫ 𝑒−𝑡𝑡𝑥−1(cos (𝑦𝑙𝑜𝑔(𝑡) + 𝑖𝑠𝑖𝑛(𝑦𝑙𝑜𝑔(𝑡))𝑑𝑡

∞

0

 

Γ(𝑥 + 𝑖𝑦) = ∫[𝑒−𝑡𝑡𝑥−1𝑐𝑜𝑠𝑦𝑙𝑜𝑔(𝑡) + 𝑖𝑒−𝑡𝑡𝑥−1𝑠𝑖𝑛𝑦𝑙𝑜𝑔(𝑡)]𝑑𝑡

∞

0

 

= ∫ 𝑒−𝑡𝑡𝑥−1𝑐𝑜𝑠𝑦𝑙𝑜𝑔(𝑡)𝑑𝑡 + 𝑖 ∫ 𝑒−𝑡𝑡𝑥−1𝑠𝑖𝑛𝑦𝑙𝑜𝑔(𝑡)𝑑𝑡

∞

0

∞

0

 

= 𝑐𝑜𝑠𝑦 ∫ 𝑒−𝑡𝑡𝑥−1 log(𝑡) 𝑑𝑡 + 𝑖𝑠𝑖𝑛𝑦 ∫ 𝑒−𝑡𝑡𝑥−1 log(𝑡) 𝑑𝑡

∞

0

∞

0

 

and Eqn(1.1) convergence at infinity 𝑒−𝑡. Result of this operation, when 𝑡 ≠ 0 we say that;  

𝑥 = 𝑅𝑒(𝑘) > 1. 
Theorem: The gamma function of Γ(𝑘); 

Γ(𝑘) = ∫ 𝑒−𝑡𝑡𝑘−1𝑑𝑡

∞

0

 

is convergent when 𝑘 is positive variable (1.4). Let we show that (1.4): 

Γ(𝑘) = ∫ 𝑒−𝑡𝑡𝑘−1𝑑𝑡 + lim
𝑎→∞

∫ 𝑒−𝑡𝑡𝑘−1𝑑𝑡

𝑎

1

1

0

 

Γ(𝑘) = ∫ 𝑒−𝑡𝑡𝑘−1𝑑𝑡 +

1

0

∫ 𝑒−𝑡𝑡𝑘−1𝑑𝑡 = 𝐼1 + 𝐼2

∞

1

 

and 

𝐼 = ∫ 𝑒−𝑡𝑡𝑘−1𝑑𝑡        (1.5)

1

0

 

(1.5) is convergent. 

 

 

 

 

 

 

 

 

Figure 1: the plot of the gamma function diagram on the coordinate system 
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Then the exponential function of 𝑒−𝑡 is decreasing on the closed interval 𝑎 ∈ [0,1] and we define this 

function on this interval but we need to know the function is continuous on definitely intervals. Now, from 

Eqn (1.5) we consider that;  

∫ 𝑒−𝑡𝑡𝑝−1𝑑𝑡 < ∫ 𝑡𝑝−1𝑑𝑡

1

0

1

0

 

∫ 𝑒−𝑡𝑡𝑝−1𝑑𝑡 <
1

𝑝
.

1

0

 

To prove, Eqn (1.5): 

𝐼2 = ∫ 𝑒−𝑡𝑡𝑝−1𝑑𝑡

∞

1

 

is convergent and, generally from this formula satisfy: 

1 ≤ 𝑡 ⟹ 𝑡𝑝−1𝑒−𝑡 ≤ 𝑒
−𝑡

2⁄  

if and only if 𝑡𝑝−1 ≤ 𝑒
𝑡

2⁄  if and only if  

𝑡𝑝−1

𝑒
𝑡

2⁄
≤ 1        (1.6) 

As a reason of: 

lim
𝑡→∞

𝑡𝑝−1

𝑒
𝑡

2⁄
= 0 

we have: 

∫ 𝑒−𝑡𝑡𝑝−1𝑑𝑡 ≤ ∫ 𝑒
−𝑡

2⁄ 𝑑𝑡

∞

1

∞

1

 

∫ 𝑒−𝑡𝑡𝑝−1𝑑𝑡 = lim
𝑛→∞

∑ 𝑓(𝑡𝑛)𝑡𝑝−1∆𝑡 ≤ 2𝑒
1

2⁄

𝑛

𝑖=1

∞

1

 

Therefore, 

∫ 𝑒−𝑡𝑡𝑝−1𝑑𝑡 = 2𝑒
1

2⁄         (1.7).

∞

1

 

 

2. Preliminaries 

 

Beta Function 

 

 Generally, we define Beta function as [2,6]:  

𝐵(Ψ, ϕ) = ∫ 𝜏Ψ−1(1 − 𝜏)Φ−1𝑑𝜏    (𝑅𝑒(Ψ) > 0,   𝑅𝑒(Φ) > 0)    (1.8)

1

0

 

595



 

6th INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 

21-24 June 2022, Istanbul, Turkey 

 

 

ICOM 2022 

ISTANBUL / TURKEY 

Using (1.8) this formula related with the Laplace Transform method: Initially, in the first-step we show that 

the function: 

ℎΨ,Φ(𝑡) = ∫ 𝜏Ψ−1(1 − 𝜏)Φ−1𝑑𝜏        (1.9)

𝑡

0

 

After, we obtain the convolution of the functions 𝑡Ψ−1 and 𝑡Φ−1 and ℎΨ,Φ(1) = 𝐵(Ψ, Φ). Using Laplace 

transform with Eqn(1.9) then its satisfy: 

𝐿 {ℎΨ,Φ(𝑡) = ∫ 𝜏Ψ−1(1 − 𝜏)Φ−1𝑑𝜏

𝑡

0

} =
Γ(Ψ)

𝑠Ψ

Γ(Φ)

𝑠Φ
=

Γ(Ψ)Γ(Φ)

𝑠Ψ+Φ
          (1.10) 

𝐻Ψ,Φ(𝑠) defined on frequence domain and so 𝐻Ψ,Φ(𝑠) is the Laplace transform of ℎΨ,Φ(𝑡). 
Also, Γ(Ψ) and Γ(Φ) are constant, and it is possible to restore the original function ℎΨ,Φ(𝑡) by the inverse 

Laplace transform of the right-hand-side of [8]: 

𝐻Ψ,Φ(𝑠) =
Γ(Ψ)

𝑠Ψ

Γ(Φ)

𝑠Φ
=

Γ(Ψ)Γ(Φ)

𝑠Ψ+Φ
 

𝐿−1 {𝐻Ψ,Φ(𝑠) =
Γ(Ψ)Γ(Φ)

𝑠Ψ+Φ
} =

Γ(Ψ)Γ(Φ)

Γ(Ψ + Φ)
𝑡Ψ+Φ−1        (1.11) 

when we consider that 𝑡 = 1, the Beta function’s value is given: 

𝐵(Ψ, Φ) =
Γ(Ψ)Γ(Φ)

Γ(Ψ + Φ)
,             (1.12) 

from which it follows that: [7],[8]: 

𝐵(Ψ, Φ) = 𝐵(Φ, Ψ)            (1.13) 

 

3. Integral Functions and Mittag-Leffler Functions 

 

 There are several different symbol is defined for the error, imaginary error, complementary error, 

and exponential integral functions, in Integral functions of Fractional Calculus. Especially, the error 

function is shown form of (erf) symbol and then it is defined as [5]:  

erf(βk) =
2𝛽

√𝜋
∫ 𝑒−𝛽2𝑘2

𝑑𝑘        (1.14)

𝑘

0

 

the imaginary error function is defined as (erfi): 

erfi(βk) =
2𝛽

√𝜋
∫ 𝑒𝛽2𝑘2

𝑑𝑘 = −𝑖𝑒𝑟𝑓(𝑖𝛽𝑘)        (1.15)

𝑧

0

 

complementary error function is demonstrated (erfc): 

erfc(βk) =
2𝛽

√𝜋
∫ 𝑒−𝛽2𝑘2𝑑𝑘         (1.16)

∞

𝑘

 

finally, we indicate the definition of exponential integral function (Ei): 
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Ei(βk) = ∫
𝑒𝛽𝑘

𝑘
𝑑𝑘        (1.17)

𝑘

−∞

 

Now, if we add extra information on specific topics of exponential function, there are 4 different definitions 

of integral functions can be established a connection with result of the not only one-parameter but also more 

than one parameter Mittag-Leffler functions. In this section, we say that the exponential function plays an 

important role in the theory of integer-order differential equations I. Podlubny [7,8]. However, when we 

define the one-parameter generalization, the function has generally the form [4,7,8]: 

𝐸𝛼(𝑧) = ∑
𝑧𝑘

Γ(𝛼𝑘 + 1)
= ∑

𝑧𝑘

(𝛼𝑘)!
        (1.18)

∞

𝑘=0

∞

𝑘=0

 

 

a- Definition and Relation to Some Other Functions: 

 

Generally, a two-parameter function of the Mittag-Leffler function is defined as I. Podlubny [7]-[8]: 

𝐸𝛼,𝛽(𝑧) = ∑
𝑧𝑘

Γ(𝛼𝑘 + 𝛽)
        (1.19)

∞

𝑘=0

 

and we need to know that 𝛼 and 𝛽 are positive. From (1.19) when 𝛼 = 1, 𝛽 = 1 then the two-parameter 

Mittag-Leffler function is: 

𝐸1,1(𝑧) = ∑
𝑧𝑘

Γ(𝑘 + 1)
= ∑

𝑧𝑘

𝑘!
=

𝑧0

0!
+

𝑧

1!
+

𝑧2

2!
+

𝑧3

3!
+ ⋯

∞

𝑘=0

∞

𝑘=0

 

𝐸1,1(𝑧) = 1 + 𝑧 +
𝑧2

2
+

𝑧3

6
+ ⋯ = 𝑒𝑧 

Divergence series and it is defined as exponential number form. 

𝐸1,2(𝑧) = ∑
𝑧𝑘

Γ(𝑘 + 2)
= ∑

𝑧𝑘

(𝑘 + 1)!
=

1

𝑧
∑

𝑧𝑘+1

(𝑘 + 1)!
=

𝑒𝑧 − 1

𝑧
,

∞

𝑘=0

∞

𝑘=0

∞

𝑘=0

 

Generally form of this two-parameter of Mittag-Leffler function is [7]-[8]: 

𝐸1,𝑚(𝑧) =
1

𝑧𝑚−1
{𝑒𝑧 − ∑

𝑧𝑘

𝑘!

𝑚−2

𝑘=0

}        (1.20) 

The hyperbolic functions formulation of the two-parameter Mittag-Leffler function is shown below: 

𝐸2,1(𝑧2) = ∑
𝑧2𝑘

Γ(2𝑘 + 1)
= ∑

𝑘2𝑘

(2𝑘)!
= cosh(𝑧),          (1.21)

∞

𝑘=0

∞

𝑘=0

 

and, 

𝐸2,2(𝑧2) = ∑
𝑧2𝑘

Γ(2k + 2)
= ∑

𝑧2𝑘

(2𝑘 + 1)!
= ∑

1

𝑧

𝑧2𝑘+1

(2𝑘 + 1)!
=

1

𝑧
∑

𝑧2𝑘+1

(2𝑘 + 1)!
=

sinh (𝑧)

𝑧
,          (1.22)

∞

𝑘=0

∞

𝑘=0

∞

𝑘=0

∞

𝑘=0

 

If the hyperbolic functions of order n [4]: 

ℎ𝑟(𝑧, 𝑛) = ∑
𝑧𝑛𝑘+𝑟−1

(𝑛𝑘 + 𝑟 − 1)!
= 𝑧𝑟−1𝐸𝑛,𝑟(𝑧𝑛),    (𝑟 = 1,2, … . 𝑛)        (1.23)

∞

𝑘=0
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We analyze of the sine and cosine functions of order n: 

𝑘𝑟(𝑧, 𝑛) = ∑
(−1)𝑗𝑧𝑛𝑗+𝑟−1

(𝑛𝑗 + 𝑟 − 1)!
= 𝑧𝑟−1𝐸𝑛,𝑟(−𝑧𝑛),    (𝑟 = 1,2, … , 𝑛)       (1.24)

∞

𝑘=0

 

Using [18, formulas 7.1.3 and 7.1.8] then the formula satisfy, 

𝓌(𝑧) = 𝑒−𝑧2
(1 +

2𝑖

√𝜋
∫ 𝑒𝑡2

𝑑𝑡

𝑧

0

) = 𝑒−𝑧2
𝑒𝑟𝑓𝑐(−𝑖𝑧)        (1.25) 

and  

𝓌(𝑧) = ∑
(𝑖𝑧)𝑘

Γ (
𝑘

2
+ 1)

∞

𝑘=0

        (1.26) 

𝐸1

2
,1

(𝑧) = ∑
𝑧𝑘

Γ (
𝑘

2
+ 1)

= 𝑒𝑧2
𝑒𝑟𝑓𝑐(−𝑧)        (1.27)

∞

𝑘=0

 

and we mentioned that the definition of the error function is  

𝑒𝑟𝑓𝑐(𝑧) =
2

√𝜋
∫ 𝑒−𝑡2

𝑑𝑡        (1.28)

∞

𝑧

 

From (1.27) and (1.28), we satisfy the two-parameter Mittag-Leffler function is: 

𝐸1

2
,1

(𝑧) = ∑
𝑧𝑘

Γ (
𝑘

2
+ 1)

= ∑
𝑧𝑘

(
𝑘

2
) !

∞

𝑘=0

∞

𝑘=0

= 𝑒𝑧2
(

2

√𝜋
∫ 𝑒−𝑡2

𝑑𝑡

∞

𝑧

)        (1.29) 

For 𝛽 = 1, then we obtain the Mittag-Leffler function is defined as:  

𝐸𝛼,1(𝑧) = ∑
𝑧𝑘

Γ(𝛼𝑘 + 1)
≡ 𝐸𝛼(𝑧)        (1.30)

∞

𝑘=0

 

The function 𝜀𝑡(𝑣, 𝑎) introduced in [9] to solve differential equations of rational order, is a particular case 

of the Mittag-Leffler function (1.19) 

𝜀𝑡(𝑣, 𝑎) = 𝑡𝑣 ∑
(𝑎𝑡)𝑘

Γ(𝑣 + 𝑘 + 1)
= 𝑡𝑣𝐸1,𝑣+1(𝑎𝑡)        (1.31)

∞

𝑘=0

 

∋𝛼 (𝛽, 𝑡) is a particular case of the Mittag-Leffler function [10] in two parameter form (1.19) 

∋𝛼 (𝛽, 𝑡) = 𝑡𝛼 ∑
𝛽𝑘𝑡𝑘(𝛼+1)

Γ((𝑘 + 1)(1 + 𝛼))
= 𝑡𝛼𝐸𝛼+1,𝛼+1(𝛽𝑡𝛼+1)        (1.32)

∞

𝑘=0

 

From Eqn (1.29) and (1.30) then the properties of the Miller-Ross function and Rabotnov’s function can 

be deduced from the properties of the Mittag-Leffler function in two parameters (1.19) I. Podlubny [7]-

[8]. Plotnikov [11, cf [12]] and Tseytlin [12] used two different functions 𝑆𝑐𝛼(𝑧) and 𝐶𝑠𝛼(𝑧) that they 

define the fractional sine and cosine functions. Those functions has two different parameters I. Podlubny 

[7]-[8]:  

𝑆𝑐𝛼(𝑧) = ∑
(−1)𝑛𝑧(2−𝛼)𝑛+1

Γ((2 − 𝛼)𝑛 + 2)
= 𝑧𝐸2−𝛼,2(−𝑧2−𝛼)        (1.33)

∞

𝑛=0
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𝐶𝑠𝛼(𝑧) = ∑
(−1)𝑛𝑘(2−𝛼)𝑛

Γ((2 − 𝛼)𝑛 + 1)
= 𝐸2−𝛼,1(−𝑧2−𝛼)        (1.34)

∞

𝑛=0

 

Another “fractionalization” of the sine and cosine functions, which can also be expressed in terms of the 

Mittag-Leffler function [3]-[7]-[8] is recommended by Luchko and Srivastava [13]: 

𝑠𝑖𝑛𝜆,𝜇(𝑧) = ∑
(−1)𝑘𝑘2𝑘+1

Γ(2𝜇𝑘 + 2𝜇 − 𝜆 + 1)
= 𝑧𝐸2𝜇,2𝜇−𝜆+1(−𝑧2)        (1.34)

∞

𝑘=0

 

𝑐𝑜𝑠𝜆,𝜇(𝑧) = ∑
(−1)𝑘𝑘2𝑘

Γ(2𝜇𝑘 + 𝜇 − 𝜆 + 1)
= 𝐸2𝜇,𝜇−𝜆+1(−𝑧2)        (1.35)

∞

𝑘=0

 

Sine and cosine functions were followed from the properties of the Mittag-Leffler function equation (1.19). 

Generalizations of the Mittag-Leffler function (1.19) to two variables suggested by P. Humbert and P. 

Delerue [14] and by A. M. Chak [15], were further extended by H.M. Srivastava [16] to the following 

symmetric form [7]:  

𝜉𝛼,𝛽,𝜆,𝜇
𝜈,𝜎 (𝑥, 𝑦) = ∑ ∑

𝑥𝑚+
𝛽(𝜈𝑛+1)−1

𝛼 𝑦𝑛+
𝜇(𝜎𝑚+1)−1

𝜆

Γ(𝑚𝛼 + (𝜈𝑛 + 1)𝛽)Γ(𝑛𝜆 + (𝜎𝑚 + 1)𝜇)
        (1.36)

∞

𝑛=0

∞

𝑚=0

 

Now, several variables have been recommended by S. B. Hadid and Yu. Luchko [17] and operation method 

will used to solve linear fractional differential equations and also we need to use constant coefficients to 

show that this equation (1.35): 

𝐸(𝛼1,….,𝛼𝑚),𝛽(𝑧1,….,𝑧𝑚),        (1.37) 

where (𝑘; 𝐼1, … , 𝐼𝑚) can be defined as multinomial coefficients [18]. 

