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Abstract

When mathematics is written formally it becomes possible to machine check the validity of its
syntax and logic.  ProofCheck is a Python package, available since 2009 at www.proofcheck.org, which
parses mathematical texts and checks mathematical proofs and inference rule derivations contained in a
plain TeX or a LaTeX source file. Its mathematical syntax requirements are based on rules developed by
A. P. Morse, which allow great flexibility in the mode of mathematical expression. Checkable proofs must
also conform to rules of proof syntax developed by the authors. A summary of texts parsed and proofs and
derivations checked is given.   

Keywords: Proof checking, Commutative-Associative Unification, Derived Rules of Inference, Morse language, Python, TeX.

1. Introduction 

One of the first forays  into machine checking of mathematics  was Bledosoe's work, [3], in checking

proofs of the theorems in A.P. Morse's  A Theory of Sets [9].  It remains relatively unique in that it was

applied to pre-existing theorems, if not proofs, written without machine checking in mind. Proofs today

are often checked by systems such as Mizar [13], HOL [7], and Isabelle [12].  These are big systems, with

current download sizes of 35 Meg, 12.5 Meg, and 196 Meg respectively.  By contrast ProofCheck, [10],

which in many ways continues Bledsoe's early work, has a download size of 200K.  We show here that in

spite of its small size it can and has done useful work.

2. Preliminaries

Presented with a mathematical text in the form of a TeX file, ProofCheck constructs a grammar for the

given text based on definitions encountered in the text, which must be of the form:

(x = y) 

where 'x' is the defined term or:

(p ↔ q)

where 'p' is the defined formula.
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Theorems whose proofs are to be checked or referred to in proofs of other theorems, must be numbered in

the form  num.num.  A proof is a series of  notes, numbered in the form  .num  directly following the

numbered theorem,each of which is supplied with a justification which is an expression referring

to previous notes in the same proof or to other numbered theorems.  This justification is combined with

the note being checked to form an expression which in order to check successfully must “match” a stored

rule of inference. An example of a rule of inference is the modus ponens rule of inference which is simply

the following expression:

(p → q) ; p |- q

Rules of Inference are stored simply as lines of a TeX file. The checking of a note consists simply of a

sequential  search through this  file.   A justification  for  a  note  'q'  matching this  rule  might  be '1.2;.3'

referring to a theorem 1.2 of the form (p → q) and to a note 3 of the form p.  A proof is checked when all

its notes check.   This proof syntax can be used to check either proofs of theorems, or derivations of

derived rules of inference.   This is valuable especially in the case of a non-standard logic whose theorems

and rules of inference can be jointly derived in a single logic development file.

 A note with its justification matches a rule of inference if there is a unification of the two.  A unification

of two expressions A and B is a substitution s such that s(A) = s(B).   In ordinary first order unification

the  substitution,  s,  simply  replaces  variables  by terms.   If  the  variables  occurring  in  the  note  being

checked are treated as constants, ineligible for replacement, then a successful unification shows that the

note can be obtained by substitutions from the other formulas referred to in the justification.

ProofCheck's unification algorithm is a second order algorithm. As such in addition to replacing ordinary

first order variables it also replaces second order expressions such as those we write here as f(x) and f(y)

occurring in 

(f(x) < f(y))

to forrm instances such as

(x + 1 < y + 1)

The  algorithm  also  unifies  bound  variables  so  that  terms  such  as  {x:p(x)}  and  {y:p(y)}  are  not

distinguished.   An important  feature is  that  operators  which are known to be both commutative  and
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associative  can  be  treated  as  such.   The '+'  operator  for  example  is  known to  be  commutative  and

associative and if so marked it allows (x + y + z) to unify immediately with (z + x + y), for example.

Without  this  feature  checkable  proofs  would  quickly  become  prohibitively  lengthy.   Commutative

associative unification is a special case of  Gallier's E-unification, [6].

To flesh out the very sketchy description just given, the reader may consult the documentation located on

the website: http://www.proofcheck.org or download the package itself.

3. Main Results

A compendium of A.P. Morse's works comprising the bulk of his entire mathematical output including all

of [9] and currently exceeding 400 pages in length, is being prepared for publication by the second author.

This  work  in  progress  has  been  completely  checked  for  the  correctness  of  its  mathematical  syntax.

Numerous typos were eliminated and a mathematical error was discovered in one of Morse's published

papers, (Theorem 6.24 on p270 of [5]).

A book on Constructive Morse Set Theory which is currently in preparation by Douglas Bridges, well-

known among constructivists for [4], and R.A. Alps, had its logic chapter completely checked.  This

check included verification of the derivations of 95 rules of inference as well as of the proofs of its 150

theorems  of  logic.   With  no  details  omitted,  the  chapter  still  amounted  to  less  than  40  pages.

Constructive logic is, of course, non-standard, eschewing the law of the excluded middle. 

A  proof by R.A. Alps of the relative consistency of Morse's set theory with Kelley-Morse set theory, (see

the Appendix of [8]), was checked.

Over 500 proofs in a mathematical manuscript consisting of an exploratory development of combinatorial

topology and all of the 71 proofs in a submitted paper dealing with induction were checked.  The proofs

were based on  the predicate logic, [2], and a file of over 1500 rules of inference.

A file consisting of a development of relevant logic by Viraga Perera was checked.  Relevant logic is a

non-standard sentential logic which disallows inferences such as (Not p → (p → q)) and demands that

hypotheses of an inference be relevant to the conclusion.

The proof checker has also used to teach proof construction in a discrete mathematics class.
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The just mentioned developments of Bridges' logic and relevant logic used only rules of inference, except

for a small number of primitive rules, whose derivations were checked.  The other mathematical proofs

were checked using a large file of over 1500 rules of inference, which we claim are derivable but are yet

without formal derivations.  

4. Conclusion

The ProofCheck system represents a different  approach from other computer  proof assistants such as

Mizar,  HOL, and Isabelle in that it  is less aimed at  adapting mathematics to the computer and more

towards adapting the computer to the mathematics.  The fact that its source files are TeX files testifies to

this.  So too does the fact that its syntactical basis, [11], derived from that of a practicing mathematician,

is open to the syntax and logic desired by the user, at least to the extent that we have been able to make it

so.

The fact that the mathematical proofs that we have so far checked tend to be from 3 to 10 times longer

than informal proofs shows that there is still plenty of room for improvement.  The fact that this ratio is

much less in the logic development files so far checked, suggests that allowing derived rules of inference

to contain mathematical, not just logical content, and allowing them to be interspersed with theorems,

suggests itself as a possible way forward.  
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Abstract 

Hodgkin-Huxley (HH) mathematical neuron model describes the formation and propagation of 

action potentials along the axons due to the change of intra- and extracellular concentration of ions 

passing through the membrane lipid bilayer. HH cells demonstrate the variety of nonlinear dynamical 

regimes including single spikes, spiking trains and bursting.  

The individual neuron-based control elements in small HH clusters developed by Borisenok, 

Çatmabacak, Ünal (2018) are capable to detect a hypersynchronized epileptiform behavior of the cluster 

and efficiently suppress it by sending feedback signals to other network elements. Here we extend our 

approach with the more realistic case of network links where the neurons form a memory trace with the 

effect of synaptic consolidation, covering the contribution from the neurotransmitter release.   

We discuss the perspectives of the intracranical electroencephalogram (EEG) modeling. EEG is 

recorded from the electrodes implanted into the epileptic focus and represent the total activity for a large 

number of neurons rather than the impulse activity of stand-alone ones. The EEG data we use include 

both pre-ictal and ictal phases. The goal of modeling is to identify the pre-ictal phase (or, at least, its 

beginging) in the observed EEG and design the electrode control stimulus acting on the tissue to suppress 

the seizure. 

Thus, the controlled Hodgkin-Huxley network proposed here can be implemented for modeling 

the epileptic seizures suppressing by electrical stimulating through the electrode from which the 

intracranial EEG signal is observed. 

 

Keywords: Keywords: Epileptiform Behavior, Hodgkin-Huxley Neurons, Control in Small Networks, Intracranical 

EEG 

 

 

1. Introduction  

Modern neuroscience demonstrates a great progress in study of the epileptic dynamics in neurons. 

Experimental methods allow now to make an efficient control of the neural population even at the single 

cell level. Nevertheless, the mathematical modeling of an epileptiform behavior is mostly focused on the 
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upper scales of the brain network. The applied control theory still needs a sufficient improvement of 

algorithms for detection and suppression of the epileptiform behavior in the populations of mathematical 

neurons modeling a real ictal phase of epilepsy. 

We discuss here the perspectives of the intracranical electroencephalogram (EEG) modeling. EEG is 

recorded from the electrodes implanted into the epileptic focus and represents the total activity of a large 

number of neurons rather than the impulse activity of stand-alone ones. The EEG data we use include 

both pre-ictal and ictal phases. The goal of modeling is to identify the ictal phase (or, at least, its 

beginning) in the observed EEG and design the electrode control stimulus acting on the tissue to suppress 

the seizure. 

2. Mathematical Network Model for the Epileptiform Behavior 

Hodgkin-Huxley (HH) mathematical neuron model describes the formation and propagation of action 

potentials along the axons due to the change of intra- and extracellular concentration of ions passing 

through the membrane lipid bilayer. The microscopic detailed mathematical modeling of real neural cells 

can be represented with the phenomenological nonlinear systems of ordinary differential equations. Each 

HH element contains four independent variables, one for the spiking action potential and three for the 

probabilities of the membrane ion gates to be open or closed [1]:  

               

.)1(

;)1(

;)1(

;)()()()( 43

hh
dt

dh

nn
dt

dn

mm
dt

dm

tIEvgEvngEvhmg
dt

dv
C

hh

nn

mm

ClClKKNaNaM















                           (1) 

Here v(t) stands for the membrane potential, m(t), n(t), h(t) are the membrane gate variables, and the 

control signal I(t) is the sum of currents stimulating the cell. αm,n,h, βm,n,h are experimentally found 

functions related to the gate probabilities and given by [1]:  
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                                      (2) 

The set of constants in (1) includes the potentials ENa (the equilibrium potential at which the net flow of 

Na ions is zero), EK (the equilibrium potential at which the net flow of K ions is zero), ECl (the 

equilibrium potential at which the leakage is zero) in mV, the membrane capacitance CM and the 

conductivities gNa (the sodium channel conductivity), gK (potassium channel conductivity), gCl (leakage 

channel conductivity) in mS/cm
2
: 

                                                          

.36.10;3.0

;12;36

;115;120







ClCl

KK

NaNa

Eg

Eg

Eg

                                                          (3) 

HH cells demonstrate the variety of nonlinear dynamical regimes including single spikes, spiking trains 

and bursting.   

Different models could be applied for the synaptic links in the HH network, like the model od synaptic 

plasticity and synaptic consolidation [2]. It may cover the time delay in the process of transmission of 

signals in synapses and integration and accumulation of the large number of stimulating signals entering 

the control neuron.  

The individual neuron-based control elements in small HH clusters are capable to detect and suppress a 

hypersynchronized epileptiform behavior of the cluster and efficiently suppress it by sending feedback 

signals to other network elements to force them to switch their bursting behavior to resting via the speed-

gradient based control algorithm [3]. Such control element can work autonomously at the each phase of 

pre-ictal and ictal epileptiform dynamics. The control algorithm is numerically simple and robust, i.e. it is 

stable under the external noisy perturbation and does not depend on the initial states of the differential 

equations representing HH neurons.  
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3. Modeling of Ictal Phase Recorded by Intracranical Electroencephalogram 

Intracranical electroencephalogram records the signals made from electrodes implanted into the epileptic 

focus. It integrates the total activity of a large neuron population rather than impulse activity of individual 

neurons. Each patient has an EEG record in the seizure and between the seizures.  

The ictal phase detection could be performed by implementing the Neural Clouds (NC), a data 

encapsulation method, which provides a confidence measure regarding classification of the complex 

system conditions. It has been already successfully applied for surface EEG analysis [4]. The NC method 

may be considered as a detector of the critical changes in the dynamics detected by intracranical EEG 

records. 

The mathematical model developing in our approach covers few basic features of the control over the 

ictal phase in the recorded intracranical EEG: 

• The transition from neuronal impulse activity to EEG signals recorded from the implanted electrodes 

and back.  

• Modeling of seizures suppressing via electrical stimulating trough the electrode from which the 

intracranial EEG signal is observed. 

Thus, the control electrode plays a double rope in our approach, like in the mathematical model [3] for 

small neural clusters: it detects the ictal phase and generates the signal suppressing the focus of seizure 

via the feedback links. For the practical clinic application, it is much easier to learn how to link impulse 

activity from the implanted electrode rather than from the surface EEG stimulation. 

4. Conclusions 

The open question of our approach for the present moment is to check whether there are any differences 

in the models obtained for different groups of patients. In this case, we will single out the groups 

according to results of other clinical observations. 

Thus, the controlled Hodgkin-Huxley network proposed here can be implemented for modeling the 

epileptic seizures suppressing by electrical stimulating through the electrode from which the intracranial 

EEG signal is observed. The extended version of our model approach will lead us to the development of a 

simulator for epileptiform dynamics to minimize risks of experiments over real epileptic patients.  
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Abstract 
Recently, a high attention to studying the periodic nature of nonlinear difference equations has 

been attracted. Difference equations are used in a variety of contexts, such as in economics to model the 
evolution through time of variables such as gross domestic product, the inflation rate, the exchange rate, 
etc. They are used in modeling such time series because values of these variables are only measured at 
discrete intervals. In econometric applications, linear difference equations are modeled with stochastic 
terms in the form of autoregressive (AR) models and in models such as vector autoregression (VAR) and 
autoregressive moving average (ARMA) models that combine AR with other features. 

The behaivour of the solutions of the following system of difference equations is examined, 
11

1
3 71
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xx
x x

−
+

− −
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+

  

where the initial conditions are positive real numbers. The initial conditions of the equation are arbitrary 
positive real numbers. 
 
Keywords: Difference equation, rational difference equation, period 4 solutions. 
 
1. Introduction  

Difference equations appear naturally as discrete analogs and as numerical solutions of differential 

and delay differential equations, having applications in biology, ecology, physics. 

Recently, a high attention to studying the periodic nature of nonlinear difference equations has 

been attracted. For some recent results concerning the periodic nature of scalar nonlinear difference 

equations, among other problems, see, for example, [1-33].  

Agarwal et al. [1], investigated the global stability, periodicity character and gave the solution of 

some special cases of the difference equation 

1
n l n k

n
n s

dx xx a
b cx

− −
+

−

= +
−

.  
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Elsayed [15], studied the global result, boundedness, and periodicity of solutions of the difference 

equation 

1
n l n k

n
n l n k

bx cx
x a

dx ex
− −

+
− −

+
= +

+
, 

where the parameters a; b; c; d and e are positive real numbers and the initial conditions   are positive real 

numbers where { }max , ,t l k l k= ≠ . 

Simsek et. al. [21, 22, 23, 26], studied the following problems with positive initial values 

3
1

11
n

n
n

xx
x
−

+
−

=
+

,  

5
1

21
n

n
n

xx
x
−

+
−

=
+

, 

5
1

1 31
n

n
n n

xx
x x

−
+

− −

=
+

, 

respectively. 

In this work the following nonlinear difference equation was studied,  

 11
1

3 71
n

n
n n

xx
x x

−
+

− −

=
+

,  (1.1) 

where the initial conditions are positive real numbers. 

 

2. Main Results 

Let x  be the unique positive equilibrium of the equation (1.1), then clearly,  

3 3 0 0
1

xx x x x x x
xx

= ⇒ + = ⇒ = ⇒ =
+

,  

so, 0x =    can be obtained.  
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Theorem 1: Consider the difference equation (1.1). Then the following statements are true.  

a) The sequences, 

( )12 11nx − , ( )12 10nx − , …, ( )12 1nx − , ( )12nx , 

are being decreasing and, 

1 2 3 4 5 6 7 8 9 10 11 12, , , , , , , , , , , 0a a a a a a a a a a a a ≥ , 

are existed and such that, 

12 11 1lim n k kn
x a− + +→∞

=  for 0,11k = . 

b) ( )1 2 3 4 5 6 7 8 9 10 11 12, , , , , a , , , , , , ,...a a a a a a a a a a a  is a solution of equation (1.1) having period  twelve. 

c) 
2

12 11 4
0

lim 0, 0,3n j kn
k

x j− − +→∞
=

= =∏   or  
2

4
0

0, 1, 4k i
k

a i+
=

= =∏ .  

d) If there exist 0n ∈  such that  7 1n nx x− +≥    for all  0n n≥  , then, 

lim 0nn
x

→∞
= .  

e) The following formulas below are hold: 

3
3 7

12 1 11
0 13 7 4 7 4 3

11
1 1

jn
k k

n k k
j ik k i k i k

x xx x
x x x x
− + − +

+ + − +
= =− + − + − + − +

 
= − + + 

∑∏ ,  

3 1
3 11

12 5 7
0 13 7 4 7 4 3

11
1 1

jn
k k

n k k
j ik k i k i k

x xx x
x x x x

+
− + − +

+ + − +
= =− + − + − + − +

 
= − + + 

∑∏ ,  

3 2
7 11

12 9 3
0 13 7 4 7 4 3

11
1 1

jn
k k

n k k
j ik k i k i k

x xx x
x x x x

+
− + − +

+ + − +
= =− + − + − + − +

 
= − + + 

∑∏ ,  

0,3k =  holds. 

f) If 12 1 1 0n k kx a+ + +→ ≠ , 12 5 5 0n k kx a+ + +→ ≠  then 12 9 9 0n k kx a+ + +→ =  as n →∞ , 0,3k = .  
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Proof: 

a) Firstly, from the equation (1.1)  

( )1 3 7 111n n n nx x x x+ − − −+ = ,  

is obtained. If ( )3 7 0,n nx x− − ∈ ∞  then ( )3 71 1,n nx x− −+ ∈ ∞ . Since,  

1 11n nx x+ −< , 

n∈ ,   

12 11 1lim n k kn
x a− + +→∞

=  for 0,11k = , 

existed formulas are obtained. 

b) ( )1 2 3 4 5 6 7 8 9 10 11 12, , , , , a , , , , , , , ...a a a a a a a a a a a  is a solution of equation (1.1) having   period  twelve. 

c) In wiew the equation (1.1),  

12 11
12 1

12 3 12 7

12
1

n
n

n n

xn n x
x x

−
+

− −

= ⇒ =
+

  

is obtained. Similarly for 12 1n n= + ,  

12 10
12 2

12 2 12 6

12 1
1

n
n

n n

xn n x
x x

−
+

− −

= + ⇒ =
+

, 

is obtained. Similarly for 12 2n n= + , 

12 9
12 3

12 1 12 5

12 2
1

n
n

n n

xn n x
x x

−
+

− −

= + ⇒ =
+

, 

is obtained. Similarly for 12 3n n= + , 

12 8
12 4

12 12 4

12 3
1

n
n

n n

xn n x
x x

−
+

−

= + ⇒ =
+

, 

is obtained. If the limits are put on both sides of the above equality, 
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2

12 11 4
0

lim 0, 0,3n j knk

x j− − +→∞
=

= =∏   or  
2

4
0

0, 1, 4k i
k

a i+
=

= =∏ . 

d) If there exist 0n ∈   such that 7 1n nx x− +≥  for all 0n n≥ , then, 

1 5 9 1a a a a≤ ≤ ≤ , 2 6 10 2a a a a≤ ≤ ≤ , 3 7 11 3a a a a≤ ≤ ≤ , 4 8 12 4a a a a≤ ≤ ≤ . Using (c), we get 

2

4
0

0, 1, 4k i
k

a i+
=

= =∏ . 

Then we see that 

lim 0nn
x

→∞
= . 

Hence the proof of (d) completed. 

e) Subracting 11nx −  from the left and right-hand sides in equation (1.1),  

( )1 11 3 15
3 7

1
1n n n n

n n

x x x x
x x+ − − −

− −

− = −
+

,  

and the following formula: for 4n ≥   

 

4

4 15 4 27 1 11
1 4 3 4 7
4

4 14 4 26 2 10
1 4 2 4 6

4

4 13 4 25 3 9
1 4 1 4 5
4

4 12 4 24 4 8
1 4 4 4

1( )
1

1( )
1

1( )
1

1( )
1

n

n n
i i i
n

n n
i i i

n

n n
i i i
n

n n
i i i

x x x x
x x

x x x x
x x

x x x x
x x

x x x x
x x

−

− − −
= − −

−

− − −
= − −

−

− − −
= − −

−

− − −
= −


− = − + 


− = − + 


− = −
+

− = − + 

∏

∏

∏

∏

  (1.2) 

hold. Replacing n by 3 j  in (1.2) and summing from 0j =  to  j n= , we obtain: 

( )
3

12 1 11 1 11
0 1 4 3 4 7

1 , 0,3
1

jn

n k k k k
j i i k i k

x x x x k
x x+ + − + + − +

= = − + − +

− = − =
+∑∏ . 

Also, 3 1j +  inserted in (1.2) by replacing n , 0j =   to j n=   is obtained by summing,   
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( )
3 1

12 5 7 5 7
0 1 4 3 4 7

1 , 0,3
1

jn

n k k k k
j i i k i k

x x x x k
x x

+

+ + − + + − +
= = − + − +

− = − =
+∑∏ . 

Also, 3 2j +  inserted in (1.2) by replacing n , 0j =   to j n=   is obtained by summing,   

( )
3 2

12 9 3 9 3
0 1 4 3 4 7

1 , 0,3
1

jn

n k k k k
j i i k i k

x x x x k
x x

+

+ + − + + − +
= = − + − +

− = − =
+∑∏ . 

Now we obtained of the above formulas: 

3
3 7

12 1 11
0 13 7 4 7 4 3

11
1 1

jn
k k

n k k
j ik k i k i k

x xx x
x x x x
− + − +

+ + − +
= =− + − + − + − +

 
= − + + 

∑∏ ,  

3 1
3 11

12 5 7
0 13 7 4 7 4 3

11
1 1

jn
k k

n k k
j ik k i k i k

x xx x
x x x x

+
− + − +

+ + − +
= =− + − + − + − +

 
= − + + 

∑∏ ,  

3 2
7 11

12 9 3
0 13 7 4 7 4 3

11
1 1

jn
k k

n k k
j ik k i k i k

x xx x
x x x x

+
− + − +

+ + − +
= =− + − + − + − +

 
= − + + 

∑∏ ,  

0,3k =  holds. 

f) Suppose that 1 5 9 0k k ka a a+ + += = = . By e) we have, for 0,3k =  

3
3 7

12 1 11
0 13 7 4 3 4 7

1lim lim 1
1 1

jn
k k

n k kn n j ik k i k i k

x xx x
x x x x
− + − +

+ + − +→∞ →∞
= =− + − + − + − +

 
= − + + 

∑∏ ,  

3
3 7

1 11
0 13 7 4 3 4 7

11
1 1

j
k k

k k
j ik k i k i k

x xa x
x x x x

∞
− + − +

+ − +
= =− + − + − + − +

 
= − + + 

∑∏ , 

 
3

3 7
1

0 13 7 4 3 4 7

1 10
1

j
k k

k
j ik k i k i k

x xa
x x x x

∞
− + − +

+
= =− + − + − + − +

+
= ⇒ =

+∑∏ .  (1.3) 

Similarly, 

 
3 1

3 7
5

0 13 11 4 3 4 7

1 10
1

j
k k

k
j ik k i k i k

x xa
x x x x

+∞
− + − +

+
= =− + − + − + − +

+
= ⇒ =

+∑∏ .  (1.4) 
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Similarly, 

 
3 2

3 7
9

0 17 11 4 3 4 7

1 10
1

j
k k

k
j ik k i k i k

x xa
x x x x

+∞
− + − +

+
= =− + − + − + − +

+
= ⇒ =

+∑∏ . (1.5) 

From the (1.3) and (1.4),  

3 3 1
3 7 3 7

0 01 13 7 4 3 4 7 3 11 4 3 4 7

1 11 1
1 1

j j
k k k k

j ji ik k i k i k k k i k i k

x x x x
x x x x x x x x

+∞ ∞
− + − + − + − +

= == =− + − + − + − + − + − + − + − +

+ +
= > =

+ +∑ ∑∏ ∏ ,  

thus, 11 7k kx x− + − +> . From the (1.4) and (1.5),  

3 1 3 2
3 7 3 7

0 01 13 11 4 3 4 7 7 11 4 3 4 7

1 11 1
1 1

j j
k k k k

j ji ik k i k i k k k i k i k

x x x x
x x x x x x x x

+ +∞ ∞
− + − + − + − +

= == =− + − + − + − + − + − + − + − +

+ +
= > =

+ +∑ ∑∏ ∏ , 

thus, 7 3k kx x− + − +> . 

From here we obtain 11 7 3k k kx x x− + − + − +> >  for 0,3k = . We arrive at a contradiction which 

completes the proof of theorem.  
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Abstract 
There has been a huge interest in max type of, nonlinear difference equations or systems in recent 

years. Difference equations are used in a variety of contexts, such as in economics to model the evolution 
through time of variables such as gross domestic product, the inflation rate, the exchange rate, etc. They 
are used in modeling such time series because values of these variables are only measured at discrete 
intervals. In econometric applications, linear difference equations are modeled with stochastic terms in 
the form of autoregressive (AR) models and in models such as vector autoregression (VAR) and 
autoregressive moving average (ARMA) models that combine AR with other features. 

We study the behaviour of the solutions of the following system of difference equation with the 
max operator: 

 1 1
1 1

max , ; max ,n n
n n

n n n n

y xA Ax y
x x y y+ +

− −

   
= =   

   
  (1.1) 

where the parameter A   and  initial conditions are positive real numbers. 
 
Keywords: Difference equations, Maximum Operators, Semi-cycle. 
 
1. Introduction  

Recently, there has been a great concern in studying nonlinear difference equations since many 

models describing real life situations in population biology, economics, probability theory, genetics, 

psychology, sociology etc. are represented by these equations. See for example [1-28]. 

2. Preliminaries 

Definition 1: Let I  be an interval of real numbers and let 1: sf I I+ →   be a continuously differentiable 

function where s is a non-negative integer. Consider the difference equation 

 ( )1 1, ,..., for 0,1,...,n n n n sx f x x x n+ − −= =   (1.2) 

with the initial values 0,...,sx x I− ∈ . A point x  called an equilibrium point of equation.(2) if 

( ),...,x f x x= .  
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Definition 2: A positive semi-cycle of a solutions { }n n
x s∞ = −   of equation (1.2) consist of a string of 

terms { }1, ,...,l l mx x x+  all greater than or equal to equilibrium x   with l s≥ −   and m ≤ ∞   such that either 

l s= −  or l s> −  and  1lx x− <   and either m = ∞  or m < ∞  and  1mx x+ < . 

Definition 3: A negative semicycle of a solutions { }n n
x s∞ = −  of equation (1.2) consist of a string of 

terms { }1, ,...,l l mx x x+  all less than or equal to equilibrium x  with l s≥ −  and m ≤ ∞  such that either 

l s= −  or l s> −  and 1lx x− ≥  and either m = ∞  or m ≤ ∞  and 1mx x+ ≥ .  

 

3. Main Results 

Let x  and y  be the unique positive equilibrium of equation.(1), then clearly, 

max , ; max ,A y A xx y
x x y y

  = =   
   

, 

Since parameter A  is the greatest value in all initial conditions, so 

2Ax x A x A
x

= ⇒ = ⇒ = ± , 

2Ay y A y A
y

= ⇒ = ⇒ = ± , 

we interested positive results so, we can obtain x A= and y A= .   

Lemma1: Assume that, ( )1,A∈ ∞  ( )0 1 0 1, , , 1,x x y y− − ∈ ∞  integer sequence for equation (1) 

1 0 1 0A x y y x− −> > > > , 0 1 0 0A x y y x−> > > > , 0 1 0 1A y x x y− −> > > > , 1 1 0 0A y x y x− −> > > > ,  

 Then the following statements are true: 

 0n ≥  for nx  and ny , 

 

a) Every positive semi-cycle consist two term. 

b) Every negative semi-cycle consist two term. 

c) Every positive semi-cycle of length two is followed by a negative semi-cycle of length two. 

d) Every negative semi-cycle of length two is followed by a positive semi-cycle of length two. 
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Proof: 

 

1 0 1 0A x y y x− −> > > > , 0 1 0 0A x y y x−> > > > , 0 1 0 1A y x x y− −> > > > , 1 1 0 0A y x y x− −> > > > , 

The solution nx  and ny  can be obtained as follows: 

0 0
1

1 0 0

max , y yAx x
x x x−

 
= = < 

 
, 

0
1

1 0 1

max , xA Ay y
y y y− −

 
= = < 

 
,  

01
2

0 1 0 0 1 0

max , max , AxyA A Ax x
x x x y y x−

   
= = = <   

   
,  

0 11
2

0 1 0 0 0

max , max , y yxA A Ay y
y y y Ax y

−   
= = = <   

   
,  

0 0 02
3

1 2 0 0 0

max , max ,Ax x AxyAx x
x x y y y

  
= = = >   

   
,  

02
3 1 1

1 2 0

max , max , yxAy y y y
y y x− −

  
= = = >   

   
,  

3 0 1
4 0 0

2 3 0

max , max ,y y yAx x x x
x x Ax

−   
= = = >   

   
,  

3 0
4 0 0

2 3 0 1

max , max ,x AxAy y y y
y y y y−

   
= = = >   

   
,  
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0 0 04
5

3 4 0 0 0

max , max ,y y yyAx x
x x x x x

   
= = = <   

   
,  

04
5

3 4 1 0 1

max , max , xxA A Ay y
y y y y y− −

   
= = = <   

   
,  

5 0
6

4 5 0 0 1 0

max , max ,y AxA A Ax x
x x x y y x−

   
= = = <   

   
,  

5 0 1
6

4 5 0 0 0

max , max ,x y yA A Ay y
y y y Ax y

−   
= = = <   

   
,  

6 0 0 0
7

5 6 0 0 0

max , max ,y Ax x AxAx x
x x y y y

   
= = = >   

   
,  

6 0
7 1 1

5 6 0

max , max ,x yAy y y y
y y x− −

   
= = = >   

   
,  

7 0 1 0 1
8 0

6 7 0 0

max , max ,y y y y yAx x x
x x Ax x

− −   
= = = >   

   
,  

7 0
8 0 0

6 7 0 1

max , max ,x AxAy y y y
y y y y−

   
= = = >   

   
,  

. 

. 

. 

Hence we obtained. 

1x x< ,  2x x< , 3x x> ,  4x x> , 5x x< ,  6x x< , 7x x> ,  8x x> , … 

1y y< ,  2y y< , 3y y> ,  4y y> , 5y y< ,  6y y< , 7y y> ,  8y y> , … 
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Hence, the solution 0n ≥  for nx  and ny , every positive semi-cycle consists of two terms, every negative 

semi-cycle consists of two terms. 

Lemma2: Assume that, ( )1,A∈ ∞  ( )0 1 0 1, , , 1,x x y y− − ∈ ∞  integer sequence for equation (1.1) 

1 1 0 0x A y y x− −> > > > , 1 0 0 1x y A x y− −> > > > ,  

Then the following statements are true: 

0n ≥  for nx  and ny , 

 

a) Every positive semi-cycle consist two term. 

b) Every negative semi-cycle consist two term. 

c) Every positive semi-cycle of length two is followed by a negative semi-cycle of length two. 

d) Every negative semi-cycle of length two is followed by a positive semi-cycle of length two. 

 

Proof: Lemma 2 proof’s can be obtained similarly Lemma 1. 

 

Lemma3: Assume that, ( )1,A∈ ∞  ( )0 1 0 1, , , 1,x x y y− − ∈ ∞  integer sequence for equation (1) 

1 0 0 1x A y x y− −> > > > ,   

Then the following statements are true: 

0n ≥  for nx  and ny , 

 

a) Every positive semi-cycle consist two term. 

b) Every negative semi-cycle consist two term. 

c) Every positive semi-cycle of length two is followed by a negative semi-cycle of length two. 

d) Every negative semi-cycle of length two is followed by a positive semi-cycle of length two. 

 

 

Proof: 

 

Lemma 3 proof’s can be obtained similarly Lemma 1. 
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Theorem 1: Let  ( ),n nx y   be a solution of equation (1) for 1 0 1 0A x y y x− −> > > > , 0 1 0 0A x y y x−> > > > , 

0 1 0 1A y x x y− −> > > > , 1 1 0 0A y x y x− −> > > > , 

Then for 0,1,...n =    we have, 

0 0
0

0 0 0

( ) ; ; ; ;  ...y AxAx n x
x x y

 
=  
 

, 

1 0
1 0

( ) ; ; ; ;  ...A Ay n y y
y y −
−

 
=  
 

.  

 

Proof: We obtain  

0 0
1

1 0 0

max , y yAx
x x x−

 
= = 

 
, 

0
1

1 0 1

max , xA Ay
y y y− −

 
= = 

 
,  

01
2

0 1 0 0 1 0

max , max , AxyA A Ax
x x x y y x−

   
= = =   

   
,  

0 11
2

0 1 0 0 0

max , max , y yxA A Ay
y y y Ax y

−   
= = =   

   
,  

0 0 02
3

1 2 0 0 0

max , max ,Ax x AxyAx
x x y y y

  
= = =   

   
,  

02
3 1 1

1 2 0

max , max , yxAy y y
y y x− −

  
= = =   

   
,  

3 0 1
4 0 0

2 3 0

max , max ,y y yAx x x
x x Ax

−   
= = =   

   
,  
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3 0
4 0 0

2 3 0 1

max , max ,x AxAy y y
y y y y−

   
= = =   

   
,  

0 0 04
5

3 4 0 0 0

max , max ,y y yyAx
x x x x x

   
= = =   

   
,  

04
5

3 4 1 0 1

max , max , xxA A Ay
y y y y y− −

   
= = =   

   
,  

5 0
6

4 5 0 0 1 0

max , max ,y AxA A Ax
x x x y y x−

   
= = =   

   
,  

5 0 1
6

4 5 0 0 0

max , max ,x y yA A Ay
y y y Ax y

−   
= = =   

   
,  

6 0 0 0
7

5 6 0 0 0

max , max ,y Ax x AxAx
x x y y y

   
= = =   

   
,  

6 0
7 1 1

5 6 0

max , max ,x yAy y y
y y x− −

   
= = =   

   
,  

7 0 1 0 1
8 0

6 7 0 0

max , max ,y y y y yAx x
x x Ax x

− −   
= = =   

   
,  

7 0
8 0 0

6 7 0 1

max , max ,x AxAy y y
y y y y−

   
= = =   

   
, 

. 

. 

. 

Thus,  
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0 0
0

0 0 0

( ) ; ; ; ;  ...y AxAx n x
x x y

 
=  
 

, 

1 0
1 0

( ) ; ; ; ;  ...A Ay n y y
y y −
−

 
=  
 

.  

the solutions are shown to be 4-period. 

 

Theorem 2: Let  ( ),n nx y   be a solution of equation (1) for 1 1 0 0x A y y x− −> > > > , 

1 0 0 1x y A x y− −> > > > , 

Then for 0,1,...n =    we have, 

0 0
0

0 0 0

( ) ; ; ; ;  ...y AxAx n x
x x y

 
=  
 

, 

1 0
1 0

( ) ; ; ; ;  ...A Ay n y y
y y −
−

 
=  
 

. 

 

Proof: Proof of the Theorem 2 can be obtain similar way to the Theorem 1. 

 

Theorem 3:  Let  ( ),n nx y   be a solution of equation (1) for 1 1 0 0A x y x y− −> > > > , 

1 0 0 1x A y x y− −> > > > ,  

Then for 0,1,...n =    we have, 

0 0 0 11

1 0 1 0 0

( ) ; ; ; ;  ...x Ax y yAyx n
y y y x x

−−

− −

 
=  
 

, 

1 0
1 0

( ) ; ; ; ;  ...A Ay n y y
y y −
−

 
=  
 

.  

 

Proof: 

Proof of the Theorem 3 can be obtain similar way to the Theorem 1.  
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Abstract 

Nowadays we are very interested about the infections caused by different viruses, to know the most 

activity spread during years and to make predictions for the future. According to the world health 

organization WHO online data updated every week, we can evaluate the seasonal influence activity of 

viruses A, B and their subtypes. We will propose a decision-making model based on two methods AHP 

and ANP. According to the decision-maker Goal, we can choose the most spread virus by his activity. 

There are 5 types of activity according to one year of study: no activity, sporadic, local outbreak, 

widespread outbreak, regional outbreak. The software used is "Super Decision" version 2.10. In fact we 

can`t agree that one method is better than another because it depends on the purpose of the problem. We 

will see results in both methods and we will make their comparisons in each case. Generally in the last 10 

years, the two methods show that the priority activity in general in each season is no activity, and the 

more spread virus is AH1N1. 

 
Keywords: Super decisions, AHP, ANP, influenza virus activity, pairwise comparisons. 
 

1. Introduction  

In 1952 the World Health Organization (WHO) Executive Board decided to have a system for the 

influenza surveillance in order to collect some data regarding occurrence, epidemiology, viruses etc. The 

laboratory is called “The Global Influenza Surveillance and Response Systems” (GISRS). It includes 143 

institutions and 113 member states, as a network built on voluntary collaboration and real time reporting. 

In 11 March 2019 GISRS launched the strategy for 2019-2030 in order to protect people from the threat 

of influenza. The goal of the strategy is to prevent seasonal influenza, in order to prevent the next 

influenza from animals to humans. Regarding the situation about the predictive modeling, we have used 

the multi criteria decision making (MCDM) models as: analytic hierarchic process (AHP) and analytic 

network process (ANP) for the data collected from WHO European Region, United Kingdom of Great 

Britain and North Ireland from 2010 till nowadays. The report is updated every week, and data are at real 

time collected. The aim of this study is to compare the two models. T. L. Saaty developed the AHP in 

1971- 1975 (University of Pennsylvania, Philadelphia). AHP is used to determine relative priorities on 

absolute scales from both discrete and continuous cases of the paired comparisons in hierarchic structures 

(Saaty and Vargas, 1996). The importance measurement has been developed by Saaty (1980, 1996) to 

represent the relative importance of the criteria, known as Saaty Scale. Pairwise comparisons matrices of 

these factors provide the means for calculation of importance (Sharma et al., 2008). AHP is a hierarchic 

decision model with a Goal (Main scope), then next level is Criteria as a cluster of nodes that are being 

pairwise compared for their importance to the goal, next level of criteria are alternatives also evaluated 

for the preference to each criterion. In other hand ANP does not have a Goal, it has only Criteria and 

Alternatives.  The ANP method is a mathematical theory for evaluating a network and all kinds of 

dependence and feedback on it, by priorities as ratio scales of criterion and alternatives. The connection 
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between nodes of each cluster is anyway for the inner and outer dependence. The AHP model is an 

hierarchic structure that rank the alternatives according to the Goal, while ANP compares the dependence 

between the nodes of criteria cluster and nodes of alternatives cluster called outer dependence, and the 

inner dependence between nodes to a cluster [6]. 

 

Fig. 1 Structure models 

2. Materials and Methods  

The data used in this paper are from World Health Organization (WHO) from GISRS, Flu-Net functions 

online data for United Kingdom of Great Britain and North Ireland, from 01.01.2010 to 29.04.2019, week 

by week all these years. They are organized with type A viruses including subtypes AH1, AH1N1, AH3, 

A and B viruses that are B Yamangata Lineage, B Victoria Lineage, B Lineage. For every week, we have 

a column named “ILI activity” for each virus with types: no activity, sporadic, local outbreak, widespread 

outbreak, regional outbreak. We have formulated a Goal Cluster named “the most spread virus” for the 

decision-maker. The Goal: Which is the most spread virus over these years for these “ILI activities”? 

According to the data we will built a hierarchy with AHP method by taking as a first level a cluster that 

will be called Criteria, and the next level a cluster that will be Alternative. The Criteria cluster will have 

nodes of five activities, and Alternative cluster will have seven nodes of types of viruses. While the ANP 

process will be the same hierarchy without the goal, and the clusters will be the same with their nodes as 

AHP Hierarchy. 

AHP Method 

In the literature AHP, has been widely used in solving many decision making problems, in many areas 

and applications. Kangas et al., 2001, Kajanusa et al., 2004; Arslan and Turan, 2009; Kandakoğlu et al., 

2009; Dinçer and Görener, 2011; Lee and Walsh, 2011; Saaty and Vargas, L.G. (1982, 1991, 2000, 

2006); Dinçer and Görener, 2011; Lee and Walsh, 2011; Amir Azizi 2014; Naila Jan 2018; Luis G 

Vargas, H. J. Zoffer 2019. Clusters are connected by a line, we say nodes in them are connected and it 

means that the criteria must be pairwise compared for their importance with respect to the Goal, similarly 

Alternatives must be pairwise compared for their importance to Criteria. Clusters are connected by a line, 

we say nodes in them are connected and it means that the criteria must be pairwise compared for their 

importance with respect to the Goal, similarly Alternatives must be pairwise compared to Criteria for 

their importance. In order to determine the relative importance we have used Saaty’s scale. Many 

questionnaire have been formulated to answer by experts in health based on Saaty scale, evaluations are 

made from mathematicians [5],[11]. 
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Table 1 

Relative 

importance value 

 

      Importance   

 

    Explanation  

1 Equal  Two nodes have equal importance. 

3 Moderate Experience moderately favors one node over the other. 

5 Strong  Experience strongly favors one node over the other. 

7 Demonstrated  A node is strongly favored and has a demonstrated dominance. 

9 Extreme strong A node is on the highest possible order domination. 

2,4,6,8 Intermediate values A node with compromise intermediate value. 

 

The relative weights were measured using the Super Decision Software. The instructions on how to use 

the Super Decisions software were prepared by Rozann W. Saaty,wife of Thomas L. Saaty of the Creative 

Decisions Foundation. The software that implements the Analytic Network Process, Super Decisions, was 

developed by William J. Adams of Embry Riddle Aeronautical University, Daytona Beach, Florida, 

working with Rozann W. Saaty. The dictionary of ANP applications, the Encyclicon, included here as an 

appendix, was compiled from materials by Thomas L. Saaty and his students, Luis Vargas etc [3]. 

 
 

 

 

 

 

 

 

 

Fig.2 AHP model with Super Decision 

The matrix of pairwise comparisons of Criteria cluster is a matrix with elements 1-9 according to the data 

obtained for the ILI Activity (Figure 2) of the viruses as: 

          
  

       

   
       

   (1). 

The relative weights are given by the right eigenvector  , corresponding to the largest eigenvalue      

where            [4]. Decision makers can weight the elements at each level using Saaty’s scale 

from 1 to 9 and then calculate the global weights at the bottom level using pairwise comparisons (2).   
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     ,      

 
          (2) 

The inconsistency index is associated with matrix of the weights    
      

   
. The consistence ratio is 

        , where RI is the average of the eigenvalues as shown in the table nr 2 below. In order to 

improve the consistency of the pairwise comparisons CR, we need to adjust CI, but not larger as the 

judgment is, and thus the overall inconsistency should be less than 10%. [11]. 

       Table nr 2 

 

 

ANP Method 

 

Everything we decide to do, and the decisions we make, in essence we are all decision-makers. To 

improve our understanding and judgments is not useful all the information. In some papers authors say 

that too much information is as bad as little information. The information that we have to use for the 

judgments is to help us understand occurrences. There are many uses of the ANP model. Dağdeviren and 

Yüksel (2007) developed an ANP-based personel selection system and weighted personel selection 

factors.Yang et al. (2009) developed a manufacturing evaluation system model with ANP approach for 

wafer fabricating industry. Valmohammadi (2010) used the ANP to identify specific resources and 

capabilities of an Iranian dairy products firm and to develop an evaluation framework of business 

strategy, Amir Azizi (2014) proposed a paper in comperative study of AHP and ANP on multi automotive 

suppliers with Multi Criteria, Feibert (2016) used the ANP to assess the distribution of pharmaceuticals in 

hospitals, Sajad Zare (2018) used the ANP method for prioritizing and weighting shift work disorders 

among the personnel of hospitals of Kerman University of medical Science. The ANP model does not 

have the top-bottom form of the AHP hierarchy. ANP structure seems like a network with cycles 

connecting the criteria level itself and with the alternative level, and vice versa. ANP consist of four steps 

(Satty, 1996), [8],[9]. 

 

Step 1. The problem have to be construct like a network with connections and loops. We have criteria 

cluster with five nodes as subcriteria, and alternative cluster with seven nodes connected respectively to 

each other and with  the loops itself.  

Step 2. Perform pairwise comparisons on the clusters connected to each others, evaluating their 

importance respectively to criteria and alternative. 

Step 3. Compute the limit supermatrix. Synthesize to obtan the limit priority and ideal alternative.       

Step 4. Create a ratings model and conduct a sensitivity analysis for the final outcame. 

 

Order  1 2 3 4 5 6 7 8 9 10 

R.I 0 0 0.52 0.89 1.11 1.25 1.35 1.40 1.45 1.49 
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Fig.3 ANP model with Super Decision 

The ANP provides a way to judge and measure ratio scales priorities for the distribution of influenza data. 

In fact the AHP theory is a special case of ANP theory. It’s not true that an ANP model always outputs 

better results than the AHP. ANP is a theory that extends the AHP to a structure of dependence and 

feedback and generalizes on the supermatrices approach introduced in Thomas Saaty’s 1980 book. It 

allows interactions and feedback to all nodes of the cluster as inner dependence and between clusters 

outer dependence. Similarly as the AHP method the pairs of comparisons for each cluster are being 

compared respectively to their importance within the nodes of the cluster and between the clusters [7]. A 

questionnaire was made to the decision makers to respond for the Saaty scale of two comparisons. 

 

3. Main Results 

AHP Method. [9],[10] Firstly we have to construct the A matrix of comparisons to criteria cluster by 

Saaty scale. Using the super decision software we have these values for our data base [2]: 

 

 Sporadic   No activity    Local      Widespread       Regional 

Sporadic            1            0.2              0.33             3.03                  1.85 

No activity 5                     1                1.11            2                        3 

Local 3                    0.9                1                4                       2 

Widespread 0.33                 0.5              0.25            1                      0.5 

Regional              0.54               0.33             0.5              2                       1 
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The weights of the   vector of pairwise comparisons are: 

                                                   

                                                      with                    , 

If    is larger than 10%, the input data have to be reconsider by Saaty scale to explain better the problem 

decision making. The next step is the pairwise comparison between each node of criteria cluster to all 

nodes of alternative cluster. The consistence ratio for cluster of 5 nodes is  

     
         

            

The values of a higher CR also depend on the specific decision making problem, the out coming priorities 

and the required accuracy. The perfectly priorities are being selected well if the number of the criteria is 

5-9 nodes. This is because the human limits on our capacity for generating information, published by 

George A. Miller in 1956, and taken-up Saaty and Ozdemir in 2003. For our data we have to do the 

pairwise comparisons for each node of Criteria to the alternative cluster. 