 

4. Integration of the Mittag-Leffler Function  

 

Eqn (1.19), step-by-step the formulation we satisfy the Mittag-Leffler function in the integration part is in 

[3]-[5]: 

∫ 𝐸𝛼,𝛽(𝜆𝑡𝛼)𝑡𝛽−1𝑑𝑡 = 𝑧𝛽𝐸𝛼,𝛽+1(𝜆𝑧𝛼)        (𝛽 > 0)        (1.38)

𝑧

0

 

we use special function to obtain fractional-order-term-by-term integration of the series (1.19): 

1

Γ(v)
∫(𝑧 − 𝑡)𝑣−1𝐸𝛼,𝛽(𝜆𝑡𝛼)𝑡𝛽−1𝑑𝑡 = 𝑧𝛽+𝑣−1𝐸𝛼,𝛽+𝑣(𝜆𝑧𝛼)    (𝛽 > 0, 𝑣 > 0)   (1.39)

𝑧

0

 

Initially in this Mittag-Leffler function, we gave many basic formulas of series expansion in definition of 

one-parameter and two-parameter Mittag-Leffler function. After, if these formulas are used for defining 

integration of the Mittag-Leffler function then:  
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1

Γ(𝛼)
∫(𝑧 − 𝑡)𝛼−1𝑒𝜆𝑡𝑑𝑡 = 𝑧𝛼𝐸1,𝛼+1(𝜆𝑧),       (𝛼 > 0)        (1.40)

𝑧

0

 

1

Γ(𝛼)
∫(𝑧 − 𝑡)𝛼−1 cosh(√𝜆𝑡) 𝑑𝑡 = 𝑧𝛼𝐸2,𝛼+1(𝜆𝑧2),       (𝛼 > 0)        (1.41)

𝑧

0

 

1

Γ(𝛼)
∫(𝑧 − 𝑡)𝛼−1

sinh (√𝜆𝑡)

√𝜆𝑡
𝑑𝑡 = 𝑧𝛼+1𝐸2,𝛼+2(𝜆𝑧2),       (𝛼 > 0)        (1.42)

𝑧

0

 

Now, we show that for the fractional integration of the Mittag-Leffler function: 

1

Γ(𝛼)
∫(𝑧 − 𝑡)𝛼−1𝐸2𝛼,𝛽(𝑡2𝛼)𝑡𝛽−1𝑑𝑡 = −𝑧𝛽−1𝐸2𝛼,𝛽(𝑧2𝛼) + 𝑧𝛽−1𝐸𝛼,𝛽(𝑧𝛼)        (1.43)

𝑧

0

 

Proof: When we prove that (1.43) then the fractional integral is: 

∫ 𝐸2𝛼,𝛽(𝑡)2𝛼𝑡𝛽−1 {1 +
(𝑧 − 𝑡)𝛼

Γ(1 + 𝛼)
} 𝑑𝑡

𝑧

0

 

= ∑
1

Γ(2𝑘𝛼 + 𝛽)
∫ 𝑡2𝑘𝛼+𝛽−1 {1 +

(𝑧 − 𝑡)𝛼

Γ(1 + 𝛼)
} 𝑑𝑡

𝑧

0

∞

𝑘=0

 

= 𝑧𝛽 ∑
𝑧2𝑘𝛼

Γ(2𝑘𝛼 + 𝛽 + 1)
+ 𝑧𝛽 ∑

𝑧(2𝑘+1)𝛼

Γ((2𝑘 + 1)𝛼 + 𝛽 + 1)

∞

𝑘=0

∞

𝑘=0

 

= 𝑧𝛽 ∑
𝑧𝑘𝛼

Γ(𝑘𝛼 + 𝛽 + 1)
= 𝑧𝛽𝐸𝛼,𝛽+1(𝑧𝛼)        (1.44)

∞

𝑘=0

 

When we compare Eqn(1.44) and Eqn(1.38) then we have:  

∫ 𝐸2𝛼,𝛽(𝑡)2𝛼𝑡𝛽−1 {1 +
(𝑧 − 𝑡)𝛼

Γ(1 + 𝛼)
} 𝑑𝑡 = ∫ 𝐸𝛼,𝛽(𝜆𝑡𝛼)𝑡𝛽−1𝑑𝑡,       (𝛽 > 0)        (1.45)

𝑧

0

𝑧

0

 

Take the differentiate Eqn(1.45) with respect to z variable, then  
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= 𝑧𝛽 ∑
𝑧𝑘𝛼

Γ(𝑘𝛼 + 𝛽 + 1)
= 𝑧𝛽𝐸𝛼,𝛽+1(𝑧𝛼)        (1.46)

∞

𝑘=0

 

is satisfied. Mittag-Leffler function that is similar to the Cristoffel-Darboux formula for describing 

orthogonal polynomials; definitely, 

∫ 𝜏𝛾−1𝐸𝛼,𝛽(𝑦𝜏𝛼)(𝑡 − 𝜏)𝛽−1𝐸𝛼,𝛽(𝑧(𝑡 − 𝜏)𝛼)𝑑𝜏 =
𝑦𝐸𝛼,𝛾+𝛽(𝑦𝑡𝛼) − 𝑧𝐸𝛼,𝛾+𝛽(𝑧𝑡𝛼)

𝑦 − 𝑧

𝑡

0

𝑡𝛾+𝛽−1   

 (𝛾 > 0, 𝛽 > 0)        (1.47) 

where 𝑦 and 𝑧 (𝑦 ≠ 𝑧) are arbitrary complex numbers. 

Actually, definition of the Mittag-Leffler function was used in Eqn (1.19). Hence, we have; 

∫ 𝜏𝛾−1𝐸𝛼,𝛽(𝑦𝜏𝛼)(𝑡 − 𝜏)𝛽−1𝐸𝛼,𝛽(𝑧(𝑡 − 𝜏)𝛼)𝑑𝜏

𝑡

0

 

= ∑ ∑
𝑦𝑛𝑧𝑚

Γ(𝛼𝑛 + 𝛾)Γ(𝛼𝑚 + 𝛽)
∫ 𝜏𝛼𝑛+𝛾−1(𝑡 − 𝜏)𝛼𝑚+𝛽−1𝑑𝜏

𝑡

0

∞

𝑚=0

∞

𝑛=0

 

= ∑ ∑
𝑦𝑛𝑧𝑚𝑡𝛼(𝑛+𝑚)+𝛽+𝛾−1

Γ(𝛼(𝑛 + 𝑚) + 𝛽 + 𝛾)

∞

𝑚=0

∞

𝑛=0

 

= 𝑡𝛽+𝛾−1 ∑ ∑
𝑦𝑛𝑧𝑘−𝑛𝑡𝛼𝑘

Γ(αk + β + γ)

∞

𝑘=𝑛

∞

𝑛=0

 

= 𝑡𝛽+𝛾−1 ∑
𝑧𝑘𝑡𝛼𝑘

Γ(𝛼𝑘 + 𝛽 + 𝛾)
∑ (

𝑦

𝑧
)

𝑛
𝑘

𝑛=0

∞

𝑘=0

 

=
𝑡𝛽+𝛾−1

𝑦 − 𝑧
∑

𝑡𝛼𝑘(𝑦𝑘+1 − 𝑧𝑘+1)

Γ(𝛼𝑘 + 𝛽 + 𝛾)
        (1.48)

∞

𝑘=0

 

we used Eqn (1.19) and satisfying Eqn (1.48). Another interesting formula establishes the relationship 

between the Mittag-Leffler function and the function 𝑒−
𝑥2

4𝑡  [7]. Also, we can apply relationship between the 
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Mittag-Leffler function and 𝑒−
𝑥2

4𝑡 . In the solution of the diffusion (heat conduction, mass transfer and 

another physical problems). As a result of this information the equation is satisfied:  

∫ 𝑒−𝑥2 4𝑡⁄ 𝐸𝛼,𝛽(𝑥𝛼)𝑥𝛽−1𝑑𝑥 = √𝜋𝑡𝛽 2⁄ 𝐸𝛼 2,(𝛽+1) 2⁄⁄

∞

0

(𝑡𝛼 2⁄ ),        (𝛽 > 0,        𝑡 > 0)        (1.49) 

To proof of the Eqn (1.49) mention about every fixed value of t the below the series in (1.50): 

𝑒−𝑥2 4𝑡⁄ 𝐸𝛼,𝛽(𝑥𝛼)𝑥𝛽−1 = ∑
𝑥𝛼𝑘+𝛽−1

Γ(𝛼𝑘 + 𝛽)
𝑒−𝑥2 4𝑡⁄ ,          (𝛽 > 0)        (1.50)

∞

𝑘=0

 

From the (1.50) improper integral is used to describe the Legendre formula: 

∫ 𝑒−𝑥2 4𝑡⁄ 𝐸𝛼,𝛽(𝑥𝛼)𝑥𝛽−1𝑑𝑥 = ∫ (∑
𝑥𝛼𝑘+𝛽−1

Γ(𝛼𝑘 + 𝛽)
𝑒−𝑥2 4𝑡⁄

∞

𝑘=0

) 𝑑𝑥

∞

0

∞

0

 

= ∑
1

Γ(𝛼𝑘 + 𝛽)
∫ 𝑥𝛼𝑘+𝛽−1𝑒−𝑥2 4𝑡⁄ 𝑑𝑥 = ∑

Γ(
𝛼𝑘+𝛽

2
)

2Γ(𝛼𝑘 + 𝛽)
(2√𝑡)

𝛼𝑘+𝛽
        (1.51)

∞

𝑘=0

∞

0

∞

𝑘=0

 

Γ(𝑧)Γ (𝑧 +
1

2
) = √𝜋21−2𝑧Γ(2𝑧) 

is obtained from Eqn (1.51) and it gives formula (1.49). 

The use of the Laplace transform of the Mittag-Leffler function and 𝑡𝛼𝑘+𝛽−1𝐸𝛼,𝛽
(𝑘)(±𝑧𝑡𝛼) and 

𝐸𝛼,𝛽
(𝑘)

≡
𝑑𝑘

𝑑𝑦𝑘
𝐸𝛼,𝛽(𝑦)): 

∫ 𝑒−𝑝𝑡𝑡𝛼𝑘+𝛽−1𝐸𝛼,𝛽
(𝑘)(±𝛼𝑡𝛼)𝑑𝑡 =

𝑘! 𝑝𝛼−𝛽

(𝑝𝛼 ∓ 𝛼)𝑘+1
,          (𝑅𝑒(𝑝) > |𝛼|1 𝛼⁄ )        (1.52)

∞

0

 

Is also a convenient way for satisfying various useful relationships for the Mittag-Leffler function [7]. To 

illustrate, s defined Laplace transform parameter and s is a frequence function to solve ordinary differential 

equation and their applications. Now, below the equation comes from Laplace transformation: 

1

𝑠2
=

𝑠𝛼−𝛽

𝑠𝛼 − 1
[𝑠𝛽−2 − 𝑠𝛽−𝛼−2]        (1.53) 
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𝑡𝑣 is defined as Laplace transform of the function and this function will used after Eqn (1.53) for describing 

the Mittag-Leffler function. [3, formula 4.3(1)]  

𝑓(𝑡) = 𝑡𝑣 ,        𝑅𝑒(𝑣) > −1,       Γ(𝑣 + 1)𝑝−𝑣−1,        𝑅𝑒(𝑝) > 0        

𝐿{𝑡𝑣; 𝑠} = Γ(𝑣 + 1)𝑠−𝑣−1,       (𝑅𝑒𝑠(𝑠) > 0)       (1.54) 

then  

∫ 𝜏𝛽−1𝐸𝛼,𝛽(𝜏𝛼) [
(𝑡 − 𝜏)1−𝛽

Γ(2 − 𝛽)
−

(𝑡 − 𝜏)𝛼−𝛽+1

Γ(𝛼 − 𝛽 + 2)
]

𝑡

0

𝑑𝜏 = 𝑡,        (0 < 𝛽 < 2, 𝛼 > 0)        (1.55) 

Since the fractional integration of the Mittag-Leffler function the formula (1.43) be able to satisfied directly 

by the inverse Laplace transform of the identity  

𝑠2𝛼−𝛽

𝑠2𝛼 − 1
𝑠−𝛼 = −

𝑠2𝛼−𝛽

𝑠2𝛼 − 1
+

𝑠𝛼−𝛽

𝑠𝛼 − 1
        (1.56) 

The formula (1.49) is able to satisfied under favour of the Laplace transform technique.Actually, if 𝐹(𝑠) 

indicates the Laplace transform of a function 𝑓(𝑡), i.e.  

𝐹(𝑠) = 𝐿{𝑓(𝑡); 𝑠} = ∫ 𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡,

∞

0

 

then by the [3, formula 4.1(33)] 

𝑓(𝑡) = 𝑡−1
2⁄ ∫ 𝑒−1

4⁄ 𝑢2

𝑡⁄ 𝑓(𝑢)𝑑𝑢

∞

0

 

and 

𝑔(𝑝) = ∫ 𝑒−𝑝𝑡𝑓(𝑡)𝑑𝑡

∞

0

 

then the integral means that 𝜋
1

2⁄  𝑝
−1

2⁄  𝑔 (𝑝
1

2⁄ )   

𝐿 {
1

√𝜋𝑡
∫ 𝑒−𝑥2 4𝑡⁄ 𝑓(𝑥)𝑑𝑥; 𝑠

∞

0

} = 𝑠−1 2⁄ 𝐹(𝑠1 2⁄ )        (1.57) 

Now, put in (1.57)  
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𝑓(𝑥) = 𝑥𝛽−1𝐸𝛼,𝛽(𝑥𝛼)        (1.58) 

According to Eqn.(1.52) we have: 

𝐹(𝑠) =
𝑠𝛼−𝛽

𝑠𝛼 − 1
 

Hence,  

𝑠−1 2⁄ 𝐹(𝑠1 2⁄ ) =
𝑠𝛼 2−(𝛽+1) 2⁄⁄

𝑠𝛼 2⁄ − 1
= 𝐿 {𝑡

𝛽+1

2
−1𝐸𝛼,𝛽(𝑡𝛼 2⁄ ); 𝑠}        (1.59) 

when Eqn.(1.57) and (1.59) are compared then we attain at the relationship (1.49). At the same time, after 

Laplace transform of the Mittag-Leffler function (1.52) are used, then  

𝑠𝛼−𝛽

𝑠𝛼 − 𝛼
.

𝑠𝛼−𝛾

𝑠𝛼 + 𝛼
=

𝑠2𝛼−(𝛽+𝛾)

𝑠2𝛼 − 𝛼2
        (1.60) 

we satisfy the convolution of two Mittag-Leffler functions:  

∫ 𝜏𝛽−1𝐸𝛼,𝛽(𝛼𝜏𝛼)(𝑡 − 𝜏)𝛾−1𝐸𝛼,𝛾(−𝛼(𝑡 − 𝜏)𝛼)𝑑𝜏 = 𝑡𝛽+𝛾−1𝐸2𝛼,𝛽+𝛾(𝛼2𝑡2𝛼)     (𝛽 > 0,   𝛾 > 0)   (1.61)

𝑡

0

 

The relationship (1.61) can also be obtained from (1.47), where we can take 𝑧 = −𝑦 and then utilize the 

relationship [7[-[8]: 

𝐸𝛼,𝛽(𝑧) + 𝐸𝛼,𝛽(−𝑧) = 2𝐸𝛼,𝛽(𝑧2) 

 

5. Using Special Functions on Grünwald-Letnikov and Riemann-Liouville fractional derivatives and 

fractional integrals 

 Initially, this definition comes from the normal definition of derivative: we consider 𝑦 = 𝑞(𝑡) 

function and 𝑞 is continuous every point. Also, 𝑞 is differentiable function in order to it is continuous at 

𝑡 ∈ 𝑅. Now, we use limit definition previously: 

𝑞′(𝑡) =
𝑑𝑞

𝑑𝑡
= lim

ℎ→0

𝑞(𝑡 + ℎ) − 𝑞(𝑡)

ℎ
        (1.37) 

Take the derivative of 𝑞′(𝑡) 
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𝑞′′(𝑡) =
𝑑2𝑞

𝑑𝑡2
= lim

ℎ→0

1

ℎ
(𝑞(𝑡 + ℎ) − 𝑞(𝑡))′ 

𝑞′′(𝑡) = lim
ℎ→0

1

ℎ
(

(𝑞(𝑡 + 2ℎ) − 𝑞(𝑡 + ℎ)) − (𝑞(𝑡 + ℎ) − 𝑞(𝑡))

ℎ
) 

𝑞′′(𝑡) = lim
ℎ→0

1

ℎ
(

𝑞(𝑡 + 2ℎ) − 𝑞(𝑡 + ℎ) − 𝑞(𝑡 + ℎ) + 𝑞(𝑡)

ℎ
) 

𝑞′′(𝑡) = lim
ℎ→0

𝑞(𝑡 + 2ℎ) − 2𝑞(𝑡 + ℎ) + 𝑞(𝑡)

ℎ2
        (1.38) 

𝑞′′′(𝑡) = lim
ℎ→0

1

ℎ2
(𝑞(𝑡 + 2ℎ) − 2𝑞(𝑡 + ℎ) + 𝑞(𝑡))′ 

𝑞′′′(𝑡) = lim
ℎ→0

1

ℎ2
[(

𝑞(𝑡 + 3ℎ) − 𝑞(𝑡 + 2ℎ)

ℎ
) − 2 (

𝑞(𝑡 + 2ℎ) − 𝑞(𝑡 + ℎ)

ℎ
) + (

𝑞(𝑡 + ℎ) − 𝑞(𝑡)

ℎ
)] 

𝑞′′′(𝑡) = lim
ℎ→0

1

ℎ2
(

𝑞(𝑡 + 3ℎ) − 𝑞(𝑡 + 2ℎ) − 2𝑞(𝑡 + 2ℎ) + 2𝑞(𝑡 + ℎ) + 𝑞(𝑡 + ℎ) − 𝑞(𝑡)

ℎ
) 

𝑞′′′(𝑡) = lim
ℎ→0

𝑞(𝑡 + 3ℎ) − 3𝑞(𝑡 + 2ℎ) + 3𝑞(𝑡 + ℎ) − 𝑞(𝑡)

ℎ3
        (1.39) 

and, use by induction result of 𝑞′(𝑡), 𝑞′′(𝑡) and 𝑞′′′(𝑡): 

𝑞𝑛(𝑡) =
𝑑𝑛𝑞

𝑑𝑡𝑛
= lim

ℎ→0

1

ℎ𝑛
∑(−1)𝑘 (

𝑛

𝑘
) 𝑞(𝑡 − 𝑘ℎ)        (1.40)

𝑛

𝑘=0

 

and we define as; fractional-order derivative (1.40), we write as; 

(
𝑛

𝑘
) =

𝑛(𝑛 − 1)(𝑛 − 2) … (𝑛 − 𝑘 + 1)

𝑘!
 

and therefore, 

𝑞(𝑛)(𝑡) =
𝑑𝑛𝑞

𝑑𝑡𝑛
= lim

ℎ→0

1

ℎ𝑛
∑(−1)𝑘

𝑛(𝑛 − 1)(𝑛 − 2) … (𝑛 − 𝑘 + 1)

𝑘!

𝑛

𝑘=0

𝑞(𝑡 − 𝑘ℎ)        (1.41) 

if and only if the fractional order derivative of n is positive. However, when we define this order is negative: 

then; we define as; 
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𝑞(−𝑛)(𝑡) = lim
ℎ→0

1

ℎ−𝑛
∑(−1)𝑘 (

−𝑛

𝑘
) 𝑞(𝑡 − 𝑘ℎ)        (1.42)

𝑛

𝑘=0

 

and 

(
−𝑛

𝑘
) = (−1)𝑘 [

𝑛

𝑘
] 

so we say that, 

𝑞(−𝑛)(𝑡) = lim
ℎ→0

ℎ𝑛 ∑(−1)2𝑘 [
𝑛

𝑘
] 𝑞(𝑡 − 𝑘ℎ) = lim

ℎ→0
ℎ𝑛 ∑ [

𝑛

𝑘
] 𝑞(𝑡 − 𝑘ℎ)        (1.43)

𝑛

𝑘=0

𝑛

𝑘=0

 

By the Grünwald-Letnikov fractional-order derivatives equation:  

𝐷𝑡
𝑛𝑞(𝑡) = lim

ℎ→0 𝑎𝑛𝑑 𝑛ℎ=𝑡−𝛼
𝑞ℎ

𝑛(𝑡) = lim
ℎ→0

1

ℎ𝑛
∑(−1)𝑘 (

𝑛

𝑘
) 𝑞(𝑡 − 𝑘ℎ) =

1

Γ(𝑛)
∫(𝑡 − 𝜏)𝑛−1𝑞(𝜏)𝑑𝜏        (1.44)

𝑡

𝛼

𝑛

𝑘=0

𝛼  

 

Especially, special function is used in the Grünwald-Letnikov definition; 

Eqn (1.44) can be shown another form: 

𝐷𝑡
𝑛𝑞(𝑡) =

1

(𝑛 − 1)!
∫(𝑡 − 𝜏)𝑛−1𝑞(𝜏)𝑑𝜏  

𝑡

𝛼

𝛼  

since Γ(𝑛) = (𝑛 − 1)! and 𝑛 > 0. 

Also, we can give an example of fractional order derivative using with Matlab. 
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Figure 2: 𝐷𝛼 sin(𝑡) = 𝑓(𝑡) and we consider that order between 0.00 and 1.00 is an example of 

fractional-order Grünwald-Letnikov derivative: 

 

 

Figure 3: 𝐷𝛼𝑥(𝑡) = 𝑓(𝑡) where 0 < 𝛼 < 1 . However, blue diagram is defined when 0 < 𝛼 < 1 , red 

diagram is defined when 𝛼 = 0 and pink line is defined as vertical line when 𝛼 = 1. We say that, curves 

position’s are changing according to the fractional derivative’s values. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: 𝐷𝛼𝑥(𝑡) = 𝑓(𝑡) where 𝛼′ values decrease from 1 to 0.7.  

 

Integrating the relationship: 

 

If we use Grünwald-Letnikov definition with special functions: 

𝑑

𝑑𝑡
( 𝐷𝑡

−𝑛𝑞(𝑡)𝛼 ) =
1

(𝑛 − 2)!
∫(𝑡 − 𝜏)𝑛−2𝑞(𝜏)𝑑𝜏 = 𝐷𝑡

−𝑛+1𝑞(𝑡)        (1.45)𝛼

𝑡

𝛼

 

from 𝛼 to 𝑡 we satisfy in the general form: 
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𝐷𝛼 𝑡
−𝑛𝑞(𝑡) = ∫ 𝐷𝑡

−𝑛+1𝑞(𝑡)𝑑𝑡,𝛼

𝑡

𝛼

 

𝐷𝑡
−𝑛+1𝑞(𝑡) = ∫( 𝐷𝑡

−𝑛+2
𝛼 )𝑑𝑡,

𝑡

𝛼

𝛼  

and so,  

𝐷𝛼 𝑡
−𝑛𝑞(𝑡) = ∫ 𝑑𝑡

𝑡

𝛼

∫( 𝐷𝑡
−𝑛+2𝑞(𝑡)𝛼 )𝑑𝑡

𝑡

𝛼

 

= ∫ 𝑑𝑡 ∫ 𝑑𝑡 ∫ 𝐷𝑡
−𝑛+3𝑞(𝑡)𝛼 𝑑𝑡

𝑡

𝛼

𝑡

𝛼

𝑡

𝛼

 

∫ 𝑑𝑡

𝑡

𝛼

∫ 𝑑𝑡

𝑡

𝛼

… ∫ 𝑞(𝑡)𝑑𝑡       𝑛 − 𝑡𝑖𝑚𝑒𝑠      (1.46)

𝑡

𝛼

 

In brief, we say that, the function 𝑞(𝑡) is continuous and if the fractional-order derivative is 𝑛 so it is the 

general formulation: 

𝐷𝑡
𝑛𝑞(𝑡) = lim

ℎ→0 𝑎𝑛𝑑 𝑛ℎ=𝑡−𝛼
ℎ−𝑛 ∑(−1)𝑘 (

𝑛

𝑘
) 𝑞(𝑡 − 𝑘ℎ)     𝑛 > 0    (1.47)

𝑛

𝑘=0

𝛼  

Also, we apply special functions on Grünwald-Letnikov definition in composition with integer-order 

derivatives: 

𝐷𝑡
𝑛𝑞(𝑡) = ∑

𝑞(𝑘)(𝛼)(𝑡 − 𝛼)−𝑛+𝑘

Γ(−𝑛 + 𝑘 + 1)
+

1

Γ(−𝑛 + 𝑠 + 1)
∫(𝑡 − 𝜏)𝑠−𝑛𝑞(𝑠+1)(𝜏)𝑑𝜏        (1.48)

𝑡

𝛼

𝑠

𝑘=0

𝛼  

Similarly, special function is applied in this section. Otherwise, Eqn (1.48) is written another formulation 

on this; 

𝐷𝑡
𝑛𝑞(𝑡) = ∑

𝑞(𝑘)(𝛼)(𝑡 − 𝛼)−𝑛+𝑘

(𝑘 − 𝑛)!

𝑠

𝑘=0

+
1

(𝑠 − 𝑛)!
∫(𝑡 − 𝜏)𝑠−𝑛𝑞(𝑠+1)(𝜏)𝑑𝜏

𝑡

𝛼

𝛼         (1.49) 

Now, when we look at Riemann-Liouville definition then we say it is the most important information that 

function is continuous and we know that (𝑚 + 1) exponensial derivative operator will used in Riemann-

Liouville definition: Similarly, we need to use special functions to determine series expansion form. 

Therefore, the gamma function has play important role to show step-by-step. General definition is: 

𝐷𝑡
𝑛𝑞(𝑡) = (

𝑑

𝑑𝑡
)

𝑐+1

∫(𝑡 − 𝜏)𝑐−𝑛𝑞(𝜏)𝑑𝜏    (𝑐 ≤ 𝑛 < 𝑐 + 1)    (1.50)

𝑡

𝛼

𝛼  

Particularly, 

𝐷𝑡
𝑛𝑞(𝑡) = lim

ℎ→∞  
𝑞ℎ

(𝑛)(𝑡) = ∑
𝑞(𝑘)(𝛼)(𝑡 − 𝛼)−𝑛+𝑘

Γ(−𝑛 + 𝑘 + 1)
+

1

Γ(−𝑛 + 𝑚 + 1)
∫(𝑡 − 𝜏)𝑚−𝑛𝑞(𝑚+1)(𝜏)𝑑𝜏        (1.51) 

𝑡

𝛼

𝑚

𝑘=0

𝛼  
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and we say that, when ℎ approaches ∞ then 𝑛ℎ = 𝑡 − 𝛼 in Eqn (1.51). Also, this definition is satisfying to 

the Grünwald-Letnikov fractional derivative under the estimate, 𝑞(𝑡)  function must be 𝑐 + 1  times 

continuously differentiable [7]-[8]: so Eqn (1.51) was applied to use integration by parts and differentiation 

in this definition.  

 

6. Conclusion 

 

In this thesis, initially, many special functions ( gamma [1]-[3]-[4]-[7], beta [2]-[6],integral function [5],  

Mittag-Leffler functions and Integration of the Mittag-Leffler function [3])and their properties are 

mentioned. As a reason of , special function must be used to apply on definition of Riemann-Liouville and 

Grünwald-Letnikov fractional derivatives and fractional integrals [7]-[8]. Specifically, gamma function 

diagram is identified on cartesian coordinate system. Second of all, limit definitions of fractional derivative 

are mentioned on our thesis. Also, in some parts, Matlab is used for interpreting geometrical meaning of 

fractional order derivatives equation for some values of order and we compare curves’ positions according 

to order of fractional derivatives’ values. Finally, Riemann-Liouville and Grünwald Letnikov fractional 

derivatives and fractional integrals [7]-[8] are given and gamma function is applied both of two definitions.  
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Abstract 

The coupled J-M equations are arising in different fields of science and engineering such as 

fluid mechanics, condense matter physics, optics, and plasma physics. In this study, a numerical 

approach is introduced for investigating the numerical solutions of the fractional order of coupled 

coupled J-M system. For this purpose, the fractional Bernoulli wavelets via spectral collocation 

method are employed to reducing the system of fractional order differential equations to some 

nonlinear system of algebraic equations. Finally, we utilize Newton iterative approach for solving the 

achieved nonlinear system. For showing the accuracy and efficiency of the purposed method, the 

solutions of some cases of coupled J-M system are provided. 

 

          Keywords: Jaulent–Miodek system, Bernoulli wavelets, collocation method, Newton iterative 

method. 

 

1. Introduction 

 

In 1979, Jaulent and Miodek derived the system of equations as an extension to energy-dependent 

potentials called Jaulent-Miodek (J-M) system [1-2]. The coupled J-M equations are arising in different 

fields of science and engineering such as fluid mechanics [3], condense matter physics [4], optics [5], and 

plasma physics [6]. In this research the fractional Bernoulli wavelets are employed for investigating the 

numerical solution of the fractional order of coupled J-M system as;  

 

 
𝐷𝑡

𝛾1𝑢 + 𝑢𝑥𝑥𝑥 +
3

2
𝑣 𝑣𝑥𝑥𝑥 +

9

2
𝑣𝑥𝑣𝑥𝑥 − 6𝑢𝑢𝑥 − 6𝑢𝑣𝑣𝑥 −

3

2
𝑢𝑥𝑣

2𝑣 = 0,

𝐷𝑡
𝛾2𝑣 + 𝑣𝑥𝑥𝑥 − 6𝑢𝑥𝑣 − 6𝑢𝑣𝑥 −

15

2
𝑣𝑥𝑣

2 = 0,                                          

                                 1  

 

subject to the initial conditions 

 

𝑢 𝑥, 0 =
1

8
𝜇2  1 − 4 sech2(

𝜇𝑥

2
) ,                      𝑣 𝑥, 0 = 𝜇 sech  

𝜇𝑥

2
 ,                         (2) 

 

where 𝛾𝑖 , 𝑖 = 1,2 are the order of fractional derivatives in Caputo sense and 𝜇 is an arbitrary constant [7].  

For 𝛾1 = 𝛾2 = 1, the coupled system (1) has the exact solution in the form: 
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𝑢 𝑥, 𝑡 =
1

8
𝜇2  1 − 4 𝑠𝑒𝑐2  

𝜇

2
(𝑥 +

1

2
𝜇2𝑡  , 

𝑣 𝑥, 𝑡 = 𝜇 sech   
𝜇

2
(𝑥 +

1

2
𝜇2𝑡) .                     

 

In recent years, many numerical methods have been purposed for solving the classical Jaulent–Miodek 

equation; such as unified algebraic method [8], Adomian decomposition method [9], tanh-sech method 

[10], homotopy perturbation method [11], Exp-function method [12], and homotopy analysis method 

[13]. But in keeping with the available information, there are a few papers which deals with the nonlinear 

fractional order coupled Jaulent-Miodek equation.  

 

In this paper, the fractional Bernoulli wavelets and their operational matrix of derivative are employed for 

solving nonlinear system (1). For this purpose first, the unknown functions and all the nonlinear terms of 

(1) are expanded in fractional Bernoulli wavelets terms, then by applying the fractional Riemann-

Liouville integration operator (of orders 𝛾𝑖 , 𝑖 = 1,2), we derive a nonlinear algebraic system of equations. 

This system is discretized via spectral collocation method, and Newton iterative method is utilized for 

solving the achieved nonlinear system.  

 

The organization of the paper is the following. Initially, preliminaries about farctional derivetive and 

integration operators are given. Then the definitions of Bernoulli and fractional Bernoulli wavelets, their 

opeartional matrix of derivative are brefly presented. Afterward, the numerical implementation is 

introduced. Accordingly, numerical results of the problem are given by figures. The paper finalizes with 

the concluding remarks and brief discussion of results. 

 

 

2. Preliminaries on fractional calculus 

 

In this section, we present some basic definitions and concepts of fractional calculus, that are essential for 

subsequent discussion. There are various definitions for fractional integration and derivative operators. 

However, the fractional Riemann-Liouville integration and fractional Caputo derivative operators have 

been used in this study [14]. 

 

Definition 2.1. The Riemann-Liouville fractional integral operator of nonnegative order 𝛼 is defined as:  

𝐽𝛼𝑓 𝑥 =
1

Γ 𝛼 
  𝑥 − 𝑡 𝛼−1  𝑓 𝑡 𝑑𝑡,

𝑥

0

       𝑥 > 0,  

where 𝐽0𝑓(𝑥) = 𝑓(𝑥).  The Riemann-Liouville fractional integrals for the polynomials are defined as 
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𝐽𝛼 𝑥𝛽  =
Γ 𝛽 + 1 

Γ 𝛽 + 𝛼 + 1 
𝑥𝛽+𝛼 ,                      𝛽 > −1.                                 (3) 

Definition 2.2. The Caputo fractional derivative operator of nonnegative order 𝛼 is defined as:  

𝑐𝐷
𝛼 𝑓(𝑥) =

1

Γ 𝑛 − 𝛼 
 

𝑓𝑛 𝑡 

 𝑥 − 𝑡 𝛼+1−𝑛

𝑥

0

𝑑𝑡,         𝑛 − 1 < 𝛼 ≤  𝑛,    𝑛 ∈ ℕ. 

For the Caputo derivative we have  

𝑐𝐷
𝛼 𝑥𝛽  = 0, 𝛽 ∈  𝑛 ∈ ℕ,      𝛽 < ⌈𝛼⌉, 

and 

 𝑐𝐷
𝛼 𝑥𝛽  =

Γ 𝛽 + 1 

Γ 𝛽 + 1 − 𝛼 
𝑥𝛽−𝛼 , 𝛽 ∈  ℕ, 𝛽 ≥ ⌈𝛼⌉   𝑜𝑟  𝛽 ∈ ℝ − ℕ,     𝛽 > ⌊𝛼⌋.       (4)  

The relations between Reimann-Liouville fractional integral and Caputo fractional derivative operators 

can be addressed by the following identities [15]: 

𝑐𝐷
𝛼 𝐽𝛼𝑓(𝑥) = 𝑓 𝑥 ,                  𝐽𝛼   𝑐𝐷

𝛼𝑓(𝑥)  = 𝑓 𝑥 −  
𝑓(𝑗 )(0)

𝑗!

𝑛−1

𝑗=0

𝑥𝑗 .                  (5) 

3. Review on Bernoulli wavelets 

In this section, definitions of Bernoulli Wavelets (BWs) and Fractional Bernoulli Wavelets (FBWs) and 

their operational matrix of derivative are described. 

Definition 3.1. BWs of order 𝑚 , which are denoted by 𝜓𝑛𝑚 (𝑡) = 𝜓(𝑘, 𝑛 , 𝑚, 𝑡) , consist of four 

arguments, 𝑘 : a positive integer, 𝑛 = 1,2, … , 2𝑘−1 , 𝑛 = 𝑛 − 1 , and 𝑡  is the normalized time. These 

wavelets are defined on the interval [0,1) as [16]: 

𝜓𝑛 ,𝑚 𝑡 = 2
𝑘−1

2 𝐵 𝑚 2𝑘−1𝑡 − 𝑛  𝜒
 

𝑛 

2𝑘−1 ,
𝑛 +1

2𝑘−1 
, 

where 𝐵 𝑚  0 = 1 and 

𝐵 𝑚  2𝑘−1𝑡 − 𝑛  =
𝐵𝑚 (𝑡)

Λ𝑚    
, Λ𝑚 =  

 −1 𝑚−1  𝑚! 2

(2𝑚)!
𝜗2𝑚  ,   

    Also the functions 𝐵𝑚 , 𝑚 = 0,1, … , 𝑀 − 1 are known Bernoulli polynomials, defined as 
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𝐵𝑚 𝑡 =   
𝑚
𝑗  

𝑚

𝑗=0

𝜗𝑚−𝑗 𝑡
𝑗 . 

where 𝜗𝑗 : =  𝐵𝑗 (0) are the Bernoulli numbers. Therefore Bernoulli wavelets for 𝑚 > 0 can be rewritten 

as 

𝜓𝑛 ,𝑚 𝑡 = Θ𝑚   
𝑚
𝑗  

𝑚

𝑗=0

𝜗𝑚−𝑗 2𝑗  𝑘−1  𝑡 −
𝑛 

2𝑘−1
 
𝑗

𝜒
 

𝑛 

2𝑘−1 ,
𝑛 +1

2𝑘−1 
, 

where Θ𝑚 =  
 2𝑚)! 2𝑘−1

 −1 𝑚−1  𝑚 ! 2𝜗𝑚
 and 𝜓𝑛 ,0(𝑡) = 2

𝑘−1

2 𝜒
 

𝑛 

2𝑘−1 ,
𝑛 +1

2𝑘−1 
. 

 

Definition 3.2. Fractional Bernoulli Wavelets are denoted by 𝜓𝑛 ,𝑚
𝛼  and constructed by changing the 

variable 𝑡 to 𝑥𝛼 ,  (𝛼 > 0) on the BWs [16], that is:  

 

𝜓𝑛 ,𝑚
𝛼  𝑥 ≔ 𝜓𝑛 ,𝑚 𝑥𝛼 = 𝛩𝑚   

𝑚
𝑗  

𝑚

𝑗=0

𝜗𝑚−𝑗 2𝑗  𝑘−1  𝑥𝛼 −
𝑛 

2𝑘−1
 
𝑗

𝜒
  

𝑛 

2𝑘−1 
1/𝛼

, 
𝑛 +1

2𝑘−1 
1/𝛼

 
. 