The   normalized vector for Sporadic node, by computing the comparisons with alternative nodes is: 

                                                               

                                             with                

      
         

            

The    normalized vector for No Activity node, by computing the pairwise comparisons with alternative 

nodes is:                                                                   

                                                         with               

     
          

            

The   normalized vector for Local outbreak node, by computing the pairwise comparisons with 

alternative nodes is:                                                                      

                                                             with              

     
         

           

The   normalized vector for Widespread outbreak node, by computing the comparisons with alternative 

nodes is:                                                                           

                                                                  with               
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The   normalized vector for Regional outbreak node, by computing the pairwise comparisons with 

alternative nodes is: 

                                                                        

                                                                with              

     
         

            

The matrix of the   weights normalized for the alternatives have to be multiplicative with the   global 

weights of the criteria cluster. 

0.092 0.159 0.176 0.130 0.128

0.322 0.165 0.343 0.271 0.267 0.1

0.077 0.067 0.112 0.118

0.207 0.238 0.087 0.083 0.148

0.122 0.179 0.086 0.163 0.121

0.086 0.08 0.082 0.111 0.115

0

0.062

.091 0.108 0.162 0.127 0.098
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Ranking the most spread virus we find out that the most spread is AH1N1 about 25.7%, then the second 

virus is A with its subtypes about 16.3%, then virus AH1 about 14.5%, virus B Yamagata about 13.2%, 

virus B lineage 12%, virus AH3 10.4%, the last virus B Victoria 7.54%. 

 

 

ANP Method 

ANP method is composed as a network, in which we have to compare the dependences in the same level 

and between levels [9]. So the calculations have to be double compared to AHP method. Since there are 

many calculations for ANP, we better share the nodes in the cluster for having the efficient results. There 

are three supermatrices with the network [1]: The Unweighted Supermatrix contains the priorities from 

the pairwise comparisons, the Weighted supermatrix obtains the multiplications of all the elements in a 

component of the unweighted supermatrix by the corresponding cluster weight, and Limit Supermatrix is 

obtained by raising the weighted supermatrix to powers until the column of numbers is the same for every 
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column, in alphabetical order for their nodes of comparisons [3]. The 

inner dependence is for the same nodes of the clusters [10]. So we 

have results for Criteria and Alternatives nodes: 

 

IC=0.08714                                       

IC=0.08533 

 

 

 

 

 

After comparing the outer dependence and constructing the supermatrices, we have the priorities: [3] 

 

Fig. 4 Priorities ANP 

For the whole network the most spread virus is AH1N1 with 0.43=43% priority value for the alternatives, 

and the best activity node NO Activity with 0.58=58% priority value for criteria cluster. The importance 

is ranked as follows: AH3=14.28%, A=11.4%, B Yamagata=8.9%, AH1=8.7%, B Victoria=7.8%, B 

lineage=5.4%. Comparing to AHP we have: 

Rank AHP 1.AH1N1 2.A 3.AH1 4.B Yamagata 5.B Lineage 6.AH3 7.B Victoria 

Rank ANP 1.AH1N1 2.AH3 3.A 4. B Yamagata 5. AH1 6.B Victoria 7. B Lineage 

 

Local outspread 0.29971 

No activity 0.35739 

Regional 0.11636 

Sporadic  0.14464 

Widespread 0.08189 

AH1 0.09246 

AH1N1 0.32266 

AH3 0.07708 

A 0.20768 

B Yamagata 0.12258 

B Victoria 0.08649 

B Lineage 0.09194 
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4. Conclusion 

The final ranking for the most spread virus during the application of the AHP and ANP methods are 

significantly the same for the best alternative node AH1N1, but different for the other nodes. The reason is 

that AHP is a hierarchy model with a main goal, but ANP a network with inner and outer dependence. Is 

better using AHP method instead of ANP wherever possible, trying to keep the nodes in a cluster between 

5-9 for both methods. Always use AHP as a method to get consolidated results in ranking alternatives  

and use ANP as a tool to gain deeper inside into a decision problem, evaluated its ranking by decision 

makers main scopus.  
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Abstract 

In this paper, our aim is to study the stability of following difference equation 𝑥𝑛+1 =
𝛾𝑥𝑛−2

𝐵𝑥𝑛+𝐷𝑥𝑛−2
. 

Moreover we investigate the boundedness and convergence of solutions of related difference equation.  

 

Keywords: Difference equations, stability, boundedness 
 

 

1. Introduction  

The dynamic analysis of difference equations (or recursive sequences) has an important place in applied 

sciences. Because applied sciences need many mathematical models for real life situations. Many real life 

problems consist of discrete variables like numbers of bacteria. The solutions of mathematical models 

created by difference equations are used for this problems. From this reason, difference equations have 

been huge attention by a lot of researchers for the last years. Although this attention have many reasons, 

the most important of this reasons implementation to different fields of science such as biology, economy 

and genetic. In literature, there are many papers and books related to difference equations (see [1]-[9]). 

Moreover, in [1], Camouzis and Ladas investigated the global behaviors of solutions of the following 

difference equations  

𝑥𝑛+1 =
𝛼 + 𝛽𝑥𝑛 + 𝛾𝑥𝑛−1 + 𝛿𝑥𝑛−2

𝐴 + 𝐵𝑥𝑛 + 𝐶𝑥𝑛−1 + 𝐷𝑥𝑛−2
, 𝑛 = 0,1, ⋯.    (1) 

with nonnegative parameters 𝛼, 𝛽, 𝛾, 𝛿, 𝐴, 𝐵, 𝐶, 𝐷 and with arbitrary nonnegative initial conditions 

𝑥−2, 𝑥−1, 𝑥0 such that the denominator is always positive.  

In this study we investigate the stability of following rational difference equations:  

𝑥𝑛+1 =
𝛾𝑥𝑛−2

𝐵𝑥𝑛 + 𝐷𝑥𝑛−2
, 𝑛 = 0,1, …                 (2) 

41



 

INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 

3-5 July 2019, Istanbul, Turkey 

 

where the initial conditions are nonnegative numbers.  

2. Preliminaries 

Definition 1. Let I be some interval of real numbers and let 𝑓: 𝐼𝑘+1 → 𝐼 be a continuously differentiable 

function. A difference equation of order (k+1) is an equation of the form 

𝑥𝑛+1 = 𝑓(𝑥𝑛, 𝑥𝑛−1, ⋯ , 𝑥𝑛−𝑘), 𝑛 = 0,1, ⋯.       (3) 

A solution of Eq.(3) is a sequence {𝑥𝑛}𝑛=−𝑘
∞  that satisfies Eq.(3) for all 𝑛 ≥ −𝑘.  

As a special case of Eq.(3), for every set of initial conditions 𝑥−2, 𝑥−1, 𝑥0 ∈ 𝐼, the third order difference 

equation 

𝑥𝑛+1 = 𝑓(𝑥𝑛, 𝑥𝑛−1, 𝑥𝑛−2), 𝑛 = 0,1, ⋯.       (4) 

has a unique solution {𝑥𝑛}𝑛=−2
∞ .  

Definition 2. A solution of Eq.(3) that is constant for all 𝑛 ≥ −𝑘i s called an equilibrium solution of Eq.(3). 

If 

𝑥𝑛 = �̅�, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ −𝑘 

is an equilibrium solution of Eq.(3), then �̅� is called an equilibrium point, or simply an equilibrium of 

Eq.(3). 

So a point �̅� ∈ 𝐼 is called an equilibrium point of Eq.(3) if 

�̅� = 𝑓(�̅�, �̅�, ⋯ , �̅�), 

that is, 

𝑥𝑛 = �̅�, 𝑓𝑜𝑟 𝑛 ≥ −𝑘 

is a solution of Eq.(3). 

Definition 3. Suppose that the function f is continuously differentiable in some open neighborhood of an 

equilibrium point �̅�. Let 

𝑞𝑖 =
𝜕𝑓

𝜕𝑢𝑖

(�̅�, �̅�, ⋯ , �̅�), 𝑓𝑜𝑟 𝑖 = 0,1,2, ⋯ , 𝑘 
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denote the partial derivative of 𝑓(𝑢0, 𝑢1, ⋯ , 𝑢𝑘) with respect to 𝑢𝑖 evaluated at the equilibrium point �̅� of 

Eq.(3). 

The equation 

𝑧𝑛+1 = 𝑞0𝑧𝑛 + 𝑞1𝑧𝑛−1 + ⋯ , 𝑞𝑘𝑧𝑛−𝑘, 𝑘 = 0,1, ⋯.        (5) 

is called the linearized equation of Eq.(3) about the equilibrium point �̅�. 

Definition 4. The equation 

𝜆𝑘+1 − 𝑞0𝜆𝑘 + 𝑞1𝜆𝑘−1 + ⋯ , 𝑞𝑘 = 0          (6) 

is called the characteristic equation of Eq.(5) about �̅�. 

Definition 5. Let �̅� an equilibrium point of Eq.(3). 

(a) An equilibrium point �̅� of Eq.(3) is called locally stable if, for every 𝜀 > 0; there exists 𝛿 > 0 such that 

if {𝑥𝑛}𝑛=−𝑘
∞  is a solution of Eq.(3) with 

|𝑥−𝑘 − �̅�| + |𝑥1−𝑘 − �̅�| + ⋯ + |𝑥0 − �̅�| < 𝛿 

then 

|𝑥𝑛 − �̅�| < 𝜀, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ −𝑘. 

(b) An equilibrium point �̅� of Eq.(3) is called locally asymptotically stable if, it is locally stable, and if in 

addition there exists 𝛾 > 0 such that if {𝑥𝑛}𝑛=−𝑘
∞  is a solution of Eq.(3) with 

|𝑥−𝑘 − �̅�| + |𝑥1−𝑘 − �̅�| + ⋯ + |𝑥0 − �̅�| < 𝛿 

then we have 

lim
𝑛→∞

𝑥𝑛 = �̅�. 

(c) An equilibrium point �̅� of Eq.(3) is called a global attractor if, for every solution {𝑥𝑛}𝑛=−𝑘
∞  of Eq.( 3), 

we have 

lim
𝑛→∞

𝑥𝑛 = �̅�. 
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(d) An equilibrium point �̅� of Eq.(3) is called globally asymptotically stable if it is locally stable, and a 

global attractor. 

(e) An equilibrium point �̅� of Eq.(3) is called unstable if it is not locally stable. 

Theorem 1 (The Linearized Stability Theorem). Assume that the function F is a continuously 

differentiable function defined on some open neighborhood of an equilibrium point �̅�. Then the following 

statements are true: 

(a) When all the roots of Eq.(6) have absolute value less than one, then the equilibrium point �̅� of Eq.(3) is 

locally asymptotically stable. Moreover, in this here the equilibrium point �̅� of Eq.(3) is called sink. 

(b) If at least one root of Eq.(6) has absolute value greater than one, then the equilibrium point �̅� of Eq.(3) 

is unstable. 

(i) The equilibrium point �̅� of Eq.(3) is called hyperbolic if no root of Eq.(6) has absolute value 

equal to one. 

(ii) If there exists a root of Eq.(6) with absolute value equal to one, then the equilibrium �̅� is called 

nonhyperbolic. 

(iii) An equilibrium point �̅� of Eq.(3) is called a saddle point if it is hyperbolic and if there exists a 

root of Eq.(6) with absolute value less than one and another root of Eq.(6) with absolute value greater than 

one. 

(iv) An equilibrium point �̅� of Eq.(3) is called a repeller if all roots of Eq.(6) have absolute value 

greater than one. 

Theorem 2 ([3], p.207).  Suppose that 𝑓: [𝑎, 𝑏]3 → [𝑎, 𝑏] is a continuous function and let [𝑎, 𝑏] be an 

interval of real numbers. 

(i) 𝑓(𝑥, 𝑦, 𝑧) is non-increasing in x and y for each 𝑧 ∈ [𝑎, 𝑏] and is non-decreasing in z for each x 

and 𝑦 ∈ [𝑎, 𝑏] of its arguments; 

(ii) If (𝑚, 𝑀) = [𝑎, 𝑏] × [𝑎, 𝑏]  is a solution of the system 

𝑀 = 𝑓(𝑚, 𝑚, 𝑀) 𝑎𝑛𝑑 𝑚 = 𝑓(𝑀, 𝑀, 𝑚) 
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then 𝑚 = 𝑀. 

If (i) and (ii) hold then Eq.(4) has a unique equilibrium �̅� ∈ [𝑎, 𝑏] and every solution of Eq.(4) 

converges to �̅�. 

3. Main Results 

Firstly we present some results given by Camouzis and Ladas in [1], p184.  

The normalized form of Eq.(2) is  

𝑥𝑛+1 =
𝑥𝑛−2

𝐵𝑥𝑛 + 𝑥𝑛−2
, 𝑛 = 0,1, …          (7) 

with positive parameter B and arbitrary nonnegative initial conditions. Moreover the equilibrium point of 

Eq.(7) is �̅� =
1

𝐵+1
 and if 𝐵 < 1 + √2 holds then the equilibrium point �̅� =

1

𝐵+1
  of Eq.(7) is locally 

asymptotically stable. 

Theorem 3. Let the initial conditions 𝑥−2, 𝑥−1, 𝑥0 ≥ 0 and 𝐵 ∈ (0,1 + √2). Hence Eq.(7) is bounded from 

below and above with 0 ≤ 𝑥𝑛 ≤ 1 for all 𝑛 ≥ 1.  

Proof. Let 𝑥−2, 𝑥−1, 𝑥0 ≥ 0 and 0 < 𝐵 < 1 + √2. We have from Eq.(7),  

𝑥1 =
𝑥−2

𝐵𝑥0 + 𝑥−2
≥ 0, 

𝑥2 =
𝑥−1

𝐵𝑥1 + 𝑥−1
=

𝑥−1

𝐵 (
𝑥−2

𝐵𝑥0 + 𝑥−2
) + 𝑥−1

≥ 0, 

and by induction, we get  

𝑥𝑛 =
𝑥𝑛−3

𝐵𝑥𝑛−1 + 𝑥𝑛−3
≥ 0.         (8) 

From Eq.(7) and 𝐵 ∈ (0,1 + √2), we obtain  

𝑥𝑛+1 =
𝑥𝑛−2

𝐵𝑥𝑛 + 𝑥𝑛−2
≤

𝑥𝑛−2

𝑥𝑛−2
= 1, 

for all 𝑛 ≥ 1. So, 𝑥𝑛 ∈ [0,1].  
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Theorem 4 (Conjecture 5.39.1 of [1]). Assume that 𝐵 < 1 + √2 holds. Then every positive solutions 

of Eq.(7) converges to positive equilibrium, �̅� =
1

𝐵+1
.  

Proof. Now we apply to Theorem 2 for Eq.(7). Let 𝑎 and 𝑏 are real numbers and assume that  

𝑓: [𝑎, 𝑏]3 → [𝑎, 𝑏] 

a function defined by  

𝑓(𝑥, 𝑦, 𝑧) =
𝑧

𝐵𝑥 + 𝑧
.                    (8) 

 (i) According to Theorem 2, we calculate the partial derivative of (8):  

𝜕𝑓(𝑥, 𝑦, 𝑧)

𝜕𝑥
= −

𝐵𝑧

(𝐵𝑥 + 𝑧)2
< 0, 

𝜕𝑓(𝑥, 𝑦, 𝑧)

𝜕𝑦
= 0, 

𝜕𝑓(𝑥, 𝑦, 𝑧)

𝜕𝑧
=

𝐵𝑧

(𝐵𝑥 + 𝑧)2
> 0. 

 So, 𝑓(𝑥, 𝑦, 𝑧) is non-decreasing in z for each x and 𝑦 ∈ [𝑎, 𝑏] and is non-increasing in x and y for 

each 𝑧 ∈ [𝑎, 𝑏].  

 (ii) Assume that (𝑚, 𝑀) = [𝑎, 𝑏] × [𝑎, 𝑏] is a solution of the system  

𝑀 = 𝑓(𝑚, 𝑚, 𝑀) 𝑎𝑛𝑑 𝑚 = 𝑓(𝑀, 𝑀, 𝑚) 

then from Eq.(7), we have following equalities:  

𝑀 =
𝑀

𝐵𝑚 + 𝑀
,     𝑚 =

𝑚

𝐵𝑀 + 𝑚
. 

From this we obtain 𝑚 = 𝑀. According to Theorem 2, every solutions of Eq.(7) converges to �̅� and the 

proof completed.  

Example 1. Consider the Eq.(7) with initial conditions 𝑥−2 = 1, 𝑥−1 = 2, 𝑥0 = 4 and 𝐵 = 1.5. Thus every 

positive solutions of Eq.(7) converges to �̅� =
1

𝐵+1
= 0.4.The following figure verifies our results.  
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Figure 1: Plot of Eq.(7) for 𝐵 = 1.5. 
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Abstract 

During this study we investigate the stability analysis of following system of difference 

equations 𝑥𝑛+1 = 𝑥𝑛−1𝑦𝑛 − 1, 𝑦𝑛+1 = 𝑦𝑛−1𝑥𝑛 − 1. Furthermore we research the boundedness of 

solutions of this system.  

 

Keywords: Difference equations, stability, boundedness, dynamical systems 
 

1. Introduction  

Discrete dynamic systems attract great attention among researchers. The reasons for this attention are the 

applications of these dynamic systems to different fields of science such genetics, economy, biology. Over 

the last years there are many paper to difference equations and dynamical systems for examples:  

In [1] Kurbanlı et al studied behaviour of positive solutions of system of difference equations  

𝑥𝑛+1 =
𝑥𝑛−1

𝑦𝑛𝑥𝑛−1 + 1
, 𝑦𝑛+1 =

𝑦𝑛−1
𝑥𝑛𝑦𝑛−1 + 1

. 

In [2] Kent et al studied studied long-term behaviour of solutions of difference equation 

𝑥𝑛+1 = 𝑥𝑛𝑥𝑛−1 − 1. 

Moreover, in [3] Wang et al and in [4] Liu et al obtained some important results about related difference 

equation. 

In this study we investigate the stability of following system of difference equations:  

𝑥𝑛+1 = 𝑥𝑛−1𝑦𝑛 − 1, 𝑦𝑛+1 = 𝑦𝑛−1𝑥𝑛 − 1, 𝑛 = 0,1, …                 (1) 

where all initial values are real numbers.  

2. Preliminaries 

Let us introduce a four-dimensional discrete dynamical system of the form  

𝑥𝑛+1 = 𝑓(𝑥𝑛, 𝑥𝑛−1, 𝑦𝑛, 𝑦𝑛−1), 𝑦𝑛+1 = 𝑔(𝑥𝑛, 𝑥𝑛−1, 𝑦𝑛, 𝑦𝑛−1),            (2) 
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𝑛 = 0,1,2, …, where 𝑓: 𝐼4 × 𝐽4 → 𝐼 and 𝑔: 𝐼4 × 𝐽4 → 𝐽 are continuously differentiable functions and 𝐼, 𝐽 are 

some intervals of real numbers. Moreover, a solution {(𝑥𝑛, 𝑦𝑛)}𝑛=−1
∞  of system (2) is uniquely determined 

by initial values (𝑥𝑖, 𝑦𝑖) ∈ 𝐼 × 𝐽 for 𝑖 ∈ {−1,0}. 

Definition 1. Along with the system (2), we consider the corresponding vector map 𝐹 =

{𝑓, 𝑥𝑛, 𝑥𝑛−1, 𝑔, 𝑦𝑛, 𝑦𝑛−1}. A point (�̅�, �̅�) is called an equilibrium point of the system (2) if  

�̅� = 𝑓(�̅�, �̅�, �̅�, �̅�), �̅� = 𝑔(�̅�, �̅�, �̅�, �̅�). 

The point (�̅�, �̅�) is also called a fixed point of the vector map 𝐹. 

Definition 2. Let (�̅�, �̅�) be an equilibrium point of system (2).  

i. An equilibrium point (�̅�, �̅�) of system (2) is called stable if, for every ε>0, there exists δ>0 such that, for 

every initial value (𝑥𝑖, 𝑦𝑖) ∈ 𝐼 × 𝐽, with  

∑|𝑥𝑖 − �̅�|

0

𝑖=−1

< 𝛿, ∑ |𝑦𝑖 − �̅�|

0

𝑖=−1

< 𝛿, 

implying |𝑥𝑛 − �̅�| < 𝜀 and |𝑦𝑛 − �̅�| < 𝜀 for 𝑛 ∈ ℕ.  

ii. An equilibrium point (�̅�, �̅�) of system (2) is called unstable, if it is not stable. 

iii. An equilibrium point (�̅�, �̅�) of system (2) is called locally asymptotically stable if it is stable and if, in 

addition, there exists γ>0 such that 

∑|𝑥𝑖 − �̅�|

0

𝑖=−1

< 𝛾, ∑ |𝑦𝑖 − �̅�|

0

𝑖=−1

< 𝛾, 

and (𝑥𝑛, 𝑦𝑛) → (�̅�, �̅�) as 𝑛 → ∞.  

iv. An equilibrium point (�̅�, �̅�) of system (2) is called a global attractor if (𝑥𝑛, 𝑦𝑛) → (�̅�, �̅�) as 𝑛 → ∞. 

v. An equilibrium point (�̅�, �̅�) of system (2) is called globally asymptotically stable if it is stable and a 

global attractor. 

Definition 3. Let (�̅�, �̅�)  be an equilibrium point of the map F where f and g are continuously differentiable 

functions at (�̅�, �̅�). The linearized system of system (2) about the equilibrium point (�̅�, �̅�) is 
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𝑋𝑛+1 = 𝐹(𝑋𝑛) = 𝐵𝑋𝑛, 

where  

𝑋𝑛 = (

𝑥𝑛
𝑥𝑛−1
𝑦𝑛
𝑦𝑛−1

) 

and B is a Jacobian matrix of system (2) about the equilibrium point (�̅�, �̅�). 

Linearized Stability Theorem (see [5], p 11). Assume that  

𝑋𝑛+1 = 𝐹(𝑋𝑛), 𝑛 = 0,1, …, 

is a system of difference equations such that �̅� is a fixed point of F.  

i. If all eigenvalues of the Jacobian matrix B about  �̅� lie inside the open unit disk |λ|<1, that is, if all of 

them have absolute value less than one, then  �̅� is locally asymptotically stable.  

ii. If at least one of them has a modulus greater than one, then �̅� is unstable. 

3. Main Results 

Firstly we study the equilibrium points of system (1).  

Theorem 1. System (1) has two equilibrium points which are 

(�̅�1, �̅�1) = (
1 − √5

2
,
1 − √5

2
), 

(�̅�2, �̅�2) = (
1 + √5

2
,
1 + √5

2
). 

Due to 
1+√5

2
≈ 1.618, the elements of second equilibrium point equal to golden ratio.  

Proof. We can easily seen for the equilibrium points of system (1): 

�̅� = �̅��̅� − 1, 

�̅� = �̅��̅� − 1. 

From this system we obtain the followings 
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�̅� = �̅��̅� − 1 = �̅�, 

�̅� = �̅��̅� − 1. 

Then we have �̅� = �̅� =
1±√5

2
.  

Now, we investigate the stability of first equilibrium point (�̅�1, �̅�1) of system (1).  

Theorem 2. The first equilibrium point (�̅�1, �̅�1) of system (1) is locally asymptotically stable. 