3.1. Function approximation by FBW 

 

A function 𝑓 ∈ 𝐿2[0,1] could   be approximated by FBWs ,  as 

𝑓 𝑥 =   𝑐𝑛 ,𝑚𝜓𝑛 ,𝑚
𝛼  𝑥 ,                                                               (6)

∞

𝑚=0

∞

𝑛=1

 

by truncating the infinite series   (6) in some suitable 𝑘 and 𝑀 ,  we get   

𝑓 𝑥 ≃   𝑐𝑛 ,𝑚𝜓𝑛 ,𝑚
𝛼  𝑥 = 𝐶𝑀

𝑇Ψ𝑘 ,𝑀
𝛼   𝑥 ,                                             (7)

𝑀−1

𝑚=0

2𝑘−1

𝑛=1

 

 

where 𝐶𝑀  and Ψ𝑘 ,𝑀
𝛼  are 2𝑘−1 × 𝑀-dimensional column vectors and defined as  

𝐶𝑀 =  𝑐1,0, … , 𝑐1,𝑀−1, … , 𝑐2𝑘−1 ,0, … , 𝑐2𝑘−1 ,𝑀−1  
𝑇

,                                             (8) 

Ψ𝑘 ,𝑀
𝛼 =  𝜓1,0

𝛼 , … , 𝜓1,𝑀−1
𝛼 , … , 𝜓

2𝑘−1 ,0
𝛼 , … , 𝜓

2𝑘−1 ,𝑀−1
𝛼   

𝑇

.                                     (9) 

 

 In order to determine the coefficients in (7) ,  we put  
 

𝜂𝑖𝑗 ≔  𝑓 𝑥 𝜓𝑖 ,𝑗
𝛼  𝑥 𝑥𝛼−1𝑑𝑥,                                                                (10)

 
𝑛 +1

2𝑘−1

𝛼

 
𝑛 

2𝑘−1

𝛼
 

and 
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𝜆𝑛 ,𝑚
𝑖 ,𝑗

≔  𝜓𝑛 ,𝑚
𝛼  𝑥 𝜓𝑖 ,𝑗

𝛼  𝑥 𝑥𝛼−1𝑑𝑥.                                                          (11)
 

𝑛 +1

2𝑘−1

𝛼

 
𝑛 

2𝑘−1

𝛼
 

Now substituting (7) in (10) ,  we get  
 

𝜂𝑖𝑗 ≃   𝑐𝑛 ,𝑚  𝜓𝑛 ,𝑚
𝛼  𝑥 𝜓𝑖 ,𝑗

𝛼  𝑥 𝑥𝛼−1𝑑𝑥 =   𝑐𝑛 ,𝑚

𝑀−1

𝑚=0

2𝑘−1

𝑛=1

 𝜆𝑛 ,𝑚
𝑖 ,𝑗

= 𝐶𝑀
𝑇Λ𝑀

𝑖 ,𝑗
,   

 
𝑛 +1

2𝑘−1

𝛼

 
𝑛 

2𝑘−1

𝛼

𝑀−1

𝑚=0

2𝑘−1

𝑛=1

 

where 

Λ𝑀
𝑖,𝑗

=  𝜆1,0
𝑖 ,𝑗

, … , 𝜆1,𝑀−1
𝑖 ,𝑗

, … , 𝜆
2𝑘−1 ,0

𝑖 ,𝑗
, … , 𝜆

2𝑘−1 ,𝑀−1

𝑖,𝑗
 
𝑇

, 

so putting  

 

𝑇𝑀 =  𝜂1,0, … , 𝜂1,𝑀−1, … , 𝜂2𝑘−1 ,0, … , 𝜂2𝑘−1 ,𝑀−1  
𝑇

, 

and  

Λ𝑀 =  Λ𝑀
1,0, … , Λ𝑀

1,𝑀−1, … , Λ𝑀
2𝑘−1 ,0, … , Λ𝑀

2𝑘−1 ,𝑀−1 
 2𝑘−1×𝑀 × 2𝑘−1×𝑀 

, 

 

the vector 𝐶𝑀  is evaluated by  

 

𝐶𝑀
𝑇 = 𝑇𝑀Λ𝑀

−1.                                                                                   (12) 
 

𝑣𝑟 ,𝑠,𝑛 ,𝑚 = 𝛼2⌌⌌𝑣 𝑥, 𝑡 , 𝜓𝑟 ,𝑠
𝛼  𝑡  ⌍𝑡𝛼−1 , 𝜓𝑛 ,𝑚

𝛼  𝑥 ⌍𝑥𝛼−1 ,                                                                  (13) 

 

𝑛 = 1,2, … , 2𝑘1−1,        𝑟 = 1,2, … , 2𝑘2−1,        𝑚 = 0,1, … , 𝑀1 − 1,       𝑠 = 0,1, … , 𝑀2 − 1. 
 

The two variable function 𝑣(𝑥, 𝑡) could be approximated by two   dimensional FBWs as 

 

𝑣 𝑥, 𝑡 =     𝑣𝑟 ,𝑠,𝑛 ,𝑚

𝑀1−1

𝑠=0

2𝑘1−1

𝑟=1

𝑀2−1

𝑚=0

2𝑘2−1

𝑛=1

𝜓𝑟 ,𝑠
𝛼  𝑥 𝜓𝑛 ,𝑚

𝛼  𝑡 = Ψ𝑘1 ,𝑀1

𝛼  𝑥 𝑉  Ψ𝑘1 ,𝑀1

𝛼  𝑥  
𝑇

,             (14) 

 

where 𝑉 is dimensional  2𝑘1−1 × 𝑀1 ×  2𝑘2−1 × 𝑀2  coefficient matrix . 

 

It is clear that for 𝑘1 = 𝑘2 = 𝑘 , 𝑀1 = 𝑀2 = 𝑀  and 𝑉  is  2𝑘−1 × 𝑀 -dimensional square coefficient 

matrix . 

 

Theorem 3.1. ([16]) Let 𝑢(𝑥, 𝑡) ∈ 𝐶𝑀1 ,𝑀2 (𝐷) be approximated by two dimensional FBWs as  

 

𝑢 𝑥, 𝑡 ≃ 𝑢𝑘1 ,𝑀1 ,𝑘2 ,𝑀2
 𝑥, 𝑡 =  Ψ𝑘2 ,𝑀2

𝛼  
𝑇
 𝑡 𝑉Ψ𝑘1 ,𝑀1

𝛼  𝑥 , 
 

there exist constants 𝐶𝑖 ∈ ℝ+, 𝑖 = 1,2,3 such that  
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 𝑢 𝑥, 𝑡 − 𝑢𝑘1 ,𝑀1 ,𝑘2 ,𝑀2
 𝑥, 𝑡  

2
≤  

𝐶1

𝐴1
+

𝐶2

𝐴2
+

𝐶3

𝐴1𝐴2
,                                                              

 

where 𝐴𝑖 = 𝑀𝑖 ! 2𝑀𝑖 𝑘𝑖+1 −1, 𝑖 = 1,2. 
 

3.2. Operational matrix of derivative for FBWs 

 

The derivative of Ψ𝛼  can be obtained as 

 
𝑑

𝑑𝑥
Ψ𝛼 𝑥 = 𝒟Ψ𝛼 𝑥 ,                                                                      (20) 

 

where 𝒟 is relative operational square matrix of dimension 2𝑘−1 × 𝑀 and could be evaluated as follows  

 

𝑑

𝑑𝑥
𝜓𝑛 ,𝑚

𝛼  𝑥 = Θ𝑚   
𝑚

𝑗
 𝜗𝑚−𝑗 2𝑗  𝑘−1 𝑑

𝑑𝑥
 𝑥𝛼 −

𝑛 

2𝑘−1
 
𝑗

,                                                      21 

𝑚

𝑗=0

 

 

 
𝑛 

2𝑘−1
 

1
𝛼 

≤ 𝑥 ≤  
𝑛 + 1

2𝑘−1
 

1
𝛼 

.    

 

On the other hand  

𝑑

𝑑𝑥
 𝑥𝛼 −

𝑛 

2𝑘−1
 
𝑗

=   
𝑗

𝑖
  −

𝑛 

2𝑘−1
 
𝑗−𝑖

𝛼𝑖𝑥𝛼𝑖−1.                                        (22)

𝑗

𝑖=0

 

 

Therefore ,  by using equations (21)-(22) ,  we can write  

𝑑

𝑑𝑥
𝜓𝑛 ,𝑚

𝛼  𝑥 = Θ𝑚   𝐵𝑗 ,𝑖𝑥
𝛼𝑖−1,                                                                            (23)

𝑗

𝑖=0

𝑚

𝑗=0

 

where 𝐵𝑗 ,𝑖 =  𝑚
𝑗
 𝜗𝑚−𝑗 2𝑗  𝑘−1  𝑗

𝑖
  −

𝑛 

2𝑘−1
 
𝑗−𝑖

𝛼𝑖. Now we   expand 𝑥𝛼𝑖−1 in terms of FBWs : 

 

𝑥𝛼𝑖−1 ≃   𝑔𝑛 ,𝑚𝜓𝑛 ,𝑚
𝛼  𝑥 ,                                                                       (24)

𝑀−1

𝑚=0

2𝑘−1

𝑛=1

 

 

by (23)-(24) ,  we get 

𝑑

𝑑𝑥
𝜓𝑛 ,𝑚

𝛼  𝑥 =   𝜇𝑛 ,𝑚 ,𝑗 ,𝑖𝜓𝑛 ,𝑚
𝛼  𝑥 ,    

𝑀−1

𝑚=0

2𝑘−1

𝑛=1

 

where  𝜇𝑛 ,𝑚 ,𝑗 ,𝑖 = Θ𝑚   𝐵𝑗 ,𝑖
𝑗
𝑖=0 𝑔𝑛 ,𝑚 .𝑚

𝑗=0  Therefore ,  we have  
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𝒟 =  

 𝒟1        0       ⋯        0  
0          𝒟2       ⋯        0
⋮            ⋮         ⋱         ⋮ 

   0           0       ⋯    𝒟2𝑘−1

 

 2𝑘−1×𝑀 × 2𝑘−1×𝑀 

                                 

where  

𝒟𝑙 =  𝜇𝑙 ,0,0,0, 𝜇𝑙 ,1,0,0, … , 𝜇𝑙 ,𝑀−1,𝑗 ,𝑖 1×𝑀
. 

 

 

4. Numerical implementation 

 

In this section we employ the fractional Bernoulli wavelets and their operational matrix of derivative for 

solving coupled J-M system. For this purpose, we expand the unknowns of system (1) in FBWs with 

unknown coefficients as: 

 

𝑢 𝑥, 𝑡 =  Ψ𝑘2 ,𝑀2

𝛼  𝑡  
𝑇

 𝑈 𝛹𝑘1 ,𝑀1

𝛼  𝑥 ,          𝑣 𝑥, 𝑡 =  𝛹𝑘2 ,𝑀2

𝛼  𝑡  
𝑇

 𝑉 𝛹𝑘1 ,𝑀1

𝛼  𝑥 , 

 
also the nonlinear terms of (1) are approximated by FBWS as: 

 

𝑣𝑣𝑥𝑥𝑥 = 𝛹𝑘2 ,𝑀2

𝛼  𝑡 𝑇  𝐴 𝛹𝑘1 ,𝑀1

𝛼  𝑥 ,              𝑣𝑥𝑣𝑥𝑥 = 𝛹𝑘2 ,𝑀2

𝛼  𝑡 𝑇  𝐵 𝛹𝑘1 ,𝑀1

𝛼  𝑥 , 

 

𝑢𝑢𝑥 = 𝛹𝑘2 ,𝑀2

𝛼  𝑡 𝑇  𝐶 𝛹𝑘1 ,𝑀1

𝛼  𝑥 ,                𝑢𝑣𝑣𝑥𝑥 = 𝛹𝑘2 ,𝑀2

𝛼  𝑡 𝑇  𝐷 𝛹𝑘1 ,𝑀1

𝛼  𝑥 , 

 

𝑢𝑥𝑣
2𝑣 = 𝛹𝑘2 ,𝑀2

𝛼  𝑡 𝑇  𝐸 𝛹𝑘1 ,𝑀1

𝛼  𝑥 ,                  𝑢𝑥𝑣 = 𝛹𝑘2 ,𝑀2

𝛼  𝑡 𝑇  𝐹 𝛹𝑘1 ,𝑀1

𝛼  𝑥 , 

 

𝑢𝑣𝑥 = 𝛹𝑘2 ,𝑀2

𝛼  𝑡 𝑇  𝐺 𝛹𝑘1 ,𝑀1

𝛼  𝑥 ,               𝑣𝑥𝑣
2 = 𝛹𝑘2 ,𝑀2

𝛼  𝑡 𝑇𝐻 𝛹𝑘1 ,𝑀1

𝛼  𝑥 ,                     (25)      

  

so we have 10 ×   2𝑘1−1 ×  𝑀1 × ( 2𝑘2−1 ×  𝑀2  unknowns in all. On the other hand, equations (25) 

imply that: 

 

 𝛹𝑘2 ,𝑀2

𝛼  𝑡 𝑇  𝑉 𝛹𝑘1 ,𝑀1

𝛼  𝑥   𝛹𝑘2 ,𝑀2

𝛼  𝑡 𝑇  𝑉 𝒟3𝛹𝑘1 ,𝑀1

𝛼  𝑥  = 𝛹𝑘2 ,𝑀2

𝛼  𝑡 𝑇  𝐴 𝛹𝑘1 ,𝑀1

𝛼  𝑥 ,               (26)  

 

 𝛹𝑘2 ,𝑀2

𝛼  𝑡 𝑇  𝑉 𝒟𝛹𝑘1 ,𝑀1

𝛼  𝑥   𝛹𝑘2 ,𝑀2

𝛼  𝑡 𝑇  𝑉 𝒟2𝛹𝑘1 ,𝑀1

𝛼  𝑥  = 𝛹𝑘2 ,𝑀2

𝛼  𝑡 𝑇  𝐵 𝛹𝑘1 ,𝑀1

𝛼  𝑥 ,                (27) 

 

 𝛹𝑘2 ,𝑀2

𝛼  𝑡 𝑇  𝑈𝛹𝑘1 ,𝑀1

𝛼  𝑥   𝛹𝑘2 ,𝑀2

𝛼  𝑡 𝑇  𝑈 𝒟𝛹𝑘1 ,𝑀1

𝛼  𝑥  = 𝛹𝑘2 ,𝑀2

𝛼  𝑡 𝑇  𝐶 𝛹𝑘1 ,𝑀1

𝛼  𝑥 ,                     (28) 

 

 𝛹𝑘2 ,𝑀2

𝛼  𝑡 𝑇  𝑈𝛹𝑘1 ,𝑀1

𝛼  𝑥   𝛹𝑘2 ,𝑀2

𝛼  𝑡 𝑇  𝑉 𝛹𝑘1 ,𝑀1

𝛼  𝑥   𝛹𝑘2 ,𝑀2

𝛼  𝑡 𝑇𝑉 𝒟2  𝛹𝑘1 ,𝑀1

𝛼  𝑥                   

= 𝛹𝑘2 ,𝑀2

𝛼  𝑡 𝑇  𝐷 𝛹𝑘1 ,𝑀1

𝛼  𝑥 ,                                                                                                                       (29) 
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 𝛹𝑘2 ,𝑀2

𝛼  𝑡 𝑇  𝑈𝒟𝛹𝑘1 ,𝑀1

𝛼  𝑥   𝛹𝑘2 ,𝑀2

𝛼  𝑡 𝑇  𝑉 𝛹𝑘1 ,𝑀1

𝛼  𝑥  
2

 𝛹𝑘2 ,𝑀2

𝛼  𝑡 𝑇𝑉  𝛹𝑘1 ,𝑀1

𝛼  𝑥                   

= 𝛹𝑘2 ,𝑀2

𝛼  𝑡 𝑇  𝐸 𝛹𝑘1 ,𝑀1

𝛼  𝑥 ,                                                                                                                      (30) 

 

 𝛹𝑘2 ,𝑀2

𝛼  𝑡 𝑇  𝑈 𝒟𝛹𝑘1 ,𝑀1

𝛼  𝑥   𝛹𝑘2 ,𝑀2

𝛼  𝑡 𝑇  𝑉 𝛹𝑘1 ,𝑀1

𝛼  𝑥  = 𝛹𝑘2 ,𝑀2

𝛼  𝑡 𝑇  𝐹 𝛹𝑘1 ,𝑀1

𝛼  𝑥 ,                    (31) 

 

 𝛹𝑘2 ,𝑀2

𝛼  𝑡 𝑇  𝑈 𝛹𝑘1 ,𝑀1

𝛼  𝑥   𝛹𝑘2 ,𝑀2

𝛼  𝑡 𝑇  𝑉𝒟 𝛹𝑘1 ,𝑀1

𝛼  𝑥  = 𝛹𝑘2 ,𝑀2

𝛼  𝑡 𝑇  𝐺 𝛹𝑘1 ,𝑀1

𝛼  𝑥 ,                    (32) 

 

 𝛹𝑘2 ,𝑀2

𝛼  𝑡 𝑇  𝑉 𝒟𝛹𝑘1 ,𝑀1

𝛼  𝑥   𝛹𝑘2 ,𝑀2

𝛼  𝑡 𝑇  𝑉 𝛹𝑘1 ,𝑀1

𝛼  𝑥  
2

= 𝛹𝑘2 ,𝑀2

𝛼  𝑡 𝑇  𝐻 𝛹𝑘1 ,𝑀1

𝛼  𝑥 ,                 (33) 

 

Now, the Reimann - Liuville fractional integral operator, 𝐽𝑡
𝛾𝑖 , 𝑖 = 1,2,  with respect to variable 𝑡 is applied 

on the system (1), that is: 

 

𝑢 𝑥, 𝑡 − 𝑢 𝑥, 0 = 𝐽
𝛾1
𝑡  −𝑢𝑥𝑥𝑥 −

3

2
𝑣 𝑣𝑥𝑥𝑥 −

9

2
𝑣𝑥𝑣𝑥𝑥 + 6𝑢𝑢𝑥 + 6𝑢𝑣𝑣𝑥 +

3

2
𝑢𝑥𝑣

2𝑣 ,          (34) 

𝑣 𝑥, 𝑡 − 𝑣 𝑥, 0 = 𝐽
𝛾2
𝑡  𝑣𝑥𝑥𝑥 − 6𝑢𝑥𝑣 − 6𝑢𝑣𝑥 −

15

2
𝑣𝑥𝑣

2 .                                                        (35) 

 

By combining the equations (26)-(35), we achieve a system of 10 algebraic equations. First, we collocate 

the obtained system in the following meshes: 

 

 𝑥𝑖 , 𝑡𝑗  =  𝑎 +
𝑖(𝑏 − 𝑎)

2𝑘1−1 ×  𝑀1
,

𝑗𝑇

2𝑘2−1 × 𝑀2
 , 

 
𝑖 = 1,2, . . . , 2𝑘1−1 × 𝑀1 ,                     𝑗 = 1, . . . , 2𝑘2−1 ×  𝑀2. 

 

Therefore we have a nonlinear system of  10 × 2𝑘1−1 ×  𝑀1 ×  2𝑘2−1 × 𝑀2  equations with the same 

number of unknowns. For solving the current system we apply Newton iterative method. 

 

4. Results and discussion 

 

In this section, we solve the coupled J-M system by introduced method for some fractional orders 𝛾1, 𝛾2 

and parameter 𝜇. We solved the J-M system for 𝛾1 = 𝛾2 = 0.5, 0.7, 0.9 and 𝜇 = 0.25, 0.5, 0.7, 𝑘1 = 𝑘2 =

2  and 𝑀1 = 𝑀2 = 3 and the plots of numerical solutions are shown in figures 1-3. For solving the 

proposed system, Newton iterative method was used. For stopping the iterations of Newton method, N, 

we considered the following criteria 

𝑓𝑜𝑟 𝜀 > 0,       𝑈𝑁 − 𝑈𝑁−1 2 < 𝜀. 
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6. Conclusion 

In this paper, the fractional Bernoulli wavelets were defined in new settings and applied based on the 

wavelet spectral collocation approach for solving the Caputo fractional order coupled J-M system. First, 

the operational matrix of ordinary derivative was constructed and then employed for reducing the time 

fractional J-M system to an algebraic nonlinear system. The method is simple, attractive, applicable and 

can be extended for high-order fractional nonlinear partial differential equations. 

 

Figure 1. Numerical solution of the coupled J-M system for 𝛾1 = 𝛾2 = 0.5 and 𝜇 = 0.25. 

 

              Figure 2. Numerical solution of the coupled J-M system for 𝛾1 = 𝛾2 = 0.7 and 𝜇 = 0.5. 
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 Figure 3. Numerical solution of the coupled J-M system for 𝛾1 = 𝛾2 = 0.9 and 𝜇 = 0.7. 

7. References 

 

 

1. Jaulent, M., Miodek, I. 1976. Nonlinear evolution equations associated with energy-dependent  

Schrodinger potentials. Lett. Math. Phys., 1, 243-250.   

2. Jaulent, M. 1976. Inverse scattering problems in absorbing media. J. Math. Phys., 17, 1351-1360. 

3. Hong, T., Wang, Y.Z., Huo, Y.S. 1998. Bogoliubov quasiparticles carried by dark solitonic 

excitations in non-uniform Bose-Einstein condensates. Chinese Physics Letters, 15 (8), 550-552. 

4. Ma, W.X., Li, C.X., He, J. 2009. A second Wronskian formulation of the Boussinesq equation. 

Nonlinear Anal., 70 (12), 4245-4258. 

5. Zhang, J.f. 1999. Multiple soliton solutions of the dispersive longwave equations. Chinese Physics 

Letters, 16 (1), 4-5.  

6. Das, G.C., Sarma, J., Uberoi, C. 1997. Explosion of a soliton in a multicomponent plasma. Physics of 

Plasmas, 4 (6), 2095-2100. 

7. Atangana, A., Baleanu, D. 2013. Nonlinear fractional Jaulent-Miodek and Whitham-Broer-Kaup 

equations within Sumudu transform. Abstr. Appl. Anal., 2013, 1-6. Article ID: 160681.    

8. Fan, E. 2003. Uniformly constructing a series of explicit exact solutions to nonlinear equations in 

mathematical physics. Chaos Soliton. Fract., 16, 819-839. 

9. Kaya, D., El-Sayed, S.M. 2003. A numerical method for solving Jaulent–Miodek equation. Phys. Lett. 

A, 318, 345–353. 

620



 

6
th

 INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 

21-24 June 2022, Istanbul, Turkey 

 

 

ICOM 2022 

ISTANBUL / TURKEY 

10. Wazwaz, A.M. 2007. The tanh-coth and the sech methods for exact solutions of the Jaulent–Miodek 

equation. Phys. Lett. A, 366, 85-90. 

11. Yildirim, A., Kelleci, A. 2009. Numerical simulation of the Jaulent–Miodek equation by He’s 

homotopy perturbation method. World Appl. Sci. J., 7, 84-89. 

12. He, J.H., Zhang, L.N. 2008. Generalized solitary solution and compacton-like solution of the Jaulent–

Miodek equations using the Exp-function method. Phys. Lett. A, 372 (7), 1044-1047. 

13. Rashidi, M.M., Domairry, G., Dinarvand, S. 2009. The homotopy analysis method for explicit 

analytical solutions of Jaulent–Miodek equations. Numer. Meth. Partial Differ. Eq., 25 (2), 430-439. 

14. Podlubny ,  I .  1998. Fractional Differential Equations :  An   Introduction to Fractional Derivatives , 

Fractional Differential   Equations to Methods of Their Solution and Some of  Their   Applications ,  1st 

ed.; Academic Press :  New York ,  1998; ISBN   978-0125588409 . 

15. Kilbas , A.A .,   Srivastava , H.M ., Trujillo , J.J . 2006. Theory and Applications of Fractional Differential  

Equations ,  1st ed.; Elsevier Science :  San Diego ,  CA ,  USA ,  2006 . 

16. Nosrati Sahlan, M., Afshari, H., Alzabut. J., Alobaidi, G. 2021. Using Fractional Bernoulli Wavelets     

for Solving Fractional Diffusion Wave Equations with Initial and Boundary Conditions, Fractal Fract. 

5, 212.  https://doi.org/10.3390/fractalfract5040212. 

 

621

https://doi.org/10.3390/fractalfract5040212


 

6
th

 INTERNATIONAL HYBRID CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 

21-24 June 2022, Istanbul, Turkey 

 

 

ICOM 2022 

ISTANBUL / TURKEY 

Weakly g-Supplemented Lattices 

Celil Nebiyev
1
, Hasan Hüseyin Ökten

2  

1
Department of Mathematics, Ondokuz Mayıs University, Samsun/Turkey 

cnebiyev@omu.edu.tr 
2
Technical Sciences Vocational School, Amasya University, Amasya/Turkey 

hokten@gmail.com  

 

Abstract 

In this work, all lattices are complete modular lattices with the greatest element 1 and the smallest 

element 0. Let L be a lattice and a,bL. If ab=1 and abgL, then b is called a weak g-supplement of a 

in L. If every element of L has a weak g-supplement in L, then L is called a weakly g-supplemented 

lattice. In this work, some properties of these lattices are investigated. 

Keywords: Lattices, Small Elements, g-Small Elements, g-Supplemented Lattices. 

 

2020 Mathematics Subject Classification: 06C05, 06C15. 

 

1. INTRODUCTION 

    In this paper, every lattice is complete modular lattice with the smallest element 0 and the greatest 

element 1. Let L be a lattice, x,y∈L and x≤y. A sublattice {a∈L|x≤a≤y} is called a quotient sublattice and 

denoted by y/x. An element y of a lattice L is called a complement of x in L if x∧y=0 and x∨y=1, this case 

we denote 1=x⊕y (in this case we call x and y are direct summands of L). L is said to be complemented if 

each element of L has at least one complement in L. An element x of L is said to be small or superfluous 

and denoted by x≪L if y=1 for every y∈L such that x∨y=1. The meet of all maximal (≠1) elements of a 

lattice L is called the radical of L and denoted by r(L). An element a of L is called a supplement of b in L 

if it is minimal for a∨b=1. a is a supplement of b in a lattice L if and only if a∨b=1 and a∧b≪a/0. A 

lattice L is called a supplemented lattice if every element of L has a supplement in L. Let L be a lattice and 

a,b∈L. If a∨b=1 and a∧b≪L, then a is called a weak supplement of b in L. L is said to be weakly 

supplemented if every element of L has a weak supplement in L. We say that an element y of L lies above 

an element x of L if x≤y and y≪1/x. L is said to be hollow if every element distinct from 1 is superfluous 

in L, and L is said to be local if L has the greatest element (≠1). We say an element x∈L has ample 

supplements in L if for every y∈L with x∨y=1, x has a supplement z in L with z≤y. L is said to be amply 

supplemented if every element of L has ample supplements in L. It is clear that every amply supplemented 

lattice is supplemented. Let L be a lattice and k∈L. If t=0 for very t∈L with k∧t=0, then k is called an 

essential element of L and denoted by kL. Let L be a lattice and a∈L. If b=1 for every bL with a∨b=1, 

then a is called a generalized small (briefly, g-small) element of L and denoted by a≪gL. Let L be a 
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lattice and a,b∈L. If 1=a∨b and 1=a∨t with tb/0 implies that t=b, then b is called a g-supplement of a in 

L. b is a g-supplement of a in L if and only if 1=a∨b and a∧b≪gb/0. If every element of L has a g-

supplement in L, then L is called a g-supplemented lattice. Let L be a lattice and t be a maximal (≠1) 

element of L. If tL, then t is called a g-maximal element of L. The meet of all g-maximal elements of L 

is called the g-radical of L and denoted by rg(L). If L have not any g-maximal elements, then we call 

rg(L)=1. Let L be a lattice. If every element of L with distinct from 1 is g-small in L, then L is called a g-

hollow lattice. 

    More informations about (amply) supplemented lattices are in [1], [2] and [3]. More results about 

(amply) supplemented modules are in [4] and [8]. More informations about weakly supplemented lattices 

are in [1]. More informations about g-small elements and g-supplemented lattices are in [7]. More 

informations about g-small submodules and g-supplemented modules are in [5] and [6]. 

 

Lemma 1.1. Let L be a lattice and a,b,c,d∈L. Then the followings are hold. 

(i) If a≤b and b≪gL, then a≪gL. 

(ii) If a≪gb/0, then a≪gt/0 for every t∈L with b≤t. 

(iii) If a≪gL, then a∨b≪g1/b. 

(iv) If a≪gb/0 and c≪gd/0, then a∨c≪g(b∨d)/0. 

(v) If ai≪gbi/0 for ai,bi∈L (i=1,2,...,n), then a1∨a2∨...∨an≪g(b1∨b2∨...∨bn)/0. 

(vi) If a≤b and b≪gL, then b≪g1/a. 

(vii) If a≪gL, then a≤rg(L). 

(viii) rg(a/0)≤rg(L). 

Proof. See [7, Lemma 1, Lemma 6 and Lemma 7]. 

 

2. WEAKLY g-SUPPLEMENTED LATTICES 

Definition 2.1. Let L be a lattice and a,bL. If ab=1 and abgL, then b is called a weak g-supplement 

of a in L. If every element of L has a weak g-supplement in L, then L is called a weakly g-supplemented 

lattice. 

 

Proposition 2.2. Let L be a lattice and a,bL. If b is weak g-supplement of a in L, then a is a weak g-

supplement of b in L. 

Proof. Clear from definition. 

 

Proposition 2.3. Let L be a weakly g-supplemented lattice. If every nonzero element of L is essential in 

L, then L is weakly supplemented. 
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Proof. Let aL. Since L is weakly g-supplemented, a has a weak g-supplement b in L. Here ab=1 and 

abgL. Since every nonzero element of L is essential in L, abL. Hence b is a weak supplement of a 

in L and L is weakly supplemented. 

 

Proposition 2.4. Let L be a lattice and a,bL. If b is a g-supplement of a in L, then b is a weak g-

supplement of a in L. 

Proof. Since b is a g-supplement of a in L, ab=1 and abgb/0. Since abgb/0, by Lemma 1.1, 

abgL. Hence b is a weak g-supplement of a in L. 

 

Proposition 2.5. Every g-supplemented lattice is weakly g-supplemented. 

Proof. Let L be a g-supplemented lattice and aL. Since L is g-supplemented, a has a g-supplement b in 

L. Since b is a g-supplement of a in L, by Proposition 2.4, b is a weak g-supplement of a in L. Hence L is 

weakly g-supplemented. 

 

Proposition 2.6. Let L be a lattice and a,bL. If ab has a g-supplement x in L and (ax)b has a g-

supplement y in b/0, then xy is a weak g-supplement of a in L. 

Proof. By [7, Lemma 3], xy is a g-supplement of a in L. Then by Proposition 2.4, xy is a weak g-

supplement of a in L. 

 

Corollary 2.7. Let L be a lattice and a,bL. If ab has a g-supplement in L and b/0 is g-supplemented, 

then a has a weak g-supplement in L. 

Proof. Clear from Proposition 2.6. 

 

Proposition 2.8. Let L be a lattice and a,bL. If a/0 and b/0 are g-supplemented, then (ab)/0 is weakly 

g-supplemented. 

Proof. Since a/0 and b/0 are g-supplemented, by [7, Lemma 4], (ab)/0 is g-supplemented. Then by 

Proposition 2.5, (ab)/0 is weakly g-supplemented. 

 

Proposition 2.9. Let L be a lattice, a,bL and 1=ab. If a/0 and b/0 are g-supplemented, then L is weakly 

g-supplemented. 

Proof. Since a/0 and b/0 are g-supplemented and 1=ab, by [7, Lemma 4], L is g-supplemented. Then by 

Proposition 2.5, L is weakly g-supplemented. 

 

Corollary 2.10. Let L be a lattice, a1,a2,…,anL and 1=a1a2…an. If ai/0 is g-supplemented for every 

i=1,2,…,n, then L is weakly g-supplemented. 

Proof. Clear from Proposition 2.9. 
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Abstract 
Let R be a commutative ring with non-zero identity. We define a proper submodule N of an R-

module M to be weakly prime if 0 ≠ 𝑟𝑚 ∈ 𝑁	(𝑟 ∈ 𝑅,𝑚 ∈ 𝑀) implies 𝑚 ∈ 𝑁 or 𝑟𝑀 ⊆ 𝑁. 
In this study, various properties and results concerning weakly prime submodules are given. 
 

          Keywords: Prime, prime submodules, weakly prime submodules  

 
1. Introduction 

 Throughout this study, we consider that 𝑅 represents a commutative ring with non-zero identity and 𝑀 is 
a module over the ring 𝑅. The definition and properties of prime ideal have been extended to modules by 
several authors, see, for example [2,3] . A proper ideal 𝑄 of 𝑅 is called weakly prime ideal if 0 ≠ 𝑎𝑏 ∈ 𝑄 
implies 𝑎 ∈ 𝑄 or 𝑏 ∈ 𝑄. DD Anderson and E. Smith studied weakly prime ideals for a commutative ring 
with identity in [1]. Some results given in [1] have been proven also for weakly prime submodules. For 
example, if 𝑃 is a submodule of a finitely generated multiplicative 𝑅-module 𝑀, then 𝑃 is weakly prime if 
and only if for submodules 𝑁 and 𝐾 of 𝑀 with 0 ≠ 𝑁𝐾 ⊆ 𝑃, either 𝑁 ⊆ 𝑃 or 𝐾 ⊆ 𝑃 [4]. 

Let we define some concepts that we will use in this study. 

Definition 1.1. Let 𝑅 be a ring and 𝑁 be a submodule of an 𝑅-module 𝑀. The ideal {𝑟 ∈ 𝑅 ∶ 𝑟𝑀 ⊆ 𝑁} is 
denoted by (𝑁 ∶ 𝑀). Then (0 ∶ 𝑀) is the annihilator of 𝑀 and denoted by 𝐴𝑛𝑛(𝑀).  

Definition 1.2. An 𝑅-module 𝑀 is called a multiplicative module if there exists an ideal 𝐼 of 𝑅 such that 
𝑁 = 𝐼𝑀 for each submodule 𝑁 of 𝑀. 

 
 

2.  Prime Submodules 

Definition 2.1. A proper submodule 𝑁 of 𝑀 is called a prime submodule of 𝑀, if 𝑟𝑚 ∈ 𝑁, for some    
𝑟 ∈ 𝑅 and 𝑚 ∈ 𝑀, implies that either 𝑚 ∈ 𝑁 or 𝑟𝑀 ⊆ 𝑁. 

Example 2.1. Let 𝑅 be a commutative ring with identity. Each prime ideal of 𝑅 is a prime submodule of 
𝑅-module 𝑅. 

Example 2.2. Each proper submodule of a vector space is a prime submodule.  
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Definition 2.2. 𝑀 is called a prime module if the zero submodule of 𝑀 is prime submodule of 𝑀. 
 
Lemma 2.1. If 𝑁 is a prime submodule of an 𝑅-module 𝑀, then (𝑁 ∶ 𝑀) is a prime ideal of R.  

Proof 2.1. Let 𝑁 be a submodule of 𝑅-module 𝑀 and let 𝑎𝑏 ∈ (𝑁 ∶ 𝑀) and 𝑏 ∉ (𝑁 ∶ 𝑀) for some 𝑎, 𝑏 ∈
𝑅. So, 𝑎𝑏𝑀 ⊆ 𝑁 but 𝑏𝑀 ⊈ 𝑁. Hence there exists an element 𝑡 ∈ 𝑀 such that 𝑎𝑏𝑡 ∈ 𝑁 and 𝑏𝑡 ∉ 𝑁. 
Since is a prime submodule of an 𝑅-module 𝑀, then 𝑎 ∈ (𝑁 ∶ 𝑀). Therefore, (𝑁 ∶ 𝑀) is a prime ideal of 
𝑅. 

 

3. Weakly Prime Submodules 

Definition 3.1. A proper submodule 𝑁 of 𝑀 is called a weakly prime submodule of 𝑀, if 0 ≠ 𝑟𝑚 ∈ 𝑁, 
for some 𝑟 ∈ 𝑅 and 𝑚 ∈ 𝑀, implies that 𝑚 ∈ 𝑁 or 𝑟𝑀 ⊆ 𝑁. 

Example 3.1. Let 𝑅 be a commutative ring with identity. Each weakly prime ideal of 𝑅 is a prime 
submodule of 𝑅-module 𝑅. 

We have said that (𝑁 ∶ 𝑀) is a prime ideal of 𝑅 for any prime submodule 𝑁 of 𝑅-module 𝑀. That can not 
be generalized for weakly prime submodules. For instance, let 𝑀 denote the cyclic ℤ-module ℤ/8ℤ. Take 
𝑁 = {0} . Certainly, 𝑁 is a weakly prime submodule of 𝑀, but (𝑁 ∶ 𝑀) = 8ℤ is not a weakly prime ideal 
of R.  

By the definitions of prime and weakly prime submodule, we can say that every prime submodule is 
weakly prime submodule.  
 
However, we know that 0 is always weakly prime, so this proves that a weakly prime submodule is not 
always prime submodule. 
Example 3.2. Given ℤ! as module over itself with n is a composite number. Let 𝑁	 = 	 {0} is submodule 
of 𝑀, so 𝑁 is weakly prime but it is not prime. 
 
Example 3.3. Given 𝑀 is ℤ"# as module over ring ℤ and 𝑁	 = 	 {0, 3, 6, 9} is proper submodule of 𝑀 with 
ideal (𝑁 ∶ 	𝑀) = {𝑟 ∈ ℤ|𝑟ℤ"# ⊆ 	𝑁} = 3ℤ.Therefore, for 𝑟𝑚 ∈ 𝑁 we get 𝑚 = 0, 𝑚 = 3, 𝑚 = 6 and  
𝑚 = 9 which are elements in 𝑁 or 𝑟 ∈ 3ℤ. So, 𝑁 is prime submodule of 𝑀. It is clear that 𝑁 is also 
weakly prime submodule. 

Proposition 3.1. Let 𝑅 be a commutative ring and 𝑀 be an 𝑅-module whose annihilator is, (0 ∶ 𝑀) = 𝑃, 
a prime ideal. If 𝑁 is a weakly prime submodule of 𝑀, then (𝑁 ∶ 𝑀) is a weakly prime ideal of 𝑅. 