Proof. System (1) is equivalent to following system of difference equations:  

𝑡𝑛+1 = 1 − 𝑡𝑛−1𝑤𝑛,  𝑤𝑛+1 = 1 − 𝑤𝑛−1𝑡𝑛, 𝑛 = 0,1, …            (3) 

with change to variables  𝑥𝑛 = −𝑡𝑛 and 𝑦𝑛 = −𝑤𝑛. From this, equilibrium point (�̅�1, �̅�1) of system turn to 

positive equilibrium point  (𝑡,̅ �̅�) of system (3). We can clearly seen that 

(𝑡̅, �̅�) = (
√5 − 1

2
,
√5 − 1

2
). 

For this, we consider the transformation:  

(𝑡𝑛, 𝑡𝑛−1, 𝑤𝑛, 𝑤𝑛−1) → (ℎ, ℎ1, 𝑘, 𝑘1), 

where 

ℎ = 1 − 𝑡𝑛−1𝑤𝑛, 

ℎ1 = 𝑡𝑛, 

𝑘 = 1 − 𝑤𝑛−1𝑡𝑛, 

𝑘1 = 𝑤𝑛. 

Therefore we have the Jacobian matrix about equilibrium point (𝑡,̅ �̅�): 

𝐵(𝑡,̅ �̅�) = (

0 −�̅� −𝑡̅ 0
1 0 0 0
−�̅� 0 0 −𝑡̅

0 0 1 0

). 
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Thus, the linearized system about the equilibrium point (𝑡,̅ �̅�) = (
√5−1

2
,
√5−1

2
) is 𝑋𝑁+1 = 𝐵(𝑡,̅ �̅�)𝑋𝑁, where 

𝑋𝑁 = ((𝑡𝑛, 𝑡𝑛−1, 𝑤𝑛, 𝑤𝑛−1))
𝑇
 and  

𝐵(𝑡̅, �̅�) =

(

 
 
 

0
1 − √5

2

1 − √5

2
0

1 0 0 0

1 − √5

2
0 0

1 − √5

2
0 0 1 0 )

 
 
 

. 

So, the characteristic equation of 𝐵(𝑡,̅ �̅�) is  

𝜆4 − (
5 − 3√5

2
) 𝜆2 +

3 − √5

2
= 0.        (4) 

Hence, we have four roots of Eq.(4):  

|𝜆1| = |𝜆2| = |𝜆3| = |𝜆4| = 0.78615 < 1. 

From linearized stability theorem, all roots of the characteristic equation lie inside the unit disk. So, the 

positive equilibrium of system (3) is locally asymptotically stable. 

Theorem 3. The equilibrium point (�̅�2, �̅�2) of system (1) is locally unstable. 

Proof. Firstly we study linearized form of system (1). For this, we consider the transformation:  

(𝑥𝑛, 𝑥𝑛−1, 𝑦𝑛, 𝑦𝑛−1) → (𝑓, 𝑓1, 𝑔, 𝑔1), 

where 𝑓 = 𝑥𝑛−1𝑦𝑛 − 1, 𝑓1 = 𝑥𝑛, 𝑔 = 𝑦𝑛−1𝑥𝑛 − 1 and 𝑔1 = 𝑦𝑛. Therefore we have the Jacobian matrix 

about equilibrium point (�̅�, �̅�):  

𝐵(�̅�, �̅�) = (

0 �̅� �̅� 0
1 0 0 0
�̅� 0 0 �̅�
0 0 1 0

). 

Thus, the linearized system about the equilibrium point (�̅�, �̅�) = (
1+√5

2
,
1+√5

2
) is 𝑋𝑁+1 = 𝐵(�̅�, �̅�)𝑋𝑁, where 

𝑋𝑁 = ((𝑥𝑛, 𝑥𝑛−1, 𝑦𝑛, 𝑦𝑛−1))
𝑇
 and  
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𝐵(�̅�, �̅�) =

(

 
 
 

0
1 + √5

2

1 + √5

2
0

1 0 0 0

1 + √5

2
0 0

1 + √5

2
0 0 1 0 )

 
 
 

. 

So, the characteristic equation of 𝐵(�̅�, �̅�) is  

𝜆4 − (
5 + 3√5

2
) 𝜆2 +

3 + √5

2
= 0.        (5) 

Hence, we have four roots of Eq.(5) such that |𝜆1,2| < 1 < |𝜆3,4|. From linearized stability theorem, two 

roots of the characteristic equation lie inside the unit disk but the other roots lie outside the unit disk. So, 

the positive equilibrium of system (1) is locally unstable. 

4. Conclusion 

Throughout this paper, we investigate the stability of system (1). Further, we find out negative equilibrium 

point of system (1) is locally asymptotically stable. But we discover the positive equilibrium point of system 

(1) is unstable. 
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Abstract: Partial Least Squares Structural Equation Modeling (PLS-SEM) is a multivariate 
analysis technique for modeling the relations in several fields of knowledge including 
dimensions of poverty. The purpose of this article is to operationalize living conditions, social 
inclusion, education, expenditures as poverty dimensions with a view to understanding the links 
between them. The data is derived from Living Standards Measurement Survey (LSMS) 2012. 
The results show that education has a positive impact on expenditures and social inclusion. 
Relationships in structural models between latent dimensions are significant. Measurement 
models indicate allowed values for internal consistency, reliability, validity. Our findings support 
as instruction for PLS-SEM implementation in multidimensional poverty analysis. 
Keywords: partial least squares structural equation modeling, LSMS, latent dimension, measurement 

models.  

1. Introduction 
Nowadays it is necessary to study the phenomenon of poverty, well-being and the factors that 
cause them as the most important goal of development policies. Researchers studying the causes 
of poverty are mindful of the fact that the concept of poverty above all is a complex and 
multidimensional concept, has different meanings, multiple causes that cannot easily be 
distinguished [1], [2] . Poverty is a complex concept that we need to understand the ties between 
its dimensions. Partial least squares structural equation modeling (PLS-SEM) is a widely used 
method to analyze interaction between dimensions or constructs. In his study of Nepal, Wagle  
2008 [3] explores the relationship between latent poverty dimensions which in this case are 
considered well-being, capability, social inclusion, and set of observed indicators for each 
dimension. By PLS-SEM it is shown how these dimensions are interconnected with each other 
so that the results obtained can be used by policy makers. 
 
 

2. Materials and Methods 
Structural equation modeling (SEM) is a multivariate analysis technique for operationalizing 
latent variables, and describes the relationship between latent variables (dimensions) and its 
indicators. SEM includes two models: the measurement model or external model and structural 
model or inner model. Among the different approaches to estimating the model parameters in 
SEM are the covariance-based model and the variance-based model or partial least square (PLS) 
path model for which there has been a growing interest in recent decades [4]. The PLS-SEM 
ability is that it does not make assumptions about the distribution of data, it is used when 
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distributions are highly skewed used for metric data, nominal, ordinal data [5], is used in small 
samples and finally builds more complex models with many latent variables, indicators. 
 
In this study, data is derived from Living Standards Measurement Survey 2012 (LSMS 2012) 
which includes 2000 households. Partial Least Squares Structural Equation Modeling has been 
used through the SmartPLS3 program. So, in our study we have used the multidimensional 
approach of poverty it is necessary to quickly determine the dimensions to be taken into account 
and their corresponding variables. For the dimensions we have taken in the study we are based 
on available data, expert knowledge and, on the review of the literature on multidimensional 
poverty, where the latter includes Multidimensional Poverty Index [6].  
 
2.1 The variables selected in the study are: 
Educational Level, ED 
The father's educational level is ordinal variable, the values it receives are from 1 to 5 (four-year-
old school, four-year high school, high school, some high school, university), Ed1 
The mother's educational level is ordinal variable, the values it takes are from 1 to 5 (four-year-
old school, primary school, high school, some high school, university), Ed2 
 
 Expenditures Household, EX 
 
Family expenses are taken into account. 
 
Social Inclusion, SI 
Cinema is the ordinal variable, the values it receives are from 1 to 5 (never, 1 to 6 times, more 
than 6 times, every month, every week), SI1 
Live is the ordinal variable, the values it receives are from 1 to 5 (never, 1 to 6 times, more than 
6 times, every month, every week), SI2 
Cultural Sites is the ordinal variable, the values it receives are from 1 to 5 (never, 1 to 6 times, 
more than 6 times, every month, every week), SI3. 
 
Living Condition, LC 
The condition of dwelling type is variable ordinal, the values it receives are from 1 to 3 
(inappropriate for living, suitable for living, very good condition), LC1 
Outside apparence of building is the ordinal variable, the values that are taken are from 1 to 3 
(plastered, partially plastered, not plastered), LC2 
 
2.2 Conceptual Model 
The proposed model for our work includes four latent dimensions which include: ED, EX, SI, 
LC. Below are represented casual relationships between dimensions. 
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            Figure 1. Conceptual Model 
 
      3. Main Results 
3.1 Assessment of Measurement Model 
Our reflective dimension is used in our model. Reflective measurement models are evaluated 
based on the internal consistency reliability that includes the composite reliability statistic. The 
composite reliability values (CR) should be between 0.7 and 0.9 because values above this limit 
are problematic due to excessive indicators [4], [7]. Validity, that includes the convergent 
validity indicator, and, discriminant validity [5]. To estimate convergent validity, we should 
consider the indicator load and the average variance extracted (AVE), each having at least the 
value of 0.7 and, 0.5 respectively [5]. To study discriminant validity, consider the Fornell and 
Larcker’s  criterion [8].      

 
Table 1. Reflective measurement model 

 
Dimensions and indicators Loadings CR AVE 
Educational level  0.868 0.767 
Father educational level 0.893   
Mother educational level 0.857   
Expenditures 1 1 1 
Social Inclusion  0.881 0.713 
Cinema 0.875   
Live 0.886   
Cultural sites 0.776   
Living condition  0.918 0.849 
Condition of dwelling type 0.907   
Outside apparence of building 0.935   
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By the results reflected in Table 1, it is shown that all dimensions of this study are within the 
permissible parameters for Loading, CR, AVE. To evaluate discriminant validity we have used 
the Forner and Larcker’s criterion that requires the condition to be met: 
which requires all the square root of AVE to be higher than their inter-correlations dimensions. 
The values that are placed in the diagonal of table 2 indicate the AVE square root, and the other 
values inter-correlations between dimensions. 
 

Table 2.  Forner and Larcker criterion 
 

Dimensions Expenditure Living 
Condition 

Educational 
level 

Social 
Inclusion 

 Expenditure 1    
Living Condition 0.098 0.921   
Educational level 0.156 0.578 0.876  
Social Inclusion 0.185 0.180 0.238 0.844 

 
It is noted that all values outside the diagonal are smaller than those in the main diagonal, 
therefore Forner and Larcker criteria are met. 
 
3.2 Assessment of structural model 
Assessment of structural model includes the significance of the structural relations, the 
coefficient of determination R2. Table 3 shows the path coefficients, p-value, t-statistics, 
significance level for all paths. The analysis shows that the educational level has a significantly 
positively correlated impact on expenditures, also has a significant positive impact on social 
inclusion. Household expenditures have a positive impact on social inclusion. Educational level 
has a positive impact on living condition. Ultimately, all path coefficients are significant. 
 
 

Table 3. Path Coefficients of the Structural Model 
 

Path Path Coefficient t-statistics p-value 
ED→EX 0.156 12.378 0.000 
ED→ SI 0.214 10.859 0.000 
EX→ SI 0.152 12.734 0.000 
ED→ LC 0.578 32.187 0.000 
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For R2 values, it is difficult to set a lower limit of its values because it depends on the complexity 
of the model and field of study [5]. Based on the study of Falk and Miller (1992) [9] it is 
considered as a criterion that the value of R2 should not be less than 0.1. 
 
    

Table 4. Coefficient of determination for dimension, R2 

 
Dimension R2 

Expenditure 0.03 
Living Condition 0.33 
Social Inclusion 0.09 

 
Another size that is used for structural model estimation is effect size f2. The latter shows the 
effect of removing a dimension in the value of R2. As a rule, the values of f2 0.02, 0.14, 0.35 are 
respectively considered small, medium and large [10]. Table 5 shows the effect size values for 
each dimensional connection. The level of education has a substantial effect on living condition 
and a small size effect on expenditure and social inclusion. 
 
 

Table 5. Effect size 
 

Dimension Expenditure Living 
Condition 

Level 
Education 

Social 
Inclusion 

Expenditure    0.024 
Living Condition     
Level Education 0.025 0.501  0.049 
Social Inclusion     

 
 

4. Conclusions 
Using PLS-SEM helps in analyzing the dimensions of poverty by understanding how these 
dimensions are related to one another. From the results of the model, we draw conclusions about 
the impact that have dimensions with each other that serve to improve social policies. 
Specifically, our study confirmed the positive impact of education on social inclusion, 
expenditures and living conditions. In further studies it is thought that the model will expand and 
with other latent dimensions. 
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Abstract 

           Prime near-rings and prime near-ring modules ( N groups) have been studied by various authors 

[1-7]. The various notions of primeness that were defined in a near-ring N  are generalized to the 

N group Γ [3,6-7]. In [7] the authors gave some characterizations of completely prime (completely 

semiprime) and 3-prime (3-semiprime) N groups. 

           In this study, we give another  new characterizations of completely prime N group and 3-prime 

N group. Then we prove that they are equivalent. 

Keywords: near-ring, completely prime N-group, 3-prime N-group 

 

1. Introduction  

Near-rings, different from rings as they do not need to be abelian for first operation and they satisfy only 

one-side distribution law, are generalized rings. So, many concepts which are known in ring-theory are 

different for near-rings due to these two properties. Especially, the concept of primeness in ring theory 

appears as different types in near-ring theory. Holcombe [2] defined the notions of 0-prime (prime), 1-

prime and 2-prime. In [5] the authors gave the definitions of 3-prime and completely prime(c-prime) 

ideals. 

In [3] the authors generalized the various notions of primeness that were defined in a near-ring to the 

near-ring module. In [7] the authors gave some characterizations of completely prime (completely 

semiprime) and 3-prime (3-semiprime) N groups. 

In this study we give some new characterizations of completely prime and 3-prime N groups. 

 

2. Preliminaries 

Definition 1 An ideal I  of a near-ring N  is called a 3-prime (3-semiprime) ideal if for all ,x y N , 

xNy I ( xNx I ) implies x I  or y I ( x I ). 
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Definition 2 If for all ,x y N , xy I ( 2x I ) implies x I  or y I  ( x I ), then I N  is called a 

completely prime (completely semiprime) ideal. 

 

N  is called a completely prime (3-prime) near-ring if 0N  is completely prime (3-prime). 

 

Definition 3 If   is an additive group, then it is called an N group (near-ring module) if for all 

,x y N and   , 

a) x  , 

b)  x y x y     , 

c)    xy x y  . 

 

Definition 4 A normal subgroup P  of   is called an N  ideal of  ( NP  ) if   , 

p P  , n N  :  n p n P    . 

 

The Noetherian quotient  :
N

A B  is defined as the set  :n N nB A   where A , B  be subsets of  . 

 

Definition 5 [3] Let NP   be such that N P  and n N and   . 

a) If nN P   implies that n P  or P  , then P  is called 3-prime. 

b) If n P  implies that n P  or P  , then P  is called completely prime (c-prime). 

 

If 0N   and 0  is a 3-prime (completely prime) N  ideal of  , then   is called a 3-prime 

(completely prime) N group. 

 

3. Main Results 

Theorem 1 Let N P N . Then the followings are equivalent: 

)i P  is a completely prime ideal of N . 

)ii There is a completely prime N group   with (0 : )NP   . 

)iii There is an N group   with (0 : )NP    where 0xy   implies 0x   or 0y  for all 

,x y N and   . 

 

Proof 

( ) ( )i ii  Let P  be a completely prime ideal of N  and /N P  . Then   is an N group with the 

natural operations. Let p P  and x N . Then  p x P px P P    , since px P . Hence, 

 0 :
N

P   . Now assume that  0 :
N

x   . Then  x n P xn P P     for all n N , whence 
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xN P . Since P  is also a completely semiprime ideal of N , x P . Hence, (0 : )NP   . We need to 

show that   is a completely prime N group. Let  x m P P   for x N  and  

/m P N P  . We must show that /xN P P  or m P P  . If m P , then the proof complete. So 

suppose m P . Since  x m P P   whence xm P  and since P  is a completely prime ideal of N , 

x P . Then xn P  for all n N , since P  is an ideal of N . Hence  x n P P   for all n N , i.e.  

/xN P P . 

( ) ( )ii i  Suppose   is a completely prime N group and (0 : )NP   . Let ,x y N  such that xy P . 

Then 0xy   for all   . Since   is completely prime and y  , 0xy   implies 0x    or 

0y  . If 0x   , then (0 : )Nx P   . If 0y   for all   , then 0y    i.e. (0 : )Ny P   . 

Therefore P  is completely prime. 

 
( ) ( )i iii  Assume P  is a completely prime ideal of N  and /N P  . Then   is an N group and 

(0 : )NP    as in the proof of ( ) ( )i ii . Now let ,x y N  and /n P N P    such that 

 xy n P P  . Then xyn P . Since P  is completely prime, it follows that x P  or yn P . If x P , 

then we get xn P  i.e.  x n P P  . If yn P , then  y n P P  . So we are done. 

( ) ( )iii i  Let ,x y N  such that (0 : )Nxy P    . Then 0xy   for all   . Hence 0x   or 

0y   for all    by assumption; whence (0 : )Nx P    or (0 : )Ny P   . Thus, P  is a 

completely prime ideal of N . 

Corollary Let   be an N group. Then   is completely prime if and only if 0xy   implies that 

0x   or 0y   for all ,x y N  and   .  

The following proposition shows that similar charaterization exists for 3-prime N groups. 

Theorem 2  Let N P N . Then the followings are equivalent: 

)i  P  is a 3-prime ideal of N . 

)ii  There is a 3-prime N group   with (0 : )NP   . 

)iii  There is an N group   with (0 : )NP    where 0xNy   implies that 0x   or 0y  for all 

,x y N and   . 

 

Proof. ( ) ( )i ii ([3], Proposition 1.25) 
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( ) ( )i iii  Assume P  is a 3-prime ideal of N  and /N P  . Then   is an N group and (0 : )NP    

as in the proof of Teorem 1 ( ) ( )i ii . Also, let  xNy a P P   for ,x y N  and /a P N P  . Then 

xnya P  for all n N . Since P  is 3-prime, x P  or ya P . If x P , then xa P  since P N . Hence 

 x a P P  . If ya P , then  y a P ya P P    . 

( ) ( )iii i  Let ,x y N  such that (0 : )NxNy P    . Then 0xNy   for all   . Furthermore, by 

assumption, 0x   or 0y   for all   . It follows that (0 : )Nx P    or (0 : )Ny P   . 

Hence, P  is a 3-prime ideal of N . 

Corollary Let   be an N group. Then   is 3-prime if and only if 0xNy   implies that 0x   or 

0y   for all ,x y N  and   .  

4. Conclusion 

We obtain two new characterizations of prime N groups. Thanks to these characterizations, one can 

study with elements instead of studying with sets. 
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Abstract 

In this study, a combining matrix-collocation method based on Bell series and collocation points is 

presented to find the solution of Volterra integro-differential equations with variable coefficients 

involving functional delays under the mixed conditions. This method reduces the mentioned problem to a 

matrix equation corresponding to the system of linear algebraic equations with unknown Bell coefficients. 

Thereby, the solutions of the problem are obtained in terms of Bell polynomials.Some illustrative examples, 

which arise in physics, biology, chemistry,  mechanics and so on, are included to indicate the reliability and 

applicability of the method. Also, an error analysis technique based on residual functions is performed to 

check the accuracy of the solutions. 
 

Keywords: Volterra integro differential equaton, Bell polynomials and series, matrix - collocation method, functional delays, 

residual error. 

 

1. Introduction  

Volterra delay-integro-differential equations (VDIDEs) are combination of delay differential equation and 

Volterra integral equation.This class of equations plays an important role scientific fiels and engineering 

such as physics, biology, chemistry,  mechanics and so on[1,2]. Since the mentioned equations are usually 

difficult to solve analytically; therefore, numerical methods are needed. In recent years, for solving these 

equations, numerical methods have been developed. For example, numerical time-integration techniques 

of one-step collocation and Runge– Kutta methods [3-6], numerical treatments [7], Bernoulli collocation 

method [8], Taylor collocation method [9], Legendre spectral-collocation method [10] and etc. 

In this study, we consider the approximate solutions of high order linear Volterra integro-differential 

equtions with variable coefficients involving functional delays in the form         

∑ ∑𝑃𝑘𝑗(𝑥)𝑦(𝑘)

𝐽

𝑗=0

𝑚

𝑘=0

(𝑥 + 𝜏𝑘𝑗(𝑥)) = 𝑔(𝑥) + ∫ ∑𝐾𝑙

𝑚1

𝑙=0

𝑥

𝑎

(𝑥, 𝑡)𝑦(𝑙)(𝑡)𝑑𝑡, 𝑎 ≤ 𝑥, 𝑡 ≤ 𝑏; m1 ≤ 𝑚        (1) 

with the mixed conditions 

                                     ∑(𝑎𝑗𝑘𝑦
(𝑘)(𝑎) + 𝑏𝑗𝑘𝑦

(𝑘)(𝑏))

m−1

k=0

= λj, j = 0, 1 , … ,m − 1                           (2) 
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where and the kernel function 𝐾𝑙(𝑥, 𝑡)  are known functions defined on the interval 

 𝑎 ≤ 𝑥, 𝑡 ≤ 𝑏;𝑎𝑗𝑘 ,𝑏𝑗𝑘 and λj  are suitable constants. 

Our aim is to obtain an approximate solution of (1) in the following truncated Bell series form      

                                                                 𝑦(𝑥) ≅ 𝑦𝑁(𝑥) = ∑ 𝑎𝑛𝐵𝑛(𝑥)                                                        (3)

𝑁

𝑛=0

 

here 𝑎𝑛 , 𝑛 = 0,1,⋯𝑁  are unknown Bell coefficients and  𝐵𝑛(𝑥) ,𝑛 = 0,1,⋯ ,𝑁 ,are Bell polynomial 

defined by 

                                                                 𝐵𝑛(𝑥) = ∑ 𝑆(𝑛, 𝑘) 𝑥𝑘                                                                   (4)

𝑛

𝑘=0

 

where 

𝑆(𝑛, 𝑘) = ∑
(−1)𝑘−𝑗

𝑘!

𝑘

𝑗=0

(
𝑘

𝑗
) . 𝑗𝑛    

is Stirling numbers of the second kind [9 -12]. 

 

2. Fundamental Matrix Relations 

In this part we construct the fundamental matrix relations. Let us consider Eq.(1) and find the matrix 

forms. Firstly, we can convert the Bell polynomials (4) to the matrix form     

                                                                     𝐁(x) = 𝐗(x)𝐒                                                                           (5) 

where 

                                             𝐁(x) = [𝐵0(𝑥)  𝐵1(𝑥)… 𝐵𝑁(𝑥)]   , 𝐗(x) = [1  𝑥  𝑥2 … 𝑥𝑁]  

and 

𝐒 =

[
 
 
 
 
S(0,0)

0
0
⋮
0

  

S(1,0)
S(1,1)

0
⋮
0

  

S(2,0)
S(2,1)
S(2,2)

⋮
0

  

⋯
⋯
⋯
⋱
⋯

  

S(N, 0)
S(N, 1)
S(N, 2)

⋮
S(N,N)]

 
 
 
 

 

Let us show Eq. (1) in the form                                                                               
                                                                                    𝐷(𝑥) = 𝑔(𝑥) + 𝑉(𝑥)                                                         (6) 
where the functional differential part is 
                                                                   

            𝐷(𝑥) = ∑ ∑𝑃𝑘𝑗(𝑥)𝑦(𝑘)

𝐽

𝑗=0

𝑚

𝑘=0

(𝑥 + 𝜏𝑘𝑗(𝑥)) 
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and Volterra integral part is 

𝑉(𝑥) = ∫ ∑𝐾𝑙

𝑚1

𝑙=0

𝑥

𝑎

(𝑥, 𝑡)𝑦(𝑙)(𝑡)𝑑𝑡. 