Proof 3.1. Let 0 ≠ 𝑎𝑏 ∈ (𝑁 ∶ 𝑀) with 𝑎 ∉ (𝑁 ∶ 𝑀). Then there exists 𝑚 ∈ 𝑀	\	𝑁 such that 𝑎𝑚 ∉ 𝑁. 
Since 0 ≠ 𝑎𝑏𝑀 ⊆ 𝑁, then 𝑎𝑏𝑚 ∈ 𝑁.  
If 𝑎𝑏𝑚 = 0, then 𝑎𝑏 ∈ (0:𝑚) = (0:𝑀) = 𝑃. Since 𝑎 ∉ (𝑁 ∶ 𝑀), then 𝑏 ∈ (0:𝑀) ⊆ (𝑁 ∶ 𝑀). 
If 𝑎𝑏𝑚 ≠ 0, then 𝑏 ∈ (𝑁:𝑀) since 𝑎𝑚 ∉ 𝑁 and 𝑁 is a weakly prime submodule. 
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Now, let we give some equivalent conditions to categorize weakly prime submodules. 
 
Theorem 3.2. Let 𝑅 be a commutative ring, 𝑀 be an 𝑅-module, and 𝑁 be a proper submodule of 𝑀. Then 
the following statements are equivalent. 
𝒊) For ideal 𝐼 of 𝑅 and a submodule 𝐷 of M with 0 ≠ 	𝐼𝐷	 ⊆ 	𝑁,either 𝐼𝑀	 ⊆ 	𝑁	or 𝐷	 ⊆ 	𝑁. 
𝒊𝒊) 𝑁 is a weakly prime submodule of 𝑀. 
𝒊𝒊𝒊) For 𝑚	 ∈ 	𝑀	\𝑁, (𝑁 ∶ 𝑅𝑚) 	= 	 (𝑁 ∶ 𝑀)	∪	(0 ∶ 𝑅𝑚). 
𝒊𝒗) For 𝑚	 ∈ 	𝑀	\𝑁, (𝑁 ∶ 𝑅𝑚) 	= 	 (𝑁 ∶ 𝑀) or (𝑁 ∶ 𝑅𝑚) 	= 	 (0 ∶ 𝑅𝑚). 
 
Proof 3.2. (𝑖 ⇒ 𝑖𝑖) Let 0 ≠ 𝑎𝑚 ∈ 𝑁 with 𝑎 ∈ 𝑅,𝑚 ∈ 𝑀 and let 𝐼 = 𝑅𝑎, 𝐷 = 𝑅𝑚. Since 0 ≠ 𝐼𝐷 ⊆ 𝑁, 
then 𝐼 ⊆ (𝑁:𝑀) or 𝐷	 ⊆ 	𝑁. Hence 𝑎 ∈ (𝑁 ∶ 𝑀) or 𝑚 ∈ 𝑁. 
 
(𝑖𝑖 ⇒ 𝑖) Let 𝑁 be a weakly prime submodule of 𝑀. Let 𝑁 is a prime submodule. Suppose that  𝐼𝐷 ⊆ 𝑁 
but 𝐷	 ⊈ 	𝑁 for an ideal 𝐼 of 𝑅 and a submodule 𝐷 of M. Let 𝑎 ∈ 𝐼. Then there exists 𝑑 ∈ 𝑀 such that 
𝑎𝑑 ∈ 𝑁 with 𝑑 ∉ 𝑁. Since N is a prime submodule, then 𝑎 ∈ (𝑁 ∶ 𝑀). Hence 𝐼 ⊆ (𝑁 ∶ 𝑀). 
Assume that 𝑁 is a weakly prime submodule of 𝑀 which is not prime. Let 0 ≠ 	𝐼𝐷	 ⊆ 	𝑁 and 𝐷	 ⊈ 	𝑁. 
Then there exist an element 𝑥 ∈ 𝐷	\𝑁. We will show that 𝐼 ⊆ (𝑁 ∶ 𝑀). Let 𝑟 ∈ 𝐼. 
If 0 ≠ 𝑟𝑥, then 𝑟 ∈ (𝑁 ∶ 𝑀) because 𝑁 is weakly prime.  
So assume that 𝑟𝑥 = 0. First suppose that 𝑟𝐷 ≠ 0, say 𝑟𝑑 ≠ 0 where 𝑑 ∈ 𝐷. If 𝑑 ∉ 𝑁, then 𝑟 ∈ (𝑁 ∶ 𝑀). 
If 𝑑 ∈ 𝑁, then 𝑟(𝑑 + 𝑥) = 𝑟𝑑 + 𝑟𝑥 = 𝑟𝑑 ∈ 𝑁. So 𝑟 ∈ (𝑁 ∶ 𝑀) or 𝑑 + 𝑥 ∈ 𝑁. Thus 𝑟 ∈ (𝑁 ∶ 𝑀), hence 
𝐼 ⊆ (𝑁 ∶ 𝑀). 
So we can assume that 𝑟𝐷 = 0. Suppose that 𝐼𝑥 ≠ 0, say 𝑎𝑥 ≠ 0 where 𝑎 ∈ 𝐼. So, 𝑎 ∈ (𝑁 ∶ 𝑀) since 𝑁 
is weakly prime. As (𝑟 + 𝑎)𝑥 = 𝑟𝑥 + 𝑎𝑥 = 𝑎𝑥 ∈ 𝑁, we get 𝑟 ∈ (𝑁 ∶ 𝑀), so 𝐼 ⊆ (𝑁 ∶ 𝑀). Therefore, we 
can assume that 𝐼𝑥 = 0.  
Since 𝐼𝐷 ≠ 0, there exits 𝑏 ∈ 𝐼 and 𝑑$ ∈ 𝐷 such that 𝑏𝑑$ ≠ 0.  
As (𝑁 ∶ 𝑀)𝑁 = 0 and 0 ≠ 𝑏(𝑑$ + 𝑥) = 𝑏𝑑$ ∈ 𝑁 we can divide the proof into the following two cases: 
 
Case 1.  𝑏 ∈ (𝑁 ∶ 𝑀) and 𝑑$ + 𝑥 ∉ 𝑁.  
Since 0 ≠ (𝑟 + 𝑏)(	(𝑑$ + 𝑥) = 𝑏𝑑$ ∈ 𝑁, we obtain 𝑟 + 𝑏 ∈ (𝑁 ∶ 𝑀), so 𝑟 ∈ (𝑁 ∶ 𝑀).  
Hence  𝐼 ⊆ (𝑁 ∶ 𝑀). 
 
Case 2. 𝑏 ∉ (𝑁 ∶ 𝑀) and 𝑑$ + 𝑥 ∈ 𝑁 . 
As 0 ≠ 𝑏𝑑$ ∈ 𝑁, so 𝑥 ∈ 𝑁 which is a contradiction. Thus 𝐼 ⊆ (𝑁 ∶ 𝑀). 
 
(𝑖𝑖 ⇒ 𝑖𝑖𝑖) Clearly, if  𝑚	 ∈ 	𝑀	\𝑁, then 𝐻 = (𝑁 ∶ 𝑀) ∪	(0 ∶ 𝑅𝑚) ⊆ (𝑁 ∶ 𝑅𝑚). 
Let 𝑎 ∈ (𝑁 ∶ 𝑅𝑚) where 𝑚	 ∈ 	𝑀	\𝑁. Then 𝑎𝑚 ∈ 𝑁. If 𝑎𝑚 ≠ 0, then 𝑎 ∈ (0 ∶ 𝑅𝑚), so we have equality. 
  
(𝑖𝑖𝑖 ⇒ 𝑖𝑣) This is obvious. 
 
(𝑖𝑣 ⇒ 𝑖𝑖) Suppose that 0 ≠ 𝑟𝑚 ∈ 𝑁 with 𝑟 ∈ 𝑅 and 𝑚 ∈ 𝑀	\𝑁. Then 𝑟 ∈ (𝑁 ∶ 𝑅𝑚) and 𝑟 ∉ (0 ∶ 𝑅𝑚). It 
follows from (𝑖𝑣)	that 𝑟 ∈ (𝑁 ∶ 𝑅𝑚) = (𝑁 ∶ 𝑀), as required.  
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Lemma 3.3. Let 𝑀 be a multiplicative R-module and 𝑃 be a prime submodule of 𝑀. For the submodules 
𝑁" and 𝑁# of 𝑀 such that 𝑁" ∩ 𝑁# ⊆ 𝑃, either 𝑁" ⊆ 𝑃 or 𝑁# ⊆ 𝑃.  
 
Proof 3.3. If 𝑁" ∩ 𝑁# ⊆ 𝑃, then (𝑁" ∩ 𝑁# ∶ 𝑀) ⊆ (𝑃 ∶ 𝑀).  
So, (𝑁" ∶ 𝑀) ∩ (𝑁# ∶ 𝑀) = (𝑁" ∩ 𝑁# ∶ 𝑀) ⊆ (𝑃 ∶ 𝑀).  
Hence, (𝑁" ∶ 𝑀)(𝑁# ∶ 𝑀) ⊆ (𝑁" ∶ 𝑀) ∩ (𝑁# ∶ 𝑀) ⊆ (𝑃 ∶ 𝑀). 
Since (𝑃 ∶ 𝑀) is a prime ideal of the ring 𝑅, then  (𝑁" ∶ 𝑀) ⊆ (𝑃 ∶ 𝑀) or (𝑁# ∶ 𝑀) ⊆ (𝑃 ∶ 𝑀). 
And since M is multiplicative, then  
𝑁" = (𝑁" ∶ 𝑀)𝑀 ⊆ (𝑃 ∶ 𝑀)𝑀 = 𝑃 or 𝑁# = (𝑁# ∶ 𝑀)𝑀 ⊆ (𝑃 ∶ 𝑀)𝑀 = 𝑃 . 
Therefore, 𝑁" ⊆ 𝑃 or 𝑁# ⊆ 𝑃 . ∎ 
 
This lemma is not always true for the modules which are not multiplicative. 
For example, let 𝑅 = ℤ and 𝑀 = ℤ⊕ ℤ. If we consider the submodules 𝑁" = ℤ⊕ (0) and  
𝑁# = (0)⊕ ℤ , we see that 𝑁" ∩ 𝑁# = {(0,0)}. Although 𝑃 = (0) ⊕ (0) is a prime submodule of M and 
𝑁" ∩ 𝑁# ⊆ 𝑃, 𝑁" ⊈ 𝑃 and 𝑁# ⊈ 𝑃. 
 
Theorem 3.4. Let 𝑅 be a commutative ring, 𝑀 be a finitely generated multiplicative 𝑅-module and let 𝑃 
be a proper submodule of 𝑀. Then the following statements are equivalent for the submodule 𝑃 [4]. 
i)	𝑃 is a weakly prime submodule of 𝑀. 
ii) 𝑁 ⊆ 𝑃 or 𝐾 ⊆ 𝑃 for submodules 𝑁 and 𝐾 of 𝑀 such that 0	 ≠ 𝑁𝐾 ⊆ 𝑃.  
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Conclusion 
 
In this study, the definitions of prime and weakly prime submodules and some examples are given. The 
same and different properties between prime submodules and weak prime submodules are examined. Then, 
several propositions and theorems are given for categorizing weakly prime submodules. 

Acknowledgement: This study has been supported by Yıldız Technical University Scientific Research 
Projects Coordination Department. Project Number : FYL-2022-5165. 
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Abstract 

In this paper, we obtain parametric equation of tangent developable surfaces of timelike 

biharmonic general helices in the Lorentzian group of rigid motions E(1,1).  Finally, we obtain some 

figures. 

 

1.Introduction 

Paper, sheet metal, and many other materials are approximately unstretchable. The surfaces 

obtained by bending these materials can be flattened onto a plane without stretching or tearing. More 

precisely, there exists a transformation that maps the surface onto the plane, after which the length of any 

curve drawn on the surface remains the same. Such surfaces, when sufficiently regular, are well known to 

mathematicians as developable surfaces. While developable surfaces have been widely used in 

engineering, design and manufacture, they have been less popular in computer graphics, despite the fact 

that their isometric properties make them ideal primitives for texture mapping, some kinds of surface 

modelling, and computer animation. 

On the other hand, the notions of harmonic and biharmonic maps between Riemannian manifolds 

have been introduced by J. Eells and J.H. Sampson (see [4]). 

A smooth map MN :  is said to be biharmonic if it is a critical point of the bienergy 

functional: 

   ,)(
2

1
=

2

2 h
N

dvE  T  

where  dtr:=)(T  is the tension field of   

The Euler--Lagrange equation of the bienergy is given by 0=)(2 T . Here the section )(2 T  is 

defined by 

   ,),(tr)(=)(2   ddR TTT   (1.1) 
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and called the bitension field of  . Non-harmonic biharmonic maps are called proper biharmonic maps. 

2 .Preliminaries 

Let (1,1)E  be the group of rigid motions of Euclidean 2-space. This consists of all matrices of the 

form 

 .

100

coshsinh

sinhcosh

















zxx

yxx

 

 

Topologically, (1,1)E  is diffeomorphic to 
3R  under the map 

  ,,,

100

coshsinh

sinhcosh

:(1,1) 3 zyxzxx

yxx


















RE  

 

It's Lie algebra has a basis consisting of 

 ,coshsinh=,sinhcosh=,= 321
z

x
y

x
z

x
y

x
x 




















eee  

for which 

       .=0,=,= 23132321 ee,ee,eee,e  

 

Put 

    .
2

1
=,

2

1
=,= 321 zyxzyxxx   

 

Then, we get 
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 .
2

1
=,

2

1
=,=

3

1

2

1

33

1

2

1

211 




































 

x
e

x
e

x
e

x
e

x

xxxx
eee  (2.1) 

 

The bracket relations are 

       .=0,=,= 23132321 ee,ee,eee,e  (2.2) 

 

We consider left-invariant Lorentzian metrics which has a pseudo-orthonormal basis  ., 321 XX,X  

We consider left-invariant Lorentzian metric [9], given by 

       ,=
2

31212
312121 dxedxedxedxedxg xxxx    (2.3) 

where  

       1.==1,= 332211 e,ee,ee,e ggg   (2.4) 

 

Let coframe of our frame be defined by 

 .=,=,= 312133121211 dxedxedxedxedx xxxx  
θθθ  

 

 

Proposition 2.1. For the covariant derivatives of the Levi-Civita connection of the left-invariant 

metric g , defined above the following is true: 

 ,

0

0

000

=

12

13





















ee

ee  (2.5) 

where the ),( ji -element in the table above equals j
i
ee  for our basis 

 }.{=1,2,3}=,{ 321 e,e,ee kk  

634



 

6th INTERNATIONAL ONLINE CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 

21-24 June 2022, Istanbul, Turkey 

 

 

ICOM 2022 

ISTANBUL / TURKEY 

 

 

 

3 .Timelike Biharmonic General Helices in the Lorentzian Group of Rigid Motions (1,1)E  

Let (1,1): EI  be a non geodesics timelike curve in the group of rigid motions (1,1)E  

parametrized by arc length. Let }{ BN,T,  be the Frenet frame fields tangent to the group of rigid motions 

(1,1)E  along   defined as follows: 

T  is the unit vector field '  tangent to  , N  is the unit vector field in the direction of TT  

(normal to  ) and B  is chosen so that }{ BN,T,  is a positively oriented orthonormal basis. Then, we 

have the following Frenet formulas: 

 ,= NTT   

 ,= BTNT    (3.1) 

 N,BT  =  

where   is the curvature of  ,   is its torsion and 

 

       1,=,1,=,1,=, BBNNTT ggg   (3.2) 

       0.=,=,=, BNBTNT ggg  

 

With respect to the orthonormal basis }{ 321 e,e,e  we can write 

 ,= 332211 eeeT TTT   (3.3) 

 ,= 332211 eeeN NNN   

 .== 332211 eeeNTB BBB   
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Theorem 3.1. ([8]) (1,1): EI  is a non geodesic timelike biharmonic curve in the Lorentzian 

group of rigid motions (1,1)E   if and only if 

 0,constant=   

 ,21= 2

1

22 B  (3.4) 

 .2= 11BN'   

 

 

Theorem 3.2. ([8]) Let (1,1): EI  is a non geodesic timelike biharmonic general helix in the 

Lorentzian group of rigid motions (1,1).E  Then, the parametric equations of   are 

   ,cosh= 3

1 ssx ö  

  
 

   21122

1

3
cosh

2 coscosh{
cosh2

sinh
= 





s
e

sx

s





ö
ö

ö
ö

 

     ,}sincosh 4211  sö  (3.5)  

  
 

   21122

1

3
cosh

3 coscosh{
sinh2

sinh
= 





s
e

sx

s





ö
ö

ö
ö

 

     ,}sincosh 5211  sö   

where ,1  ,2  ,3  ,4  5   are constants of integration. 

 

4  Tangent Developable Surfaces of Timelike Biharmonic General Helices in the Lorentzian 

Group of Rigid Motions (1,1)E  
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Developable surfaces are defined as the surfaces on which the Gaussian curvature is 0 

everywhere. The developable surfaces are useful since they can be made out of sheet metal or paper by 

rolling a flat sheet of material without stretching it. Most large-scale objects such as airplanes or ships are 

constructed using un-stretched sheet metals, since sheet metals are easy to model and they have good 

stability and vibration properties. Moreover, sheet metals provide good fluid dynamic properties. In ship 

or airplane design, the problems usually stem from engineering concerns and in engineering design there 

has been a strong interest in developable surfaces. 

The tangent developable of   is a ruled surface 

      .=,
,

susus '

'












 (4.1) 

 

 

Theorem 4.1. Let (1,1): EI  is a non geodesic timelike biharmonic general helix in the 

Lorentzian group of rigid motions (1,1).E  Then, the parametric equations of  tangent developable of   

are 

   ,coshcosh=, 3

1  öö ususx   

  
 

   21122

1

3
cosh

2 coscosh{
cosh2

sinh
=, 





 s
e

usx

s





ö
ö

ö
ö

 (4.2) 

    }sincosh 211  sö  

     ,]sincos[
2

sinh
42121

3
cosh





ss
eu

s



ö
ö

 

  
 

   21122

1

3
cosh

3 coscosh{
cosh2

sinh
=, 





 s
e

usx

s





ö
ö

ö
ö

 

    }sincosh 211  sö  

     ,]sincos[
2

sinh
52121

3
cosh





ss
eu

s



ö
ö
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where ,1  ,2  ,3  ,4  5   are constants of integration. 

 

Proof. From Theorem 3.2, we have 

   2211 cossinhcosh= eeT  söö  

   .sinsinh 321 e sö  (4.3) 

By equation (2.1) in above equation, we immediately arrive at 

    ],sincossinh
2

1
,cosh(= 2121

3
cosh







öö
ö

eT  

    ]),sincossinh
2

1
2121

3
cosh







ö
ö

e  (4.4) 

where 3  is constant of integration. 