Now we transform the parts 𝐷(𝑥),𝑉(𝑥)  and the conditions (2) to matrix forms. 

 

2.1Matrix relation for the differential part D(x)  

Let us consider the solution 𝑦(𝑥)  of (1) can be written in the matrix form 
                 

                                                          𝑦(𝑥) = 𝐁(𝑥)𝐀 ; 𝐀 = [𝑎0 𝑎1 . . . 𝑎𝑁]𝐓                                          (7) 

By substituting (5) into (7) we obtain that 
         

                                                                       𝑦(𝑥) = 𝐗(𝑥)𝐒𝐀.                                                                          (8) 

 

In addition to this, it is cleary seen [13] that the relation between the matrix 𝐗(x) and its kth derivative 

𝐗(𝑘)(x)  is 

                                                                                𝐗(𝑘)(𝑥) = 𝐗(𝑥)𝐌𝑘                                                                  (9)        
 

where 

         𝐌 =

[
 
 
 
 
0 1 0 ⋯ 0
0 0 2 ⋯ 0
⋮
0
0

⋮
0
0

⋮ ⋯ ⋮
0 ⋯ 𝑁
0 ⋯ 0]

 
 
 
 

 ,𝐌0 =

[
 
 
 
 
1
0
0
⋮
0

  

0
1
0
⋮
0

  

0
0
1
⋮
0

  

⋯
⋯
⋯
⋱
⋯

  

0
0
0
⋮
1]
 
 
 
 

. 

Therefore by using relations (8) and (9), we can write the following matrix form 

                                                 𝑦(𝑘)(𝑥) = 𝐁(k)(𝑥)𝐀 = 𝐗(k)(𝑥)𝐒𝐀 = 𝐗(𝑥)𝐌k𝐒𝐀 .                              (10) 

Similarly, if we put 𝑥 → 𝑥 + 𝜏𝑘𝑗(𝑥)  into (9), [14,15] we obtain the matrix relation 

                              𝑦(𝑘)(𝑥 + 𝜏𝑘𝑗(𝑥)) = 𝐗(k)(𝑥 + 𝜏𝑘𝑗(𝑥))𝐒𝐀 = �̅�(𝑥)Ɱ(𝜏𝑘𝑗(𝑥))𝐌k𝐒𝐀                  (11) 

where 

 

             Ɱ(𝜏𝑘𝑗(𝑥)) =

[
 
 
 
 
 
 (

0
0
)(𝜏𝑘𝑗(𝑥))0  (1

0
)(𝜏𝑘𝑗(𝑥))1 (2

0
)(𝜏𝑘𝑗(𝑥))2 ⋯ (𝑁

0
)(𝜏𝑘𝑗(𝑥))𝑁

0 (1
1
)(𝜏𝑘𝑗(𝑥))0   (2

1
)(𝜏𝑘𝑗(𝑥))1 ⋯ (𝑁

1
)𝜏𝑘𝑗(𝑥))𝑁−1

0
 
⋮ 
0

0
 
⋮ 
0

 

            (2
2
)(𝜏𝑘𝑗(𝑥))0 ⋯  (𝑁

2
)(𝜏𝑘𝑗(𝑥))𝑁−2           

 
⋮           ⋱              ⋮

             0        … (𝑁
𝑁
)(𝜏𝑘𝑗(𝑥))0   ]

 
 
 
 
 
 

.  
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 By substituting the expression (11) into Eq. (6), we get the matrix relation                                                 

                                                        𝐷(𝑥) = ∑ ∑𝑃𝑘𝑗(𝑥)𝑦(𝑘)

𝐽

𝑗=0

𝑚

𝑘=0

(𝑥 + 𝜏𝑘𝑗(𝑥))                                              

2.2 Matrix Representation for Volterra Integral Part 

Let us find the matrix form for the Volterra integral part 𝑉(𝑥).The kernel function can be 

𝐾𝑙(𝑥, 𝑡) approximated by the truncated Maclaurin series [16] 

                                                                   K𝑙(𝑥, 𝑡) = ∑ ∑ k𝑝𝑞x
𝑝t𝑞

𝑁

𝑞=0

𝑁

𝑝=0

                                                    (12) 

where 

                                                                        k𝑝𝑞 =
1

𝑝!𝑞!

𝜕𝑝+𝑞K(0,0)

𝜕x𝑝𝜕t𝑞
 , 𝑝, 𝑞 = 0, 1,… ,𝑁     

The expression (12) convert to the matrix form          

                                                                      K𝑙(𝑥, 𝑡) = 𝐗(𝑥)𝐊𝑙𝐗
T(t)  ;  𝐊𝑙 = [k𝑝𝑞].                                          (13) 

Substituting the relations (10) and (13) in the Volterra integral part, we obtain 

                                                    𝑉(𝑥) = ∫ ∑𝐗(x)𝐊𝑙𝐗
T(t)𝐗(t)𝐌𝑙𝐒𝐀  

𝑚1

𝑙=0

𝑥

𝑎

𝑑𝑡                                    (14) 

= ∑�̅�(𝑥)𝐊𝑙ϴ(𝑥)𝐌𝑙𝐒𝐀    

𝑚1

𝑙=0

 

where 

  ϴ(𝑥) = [𝜑𝑖𝑗(𝑥)] = ∫ 𝐗T(t)𝐗(𝑡)dt
x

a

 𝑎𝑛𝑑  𝜑𝑖𝑗(𝑥) =
xi+j+1 − ai+j+1

i + j + 1
  𝑤ℎ𝑒𝑟𝑒 𝑖, 𝑗 = 0, 1, 2, … ,𝑁.      

2.3 Matrix relation for the conditions 

We can write the corresponding matrix forms for the conditions (2), using the relations (7) and (10), as 

                                       

             {  ∑(𝑎𝑗𝑘𝐗(a)𝐌k𝐒 + 𝑏𝑗𝑘𝐗(𝑏)

𝑚−1

𝑘=0

𝐌𝑘 𝐒}  𝐀 = 𝜆𝑗  , 𝑗 = 0, 1 , … , 𝑚 − 1         (15) 
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3. Method of Solution 

By substituting the matrix relations (11) and (14) into (1) we construct the matrix equation 

   

              ∑ ∑𝑃𝑘𝑗(𝑥)𝑦(𝑘)

𝐽

𝑗=0

𝑚

𝑘=0

�̅�(𝑥)Ɱ(𝑥)𝐌k𝐒𝐀 − ∑�̅�(𝑥)𝐊𝑙ϴ(𝑥)𝐌𝑙𝐒𝐀 = 𝑔(𝑥)                  (16) 

𝑚1

𝑙=0

 

The collocation points  𝑥𝑖  are defined by 

                                                                        𝑥𝑖 = 𝑎 +
𝑏−𝑎

𝑁
𝑖  , 𝑖 = 0,1, . . . , 𝑁.                                           (17) 

and by using the points (17), it is obtained the system of the matrix equations  

           ∑ ∑𝑃𝑘𝑗(𝑥i)

𝐽

𝑗=0

𝑚

𝑘=0

�̅�(𝑥i)Ɱ(𝑥i)𝐌
k𝐒𝐀 − ∑�̅�(𝑥i)𝐊𝑙ϴ(𝑥i)𝐌

𝑙𝐒𝐀 = 𝑔(𝑥i)                     (18) 

𝑚1

𝑙=0

 

or shortly the fundamental matrix equation 
                                                     

        { ∑ ∑𝐏kj

𝐽

𝑗=0

𝑚

𝑘=0

�̅�Ɱ̅𝐌k𝐒 − ∑�̅��̅�𝑙ϴ̅𝐌𝑙𝐒 

𝑚1

𝑙=0

}𝐀 = 𝐆            

 

where 

                           𝐏𝑘𝑗 =

[
 
 
 
𝑃𝑘𝑗(𝑥0) 0 ⋯      0     

0 𝑃𝑘𝑗(𝑥1) ⋯      0     

⋮
0

⋮
0

⋱
⋯

⋮
𝑃𝑘𝑗(𝑥𝑁)]

 
 
 

(𝑁+1)×(𝑁+1)

�̅�𝑙 = [

K 0 ⋯ 0
0 K ⋯ 0 
⋮
0

⋮
0

⋱
⋯

⋮
K

]

(𝑁+1)2×(𝑁+1)2

 

 

 

                             𝐗 =

[
 
 
 
1 𝑥0 ⋯ 𝑥0

𝑁

1 𝑥1 ⋯ 𝑥1
𝑁

⋮
1

⋮
𝑥𝑁

⋱
⋯

⋮
𝑥𝑁

𝑁]
 
 
 

(𝑁+1)×(𝑁+1)

, �̅� = [

X(𝑥0) 0 ⋯      0     
0 X(𝑥1) ⋯      0     
⋮
0

⋮
0

⋱
⋯

⋮
X(𝑥𝑁)

]

(𝑁+1)×(𝑁+1)2

 

 

                             Ɱ̅ =

[
 
 
 
Ɱ(𝜏𝑘𝑗(𝑥0))

Ɱ(𝜏𝑘𝑗(𝑥1))

⋮
Ɱ(𝜏𝑘𝑗(𝑥𝑁))]

 
 
 

(𝑁+1)2×(𝑁+1)

, �̅� = [

ϴ(𝑥0)

ϴ(𝑥1)
⋮

ϴ(𝑥𝑁)

]

(𝑁+1)2×(𝑁+1)

 , 𝐆 =  [

𝑔(𝑥0)

𝑔(𝑥1)
⋮

𝑔(𝑥𝑁)

]

(𝑁+1)×1

 

 

The fundamental matrix Eq. (18) for (1) corresponds to a system of (𝑁 + 1) algebraic equation for the 

(𝑁 + 1)  unknown coefficients 𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑁 . Concisely we can write as  
                                                                   𝐖𝐀 = 𝐆    𝑜𝑟  [𝐖;𝐆]                                                   (19) 

 

where 
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𝐖 = ∑ ∑𝐏kj

𝐽

𝑗=0

𝑚

𝑘=0

�̅�Ɱ̅𝐌k𝐒 − ∑�̅��̅�𝑙ϴ̅𝐌𝑙𝐒 

𝑚1

𝑙=0

 

 

On the other hand, the matrix form (15) for the conditions can be written as 

 

              
                                             𝐔j𝐀 = 𝜆𝑗  ya da  [𝐔; 𝜆𝑗] , 𝑗 = 0, 1 , … ,𝑚 − 1                 (20)  

 

where 

𝐔𝑗 = [𝑢𝑗0 𝑢𝑗1
⋯ 𝑢𝑗𝑁] = ∑ 𝑎𝑗𝑘𝐗(a)𝐌k𝐒 + 𝑏𝑗𝑘𝐗(𝑏)𝐌k𝐒

𝑚−1

𝑘=0

 , 𝑗 = 0, 1, … ,𝑚 − 1 

To obtain the solution of (1) under conditions (2), by replacing the m rows in matrix equation (20) into 

the matrix equation (19), we have the required new augmented matrix system 

�̃�𝐀 = 𝐆    𝑜𝑟    [𝐖;̃ 𝐆] 

If 𝑟𝑎𝑛𝑘(�̃�) = 𝑟𝑎𝑛𝑘[�̃� ; 𝐆] = 𝑁 + 1  ,then we can write 

                                                                         𝐀 = (�̃�)−1�̃� .                   
Thus the matrix A (there by the coefficients 𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑁 ) is uniquely determined and the Eq. (1) under 

the coefficient equation (2) has unique solution. This solution is given by truncated Bell series                   

                                          𝑦(𝑥) ≅ 𝑦𝑁(𝑥) = ∑ 𝑎𝑛𝐵𝑛(𝑥).                                                   

𝑁

𝑛=0

 

           

3.2 Residual Correction and Error Estimation 

We can easily check the accuracy of the obtained solutions as follows. Since the truncated Bell series (3) 

is the approximate solution of (1), when the function 𝑦𝑁(𝑥)   and its derivatives are substituted in (1), the 

resulting equation must be satisfied approximately; that is, for 𝑥 = 𝑥𝑞 ∈ [𝑎, 𝑏] , 𝑞 = 0, 1, …  

𝑅𝑁(𝑥𝑞) = ∑ ∑𝑃𝑘𝑗(𝑥𝑞)𝑦𝑁
(𝑘)

𝐽

𝑗=0

𝑚

𝑘=0

(𝑥𝑞 + 𝜏𝑘𝑗(𝑥𝑞)) − ∫ ∑𝐾𝑙

𝑚1

𝑙=0

𝑥𝑞

𝑎

(𝑥𝑞 , 𝑡)𝑦𝑁
(𝑙)(𝑡)𝑑𝑡  − 𝑔(𝑥𝑞) ≅ 0 

or                        

𝑅𝑁(𝑥𝑞) ≤ 10−𝑘𝑞 , (𝑘𝑞 is any positive integer). 

İf  𝑚𝑎𝑥 10−𝑘𝑞 = 10−𝑘( 𝑘 is a positive integer) is prescribed, then the truncation limit N is increased until 

the difference  𝑅𝑁(𝑥𝑞)  at each of the points becomes smaller than the prescribed 10−𝑘 . Therefore, if   

𝑅𝑁(𝑥𝑞) → 0  when N is sufficiently large enough, then the error decreases. 
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On the other hand, by means of the residual function defined by 𝑅𝑁(𝑥)  and the mean value of the 

function  |𝑅𝑁(𝑥)|  on the interval [a, b], the accuracy of the solution can be controlled and the error can be 

estimated [17]. Thus, we can estimate the upper bound of the mean error 𝑅𝑁
̅̅ ̅̅   as follows: 

|∫ 𝑅𝑁(𝑥)𝑑𝑥

𝑏

𝑎

| ≤ ∫|𝑅𝑁(𝑥)|𝑑𝑥

𝑏

𝑎

 

and        

∫|𝑅𝑁(𝑥)|𝑑𝑥

𝑏

𝑎

= (𝑏 − 𝑎)|𝑅𝑁(𝑐)| , 𝑎 ≤ 𝑐 ≤ 𝑏 

 

                                       ⟹ |∫ 𝑅𝑁(𝑥)𝑑𝑥
𝑏

𝑎
| = (𝑏 − 𝑎)|𝑅𝑁(𝑐)| ⟹ (𝑏 − 𝑎)|𝑅𝑁(𝑐)| ≤ ∫ |𝑅𝑁(𝑥)|𝑑𝑥

𝑏

𝑎
    

⇓ 

                                                                             |𝑅𝑁(𝑐)| ≤
∫ |𝑅𝑁(𝑥)|𝑑𝑥

𝑏

𝑎

𝑏−𝑎
= 𝑅𝑁

̅̅ ̅̅  

 

 

3.2 Numerical Examples 

Using exact solution 𝑦(𝑥) and the approximate solution 𝑦𝑁(𝑥), the error function 𝑒𝑁  is calculated by 

the following form. 

                                                                       𝑒𝑁 = 𝑦(𝑥) − 𝑦𝑁(𝑥) 

Example 1. Let us first consider the first order linear Volterra type integro-differential equation with 

functional delay given by 

𝑦′(𝑥) − 𝑦(𝑥 − 𝑥2) =
𝑥2

2
− 2𝑥 + ∫ 𝑦(𝑥)     0 ≤ 𝑥, 𝑡 ≤ 1 

𝑥

0

 

with initial conditions 𝑦(0) = 1 and the approximate solution 𝑦(𝑥) by the truncated Bell series 

𝑦(𝑥) ≅ 𝑦𝑁(𝑥) = ∑ 𝑎𝑛𝐵𝑛(𝑥).

𝑁

𝑛=0

 

Here 𝑃00(𝑥) = −1, 𝑃10(𝑥) = 1, 𝜏10(𝑥)= −𝑥2,  ,𝐾0(𝑥, 𝑡) = 1 and  𝑔(𝑥) = 𝑥2 2⁄ − 2𝑥.Then for ,the 

collotion points are   

{𝑥0 = 0, 𝑥1 = 1 2⁄ , 𝑥2 = 1} 

and from Eq. (18), the fundamental matrix equation of the problem is 
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                                                    {P10𝐗𝐌𝐒 + P00𝐗Ɱ̅𝐌0𝐒 − �̅��̅�00ϴ̅𝐌0𝐒}𝐀 = 𝐆 

         

𝐏00 = [
−1    0    0
0   −1    0
0    0    −1

] , 𝐏10 = [
1    0    0
0   1    0
0    0   1

] , 𝐒 = [
1    0    0
0    1    1
0    0    1

] ,𝐌 = [
0    1    0
0    0    2
0    0    0

] 

 

𝑿 = [
1    0    0
1    1 2⁄    1 4⁄
1    1   1

] , �̅� = [

1 0 0 0 0 0 0 0 0

0 0 0 1
1

2

1

4
0 0 0

0 0 0 0 0 0 1 1 1

] , 𝐆 = [
   0

−9 8⁄  
−5 2⁄

] 

 

ϴ̅ =

[
 
 
 
 
 
 
 
 

0 0 0
0 0 0
0

1 2⁄

1 8⁄

1 24⁄
1

1 2⁄

1 3⁄

0
1 8⁄

1 24⁄

1 64⁄

1 2⁄

1 3⁄

1 4⁄

0
1 24⁄

1 64⁄

1 160⁄

1 3⁄

1 4⁄

1 5⁄ ]
 
 
 
 
 
 
 
 

, Ɱ̅ =

[
 
 
 
 
 
 
 
 
1 0 0
0 1 0
0
1
0
0
1
0
0

0
−1 4⁄

1
0

−1
1
0

1
1 16⁄

−1 2⁄
1
1

−2
0 ]

 
 
 
 
 
 
 
 

,�̅�00 =

[
 
 
 
 
 
 
 
 
1 0 0
0 0 0
0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0
0 0 0
0
0
0
0

0
0
0
0

0
0
0
0

1
0

0
0

0 0 0 0
0 0 0 0

0 0 0 0 0 0
0
0
0

0
0
0

0 1 0 0
0
0

0
0

0 0
0 0]

 
 
 
 
 
 
 
 

 

 

The augmented matrix for this fundamental matrix equation is calculated as 

 

[𝐖;𝐆] = [
   −1 −1 1
−3 2⁄ 5 8⁄ 73 8⁄

 −2 1 2⁄  1 3 6⁄
  

;
;
;
  

0
−9 8⁄

−5 2⁄
] 

 

From Eq. (20), the matrix forms for the initial condition is 

 

                                                          [𝐔0; 𝜆0 ] = [1 0 0 ; 1]   

From system (21), the new augmented matrix based on conditions can be obtained as follows: 

 

                                               [�̃� ;  𝐆]    = [
   −1 −1 1
      1 0 0
   −2 1 2⁄ 1 3 6⁄  

  

;
;
;
  

0
1

−5 2⁄
] 

 

Solving this system, the unknown Bell coefficient matrix is obtained as 

 

                                                                    𝐀 = [1 1 0]T 

By substituting the above Bell coefficient matrix into equation (7), we obtain the approximate solution 

𝑦(𝑥) = x + 1 which is the exact solution. 
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Example 2. Let us consider the first order linear Volterra type integro-differential equation with 

functional delay given by 

𝑦′(𝑥) − 𝑦(𝑥 − 𝑥2) = 𝑒(𝑥−𝑥2) + 𝑥 + 1 + ∫ (𝑥 − 𝑡)𝑦′(𝑡)𝑑𝑡     0 ≤ 𝑥, 𝑡 ≤ 1 
𝑥

0

 

with initial condition 𝑦(0) = 1. The exact solution of problem is 𝑦(𝑥) = 𝑒𝑥 . The fundamental matrix 

equation of the problem is 

{P10𝐗𝐌𝐒 + P00𝐗Ɱ̅𝐌0𝐒 − �̅��̅�00ϴ̅𝐌0𝐒}𝐀 = 𝐆 

When necessary operations are taken, approximate solutions are calculated for 

                                                           𝑁 = 4,𝑁 = 5 𝑎𝑛𝑑 𝑁 = 6 

𝑦4(𝑥) = 1 + 𝑥 + 0.5026𝑥2 + 0.1542𝑥3 + 0.0610𝑥4 

𝑦5(𝑥) = 1 + 𝑥 + 0.49946𝑥2 + 0.1702𝑥3 + 0.0345𝑥4 + 0.0141𝑥5 

𝑦6(𝑥) = 1 + 𝑥 + 0.5001𝑥2 + 0.1661𝑥3 + 0.0431𝑥4 + 0.0066𝑥5 + 0.0024𝑥6. 

The exact solution and approximate solutions of the equation are shown in Figure 1.1 and their absolute 

errors are shown in Table 1. Furthermore, graphs of the residual error functions of the calculated 

numerical results are shown in Figure 1.2. 

Table 1. Comparison of the absolute errors of Example 2 for N= 4, 5,6. 

 

 

   𝑥𝑖      𝑦(𝑥) = 𝑒𝑥𝑖      |𝑒4(𝑥𝑖)|       |𝑒5(𝑥𝑖)|       |𝑒6(𝑥𝑖)| 

0 1 0 0 0 

0.2 1.2214 3.2442e-05 5.4462e-06 1.2674e-06 

0.4 1.4918 2.1702e-05 3.1364e-07 2.4768e-06 

0.6 1.8221 3.0000e-05 3.9844e-06 5.7500e-06 

0.8 2.2255 5.9072e-05 3.1040e-05 1.1865e-05 

1 2.7183 4.8183e-04 8.1828e-05 1.8172e-05 
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Figure 1. 1 Numerical and Exact Solutions of Example 2 for N = 4,5,6. 

 
Figure 1. 2.  Residual Error Functions of Example 2 for N =4,5,6. 

 

 

4.Conclusion 

       

In this study, a new method was developed by using Bell polynomials for the solution of high order linear 

Volterra integro-differential equations with functional delay. To illustrate the validity and applicability of 

this method, explanatory examples were solved, and an error analysis based on the residual function was 

performed to show the accuracy of the results. These comparisons and error estimates show that the 

proposed method is highly effective. We have calculated the solutions with the help of MATLAB. 
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Abstract 

 

In this study, firstly, the properties of soft sets, (1,2)*- soft b-open sets and (1,2)*- soft b-closed sets, 

which are needed for the definition of (1,2)*- soft b-extremally disconnected space, are studied for soft 

bitopological spaces and some important results are given. Secondly, the characterization of (1,2)*-soft b-

extremally disconnected bitopological spaces is presented. In particular, the relation between (1,2)*-soft 

dense and (1,2)*- soft b-open set is obtained. In the last section of this text, the properties of (1,2)*- soft 

b-submaximal space are studied using by (1,2)*- soft dense sets. 
 

Keywords: (1,2)*- soft b-open sets, (1,2)*- soft dense sets, (1,2)*- soft b-submaximal space, (1,2)*- soft b-extremally 

disconnected space. 
 