From (4.1) and (4.4), by direct calculation we have (4.2), which proves the theorem. 

Using Theorem 4.1 we can give the following result. 

 

Corollary 4.2. Let (1,1): EI  is a non geodesic timelike biharmonic general helix in the 

Lorentzian group of rigid motions (1,1).E  Then, the parametric equations of  tangent developable of   in 

terms of torsion are 

   ,cosh21cosh=, 3

2

1

21  öö usBusx   

  
 

   2

2

1

2

1122

1

3
2
1

212cosh

2 21coscosh{
cosh2

sinh
=, 





 sB
e

usx

sB





ö
ö

ö
ö

 

    }21sincosh 2

2

1

2

11  sBö  

  2

2

1

2

1

3
2
1

212cosh

21cos[
2

sinh




sB
eu

sB



ö
ö
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   ,]21sin 42

2

1

2

1  sB  

  

  
 

   2

2

1

2

1122

1

3
2
1

212cosh

3 21coscosh{
cosh2

sinh
=, 





 sB
e

usx

sB





ö
ö

ö
ö

 

    }21sincosh 2

2

1

2

11  sBö  

  2

2

1

2

1

3
2
1

212cosh

21cos[
2

sinh




sB
eu

sB



ö
ö

 

   ,]21sin 52

2

1

2

1  sB   

where ,1  ,2  ,3  ,4  5   are constants of integration. 

We can use Mathematica in Theorem 4.1, yields 

  

 Fig.1  
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 Fig.2  
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Abstract 

In this paper, we study spacelike biharmonic general helices in the Lorentzian group of rigid 

motions E(2). We characterize the spacelike biharmonic general helices in terms of their curvature 

and torsion in the Lorentzian group of rigid motions E(2). 

 

1. Introduction 

The theory of biharmonic functions is an old and rich subject. Biharmonic functions have been 

studied since 1862 by Maxwell and Airy to describe a mathematical model of elasticity. The theory of 

polyharmonic functions was developed later on, for example, by Almansi, Levi-Civita and Nicolescu. 

Firstly, harmonic maps are given as follows: 

Harmonic maps    hNgMf ,,:   between Riemannian manifolds are the critical points of the 

energy  

   ,
2

1
=

2

g
M

vdffE   (1.1) 

and they are therefore the solutions of the corresponding Euler--Lagrange equation. This equation is given 

by the vanishing of the tension field 

   .trace= dff   (1.2) 

Secondly, biharmonic maps are given as follows: 

As suggested by Eells and Sampson in [4], we can define the bienergy of a map f  by 

     ,
2

1
=

2

2 g
M

vffE   (1.3) 

and say that is biharmonic if it is a critical point of the bienergy. 
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Jiang derived the first and the second variation formula for the bienergy in [5], showing that the 

Euler--Lagrange equation associated to 2E  is  

          dffdfRfff Nf  ,trace==2 J  (1.4) 

 0,=  

where 
fJ  is the Jacobi operator of f  . The equation   0=2 f  is called the biharmonic equation. Since 

fJ  is linear, any harmonic map is biharmonic. 

In this paper, we study spacelike biharmonic general helices in the Lorentzian group of rigid 

motions (2)E . We characterize the spacelike biharmonic general helices in terms of their curvature and 

torsion in the Lorentzian group of rigid motions (2)E . 

2.  The Group of Rigid Motions (2)E  

Let (2)E  be the group of rigid motions of Euclidean 2-space. This consists of all matrices of the 

form 

 .

100

cossin

sincos















 

zxx

yxx

 

Topologically, (2)E  is diffeomorphic to 
1S    

2R  under the map 

   ,,,

100

][cos][sin

][sin][cos

:(2) 21 zyxzxx

yxx

E 














 

 RS  

where ][x  means x  modulo z2 . It's Lie algebra has a basis consisting of  

 ,cossin=,sincos=,= 321
z

x
y

x
z

x
y

x
x 





















eee  (2.1) 

[9] and coframe 

 .cossin=,sincos=,= 321 xdzxdyxdzxdydx  θθθ  
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It is easy to check that the metric g is given by 

       .=
232221

θθθ g  (2.2) 

The bracket relations are 

       .=0,=,= 21332321 ee,ee,eee,e  

Proposition 2.1. For the covariant derivatives of the Levi-Civita connection of the left-invariant 

metric g , defined above the following is true: 

 ,

0

0

000

=

12

13





















ee

ee  (2.3) 

where the ),( ji -element in the table above equals j
i
ee  for our basis 

 }.{=1,2,3}=,{ 321 e,e,ee kk  

3. Spacelike Biharmonic General Helices with Timelike Normal in the Lorentzian Group of 

Rigid Motions (2)E  

Let (2): EI  be a non geodesic spacelike curve with timelike normal in the group of rigid 

motions (2)E  parametrized by arc length. Let }{ bn,t,  be the Frenet frame fields tangent to the group of 

rigid motions (2)E . along   defined as follows: 

t  is the unit vector field '  tangent to  , n  is the unit vector field in the direction of tt  (normal 

to  ) and b  is chosen so that }{ bn,t,  is a positively oriented orthonormal basis. Then, we have the 

following Frenet formulas: 

        ,= ssss ntt   

            ,= ssssss btnt    (3.1) 

        ,nbt ssss =  

where       ||=|)(=| ss s tt  is the curvature of  ,  s  is its torsion and 

                1,=,1,=,1,=, ssgssgssg bbnntt   (3.2) 
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                0.=,=,=, ssgssgssg bnbtnt  

With respect to the orthonormal basis }{ 321 e,e,e  we can write 

         ,= 332211 eeet stststs   (3.3) 

         ,= 332211 eeen snsnsns   

             .== 332211 eeentb sbsbsbsss   

 

 

Theorem 3.1. (2): EI  is a non geodesic spacelike biharmonic curve with timelike normal in 

the Lorentzian group of rigid motions (2)E   if and only if 

   0,constant= s  

      ,21= 2

1

22 sbss   (3.4) 

      .2= 11 sbsns'  

 

 

Proof. Using (3.1), we have 

          sssRss )tn,ttt (=)( 3

2    

                ssssssss '''
nt )()(3= 23

1    

                  .()(2 sssRssssss ''
)tn,tb    

 

By (1.1), we see that   is a unit speed spacelike biharmonic curve with timelike normal if and 

only if 

     0,=ss '  

645



 

6th INTERNATIONAL ONLINE CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 

21-24 June 2022, Istanbul, Turkey 

 

 

ICOM 2022 

ISTANBUL / TURKEY 

                  ),(=23 ssssRsssss''
n,t,n,t   (3.5) 

                  ).(=2 ssssRsssss ''
b,t,n,t   

Since 0  by the assumption that is non-geodesic 

   0,constant= s  

            ),(=22 ssssRss n,t,n,t  (3.6) 

          ).(= ssssRs'
b,t,n,t  

A direct computation using (2.5), yields 

          ,21=)( 2

1 sbssssR n,t,n,t  (3.7) 

            .2=)( 11 sbsnssssR b,t,n,t  

These, together with (3.6), complete the proof of the theorem. 

If we write this curve in the another parametric representation   = , where   .=
0

dss
s

   We 

have new Frenet equations as follows: 

      ,=  ntt  

          ,=  btnt f  (3.8) 

        ,=  nbt f  

where  
 
 

.=



f  

If we write        bnt ,,  with respect to the orthonormal basis }{ 321 e,e,e  as following: 

         ,= 332211 eeet  ttt   

         ,= 332211 eeen  nnn   (3.9) 

             .== 332211 eeentb  bbb   
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Theorem 3.2.  Let (2): EI  is a non geodesic spacelike biharmonic general helix with 

timelike normal in the Lorentzian group of rigid motions (2).E  Then, the parametric equations of   are 

   ,cos= 1ax   

        21112

1
2

coshcossincos(
cos

sin
= 




 ay  

       ,)sinhcoscoscos 22111 aa    (3.10) 

        21112

1
2

coshcoscoscos(
cos

sin
= 




 az  

       ,)sinhcossincos 32111 aa     

where ,1a  ,2a  ,3a  ,1  2  are constants of integration and  is constant angle. 

Proof. Suppose that   is a non geodesic spacelike biharmonic curve. Substituting the first 

equation of the Frenet equations (3.8) in the second equation of (3.8), we obtain 

  
        .1

= 2 


 ttb t  s
f

 (3.11) 

 

Using the last equation of (3.8), we obtain 

            0.=1 23  tt tt ss f   (3.12) 

Since the curve    is a spacelike general helix, i.e. the tangent vector  t  makes a constant 

angle , with the constant spacelike vector called the axis of the general helix. So, without loss of 

generality, we take the axis of a general helix as being parallel to the spacelike vector 1e . Then, using first 

equation of (3.9), we get 

      .cos=,= 11 et  gt  (3.13) 

On other hand, the tangent vector  T  is a unit spacelike vector, so the following condition is 

satisfied: 

     .cos1 22

3

2

2  = tt  (3.14) 
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The general solution of (3.14) can be written in the following form: 

    ,3.15coshsin=2  t  (12) 

    ,sinhsin=3  t  

where   is an arbitrary function of  . 

So, substituting the components  ,1 t   2t  and  3t  in the first equation of (3.9), we have the 

following equation 

     .sinhsincoshsincos= 321 eeet    (3.16) 

If we substitute (3.5) in (3.12), we have  

     0.= '''  (3.17) 

The general solution of (3.17) is  

   ,= 21   (3.18) 

where ,1  2  are constants of integration. 

Thus (3.16) and (3.18), imply 

     .sinhsincoshsincos= 3212211 eeet    (3.19) 

 

Using (2.1) in (3.19), we obtain 

    211 coshsincoscos,cos(=   at  

    ,sinhsincossin 211   a  

    211 coshsincossin   a  (3.20) 

    ),sinhsincoscos 211   a  

where 1a  is constant of integration. 

Also, we have 

648



 

6th INTERNATIONAL ONLINE CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 

21-24 June 2022, Istanbul, Turkey 

 

 

ICOM 2022 

ISTANBUL / TURKEY 

 ,cos= 
d

dx
 

    211 coshsincoscos=  


a
d

dy
 

    ,sinhsincossin 211   a  (3.21) 

    211 coshsincossin=  


a
d

dz
 

    .sinhsincoscos 211   a  

If we take the integral (3.21), we get (3.10). Thus, the proof is completed. 

Theorem 3.3.  Let (2): EI  is a non geodesic spacelike biharmonic general helix with 

timelike normal in the Lorentzian group of rigid motions (2).E  Then, the parametric equations of   are 

   ,cos= 1

1 assx   

        21112

1
2

2 coshcossincos(
cos

sin
= 




sassx   

       ,)sinhcoscoscos 22111 asas    (3.22) 

  

        21112

1
2

3 coshcoscoscos(
cos

sin
= 




sassx   

       ,)sinhcossincos 32111 asas     

where ,1a  ,2a  3a  are constants of integration. 

Proof. From first equation of (3.4) and the definition of  , we have 

 .= s  (3.23) 

So, substituting (3.23) in the system (3.10), we have (3.22) and the assertion is proved. 
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Abstract 

In this paper, we investigate uniform motion of timelike spherical magnetic curves associated 

with the given magnetic field G on the De-Sitter 2-space S₁².  Finally, we also analyze the necessary 

and sufficient conditions of the uniformity of the timelike magnetic curves lying on the S₁². 

 

1. Introduction 

A magnetic field on a k-dimensional semi-Riemannian manifold  h,R , which has the Levi-Civita 

connection ,  is any closed 2-form G  on R  such that its Lorentz force is a one-to-one anti-symmetric 

tensor field   given by     ,,=, BAGBAh  where BA,  are any two vector fields tangent to .R  

A charged particle follows a trajectory   under the influence of G , which meets the Lorentz 

formula ='

' 


   .  As seen, the natural generalization of geodesics, which meet the Lorentz formula 

without the influence of any magnetic field, is given by magnetic curves. 

A comprehensive research effort has been conducted to explore the magnetic curves and their 

flows. For instance, scientists showed that Kirchhoff elastic rods are obtained as one of the solution 

families of the Lorentz force formula. This constructs an affiliation between two unapparent physical 

phenomena, that is, the Hall effect and the classical elastic theory. Furthermore, critical points of the 

Landau-Hall functional are acquired as one of the other solution families of the Lorentz force formula. 

Thus, it also implies that magnetic curves are used to solve a variational problem  1 . 

As it can be seen in the literature, the major patterns to be taken into account were the situations of 

magnetic curves in Riemannian spaces and in Riemannian surfaces of constant sectional curvature 

consecutively regarding situations of less simple curvature, different signatures, and higher dimensions. 

A classical model of magnetic fields is easily developed if one multiplies a scalar p  (generally 

known as magnitude or strength) to the area form on a Riemannian surface  .,hR  For instance, on a 

hyperbolic plane ,2H  magnetic trajectories are either open curves or closed curves, on the Euclidean 
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plane magnetic trajectories are circles, and on the sphere ,2S  they are tiny circles having a particular 

radius  2,3 . 

In this construction, one can observe some exclusive behaviors in the three-dimensional case due 

to the fact that the volume form hdv  and the Hodge star operator of the manifold identify a  11  

correspondence between divergence-free vector fields and closed 2-forms. In three-dimensional pseudo-

Riemannian manifold, this leads to describe the special class of Killing magnetic curves and Killing 

magnetic fields [4-7]. 

 

 

 

2  Uniform Motion of Timelike Spherical Magnetic Curves on the De-Sitter Space 2

1S  

The description of a uniformly accelerated motion (UAM) in relativity has always been of great 

interest for many scientists. For example, Rindler used the relation between Lorentzian circles and 

uniformly accelerated motion in Minkowski spacetime to determine hyperbolic motion in General 

Relativity   .14,15 Covariant definition of the UAM and its explicit solutions were investigated by 

Friedman and Scarr  .16,17  The notion of the UAM was analyzed in detail by giving its novel geometric 

characterization by Fuente and Romero  .18  The description of the unchanged direction motion (UDM) 

was presented by extending the UAM by Fuente, Romero, and Torres  .19  The intrinsic definition of the 

uniformly circular motion (UCM) was given by Fuente, Romero, and Torres as a particular case of a 

planar motion  20 . In this section, we investigate the UAM, UDM, and UCM of the moving charged 

particle corresponding to any unit speed timelike spherical magnetic curve in the associated magnetic 

field G  on the  .2

1S We determine necessary and sufficient conditions that have to be satisfied by the 

particle in terms of the Sabban scalars of the worldline of magnetic curves .  We use the following 

definitions of the UAM, UDM, and UCM. 

 

Definition 1. The particle obeys a UAM if 

 0,=)( '

'FW 


   

where FW  is a Fermi-Walker derivative connection of the curve    .18  
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Definition 2. The particle obeys a UDM if  

 constant,=
2

'

'
   

and  

 constant,=)(
2

'

'FW 


   

where FW  is a Fermi-Walker derivative connection of the curve  .19   

 

Definition 3. The particle obeys a UCM if 

 0,=)(
1

'

'

'

'FW 





  

where FW  is a Fermi-Walker derivative connection of the curve  .20   

 

Definition 4. Let FW  be the covariant derivative corresponding to Levi-Civita connection   of 

h . Then, we have  ,29  

   ,,(, ''

'

'

'

'

'FW hh 


R)RR=R    

where R  is any vector field along the curve .  

In the presence of an electromagnetic field, dynamics of the charged particle is defined by the 

Lorentz force  18,21 . Now, let   be a moving charged particle such that it corresponds to a unit speed 

timelike spherical magnetic curves in the associated magnetic field G  on the 2

1S . 

 In the case of an  , curvemagneticS the magnetic trajectories obey the UAM iff 

 0.=))(( FW   

the magnetic trajectories obey the UDM iff 
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 stant;arebothcon ))(( ,)(
22

  FW   

the magnetic trajectories obey the UCM iff  

 0.=))()((
1

 


FW   

 

Corollary 1.  i. If one considers Eqs.  ,6,23,24  then it is computed that 0.=))(( FW  Thus, 

magnetic trajectories of the curvemagnetic S  obey the UAM. 

ii.  It is computed that 1=)(
2

  and  0.=))((
2

FW Thus, magnetic trajectories of the 

curvemagnetic S  obey the UDM. 

iii.  It is computed that  0.=))()((
1

 


FW Thus, magnetic trajectories of the 

curvemagnetic S  obey the UCM. 

 In the case of an  , curvemagneticST the magnetic trajectories obey the UAM iff 

 0.=))(( TFW   

the magnetic trajectories obey the UDM iff 

 stant;arebothcon ))(( ,)(
22

TT  FW   

the magnetic trajectories obey the UCM iff  

 0.=))()((
1

TT 


FW   

 

Corollary 2.  i. It is computed that .=))(( N
'

FW   Thus, magnetic trajectories of the 

curvemagnetic ST  obey the UAM iff the geodesic curvature is a constant i.e. trajectories follow a 

pseudo-circle whose center   lied on the 2

1S . Here, the center is defined by    2
1

21/=   N   .22  
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ii.  Then it is computed that 22
1=)(    and    .=))((

22 '

FW  Thus, magnetic 

trajectories of the curvemagnetic ST  obey the UDM iff the geodesic curvature is a constant i.e. 

trajectories follow a pseudo-circle whose center   lied on the .2

1S  

iii.  Then it is computed that  .)
1

()
1

1
(=))()((

22

1
N

''

FW















Thus, magnetic 

trajectories of the curvemagnetic ST  obey the UCM iff 
21

1


 and 

21 




 are both constant, which 

implies that the geodesic curvature is a constant i.e. trajectories follow a pseudo-circle whose center   

lied on the .2

1S  

 

 In the case of an  , curvemagneticSN the magnetic trajectories obey the AUM iff 

 0.=))(( NFW   

the magnetic trajectories obey the UDM iff 

 stant;arebothcon ))(( ,)(
22

NN  FW   

the magnetic trajectories obey the UCM iff  

 0.=))()((
1

NN 


FW   

 

Corollary 3.  i. It is computed that .=))(( T
'

FW   Thus, magnetic trajectories of the 

curvemagnetic SN  obey the UAM iff the geodesic curvature is a constant i.e. trajectories follow a 

pseudo-circle whose center   lied on the 2

1S . Here, the center is defined by    2
1

21/=   N   .22  

ii. It is computed that 22
=)(    and    .=))((

22 '

FW   Thus, magnetic trajectories of 

the curvemagnetic SN  obey the UDM iff the geodesic curvature is a constant i.e. trajectories follow a 

pseudo-circle whose center   lied on the .2

1S  
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iii.  It is computed that  0.=))()((
1

 


FW Thus, magnetic trajectories of the 

curvemagnetic SN  obey the UCM. 
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Abstract 

In this paper, we study Smarandache sα curves according to Sabban frame in the Heisenberg 

group Heis³. Finally, we find explicit parametric equations of Smarandache sα curves according to 

Sabban Frame. 

 

1.  Introduction 

A smooth map MN :  is said to be biharmonic if it is a critical point of the bienergy 

functional: 

   ,)(
2

1
=

2

2 h
N

dvE  T  

where  dtr:=)(T  is the tension field of .  

The Euler--Lagrange equation of the bienergy is given by 0=)(2 T . Here the section )(2 T  is 

defined by 

   ,),(tr)(=)(2   ddR TTT   (1.1) 

and called the bitension field of  . Non-harmonic biharmonic maps are called proper biharmonic maps. 

 This study is organised as follows: Firstly, we study Smarandache sα  curves according to Sabban 

frame in the Heisenberg group Heis
3
. Finally, we find explicit parametric equations of Smarandache sα  

curves according to Sabban Frame. 

2.  The Heisenberg Group Heis
3
 

Heisenberg group Heis
3
 can be seen as the space 

3R  endowed  with the following multipilcation: 

 )
2

1

2

1
,,(=),,)(,,( yxyxzzyyxxzyxzyx   (2.1) 
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Heis 3  is a three-dimensional, connected, simply connected and 2-step nilpotent Lie group. 

The Riemannian metric g  is given by 

 .)(= 222 xdydzdydxg   

The Lie algebra of Heis 3  has an orthonormal basis 

 ,=,=,= 321
zz

x
yx 















eee  (2.2) 

for which we have the Lie products 

 0=][,[ 1332321 e,[e=]e,ee=]e,e  

with 

 1.=)(=)(=)( 332211 e,ee,ee,e ggg  

3.  Biharmonic S Helices According To Sabban Frame In The Heisenberg Group Heis
3
 

 

Lemma 3.1. 2

3:
Heis

I S  is a biharmonic S -curve if and only if 

 0,constant= g  

 ],[]
4

1
[=1 33

2

3

2 ss gg     

 ].
4

1
[= 2

333

3   gg s  

Then the following result holds. 

Theorem 3.2. ([9]) All of biharmonic S -curves in 2

3Heis
S  are helices. 

Theorem 3.3. ([9])  Let 2

3:
Heis

I S   be a unit speed non-geodesic biharmonic S -curve. Then, 

the position vector of   is 
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   231

2

121

2

]][sin
sin

[]][cos
sin

[= ee MMM
V

E
MMM

V

E
   

 E
V

MM
E

V

MV
E sin

4

]2[sin
sin

2
cos[ 4

2

14

2

1 






   

 ]][cos
sin

][][sin
sin

[ 21

2

31

2

MMM
V

E
MMM

V

E
   

 ,]][sinsin 341
32 eMMME

V

M
   

where 4321 ,,, MMMM  are constants of integration and  

 .2sin
2

1
1and)cos

sin

1
(= 2

2

E=VE
E

M 


g

g



 

4  Smarandache sα  Curves Of Biharmonic S -Curves According To Sabban Frame In The 

Heisenberg Group Heis
3
 

Definition 4.1. Let 2

3:
Heis

I S  be a unit speed regular curve in the Heisenberg group Heis
3
 

and },{ st,  be its moving Bishop frame. Smarandache sα  curves are defined by 

  .
1

1
=

2
αssα 

 g
  (4.1) 

Theorem 4.2.  Let 2

3:
Heis

I S   be a unit speed non-geodesic biharmonic S -curve ts  its 

Smarandache sα  curve. Then, the position vector of Smarandache sα  curve is 

   MMMEMMM
V

E
]([cossin[

1
][cos

sin
[

1

1
= 121

2

2











gg

sα  

 121

2

]]][cos
sin

)cos eMMM
V

E
E    

 MMMEMMM
V

E
]([sinsin[

1
][sin

sin
[

1

1
131

2

2



 




 gg
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 231

2

]]][sin
sin

)cos eMMM
V

E
E     

 E
V

MM
E

V

MV
E sin

4

]2[sin
sin

2
cos[

1

1 4

2

14

2

1

2













 g

 

 ]][cos
sin

][][sin
sin

[ 21

2

31

2

MMM
V

E
MMM

V

E
   

 41
32 ][sinsin MMME

V

M
   

 E
V

MM
E

V

MV
E sin

4

]2[sin
sin

2
cos[

1 4

2

14

2

1 








 g

 

 ]][cos
sin

][][sin
sin

[ 21

2

31

2

MMM
V

E
MMM

V

E
   

 ,]][sinsin 341
32 eMMME

V

M
   

where 4321 ,,, MMMM  are constants of integration and  

 .2sin
2

1
1and)cos

sin

1
(= 2

2

E=VE
E

M 


g

g
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Abstract 

In this paper, we study Frenet ribbons of timelike biharmonic curves according to flat metric 

in the Lorentzian Heisenberg group Heis³. We give some characterizations for Frenet ribbons of 

timelike biharmonic curves. Moreover, we obtain Tchebyshef net on Frenet ribbons in the Lorentzian 

Heisenberg group Heis³. 

 

1. Introduction 

In its classical form web geometry studies local configurations of finitely many smooth foliations 

in general position. Germs of webs defined by few foliations in general position are far from being 

interesting. Basic results from differential calculus imply that the theory is locally trivial. As soon as the 

number of foliations surpasses the dimension of the ambient manifold this is no longer true. The 

discovery in the last years of the 1920 decade of the curvature for 3-webs on surfaces is considered as the 

birth of web geometry. 

On the other hand, as suggested by Eells and Sampson in [8], we can define the bienergy of a map 

f  by 

     ,
2

1
=

2

2 g
M

vffE   

where  =f trace df  is tension field and say that is biharmonic if it is a critical point of the bienergy. 

Jiang derived the first and the second variation formula for the bienergy in [11], showing that the 

Euler--Lagrange equation associated to 2E  is 

          dffdfRfff Nf  ,trace==2 J  (1.1) 

 0,=  
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where fJ  is the Jacobi operator of f  . The equation   0=2 f  is called the biharmonic equation. Since 

fJ  is linear, any harmonic map is biharmonic. Therefore, we are interested in proper biharmonic maps, 

that is non-harmonic biharmonic maps. 

 In this paper, we study Frenet ribbons of timelike biharmonic curves according to flat metric in 

the Lorentzian Heisenberg group Heis 3 . We give some characterizations for Frenet ribbons of timelike 

biharmonic curves. Moreover, we obtain Tchebyshef net on Frenet ribbons in the Lorentzian Heisenberg 

group Heis 3 . 

2. Preliminaries 

The Heisenberg group Heis 3  is a Lie group which is diffeomorphic to 3R  and the group operation 

is defined as 

 ).,,(=),,(),,( yxyxzzyyxxzyxzyx   

The identity of the group is (0,0,0)  and the inverse of ),,( zyx  is given by ),,( zyx  . The left-

invariant  Lorentz metric on Heis
3
 is 

     .)1(= 222 dzdyxdzxdydxg   

The following set of left-invariant vector fields forms an orthonormal basis for the corresponding 

Lie algebra: 

   .=,1=,= 321































z
x

yz
x

yx
eee  (2.1) 

 

The characterising properties of this algebra are the following commutation relations: 

 ,=][,=][0,=][ 3212321332 eee,eeee,ee,e   

with 

 1.=)(1,=)(=)( 332211 e,ee,ee,e ggg  (2.2) 

Proposition 2.1. For the covariant derivatives of the Levi-Civita connection of the left-invariant 

metric g , defined above the following is true: 
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 ,

000

=

1132

1132





















eeee

eeee  (2.3) 

where the ),( ji -element in the table above equals j
i

e e  for our basis 

 }.{=1,2,3}=,{ 321 e,e,ee kk  

 

So, we obtain that 

 0.=),(=),(=),( 322131 eeeeee RRR  (2.4) 

Then, the Lorentz metric g is flat. 

3. Timelike Biharmonic Curves According to Flat Metric in the Lorentzian Heisenberg 

Group Heis
3  

Let 3: HeisI   be a unit speed timelike curve and  BN,T,  are Frenet vector fields, then Frenet 

formulas are as follows 

 N,TT 1=  

 B,TNT 21=    (3.1) 

 ,= 2NBT   

where ,1  2  are curvature function and torsion function, respectively. 

 

Theorem 3.1. (see [16]) If 3: HeisI   is a unit speed timelike biharmonic curve according to 

flat metric, then 

 0,constant=1   

 0,=2

2

2

1    (3.2) 

 .constant=2  
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4.  Frenet Ribbons of Timelike Biharmonic Curve in the Lorentzian Heisenberg Group  

The Frenet-Serret apparatus allows one to define certain optimal ribbons and tubes centered 

around a curve. These have diverse applications in materials science and elasticity theory, as well as to 

computer graphics. 

A Frenet ribbon along a curve   is the surface traced out by sweeping the line segment ],[ aa  

generated by the unit normal along the curve. Geometrically, a ribbon is a piece of the envelope of the 

osculating planes of the curve. Symbolically, the ribbon R  has the following parametrization: 

     1.1=,  ttsts N,R  (4.1) 

In particular, the binormal B  is a unit vector normal to the ribbon. Moreover, the ribbon is a ruled 

surface whose reguli are the line segments spanned by N . Thus each of the frame vectors N,T,  and B  

can be visualized entirely in terms of the Frenet ribbon. 

 

Theorem 4.1. Let 3: HeisI   be a unit speed timelike biharmonic curve and  ts,R  its Frenet 

ribbon in 
3Heis . Then, the parametric equations of  ts,R  are 

   1sinh=, stsx R  

 ])
cosh

[cosh]
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[sinhcosh]
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[sinh 1121

1

 















ssst
(  

  

   ]]
cosh

[sinh]
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=, 112
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where 321 ,,,   are constants of integration. 
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Abstract 

In this paper, we use geometrical descriptions of the curvature and torsion functions of the 

curve for the calculation. Then we consider a second reference system K∗, which moves relative to 

the K for an arbitrary direction with a uniform velocity under the Galilean transformation. Finally, we 

compute the relativistic energy on the moving particle considering relative reference system K∗. 

 

1.  Introduction 

In physics the Lorentz transformation can be thought as coordinate transformations for any given 

two coordinate frames, which moves relatively to each other at constant velocity. One of the advantages 

of this transformation is that it explores the correlation between reference frames provided that both 

frames are exposed to the same velocity of light. This transformation is used as a base to comprehend 

some developed concepts such as dilation of time, contraction of length and relativity of simultaneity.  

Physical systems and processes either indirectly or directly include the dynamics of fields and/or 

particles propagating or moving through time and space. Thus, nearly all the major physics laws contain 

time and position in some way or another. The most fascinating property of this transformation is that it 

combines the time and space coordinates. As a result of this fact 3-dimensional lengths and time intervals 

do not have absolute quantities, since 3-dimensional lengths and time intervals are not invariant under this 

transformation  1 . 

Galilean transformation, however, is an approximation that we can use only at relative velocity, 

which is much smaller than the velocity of light. In contrast to Lorentz transformation, Galilean 

transformation explains the following notions: 

)i  Time and space are absolute. 

)ii  Mass, time, and length are not dependent of observer's relative motion. 

)iii  Velocity of light depends on observer's relative motion  2 . 
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Euclidean geometry is considered to describe idealized space that surrounds us and it can be felt 

by our tactile and visual perfection. Considering a moving particle as space curves in Euclidean space, it 

is already investigated various kinematic or geometric properties of them thanks to Frenet frame  5 . 

In this paper, we deal with the concept of the energy on these space curves, which corresponds to 

moving particles, in Euclidean space under the Galilean transformation. We observe variation on the 

energy of the particle in the rest system of inertial frame and its energy in the moving system of inertial 

frame, which we suppose to move for an arbitrary direction with much smaller velocity than velocity of 

light. Thus, we call this newly defined energy as a relativistic energy of the particle. 

Some researches that motivate us working on this topic can be listed as the following. Energy of 

the unit vector fields was studied by Wood  .6 Gil-Medrano  ,7  worked on the relation between energy 

and volume of vector fields.  ,8,9 investigated energy distributions and corrected energy distributions on 

Riemannian manifolds. Altin  ,10 computed energy of Frenet vector fields for given non-lightlike curves 

in semi-Euclidean space. Körp nar    ,11 discussed timelike biharmonic energy of curves in Heisenberg 

spacetime. Kumar and Srivastava  ,12  presented difference between curvature and torsion under the 

relative motion. 

2  Preliminaries 

2.1  Frenet Frame in Euclidean Space 
3R  

The characteristics of the intrinsic geometric feautes of a curve   can most subtly be determined 

by using Serret-Frenet equations. Frenet tetrad frame consists of three orthonormal vectors  ,

e  assuming 

the curve   is sufficiently smooth at each point. The index within the parenthesis is the tetrad index that 

describes particular member of the tetrad. In particular,  


0e  is the unit tangent vector,  


1e  is the unit 

normal,  


2e  is the unit binormal vector of the curve ,  respectively. Orthonormality conditions are 

summarized by     ,= 




 ee  where   is Euclidean metric such that: diag  .1,1,1  For non-negative 

coefficients ,,  and vectors   0,1,2=ii


e  following equations and properties satisfy  5 . 

 

 
 

 ,= 1

0 



e
e

ds


 

 
 

    ,= 20

1 



 ee
e




ds
 (2.1) 

671



 

6th INTERNATIONAL ONLINE CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 

21-24 June 2022, Istanbul, Turkey 

 

 

ICOM 2022 

ISTANBUL / TURKEY 

 
 

 .= 1

2 



e


ds

e
 

 

2.2  Energy on the Unit Vector Field in 
3R  

We first give fundamental definitions and propositions, which are used to compute the energy of 

the unit vector field. 

Definition 2.1 Let  ,M  and  hN
~

,  be two Riemannian manifolds, then the energy of a 

differentiable map    hNMf
~

,,:   can be defined as  

        ,,
~

2

1
=

1=

vedfedfhfnergy aa

n

a
M
  (2.2) 

where  ae  is a local basis of the tangent space and v  is the canonical volume form in M  [6] . 

 

Proposition 2.2 Let   MTMTTQ 11:   be the connection map. Then following two conditions 

hold: 

i)  dQ  =  and ,~=  Q  where   MTMTT 11:~   is the tangent bundle projection; 

ii) for   MTx  and a section MTM 1:  ; we have  

    ,=  dQ  (2.3) 

where   is the Levi-Civita covariant derivative [6,10] . 

Definition 2.3 Let  ,, 1

21 MTT   then we define 

            .,,=, 212121  QQddS   (2.4) 

This yields a Riemannian metric on TM . As known S  is called the Sasaki metric that also makes the 

projection :  MMT 1
 a Riemannian submersion. 

Theorem 2.4 Let   be a unit speed curve defined on ,3R  we can derive following relations on the 

energy of tangent, normal, and binormal vectors respectively;  
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     ,1
2

1
= 2

0
0 dsnergy

s

  e  

     ,1
2

1
= 22

0
1 dsnergy

s

  e  

     ,1
2

1
= 2

0
2 dsnergy

s

  e  

where  ,  are curvature and torsion of the curve ,   .6,10  

 

Proof. From (2.2) and (2.3) we know 

 

            .,
2

1
= 0000

0
0 dsddnergy S

s

)(ee)(eee
    

Using Eq. (2.4) we have 

                 )))(ee))(ee)(ee)(ee
  00000000 (,((=, ddddS  

         ).(,(( 0000 ))(ee))(ee
 QQ  

Since  


0e  is a section, we get 

     .=)((=)()( 00 TCC ididdddd =)ee
    

We also know 

    
 

   .=( 10
0

00




 e=e))(ee
e

Q  

Thus, we find from (2.1)  

              
 

 
 

  







 







  0
0

0
0

000000 ,,=, eeee)(ee)(ee
ee

ddS  

 .1= 2  
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So we can easily obtain 

   ).(
2

1
= 2

0
0 dssnergy

s

 

e  

 

 

 

3.  Relativistic Energy on the Moving Inertial Frame 

Let K  be the first system that contains a moving particle in Euclidean space 3R  such that it has 

three position vectors with a time parameter. Then we can define another moving relative system 
K  

corresponding to K  such that it moves with uniform velocity v  relatively to the K  on the direction of 

      ,eeev vcba )(= 210

 


 where Rcba ,,  and .= v


v  

Let assume that motion of the moving particle in Euclidean space 
3R  corresponds to a space 

curve  , whose Frenet frame characterization is defined in (2.1).  Under the Galilean transformation we 

can transfer this construction to the moving relative inertial system K as the following. 

     ,=,= 


  sssss v  (3.1) 

where  , ss are time parameters for the moving particle in the inertial sytem of K  and relative inertial 

system ,K  respectively .  We will use s  in the moving relative inertial system 
K  instead of 

s  due to 

the equality given in (3.1) . Thus, we obtain the observed curve  s  for the relative system as given 

below.  

           .)(= 210 scbavss 
eee 

 (3.2) 

 

Theorem 3.1 The Frenet frame apparatus for the observed curve  s  are stated in terms of the 

Frenet elements of the first system as following. 
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                 ,1= 2100

  eeee csbvbscsavasbv 


 

      
 


0

2

1 2
1

= ee scsabsbv ' 




 

     



1

22 22
1

esbcscsaasbv '' 


 

    ,2
1

2
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esbbsascv '


 

     sbbsascbscsav '


 




2((
1

= 22

2e  (3.3) 

       
 0

22 )22 esbcscsaasbvcsbv ''   

   sbbsascvasvbv '





21(
1 2

 

     
 1

22 )2 escsabsbcsbv '   

 ))22())(((((1
1 22 sbcscsaasbvasbv '' 





 

  ,))2)(( 2

22  escsabsbbscsav '   

where  ,  are curvature and torsion of the   and 
  is the curvature of the observed curve .  We can 

also express curvature and torsion of the observed curve 
  as the following.  

 )2()2(())()2(((= 22   scvsavcavssbv '''  

 ,)))()2(())( 2

1

2222  acvssbvbvs '   

   sbbsascbscsav
u

'  2(
1

= 22
 

      ''''' bvsbvsbcscsaasbvcsbv  3(22 22   

 )3233 2322 sbvvsbcvscvscvsavav '''    
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   sbbsascvasvbv '  21(( 2  

    '''' avbvsbvscsabsbcsbv  333)(2 222   

 )))()(333 332 scavscavbvsbvcvscvsav ''''''    

 ))22())(((((1 22 sbcscsaasbvasbv ''    

 savsavscsabsbbscsav '''   2))(2)(( 22  

 )),3333 322 sbvsbvsbvbvscvcvav ''''    

where  

   sbbsascbscsavu '  2(= 22  

      222 )22 sbcscsaasbvcsbv ''    

   sbbsascvasvbv '  21( 2  

    222 )2 scsabsbcsbv '    

 ))22())(((((1 22 sbcscsaasbvasbv ''    

 .))2)(( 222 scsabsbbscsav '    
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