 

 

1. Introduction 

 

One of the very natural trends of mathematical research is to define the framework of the 

unknown theorems and results. For instance, Molodtsov [5] introduced soft set theory in the setting of not 

clearly defined objects. Immediate extension of this theorem was given by Molodtsov who observed the 

application of soft set theory in the context of concepts like game theory, operations research, theory of 

probability, Riemann-integration, Perron-integration, smoothness of functions and so on. After 

Molodtsov, research on the soft set theory has been accelerated rapidly and several analogs of the soft set 

principle have been reported that can be in the references. Among them I can underline some of the 

interesting structures such as topological structures of set theories dealing with uncertainities were first 

defined by Chang [9] and soft topological spaces introduced by Shabir and Naz [3]. In recent years, the 

topological space theory has been embedding in the soft set theory to obtain some interesting applications 

that is coused to introduce the theory of soft bitopological spaces [2]. In the view of the definition of 

bitopological spaces [4] in general topology, the application area of bitopological spaces by soft sets is 

expanded in a short time. Nowadays, new concepts of soft sets are introduced in soft bitopological spaces 
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X . 

such as (1,2)*- soft b- open sets, (1,2)*- soft b –closed sets, (1,2)*- soft regular - open, (1,2)*- soft 

preopen, (1,2)*-soft semi open, (1,2)*- soft  - open and (1,2)*- soft  - open sets [1]. In this text, these 

soft sets are examined in detail and moreover, (1,2)*- soft b-extremally disconnected space is studied and 

the relation between (1,2)*-soft dense and (1,2)*- soft b-open set is obtained. In this paper, motivated and 

inspired by the above literature, I try to develop a point of view to the soft sets that are defined in soft 

bitopological spaces. 

 

2. Preliminaries 

I now provide some basic concepts, definitions and lemmas which will be used in the sequel 

which may be found in [1, 2, 3, 4, 5] for further details.  

Throughout this work, U refers to an initial universe, E is a set of parameters and P(U) is the 

power set of U. 

Definition 2.1 : [6] (Soft Set) A soft set FA on the universe X is defined by the set of ordered pairs    

 

   FA ={( x, fA(x)) : xE} 

 

where fA : E  P(X) such that fA(x) =  if x  A. Here fA is called approximate function of the soft set 

FA . The value of fA(x) may arbitrary, some of them maybe empty, some may have non empty 

intersection. The set of all soft sets over X will be denoted by S(X). 

 

From now on, we will use the definitions and operations of soft sets are written with the form of ([6]). 

 

Definition 2.2: [6] Let F
A 

~  S(X). If fA(x) =  for all x  E, then F
A is called an empty set, denoted by 

F. fA(x) =  means that there is no element in X related to the parameter x  E. Therefore, we do not  

display such elements in the soft sets, as it is meaningless to consider such parameters. 

 

Definition 2.3: [6] Let FA 
~ S(X). If fA(x) = X for all x  A, then FA is called an A-universal soft set, 

denoted by FÃ. If A = E,
 
then the A- universal soft set is called a universal soft set, denoted by X .  

 

Definition 2.4: [6] Let FA , FB ~  S(X). Then FA is a soft subset of FB, denoted by FA 
~ FB  if fA(x) fB(x) 

for all x  E. Let FA and FB are soft equal denoted by FA = FB if fA(x) = fB(x) for all x  E.  

 

. 
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Definition 2.5: [7] Let F
A 

~  S(X).  A soft topology on FA, denoted by ~  , is a collection of soft subsets 

of FA  having following properties:  collection of soft sets over X ,  

(i) FFA  belong to 
~  

 (ii) Union of any number of soft sets in ~  belongs to 
~  

(iii) Intersection of two soft sets in ~  
belongs to 

~  

The pair ( F
A , 

~
) is called a soft topological space. 

 

Definition 2.6: [4] Let X  Ø, 1 and 2 are two different topologies on X. Then (X, 1, 2)is called a 

bitopological space. Throughout this paper (X, 1, 2) [or simply X] denote bitopological space on which 

no seperation axioms are assumed unless explicitly stated.  

 

Definition 2.7: [4] A subset S of X is called  12-open if S = H  K such that H 1 and K 2 and the 

complement of 12-open is 12-closed.  

 

Definition 2.8: [2] Let FA be a nonempty soft set on the universe U, ~1 and 
~

2 be two different soft 

topologies on FA. Then, (FA, ~1 , 
~

2, E) is called  a soft bitopological space.  

 

 

3. Main Results 

The main aim of this paper is to give an improvement of the recent result on the soft bitopological 

spaces. The results given here are obtained using different soft sets such as (1,2)*- soft b-open sets and 

(1,2)*- soft b-closed sets and spaces such as (1,2)*- soft b-extremally disconnected space and (1,2)*-soft 

b-extremally disconnected bitopological spaces. Apart from definitions and theorems are numbered, 

known concepts are mentioned in the text along with the reference [1]. 
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Definition 3.1: [2]  

i. The 1,2 - closure of EF , denoted by 1,2 - cl  EF , is defined by  

                1,2 - cl  EF =  1,2: ;  is a - open setE E E EH H F H     

ii. The 1,2 - interior of EF , denoted by 1,2 - int  EF , is defined by  

1,2 - int  EF =  1,2: :  is a - soft open setE E E EG G F G    

Definition 3.2 [1]: Let  1 2, , ,X E   be a soft bitopological space and AF X .  

Then AF  is called  1,2 * - soft b-open set (briefly  1,2 * -sb-open) if 

  1,2 1,2 1,2- int - cl - A AF F      1,2cl - int AF .  

The set of all  1,2 * - soft b-open sets are denoted by  1,2 * -SbO  X . 

 

Definition 3.3 [1]: Let  1 2, , ,X E   be a soft bitopological space and AF  be a soft set over X  

i.  1,2 * - soft b-closure (briefly  1,2 * - sbcl  AF ) of a set AF in X defined as the soft 

intersection of all  1,2 * - soft b-closed supersets of AF . 

ii.  1,2 * - soft b-interior (briefly  1,2 * - sbint  AF ) of a set AF in X defined as the soft union 

of all  1,2 * - soft b-open supersets of AF . 

 AF X . Then AF  is called  1,2 * - soft b-open set (briefly  1,2 * -sb-open) if 

  1,2 1,2 1,2- int - cl - A AF F      1,2cl - int AF .  

 

Definition 3.4 [1]: A soft bitopological space  1 2, , ,X E   is said to be  1,2 * - soft extremally 

disconnected space if 1,2 - closure of every 1,2 - open set of X  is 1,2 - open set in X . 

Definition 3.5 [1]:  A soft bitopological space  1 2, , ,X E   is said to be  1,2 * - soft b-extremally 

disconnected space if  1,2 * - b-closure of every 1,2 -b-open set of X  is  1,2 * - b-open set in X . 
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Example 3.6: Let        1 1, , , , . , , , , .X x y z a E e X e x y z a     

GE1  X , GE2  ,  

               

               

3 1 4 1 5 1 6 1

7 1 8 1 9 1 10 1

, , , , , , , ,

, , , , , , , , , , , ,

E E E E

E E E E

G e x G e y G e z G e a

G e x y G e x z G e x a G e y z

   

   
 

               

       

11 1 12 1 13 1 14 1

15 1 16 1

, , , , , , , , , , , , , ,

, , , , , , , .

E E E E

E E

G e y a G e z a G e x y z G e x y a

G e y z a G e x a z

   

 
 

Consider the soft bitopological space  1 2, , ,X E  , where 

 1 6 7 14, , , , ,E E EX G G G    2 3, , .EX G    Then 1,2 - open set are 

 3 6 7 14 9, , , , , , ,E E E E EX G G G G G  1,2 * - soft b-open sets are 

 3 6 7 8 9 12 3 14 16 4, , , , , , , , , , , .E E E E E E E E E EX G G G G G G G G G G Then  1,2 * -soft b-closure of every 

 1,2 * - soft b-open set of X  is  1,2 * - soft b-open set in X . Hence  1 2, , ,X E   is  1,2 * - soft b-

extremally disconnected space.  

Remark 3.7 [1]:  Every  1,2 * - soft extremally disconnected space is  1,2 * - soft b-extremally 

disconnected space but not conversely as shown in the following example: 

Example 3.8: Consider the soft bitopological space   1 2, , ,X E   given in Example 3.6, where 

   1 6 7 14 2 3, , , , , , , .E E E EX G G G X G      Then 1,2 - open set are 

 3 6 7 14 9, , , , , , ,E E E E EX G G G G G 1,2 - open set are  13 15 5 12 10, , , , , , .E E E E EX G G G G G  

Here 1,2 - cl           6 1,2 1 12 1- cl , , , ,E EG e a G e z a     which is not a 1,2 - open set.  

Therefore,  1 2, , ,X E   is a  1,2 * - soft b-extremally disconnected space but not  1,2 * - soft 

extremally disconnected space.  

Definition 3.9 [1]:  A soft subset EF  of a soft bitopological space  1 2, , ,X E   is called (1,2)*-soft 

dense if  1,2-cl .EF X    

Definition 3.10 [1]:  A soft subset EF  of a soft bitopological space  1 2, , ,X E   is called (1,2)*-soft b-

dense if (1,2)*-sbcl   .EF X   
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Proposition 3.11 [1]:  Every (1,2)*- soft b-dense set is (1,2)*-soft dense.  

Proof. Let EF  be (1,2)*- soft b-dense set. Then (1,2)*-sbcl   .EF X  Since (1,2)*-

sbcl    1,2-cl ,E EF F   we have  1,2-cl EF X   and so EF  is (1,2)*-soft dense.  

The converse of the Proposition 4.3 need not be true as can be seen from the following example:  

Example 3.12 [1]:  Consider the soft bitopological space  1 2, , ,X E  , 

where    
4 10 1 7 131 2, , , , , , , ,E E E E EX F F X F F F      and the soft subsets are as in the above Example. 

Then 1,2 -open set  
1 4 7 10 13

, , , , , ,E E E E EX F F F F F  and 1,2 -closed set are 

 
12 14 11 8 5

, , , , , , , .E E E E EX F F F F F F  (1,2)*-soft b-open sets are 

 
1 4 7 6 8 9 12 10 13

, , , , , , , , , ,E E E E E E E E EX F F F F F F F F F and (1,2)*-soft b-closed sets are 

 
1 2 7 3 8 5 12 10 14

, , , , , , , , , ,E E E E E E E E EX F F F F F F F F F . Take the soft subset       
7 1 1 2 1, , ,EF e x e x  and 

     
7 61,2 1 1 2-cl , , .E EF e x x F X      

Thus 
7EF is (1,2)*-soft dense but not (1,2)*-soft b-dense set.  

Definition 3.13 [1]:  A soft bitopological space  1 2, , ,X E   is called (1,2)*-soft submaximal if every 

(1,2)*-soft dense subset is 1,2 - open set in X .  

Definition 3.14 [1]:  A soft bitopological space  1 2, , ,X E   is called (1,2)*-soft b-submaximal if every 

(1,2)*-soft dense subset is (1,2)*-soft b-open set in X .  

Example 3.15 [1]:  Let us consider the soft bitopological space  1 2, , ,X E  .  

Define    
1 7 31 2, , , , , ,E E EX F F X F      1,2 -open set are  

1 7 8 13
, , , , ,E E E EX F F F F and 1,2 -closed 

set are  
11 6 5 12

, , , , , .E E E EX F F F F  

Then the collection of (1,2)*-soft open sets  
1 3 7 8 9 14 13

, , , , , , , ,E E E E E E EX F F F F F F F .  

The collection of (1,2)*-soft dense sets of X  are  
1 3 7 8 9 14 13

, , , , , , , , .E E E E E E EX F F F F F F F  

Here all (1,2)*-soft dense sets are (1,2)*-soft b-open set and so  1 2, , ,X E   is a (1,2)*-soft b-

submaximal space.  
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4. Conclusion 

I would like to note that this paper convinces us to consider the future research directions, for 

example, to consider the more general cases of soft sets in multi topological structures; one may see [1, 2, 

4] for more inspiration. 

 

Acknowledgement: Known concepts are mentioned in the text along with appropriate references. 
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Abstract 

 

This disquisition, which consists of interrelating sections is devoted to the definition and study of 

the concepts of (1,2)*- soft b- open sets, (1,2)*- soft b –closed sets, (1,2)*- soft regular - open, (1,2)*- soft 

preopen, (1,2)*-soft semi open, (1,2)*- soft - open, (1,2)*- soft - open in soft bitopological spaces and 

exhibit the properties of them. Following these definitions of soft set properties are made and the relations 

between these soft sets are presented by theorems and remarks. 
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1. Introduction  

Soft set theory [1] was firstly introduced by Molodtsov in 1999 named as a general mathematical tool for 

dealing with uncertainty. In the near future, on set theories dealing with uncertainities, the topological 

structures has been studied increasingly: fuzzy topology [14], topological spaces by generalizing rough 

set theory [15] and soft topology [16], respectively. Soft topology, the main theme of this text, is 

introduced over an initial universe with a fixed set of parameters by Shabir and Naz in 2011. Cağman et 

al. [6] introduced a topology on a soft set called “soft topology" and presented the foundations of the 

theory of soft topological spaces. Moreover, many authors studied soft topology and its applications that 

are given in the references. 

In 1963, Kelly [7] was defined bitopological space as an original and fundamental work by using two 

different topologies on a set. The notion of bitopological space (X, δ1 , δ2) which is a nonempty set X 

endowed with two topologies  δ1 and  δ2 is introduced in this Pioneer work. Also in [7], some basic results 
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X . 

of separation axioms in topological spaces are extended to bitopological spaces. The notion of semi-open 

sets in bitopological spaces was initated by Ravi and Thivagar [17] in 2004. The set theory on 

bitopological spaces was studied by many authors: The concept of -closed sets, semi-closed sets, g-

closed sets and sg-closed sets were some of them. Based on Çağman et al.[6]'s soft topology, Şenel and 

Çağman [18] define a bitopology on a soft set, called “soft bitopology". In this work, its related properties 

are proved and some relations between soft topology and soft bitopology are obtained. In this disquisition, 

which consists of interrelating sections is devoted to the definition and study of the concepts of (1,2)*- 

soft b- open sets, (1,2)*- soft b –closed sets, (1,2)*- soft regular - open, (1,2)*- soft preopen, (1,2)*-soft 

semi open, (1,2)*- soft - open, (1,2)*- soft - open in soft bitopological spaces and exhibit the properties 

of them. Following these definitions of soft set properties are made and the relations between these soft 

sets are presented by theorems and remarks. 

 

2. Preliminaries 

In this section, we have presented the basic definitions and results of soft set theory, soft topology, 

bitopological space and soft bitopological space to use in the sequel. Throughout this paper, U is an initial 

universe, E is a set of parameters, P(U) is the power set of U, and A  E.  

Definition 2.1 : [6] (Soft Set) A soft set FA on the universe X is defined by the set of ordered pairs    

 

   FA ={( x, fA(x)) : xE} 

 

where fA : E  P(X) such that fA(x) =  if x  A. Here fA is called approximate function of the soft set 

FA . The value of fA(x) may arbitrary, some of them maybe empty, some may have non empty 

intersection. The set of all soft sets over X will be denoted by S(X). 

 

Definition 2.2: [6] Let F
A 

~  S(X). If fA(x) =  for all x  E, then F
A is called an empty set, denoted by 

F. fA(x) =  means that there is no element in X related to the parameter x  E. Therefore, we do not  

display such elements in the soft sets, as it is meaningless to consider such parameters. 

 

Definition 2.3: [6] Let FA 
~ S(X). If fA(x) = X for all x  A, then FA is called an A-universal soft set, 

denoted by FÃ. If A = E,
 
then the A- universal soft set is called a universal soft set, denoted by X .  

 

. 
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Definition 2.4: [6] Let FA , FB ~  S(X). Then FA is a soft subset of FB, denoted by FA 
~ FB  if fA(x) fB(x) 

for all x  E. Let FA and FB are soft equal denoted by FA = FB if fA(x) = fB(x) for all x  E.  

 

Definition 2.5: [6] Let F
A 

~  S(X).  A soft topology on FA, denoted by ~  , is a collection of soft subsets 

of FA  having following properties:  collection of soft sets over X ,  

(i) FFA  belong to 
~  

 (ii) Union of any number of soft sets in ~  belongs to 
~  

(iii) Intersection of two soft sets in ~  
belongs to 

~  

The pair ( F
A , 

~
) is called a soft topological space. 

 

Definition 2.6: [7] Let X  Ø, 1 and 2 are two different topologies on X. Then (X, 1, 2)is called a 

bitopological space. Throughout this paper (X, 1, 2) [or simply X] denote bitopological space on which 

no seperation axioms are assumed unless explicitly stated.  

 

Definition 2.7: [7] A subset S of X is called  12-open if S = H  K such that H 1 and K 2 and the 

complement of 12-open is 12-closed.  

 

Definition 2.8: [18] Let FA be a nonempty soft set on the universe U, ~1 and 
~

2 be two different soft 

topologies on FA. Then, (FA, ~1 , 
~

2) is called  a soft bitopological space.  

 

3. Some New Soft Sets In Soft Bitopological Spaces 

 

In this section, the concepts of (1,2)*- soft b- open sets, (1,2)*- soft b –closed sets, (1,2)*- soft 

regular - open, (1,2)*- soft preopen, (1,2)*-soft semi open, (1,2)*- soft - open, (1,2)*- soft - open in 

soft bitopological spaces  are introduced and the properties of them are exhibited. Apart from definitions 

and theorems are numbered, known concepts are mentioned in the text along with the reference [19].  

Lemma 3.1: [19] Let  1 2, ,X    be a soft bitopological space and .AF X  Then, 

(i) Every (1,2)*-soft preopen set is (1,2)*-soft  -open.  

(ii) Every (1,2)*-soft semi open set is (1,2)*-soft  -open.  
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(iii) Every (1,2)*-soft   open set is (1,2)*-soft preopen.  

Proof. (i)  Let  1 2, ,X    be a soft bitopological space and .AF X  Suppose AF  be a (1,2)*-soft 

preopen set. This implies       1,2 1,2 1,2 1,2 1,2-int -cl -cl -int -cl .A A AF F F        Thus, (i) is proved. 

(ii) Let AF be a (1,2)*-soft semi open set. This implies 

      1,2 1,2 1,2 1,2 1,2-cl -int -cl -int -cl .A A AF F F        Thus, (ii) proved. 

(iii) Let AF be a (1,2)*-soft  -open set. This implies 

      1,2 1,2 1,2 1,2 1,2-int -cl -int -int -cl .A A AF F F        Thus, (iii) proved. 

 

Remark 3.2: The converse of the above lemma is need not be true as seen in the following example: 

 

Example 3.3: [19] Let  1 2, ,X    be a soft bitopological space, where 

 
4 101 , , , ,E EX F F F   

1 7 132 , , , , .E E EX F F F F   Then 1,2 - soft open set are 

 
1 4 7 10 13

, , , , , ,E E E E EX F F F F F F  and  1,2 - soft closed set are  
12 14 11 8 5

, , , , , ,E E E E EX F F F F F F  

9EF  is a (1,2)*-soft   open but not (1,2)*-soft open. 
6EF  is a (1,2)*-soft semi open but not (1,2)*-soft   

open and 
6EF  is a (1,2)*-soft   open but not (1,2)*-soft preopen.  

The proof of (iii) is interminable. Fort his proof firstly we get a soft bitopological space: 

Let    1 2 3 1 2 3, , , , ,X x x x E e e e   and 

         1 1 2 3 4 2 1 2 3 4 3 1 2 3 4, , , , , , , , , , , , , , .X e x x x x e x x x x e x x x x  

Then  
1 2 3 4 5 6 7 8 9 10 11 12 13 14 151 , , , , , , , , , , , , , , , ,E E E E E E E E E E E E E E EX F F F F F F F F F F F F F F F F   

 2 ,X F  . Where          
1 1 1 2 2 3 3 1 4, , , , , , , .EF e x e x x e x x  

         
2 1 2 4 2 1 3 4 3 1 2 4, , , , , , , , , , .EF e x x e x x x e x x x

         
2 1 2 4 2 1 3 4 3 1 2 4, , , , , , , , , , .EF e x x e x x x e x x x       

3 2 3 3 1, , , .EF e x e x  

       
4 1 1 2 4 2 3, , , , , , , .EF e x x x e X e X         

5 1 1 3 2 2 4 3, , , , , , , .EF e x x e x x e X  

      
6 1 1 2 2, , , .EF e x e x          

7 1 1 3 2 2 3 4 3 1 2 4, , , , , , , , , , .EF e x x e x x x e x x x  
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8 2 4 3 2, , , .EF e x e x        

9 1 2 3 1 2 3, , , , , , , .EF e X e X e x x x  

         
10 1 1 3 2 2 3 4 3 1 2, , , , , , , , , .EF e x x e x x x e x x          

11 1 2 3 4 2 3 1 2 3, , , , , , , , , .EF e x x x e X e x x x  

         
12 1 1 2 2 3 4 3 1 2 4, , , , , , , , , .EF e x e x x x e x x x           

13 1 1 2 2 4 3 2, , , , , , .EF e x e x x e x  

      
14 1 3 4 2 1 2, , , , , .EF e x x e x x          

15 1 1 2 2 3 3 1, , , , , , .EF e x e x x e x  Then  1 2, ,X    is a soft 

bitopological space.  

(iii) Consider EF , the soft subset of X . Where 

         1 4 2 1 2 3 3 2 4, , , , , , , , .EF e x e x x x e x x   1,2 1,2-int -cl EF X    and .EF X  But 

   1,2 1,2 1,2-int -cl -int .EF F     Hence EF  is (1,2)*-soft preopen set but not (1,2)*-soft   open.  

 

Definition 3.4: [19]  Let  1 2, ,X    be a soft bitopological space and .AF X  Then, AF  is called 

(1,2)*-soft b-open set (briefly (1,2)*-sb-open) if      1,2 1,2 1,2 1,2-int -cl -cl -int .A A AF F F      

 

Theorem 3.5: [19]  Let  1 2, ,X    be a soft bitopological space. Then  

(i) Every (1,2)*-soft preopen set is (1,2)*-soft b-open set.  

(ii) Every (1,2)*-soft b-open set is (1,2)*-soft  -open set.  

(iii) Every (1,2)*-soft semi open set is (1,2)*-soft b-open set.  

Proof.   Let  1 2, ,X    be a soft bitopological space and .AF X  Let AF  is a (1,2)*-soft preopen set. 

Then        1,2 1,2 1,2 1,2 1,2-int -cl -int -cl -intA A A AF F F F        

     1,2 1,2 1,2 1,2-int -cl -cl -int .A AF F      Thus (i) proved.  

Let AF  be a (1,2)*-soft b-open set. Then      1,2 1,2 1,2 1,2-cl -int -int -clA A AF F F      

          1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2-cl -int -cl -int -cl -cl -int -cl .A A AF F F           Thus (ii) proved.  

Let AF  is a (1,2)*-soft semi open set. This implies 

  1,2 1,2-cl -intA AF F  

          1,2 1,2 1,2 1,2 1,2 1,2 1,2-cl -int -int -cl -int -int -cl .A A A AF F F F          Thus (iii) proved. 
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Remark 3.6: [19]  The converse of the above lemma is need not be true as seen in the following example.  

Example 3.7: [19]  Let us consider the soft subsets of X  that are given in Example 3.3. Let  1 2, ,X    

be a soft bitopological space, where  
11 , , EX F F  ,  

22 , , EX F F  . Then  1,2 - soft open set are 

 
1 2 3

, , , , ,E E EX F F F F  1,2 - soft closed set are  
12 9 6

, , , , .E E EX F F F F   

(i) The soft set 
7EF  in X  is (1,2)*-soft b-open set but not (1,2)*-soft preopen set.  

(ii) The soft set 
5EF  in X  is (1,2)*-soft  -open set but not (1,2)*-soft b-open set. 

(iii) The soft set 
4EF  in X  is (1,2)*-soft b-open set but not (1,2)*-soft semi open set. 

 

Remark 3.8: [19]  The above discussions are summarized in the following diagrams:  

 

 

(1,2)*-soft regular open  (1,2)*-soft open  (1,2)*-soft -open     

                                                          (1,2)*-soft semi open     (1,2)*-soft pre open
 

                                                                               (1,2)*-soft b-open

                                                                                            

                                                                               (1,2)*-soft -open
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Abstract 

This study aims to develop a numerical method which is used for the approximate solution of the 

Volterra integro-differantial equation under mixed conditions. For this purpose, the problem is reduced 

from the linear algebraic equation system to the matrix equation. This system is solved by using Boole 

polynomials, their derivatives and collocation points. From this solution, the Boole coefficients are 

obtained for the approximate solution. Numerical examples are given for to demonstrate the validity and 

applicability of the technique. Also, the results are compared with the graphs and tables. 

 

Keywords: Boole polynomials, collocation points, approximate solutions, numerical, integro-differential equation. 

 

1. Introduction  

Some problems encountered in real life are issues of science. These issues are frequently encountered in 

applied areas such as physics, biology, chemistry, mathematics, engineering, electrostatic. Integro-

differential equations have a large role in these applied areas. Therefore, numerical methods such as the 

Bernoulli matrix-collocation method [1], the meshless method [2], Bessel matrix method [3], operational 

Tau method [4], Legendre collocation method [5], homotopy perturbation method [6], Spectral 

collocation method [7], the variational Adomian decomposition method [8], modified Taylor expansion 

method [9], Tau method [10], Taylor matrix method [11] and improved Legendre method [12] have been 

used for the solution of integro-differential equations [14]-[18]. 

The aim of this study is to develop a method using Boole polynomials, derivatives and collocation points 

to find approximate solution of linear Volterra integro-differential equation 

 

under mixed conditions 
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where  is an unknown function, the known function  and the kernel function  

are defined in the interval . ,  and  fixed numbers. The approximate solution of the 

Eq. (1) is obtained in the truncated Boole series form 

       

where ,  is the Boole polynomial and ,  is the unknown 

coefficients of the Boole polynomials. Charles Jordan has defined the general equation of Boole 

polynomials as follows [13]. 

 

The defined form of the Boole polynomial is  

 

2. Fundamental Matrix Relation 

Primarily, the matrix relation for Boole polynomial is as follows 

 

where  is coefficient matrix and also  

 

 

and . 

The Eq. (1) is shown as follows 
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where  

 

2.1. Matrix relation for the differential part L(x) 

The approximate solution of the Eq. (1) in truncated Boole series (3) is written in matrix form 

 

and kth derivative of the solution  is  

 

According to the matrix relation (6) this matrix form is written as 

 

where  is defined as 

 

From this form the following matrix relation is obtained. 

 

where matrix  is derivatives transition matrix of Taylor polynomial, 

 and  

According to the matrix form (6) the matrix relation is written as 

 

or  

 

 where 
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The matrix  is derivatives transition matrix of Boole polynomial. That time, the general matrix form of 

the differential part is written the following.  

 

2.2. Matrix relation for the integral part I(x) 

According to the Eq. (8) the integral part of Eq. (1) is written as 

 

The matrix form of the kernel function is defined as follows for the Taylor polynomial and Boole 

polynomial, respectively 

                      and  

From the matrix form, the following matrix relation is obtained. 

 
where  

 

 

and  

 

By substituting the kernel function for Boole polynomial into Eq. (15), the matrix relation is obtained as 

 

where 
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If the matrix relation (6) is written in the this equation, the following equation is obtained. 

 

where  

 

If the matrix form (6), matrix relation (17) and Eq. (19) are placed in the expression (18), the following 

matrix relation is obtained. 

 

2.3. Matrix relation for the conditions 

The corresponding matrix form of conditions (2) is obtained by Eq. (13) as  

 

2.4. Collocation method 

In the previous sections, the matrix relation (14) and (20) obtained for the approximate solution of the Eq. 

(1) are placed in the Eq. (7) and obtained the matrix equation  

         

The collocation points  is defined by  

 

This collocation points are applied in the matrix relation (22) and obtained the matrix relation  

 

or briefly shown as  
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where 

 

 

and  

Eq. (25) is written as  

 

where  

 

Of all these operations, a system of  linear algebraic equation is obtained with unknown Boole 

coefficients  as follows 

 

The matrix relation of conditions (21) are written as 

 

where  
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Finally, to reach the approximate solution of the Eq. (1) under mixed conditions, the m row matrices are 

deleted and the row matrices (27) are added. Thus the augmented matrix system is gained as 

 
 

If  is, the augmented matrix is obtained as 

 
As a result, unknown Boole coefficients  are found and placed in the Eq. (3),  is 

obtained. Since  is a solution of the Eq. (1),  and its derivatives are provide the Eq. (1) 

approximately. So the absolute error function can be obtained as follows 

 
for  

 

3. Numerical examples 

Example 1. Firstly, linear Volterra integro-differential equation given as 

 

with the boundary conditions  and the approximate solution by the truncated Boole 

series  

 

where  and . The 

collocation points (23) for  are calculated as  
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and the fundamental matrix equation of the problem is  

 

where 
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After the fundamental matrix equation is calculated, the augmented matrix is found as 

 

From Eq. (27), the matrix form for the boundary conditions becomes 

 and  

From Eq. (28), the new augmented matrix based on the conditions is calculated as  

 

Finally, this system is solved and the unknown Boole coefficients are obtained becomes  
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As a result, if the Boole coefficients found are placed in the Eq. (3), the approximate solution is obtained 

as  and this is the exact solution.  

Example 2. [20] In this example, Volterra integro-differential equation is given as  

 

with the boundary conditions  The exact solution of this problem is  The 

approximate solutions of this equation for  and   are as follows, respectively. 

 

 

 

The error functions of the numerical results are given in Table 1 and its graphic is shown in Fig. 1. Also 

in Fig. 2, the exact solution and Boole solutions are shown. 

Tablo 1. The Comparison of Error Function  and  

Absolute Error Function 

    
0 0.0 0.0 0.0 

0.2 4.0240e-07 5.1098e-14 1.3878e-16 

0.4 2.0574e-07 4.9738e-14 5.5511e-17 

0.6 3.7576e-07 4.4520e-14 2.2204e-16 

0.8 1.8172e-07 3.1197e-14 0 

1.0 9.6665e-06 2.3728e-12 2.7423e-14 
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Figure 1. The Comparison of Error Function  and  

 

Figure 2. The Comparison of Exact Solution and Boole Solutions 
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Example 3. [19] Finally, the following order linear Volterra integro-differential equation 

 

with the boundary conditions  and the exact solution is . For 

 and , the graphic of the exact solution and Boole solutions is shown in Fig. 

3. In graphic, the error functions of numerical results are shown in Fig. 4. 

 

Figure 3. The Comparison Exact Solution and Boole Solutions 
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Figure 4. The Comparison of Error Function  and  

4. Conclusion 

In order to demonstrate the validity and applicability of this technique which is developed for numerical 

solution of Volterrra integro-differential equations, the example of the exact and the approximate 

solutions are given. The computer code written in MATLAB 2015 was used to calculate the exact 

solution, the approximate solutions and error function. The result of the calculations show this new 

method developed solve the problem. This method can be developed for other equation systems. 
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This work presents a nonparametric estimate of the conditional hazard function, when the covariate is 
functional and when the sample is considered as an -mixing sequence. We prove consistency properties 
(with rates) in various situations, including censored and uncensored variables. The pointwise almost 
complete convergence and the uniform almost complete convergence (with rate) of the kernel estimate of 
this model are established.
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Abstract 

 We presented our contribution resumed in a domain decomposition method for an image 
processing problem by the non linear partial differential equation. As a first step, we described in details, 
the implementation of the domain decomposition and coarse mesh correction techniques. Then by several 
numerical simulations we gave useful guidelines for the choice of parameters through such quantitative 
studies, and demonstrate the efficiency of the implemented methods in CPU time and memory saving. 
Show the advantages for our non linear partial differential equation and the subdomain technique used. 
 
Keywords: domain decomposition method, image processing 
 
The minimization problem:  Assume ݑ is a piecewise constant function as given in [4]. The multiphases 
piecewise constant Tixotrop model [5] is to solve the following minimization problem: 

 

Where  can be adaptively selected based on the local gradient image features that is, away from edges,  
tend to 2 to preserve edges. Therefore this new model where  =  2 can effectively reduce the staircase 
effect in TV model whereas it can still retain the sharp edges [1]. 
 
Domain decomposition based subspace correction method: 

 We put the method in a more general setting and start with the description of the subspace correction 

algorithm of [4]. Given a reflexive Banach space ܸ and a convex, Gateaux differentiable functional 

ܨ ∶  ܸ →  ℝ;  we consider the minimization problem: 

 

Under the notion of space correction, we first decompose the space ܸ into a sum of smaller subspaces: 

 

which means that for any ݒ ∈ ܸ , there exists ݒ ∈ ܸ such that ݒ = ∑ ݆ݒ
ୀଵ :  
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Following the framework of [2,6] for linear problems, we solve a finite sequence of sub-minimization 
problems over the subspaces: 

 

where ݑ denotes a previous approximation, to resolve (3). Two types of subspace correction methods 

based on (4)-(5), known as the parallel subspace correction (PSC) and successive subspace correction 

(SSC) method, were proposed in [7, 3]. Here, we adopt the latter, which can be described as follows: 

 

As an illustrative example, we apply the algorithm to the (regularized) Tixotrop denoising model with the 
cost functional: 

 

where ݑ is a given noisy image defined on  Ω = (0, 1) ∗ (0, 1). Here, ܨ is differentiable and it also 
avoids the division by zero in the corresponding Euler-Lagrange equation: 

 
 

with a homogenous Neumann boundary condition ߲ݑ
߲݊ൗ  =  0 along the boundary.  Recall that the 

lagged diffusivity fixed-point iteration for (8) is to solve the linearized equation: 

 
with the initial value ݑ. We see that each iteration involves all the pixel values in the image domain, so it 
will be costly and usually the system is not in good conditioning when 
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the size of images is large. The domain decomposition based SSC algorithm will overcome the 
difficulties by breaking down the whole problem into sub-problems of much smaller size. In the first 
place, we use an overlapping domain decomposition to decompose the solution space ܸ = ଵܪ  (Ω). More 
precisely, we partition Ω into ݉ overlapping subdomains 

 
For clarity, the subdomain Ω is colored with a color ݆, and Ω consists of ݉ subdomains (assumed to be 
"blocks" for simplicity), which are not intersected. Hence, the total number of blocks that cover Ω is : 

 

 

Fig.1 Illustrates schematically the decomposition of Ω into four colored subdomains with 25 blocks. 

Based on the above domain decomposition, we decompose the space ܸ = ଵܪ  (Ω) as 

 
where ܪ

ଵ ൫Ω൯ denotes the subspace of ܪଵ൫Ω൯ with zero traces on the "interior" boundaries ߲Ω୨
߲Ω൘ . 

Applying the SSC algorithm to the Tixotrop-denoising model leads to an iterative method.  
Given an initial value ݑ ∈  ܸ , Algorithm SSC needs us to solve ݑ from  
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Here, we notice that ݁

 is the solution of the subproblem over Ω . It is also easy to see that ݑା ೕ
 

satisfies the associated Euler-Lagrange equations for 1 ≤ ݆ ≤  ݉; 

 
Outside Ω, we have ݑା ೕ

  = ା ೕషభݑ 
  . Thus, there is no need to solve ݑା ೕషభ

  outside  Ω. As the 

subdomain  Ω may contain many disjoint "block", the values of ݑା ೕషభ
  can be obtained in parallel in 

these "blocks" by solving (13). 
 
Numerical discrete algorithm for Tixotrop denoising 

We next present the full two-level algorithm formulated in the previous section for the Tixotrop denoising 
model. We partition the image domain Ω = (0, 1) ∗ (0, 1) into ܰ × ܰ uniform cells with mesh size 
ℎ =  1

ܰൗ . The cell centers are 

 

Hereafter, let ݑ,
  be the pixel value of the original image ݑ at (ݔ;  ; be the finiteݑ ), and letݕ 

difference solution at ൫ݔ;  ൯.  Denoteݕ 

 
The finite difference approximation of (7) is: 

 

where ߙ = ఈ

 and ߚ =  4ℎߚ_. 
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4. Conclusion 

We use in this paper fast algorithms for nonlinear minimization problems with particular 
applications to TV-image denoising. We described the very detailed implementation of the 
domain decomposition and coarse mesh correction techniques. 

5. Simulation and result analysis 
 

  
Simulation and result analysis 

 
Fig2. Simulation and result analysis 

. Original image Lenna, . noise image with 15%  noise multiplicative, . Restored 
image obtained by DD with subdomain size ݀ =  32, overlapping size ߜ = 4,and 
ܴܲܵܰ =  25: 9388., . Original image color, . noise image color with 15 0

0ൗ  noise 
multiplicative, . Restored image color obtained by DD with subdomain size ݀ =  64, 
overlapping size ߜ = 4,and ܴܲܵܰ =  27: 303. 
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Abstract

Various statistical and mathematical model including regression, Taguchi method, response surface

methodology (RSM), and the analysis of variance (ANOVA) have been used to predict and optimize the

output burnishing response.

This work focuses on the application of burnishing S355JR steel by diamond-tip active part. The

considered process parameters are burnishing force (P) and number of tool passes (i). The experiment was

performed using full factorial methodology to develop a mathematical model and optimize the parameters

for the tensile properties such as yield strength (Re), tensile strength (Rm) and ultimate elongation (A%).

A combination of the two parameters was released according to the full factorial methodology with a

complete 22 type design. A linear model for predicting output responses was also established.

Linear regression model was used to predict the output responses.

The effect of each of both input factors (P) and (i) as well as their interactions were investigated and

analyzed. Results show that burnishing has a beneficial effect on the physical state of the material given

the increase in the tensile strength of the material despite a modest reduction of the yield strength up to

11.87% and a reduction from the ultimate elongation of 12.3% to the worst case.

An optimal solution combining burnishing force P = 10 kgf with a number of tool passes i = 3 resulted in

an increase in the tensile strength (Rm) of 4.22% without greatly affecting the ductility of the material

Keywords: Steel S355 JR, burnishing, tensile properties, full factorial methodology

1. Introduction

To ensure a good surface condition some manufacturing processes use mechanical surface treatments

(MST) as cold working processes in which surface plastic deformation (SPD) generate a uniform and

work-hardened surface. These treatments appreciably modify the basic properties of material. [1-2]. An

example of the SPD process is ball burnishing process [3,4] which does not involve material removal, but

improves the surface properties by deforming the surface plastically. It strengthens the metal surface

through the application of pressure through a hard diamond ball and it is often performed on high-strength

steel and alloys with a surface hardness up to 60 HRC [5]. Burnishing is a low-cost surface treatment and
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an environment friendly green process (where skilled operators are not required). This process can be

effectively used in many fields such as aerospace industries, automobiles manufacturing sector etc.

Microscopically, this Mechanical surface treatment (MST) induces high dislocation densities (cold work)

in near-surface regions. The consolidation of material is the result of a movement and proliferation of

dislocations sweeping plan slip and intersects them by increasing density [6,7]. Due to the local plastic

deformation, the surface topography is changed [8] and the superficial layers are work-hardened [9]. It

results an improvement in surface roughness [10], an increase in hardness [11] and a development of

macroscopic compressive residual stresses [12], which leads to improve, among others, tensile properties

[13,14,15].

From the literature review, it can be concluded that the most studies conducted on the surface layer ball-

burnishing process have been focused on the most important classical factors like burnishing speed,

burnishing feed, the burnishing load and the number of tool passes on the treated surfaces quality

enhancement.

Some researchers have developed and manufactured different tools [16,17] to produce good quality of

burnished surfaces. Even if the use of deep hydrostatic ball-burnishing tool [1], an hybrid tool that

combines both function namely milling and burnishing [18] or roller burnishing assisted with ultrasonic

vibration is more effective[19].

Various statistical and mathematical model including regression, Taguchi method, response surface

methodology (RSM), and the analysis of variance (ANOVA) have been used to predict and optimize the

output burnishing response [2,14,20].

This work focuses on the application of burnishing S355JR steel by diamond-tip active part. The input

parameters are burnishing force (P) and number of tool passes (i). The experiment was performed using

full factorial methodology to develop a mathematical model and optimize the parameters for the tensile

properties (such as yield strength (Re), tensile strength (Rm) and ultimate elongation (A%).

2. Procedure and equipment

2.1. Material

In this study, Steel S355JR with chemical composition according the standard ISO 1424 and given in

Table1 was used as workpiece material. Steel S355JR was selected because of its machinability and its

range of applications in the industry. Workpieces were received from initially turned into cylindrical rod

of 12 mm diameter and 130 mm length.

Table 1. Chemical composition of steel S355 JR

C S Al Si P V Cr Mn Ni Cu Mo

0,188 0,003 0,0273 0,2314 0,0051 0 ,00327 0,1571 1,053 0,0548 0,0575 0,0297
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The mechanical characteristics of the material were evaluated using a tensile test performed on cylindrical

specimens taken from the above-mentioned metal. The specimens were machined from cylindrical rods

according to the standard ISO 6892-1. An ALMO model lathe and M20 carbide cutting tool were used

under condition of cutting oil lubrication. Dimensions of rod flat are shown in Fig. 1. All specimens were

machined from the same batch to minimize possible deviation in experimental data. The gauge of the

specimens was polished with fine sandpaper up to grade 400.

Figure 1. Dimensions (mm) of ISO 6892-1tensile specimen

Before the tensile test, the specimens have according to the case been undergone an appropriate

burnishing treatment or remaining with machining state. After machining and burnishing of the

specimens no further treatment was performed.

2.3. Burnishing tool

A burnishing tool with interchangeable adapter for roller, ball or diamond tip burnishing (DTB) were

designed and manufactured [11] for the purpose of the experimental tests. Fig. 2 shows a schematic

representation of the burnishing tool in which the active part (here DTB) fixed to a shank which is to be

firmly clamped on the lathe machine.

Figure 2. Burnishing tool
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Burnishing speed (V) is obtained by the rotation of the spindle whereas the burnishing feed (f) is

communicated to the tool by means of the longitudinal carriage. SPD results in the penetration of the

diamond tip which acts with burnishing force (P) exerted with a helical compression spring during

burnishing operations. A calibration process was conducted using the actual burnishing operation setting

to obtain a relationship between the burnishing force and the corresponding axial displacement.

Two (2) burnishing parameters (P) and (i), have significant effect on the tensile properties. The

burnishing parameters considered are based on previous work conducted by the first author [9] and given

in Table 2.

Table 2. Summary of burnishing parameters

Burnishing parameters Values

Burnishing speed (rpm) 560

Burnishing force (kgf) 10, 20

Number of tool passes 3, 5

Diamond tip radius (mm) 3

Burnishing feed rate (mm/rev) 0.054

Lubricant Oil SAE20

The surface properties of the pre-machined and ball burnished specimens were determined by roughness

and hardness measurements using respectively a digital display profilometer-profilograph instrument

brand: Roughpocket and universal hardness tester LEICA Wetzlar Vickers indenter with indentation load

of 200 gr. At the turned state, roughness and hardness average values are Ra = 5.5µm and Hv=237.3

respectively.

2.3. Tensile tests

To assess strength of material, monotonic tension test according the standard ISO 6892-1 were performed

with 0.005 mm/sec displacement rate at room temperature on steel S355 JR specimens. The experiment

were carried out with a universal testing machine hydraulically MFL type ZWICK 1476 equipped with

hydraulic wedge grips and 10kN force transducer. Data acquisition was carried out using Zwick software

Test-Expert V5. Mechanical properties for the machined and burnished material were given in Table 3.

2.4. Experimental Procedure

Fig. 3 represents the parameters of controlled burnishing. Burnishing force (P), and the number of tool

passes (i) were accepted as the variable (input) factors of the process. Surface microhardness (Hv) and

surface roughness (Ra) was as a surface layer response to an input action on which tensile properties

depend. Burnishing speed (N) and Burnishing feed rate (f) within the frames of this experiment were

considered as constant magnitudes.
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Figure 3. Process diagram and controlling parameters of burnishing

The full factorial experimental design for the factors (P and i) which varies at two levels each of which

can assume two discrete values (conditionally let us denote them X1, X2). The upper limit of the

parameters was coded as +1 and the lower limit was coded as -1. A standard matrix 22 is used, which

structure in simple terms is given in Table 3. Consequently, according to the full factorial experimental

method, it is enough to make only four experiments to establish the degree of impact of each of two

variable parameters on the output characteristic of the material. The other coded values were calculated

using Eq. (1).

(1)

Where Xi in the above equation is the resulting coded value of a variable X, X is any value of the variable

from Xmin to Xmax, and Xmin is the lower and Xmax is the upper limit of the variable. A mathematical model

was developed to predict mechanical properties including yielding stress, ultimate tensile strength and

elongation of steel S355 JR at different burnishing conditions. The linear regression equation to represent

the predicting output responses is given by Eq. (2):

(2)

Where Y is the response; the term a0 is the mean of responses; and the terms a1, a2, and a12 are the

coefficients of responses and it depends on the respective main and interaction effects of the parameters.

X1 and X2 are the coded independent variables. The calculations were carried out by means of the

software for processing statistics, Microsoft Excel. The results are given in Table 3.

Table 3. Experimental design matrix

N°

input factors Output responses

Coded Natural Y1 Y2 Y3

P

X1

i

X2

P

(Kgf)

(i) Re

(MPa)

Rm

(MPa)
A%

Turned - - - - 365,6 523,6 30.0

DTB1

B
ur

ni
sh

ed

+1 -1 20 3 334,2 544,2 27.5

DTB 2 +1 +1 20 5 322,2 531,6 26.6

DTB 3 -1 -1 10 3 339,6 545,7 26.3

DTB 4 -1 +1 10 5 329,4 535,8 25.0

xi

{p,i}

Burnishing condition

N, f, db, lubricant…

Response Yi

{Re Rm, A%}

Input Parameters Output characteristic
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3
3

9
,6

7
,1

1

The final regression models for tensile properties (Re, Rm and A%) are given in Eqs. (3), (4), and (5)

respectively.

(3)

(4)

(5)

3. Results and Discussions

During the tensile test, the specimen develops an important necking phenomenon (Fig. 4a) whereas the

fracture surface often tilted or mixed exhibits a rupture at nerve (Fig. 4b) whose fracture surface testifies

the ductile character of tested material.

Figure 4. a)Necking and b)Fracture surface of steel S355JR

Tensile strength is improved in the sequential turning and burnishing process because of plastic

deformation induced by the diamond tip. In the other hand yield strength (Re) and ultimate elongation

(A%) are reduced due to the generation of compressive residual stress. The tensile tests on the four

burnished work-pieces revealed a reduction of Re (Fig. 5) which can fall by 11.87 % when performing

burnishing with a force of 20 kgf in 5 passes.

This can be explained by the fact that a large load (P = 20Kgf) associated with a high number of passes (i

= 5) accentuates the hardening of the surface layers and consequently reduces the ductility and the yield

strength of the material. The beneficial effect of the surface treatment has been noted on the tensile

strength (Rm) which is for all burnishing conditions, several times higher than that of removal-chip

process. The most favorable working regime characterized by (P = 10Kgf and i = 3) favors a Rm = 545.7

MPa. Such a combination of the two parameters seems to ensure the best hardening and consolidation of

superficial layers, hence the increase in Rm. However, the elongation (A%) experiencing a decrease in

particular for burnishing with a large number of passes (i = 5), where the phenomenon of strain hardening

is feared.

b)a)
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Figure 5. Effect of burnishing parameters on tensile properties

Fig. 6 shows the influence of the burnishing parameters on the yield strength (Re). Even if a reduction of

this property is observed, whatever the combination of the two parameters envisaged, the increase of the

burnishing force from 10 to 20 kgf results in a reduction of 0.16% on Re when number of tools passes (i)

is 3. When increasing this number (i) to 5, the fall of Re is more increased since the difference increases

to 2.18%. The interaction of number of tools passes is therefore stronger when the latter is taken to its

high level. When both factors (P and i) are at their highest levels, the surface layers are very affected by

hardening which increases their hardness and consequently reduces Re to its lowest estimated rate at

11.87% compared to the machining state.

Figure 6. Reduction rate of yield strength under DTB effect

122



INTERNATIONAL CONFERENCE ON MATHEMATICS

“An Istanbul Meeting for World Mathematicians”

3-5 July 2019, Istanbul, Turkey

Overall, the hardening induced by burnishing is positively reflected in the tensile strength (Rm) which

gains up to 4.22% compared to the turning state for the low levels of each of the two factors (Fig. 7).

Figure 7. Gain rate of tensile strength under DTB effect

The interaction of these two factors is not negligible in this case; by fixing the burnishing force at its low

level (10kgf), the increase in the factor (i) reduces the burnishing efficiency with respect to Rm which

drops by 1.81%. It is the same when the treatment is done at the high level of factor (P) i.e 20kgf since

Rm falls by 2.3% when factor (i) goes from 3 to 5.

Burnishing seems generate compressive residual stress layer. This effect results in a ductility drop of

material that loses up to 16.6% of its ultimate elongation compared to the machining state (Fig. 8).

Figure 8. Reduction rate of ultimate elongation under DTB effect

The influence of the burnishing force (P) is more striking when the number of passes (i) is used at its high

level since by increasing the force (P) from 10 to 20 kgf, the ductility increases by 6.4% for (i) = 5 then it
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increases by 4.5% when it is 3. On the other hand, the interaction of the number of passes is stronger

when the burnishing force is taken at a low level; for P = 20kgf, the ultimate elongation (A%) is reduced

by 3.2% when (i) goes from 3 to 5 whereas for P = 10kgf, the elongation is reduced by 4.94% for the

same variation of ( i). Combination of high burnishing forces (P) with large numbers of passes (i) is to be

avoided since it provides the least desirable output responses.

4. Conclusion

Ball-burnishing process has been commonly used to improve the quality of finished surfaces. The

effects of diamond tip burnishing process on yield strength, tensile strength and ultimate elongation of the

S355 JR Steel have been investigated in this research.

The following conclusions can be drawn.

-Burnishing process shows a dependency on the parameters (P) and (i) whose the high level would

weaken the burnishing effect induced by the diamond tip.

-Using high force and number of passes increase the cold work dramatically and may consequently

decrease tensile properties. On the other hand, low burnishing forces agree well with low numbers of

passes to provide the best yield strength (Re), and tensile strength (Rm) even if the ultimate elongation is

more decreased. Thus for optimal Rm we recommend P = 10kgf and i = 3.

-The results showed that after burnishing, tensile strength was higher than 545.7 MPa and the yield

strength fall down at 339.6 MPa while using the best burnishing condition.

-The best combination condition of process parameters was obtained after a full factorial design analysis.

The quality reproducibility was verified to be excellent through confirmation experiments. Thus, using

the proposed procedure, the optimal diamond ball burnishing conditions should be obtained to control the

surface responses of other materials.
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Abstract 

 

In this work, we consider some nonparametric goodness-of-fit tests for AFT-Bertholon 

distribution. Kolmogorov-Smirnov, Anderson-Darling are proposed. 

          We use the Monte Carlo simulation method for calculate the critical values for each test for 

several sample sizes and significance levels. The power of the proposed tests can be specified for 

different sample sizes and considering diverse alternatives. 
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Abstract 

 

In this work, we propose firstly the construction of a new model called AFT-Bertholon. This 

new model combines the accelerated failure time model with a competing risks model proposed by 

Bertholon et al. (2004).  

Next, we suggest the construction of a modified chi-squared goodness-of-fit test for AFT-

Bertholon model. We use the NRR (Nikulin-Rao-Robson) statistic based on maximum likelihood 

estimation for ungrouped data. 

We applied this new model and the corresponding statistic test to numerical examples from 

simulated samples and real data. 
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Abstract

Various statistical and mathematical model including regression, Taguchi method, response surface

methodology (RSM), and the analysis of variance (ANOVA) have been used to predict and optimize the

output burnishing response.

This work focuses on the application of burnishing S355JR steel by diamond-tip active part. The

considered process parameters are burnishing force (P) and number of tool passes (i). The experiment was

performed using full factorial methodology to develop a mathematical model and optimize the parameters

for the tensile properties such as yield strength (Re), tensile strength (Rm) and ultimate elongation (A%).

A combination of the two parameters was released according to the full factorial methodology with a

complete 22 type design. A linear model for predicting output responses was also established.

Linear regression model was used to predict the output responses.

The effect of each of both input factors (P) and (i) as well as their interactions were investigated and

analyzed. Results show that burnishing has a beneficial effect on the physical state of the material given

the increase in the tensile strength of the material despite a modest reduction of the yield strength up to

11.87% and a reduction from the ultimate elongation of 12.3% to the worst case.

An optimal solution combining burnishing force P = 10 kgf with a number of tool passes i = 3 resulted in

an increase in the tensile strength (Rm) of 4.22% without greatly affecting the ductility of the material

Keywords: Steel S355 JR, burnishing, tensile properties, full factorial methodology

1. Introduction

To ensure a good surface condition some manufacturing processes use mechanical surface treatments

(MST) as cold working processes in which surface plastic deformation (SPD) generate a uniform and

work-hardened surface. These treatments appreciably modify the basic properties of material. [1-2]. An

example of the SPD process is ball burnishing process [3,4] which does not involve material removal, but

improves the surface properties by deforming the surface plastically. It strengthens the metal surface

through the application of pressure through a hard diamond ball and it is often performed on high-strength

steel and alloys with a surface hardness up to 60 HRC [5]. Burnishing is a low-cost surface treatment and
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an environment friendly green process (where skilled operators are not required). This process can be

effectively used in many fields such as aerospace industries, automobiles manufacturing sector etc.

Microscopically, this Mechanical surface treatment (MST) induces high dislocation densities (cold work)

in near-surface regions. The consolidation of material is the result of a movement and proliferation of

dislocations sweeping plan slip and intersects them by increasing density [6,7]. Due to the local plastic

deformation, the surface topography is changed [8] and the superficial layers are work-hardened [9]. It

results an improvement in surface roughness [10], an increase in hardness [11] and a development of

macroscopic compressive residual stresses [12], which leads to improve, among others, tensile properties

[13,14,15].

From the literature review, it can be concluded that the most studies conducted on the surface layer ball-

burnishing process have been focused on the most important classical factors like burnishing speed,

burnishing feed, the burnishing load and the number of tool passes on the treated surfaces quality

enhancement.

Some researchers have developed and manufactured different tools [16,17] to produce good quality of

burnished surfaces. Even if the use of deep hydrostatic ball-burnishing tool [1], an hybrid tool that

combines both function namely milling and burnishing [18] or roller burnishing assisted with ultrasonic

vibration is more effective[19].

Various statistical and mathematical model including regression, Taguchi method, response surface

methodology (RSM), and the analysis of variance (ANOVA) have been used to predict and optimize the

output burnishing response [2,14,20].

This work focuses on the application of burnishing S355JR steel by diamond-tip active part. The input

parameters are burnishing force (P) and number of tool passes (i). The experiment was performed using

full factorial methodology to develop a mathematical model and optimize the parameters for the tensile

properties (such as yield strength (Re), tensile strength (Rm) and ultimate elongation (A%).

2. Procedure and equipment

2.1. Material

In this study, Steel S355JR with chemical composition according the standard ISO 1424 and given in

Table1 was used as workpiece material. Steel S355JR was selected because of its machinability and its

range of applications in the industry. Workpieces were received from initially turned into cylindrical rod

of 12 mm diameter and 130 mm length.

Table 1. Chemical composition of steel S355 JR

C S Al Si P V Cr Mn Ni Cu Mo

0,188 0,003 0,0273 0,2314 0,0051 0 ,00327 0,1571 1,053 0,0548 0,0575 0,0297
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The mechanical characteristics of the material were evaluated using a tensile test performed on cylindrical

specimens taken from the above-mentioned metal. The specimens were machined from cylindrical rods

according to the standard ISO 6892-1. An ALMO model lathe and M20 carbide cutting tool were used

under condition of cutting oil lubrication. Dimensions of rod flat are shown in Fig. 1. All specimens were

machined from the same batch to minimize possible deviation in experimental data. The gauge of the

specimens was polished with fine sandpaper up to grade 400.

Figure 1. Dimensions (mm) of ISO 6892-1tensile specimen

Before the tensile test, the specimens have according to the case been undergone an appropriate

burnishing treatment or remaining with machining state. After machining and burnishing of the

specimens no further treatment was performed.

2.3. Burnishing tool

A burnishing tool with interchangeable adapter for roller, ball or diamond tip burnishing (DTB) were

designed and manufactured [11] for the purpose of the experimental tests. Fig. 2 shows a schematic

representation of the burnishing tool in which the active part (here DTB) fixed to a shank which is to be

firmly clamped on the lathe machine.

Figure 2. Burnishing tool
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Burnishing speed (V) is obtained by the rotation of the spindle whereas the burnishing feed (f) is

communicated to the tool by means of the longitudinal carriage. SPD results in the penetration of the

diamond tip which acts with burnishing force (P) exerted with a helical compression spring during

burnishing operations. A calibration process was conducted using the actual burnishing operation setting

to obtain a relationship between the burnishing force and the corresponding axial displacement.

Two (2) burnishing parameters (P) and (i), have significant effect on the tensile properties. The

burnishing parameters considered are based on previous work conducted by the first author [9] and given

in Table 2.

Table 2. Summary of burnishing parameters

Burnishing parameters Values

Burnishing speed (rpm) 560

Burnishing force (kgf) 10, 20

Number of tool passes 3, 5

Diamond tip radius (mm) 3

Burnishing feed rate (mm/rev) 0.054

Lubricant Oil SAE20

The surface properties of the pre-machined and ball burnished specimens were determined by roughness

and hardness measurements using respectively a digital display profilometer-profilograph instrument

brand: Roughpocket and universal hardness tester LEICA Wetzlar Vickers indenter with indentation load

of 200 gr. At the turned state, roughness and hardness average values are Ra = 5.5µm and Hv=237.3

respectively.

2.3. Tensile tests

To assess strength of material, monotonic tension test according the standard ISO 6892-1 were performed

with 0.005 mm/sec displacement rate at room temperature on steel S355 JR specimens. The experiment

were carried out with a universal testing machine hydraulically MFL type ZWICK 1476 equipped with

hydraulic wedge grips and 10kN force transducer. Data acquisition was carried out using Zwick software

Test-Expert V5. Mechanical properties for the machined and burnished material were given in Table 3.

2.4. Experimental Procedure

Fig. 3 represents the parameters of controlled burnishing. Burnishing force (P), and the number of tool

passes (i) were accepted as the variable (input) factors of the process. Surface microhardness (Hv) and

surface roughness (Ra) was as a surface layer response to an input action on which tensile properties

depend. Burnishing speed (N) and Burnishing feed rate (f) within the frames of this experiment were

considered as constant magnitudes.
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Figure 3. Process diagram and controlling parameters of burnishing

The full factorial experimental design for the factors (P and i) which varies at two levels each of which

can assume two discrete values (conditionally let us denote them X1, X2). The upper limit of the

parameters was coded as +1 and the lower limit was coded as -1. A standard matrix 22 is used, which

structure in simple terms is given in Table 3. Consequently, according to the full factorial experimental

method, it is enough to make only four experiments to establish the degree of impact of each of two

variable parameters on the output characteristic of the material. The other coded values were calculated

using Eq. (1).

(1)

Where Xi in the above equation is the resulting coded value of a variable X, X is any value of the variable

from Xmin to Xmax, and Xmin is the lower and Xmax is the upper limit of the variable. A mathematical model

was developed to predict mechanical properties including yielding stress, ultimate tensile strength and

elongation of steel S355 JR at different burnishing conditions. The linear regression equation to represent

the predicting output responses is given by Eq. (2):

(2)

Where Y is the response; the term a0 is the mean of responses; and the terms a1, a2, and a12 are the

coefficients of responses and it depends on the respective main and interaction effects of the parameters.

X1 and X2 are the coded independent variables. The calculations were carried out by means of the

software for processing statistics, Microsoft Excel. The results are given in Table 3.

Table 3. Experimental design matrix

N°

input factors Output responses

Coded Natural Y1 Y2 Y3

P

X1

i

X2

P

(Kgf)

(i) Re

(MPa)

Rm

(MPa)
A%

Turned - - - - 365,6 523,6 30.0

DTB1

B
ur

ni
sh

ed

+1 -1 20 3 334,2 544,2 27.5

DTB 2 +1 +1 20 5 322,2 531,6 26.6

DTB 3 -1 -1 10 3 339,6 545,7 26.3

DTB 4 -1 +1 10 5 329,4 535,8 25.0

xi

{p,i}

Burnishing condition

N, f, db, lubricant…

Response Yi

{Re Rm, A%}

Input Parameters Output characteristic
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3
3

9
,6

7
,1

1

The final regression models for tensile properties (Re, Rm and A%) are given in Eqs. (3), (4), and (5)

respectively.

(3)

(4)

(5)

3. Results and Discussions

During the tensile test, the specimen develops an important necking phenomenon (Fig. 4a) whereas the

fracture surface often tilted or mixed exhibits a rupture at nerve (Fig. 4b) whose fracture surface testifies

the ductile character of tested material.

Figure 4. a)Necking and b)Fracture surface of steel S355JR

Tensile strength is improved in the sequential turning and burnishing process because of plastic

deformation induced by the diamond tip. In the other hand yield strength (Re) and ultimate elongation

(A%) are reduced due to the generation of compressive residual stress. The tensile tests on the four

burnished work-pieces revealed a reduction of Re (Fig. 5) which can fall by 11.87 % when performing

burnishing with a force of 20 kgf in 5 passes.

This can be explained by the fact that a large load (P = 20Kgf) associated with a high number of passes (i

= 5) accentuates the hardening of the surface layers and consequently reduces the ductility and the yield

strength of the material. The beneficial effect of the surface treatment has been noted on the tensile

strength (Rm) which is for all burnishing conditions, several times higher than that of removal-chip

process. The most favorable working regime characterized by (P = 10Kgf and i = 3) favors a Rm = 545.7

MPa. Such a combination of the two parameters seems to ensure the best hardening and consolidation of

superficial layers, hence the increase in Rm. However, the elongation (A%) experiencing a decrease in

particular for burnishing with a large number of passes (i = 5), where the phenomenon of strain hardening

is feared.

b)a)
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Figure 5. Effect of burnishing parameters on tensile properties

Fig. 6 shows the influence of the burnishing parameters on the yield strength (Re). Even if a reduction of

this property is observed, whatever the combination of the two parameters envisaged, the increase of the

burnishing force from 10 to 20 kgf results in a reduction of 0.16% on Re when number of tools passes (i)

is 3. When increasing this number (i) to 5, the fall of Re is more increased since the difference increases

to 2.18%. The interaction of number of tools passes is therefore stronger when the latter is taken to its

high level. When both factors (P and i) are at their highest levels, the surface layers are very affected by

hardening which increases their hardness and consequently reduces Re to its lowest estimated rate at

11.87% compared to the machining state.

Figure 6. Reduction rate of yield strength under DTB effect
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Overall, the hardening induced by burnishing is positively reflected in the tensile strength (Rm) which

gains up to 4.22% compared to the turning state for the low levels of each of the two factors (Fig. 7).

Figure 7. Gain rate of tensile strength under DTB effect

The interaction of these two factors is not negligible in this case; by fixing the burnishing force at its low

level (10kgf), the increase in the factor (i) reduces the burnishing efficiency with respect to Rm which

drops by 1.81%. It is the same when the treatment is done at the high level of factor (P) i.e 20kgf since

Rm falls by 2.3% when factor (i) goes from 3 to 5.

Burnishing seems generate compressive residual stress layer. This effect results in a ductility drop of

material that loses up to 16.6% of its ultimate elongation compared to the machining state (Fig. 8).

Figure 8. Reduction rate of ultimate elongation under DTB effect

The influence of the burnishing force (P) is more striking when the number of passes (i) is used at its high

level since by increasing the force (P) from 10 to 20 kgf, the ductility increases by 6.4% for (i) = 5 then it
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increases by 4.5% when it is 3. On the other hand, the interaction of the number of passes is stronger

when the burnishing force is taken at a low level; for P = 20kgf, the ultimate elongation (A%) is reduced

by 3.2% when (i) goes from 3 to 5 whereas for P = 10kgf, the elongation is reduced by 4.94% for the

same variation of ( i). Combination of high burnishing forces (P) with large numbers of passes (i) is to be

avoided since it provides the least desirable output responses.

4. Conclusion

Ball-burnishing process has been commonly used to improve the quality of finished surfaces. The

effects of diamond tip burnishing process on yield strength, tensile strength and ultimate elongation of the

S355 JR Steel have been investigated in this research.

The following conclusions can be drawn.

-Burnishing process shows a dependency on the parameters (P) and (i) whose the high level would

weaken the burnishing effect induced by the diamond tip.

-Using high force and number of passes increase the cold work dramatically and may consequently

decrease tensile properties. On the other hand, low burnishing forces agree well with low numbers of

passes to provide the best yield strength (Re), and tensile strength (Rm) even if the ultimate elongation is

more decreased. Thus for optimal Rm we recommend P = 10kgf and i = 3.

-The results showed that after burnishing, tensile strength was higher than 545.7 MPa and the yield

strength fall down at 339.6 MPa while using the best burnishing condition.

-The best combination condition of process parameters was obtained after a full factorial design analysis.

The quality reproducibility was verified to be excellent through confirmation experiments. Thus, using

the proposed procedure, the optimal diamond ball burnishing conditions should be obtained to control the

surface responses of other materials.
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Abstract 

Two-parameter Xgamma distribution is relatively a new probability distribution in the vast literature 

of distribution theory for modeling the positive-valued and skewed data. The aim of the current study is to 

estimate parameters of the two-parameter Xgamma distribution employing different estimation methods 

such as maximum likelihood, moments, L-moments, least-squares, and maximum spacing. We compare 

the estimation performances of these estimation methods by comprehensive Monte-Carlo simulation 

studies performed on the different sample of sizes small, moderate and large.  

 

Keywords: Lifetime distributions, Statistical inference, L-moments estimation, Maximum likelihood estimation, Least-square 

estimation. 

 

1. Introduction  

The Gamma and Exponential are two popular probability distribution models used to statistically modeling 

of lifetime data. Recently, Sen et al. [1] introduced a two parameters lifetime distribution called two-

parameter Xgamma distribution as a special mixture of the Exponential and Gamma distributions with 

mixing ratios 


 +
 and 



 +
, respectively. The probability density function (pdf) of the Xgamma 

distribution is 
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and the corresponding cumulative distribution function (cdf) is 
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where   and   are the positive valued parameters of the distribution. When the parameter 1 =  then the 

distribution reduces to the Xgamma distribution with parameter  . From now on, we will use the 

( ),TPXG    notation to indicate the two-parameter Xgamma distribution with parameters   and  . 

The survival function of the two-parameter Xgamma distribution is 
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and its hazard rate function is 
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Sen et al. [1] have showed the hazard rate function of the distribution is increasing for 
2

x


 , decreasing 

otherwise. Therefore, we can conclude the distribution is an alternative probability distribution for 

modeling the data with a decreasing-increasing hazard rate. Some other basic features of the two-parameter 

Xgamma distribution studied by Sen et at. [1] are tabulated by the following table. 

Table 1: Some basic features of the two-parameter Xgamma distribution 
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The main purpose of this study is to obtain the different estimators of the two-parameter Xgamma 

distribution parameters and to show how they behave at small, moderate and large sample sizes and 

different parameter values. In the recent, Sen et al. [1] studied the maximum likelihood (ML) estimators 

and the method of moments (MOM) estimators of two-parameter Xgamma distribution parameters. By this 

study, we discuss the ML and MOM estimators of the two-parameter Xgamma distribution, and also studied 

the least-squares (LS), the L-moments (L-MOM) and the maximum spacing (MSP) estimators of the 

unknown parameters of the two-parameter Xgamma distribution as the different estimators, which have not 

been studied yet.  

The remaining sections of this study is organized as follows: in section 2, we study the different estimators 

for the unknown parameters of the two-parameter Xgamma distribution by employing the different 

methodologies such as the ML, the MOM, the LS, the L-MOM, and the MSP. Some numerical study results 

are provided in section 3 for comparing the estimation efficiencies of the estimators obtained in section 2. 

Finally, section 4 concludes the study. 

2. Statistical Inference for Xgamma Parameters 

In this section, we investigate the solution of the estimation problem for the Xgamma parameters   and 

.  In order to estimate the parameters   and  , we obtain several prominent estimators by using the 

different estimation methodologies such as the ML, MOM, LS, L-MOM, and MSP. 

2.1. ML Estimation 

Let 1 2, ,..., nX X X  be a random sample taken from two-parameter Xgamma distribution with parameters 𝛼 

and  . By considering the pdf (1), the log-likelihood function for the sample 1 2, ,..., nX X X  is easily written 

as 

 ( ) 2

1 1

1
, 2 ln( ) ln( ) ln 1

2

n n

j j

j j

L n n x x      
= =

 
= − + − + + 

 
  . (5) 

If we derive the log-likelihood function given by equation (5) with respect to parameters   and 𝜃, the two 

likelihood equations become  
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(6) 

and 
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21 1

2
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1
2 1
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n n
j

j

j j
j

xL n n
x

x



   
= =


= − − + =

 +  
+ 

 

  . 
(7) 

Thus, the ML estimators of the parameters can be obtained from the solution of the nonlinear system given 

by equations (6) and (7). Unfortunately, explicit form of the ML estimators cannot be obtained from this 

system. However, nonlinear system given by equations (6) and (7) can be solved numerically by employing 

a numerical method such as Newton’s method and we can obtain the ML estimates of the parameters. Now, 

let us investigate the ML estimates of the parameters   and   employing the Newton’s method. 

The Newton’s iterative formula is given by 

 ( ) ( )1

1
ˆ ˆ ˆ ˆ= ,j j j jH −

+  −     (8) 

where j  is the iteration number, ˆ
j  is the estimation of parameter vector in the j th iteration, ( )ˆ

j   is 

the corresponding gradient, ( )ˆ
jH   is the corresponding Hessian matrix. Here, to obtain the numerical 

solutions of the likelihood equations given by equations (6) and (7), ˆ ,j  ( )ˆ
j   and ( )ˆ

jH   are defined 

as  

 
ˆ

ˆ = ,
ˆ

j

j

j





 
  

  

 (9) 

 ( )
ˆˆ= , =

ln ( , )

ˆ =
ln ( , )

j j

j

L

L

   

 



 



 
 

   
 
  

 (10) 

and  
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, (11) 

here, the elements of ( )H  , say ijh  ( ), = 1,2i j , can be easily obtained from the log-likelihood equation 

given by equation (5) as 

 
( )

2
4

2
2

2

2
1

11

2

ln
= =

n

j

j
j

L

x
h x





=

 
 −
 +
 




 , (12) 

 

 
( ) ( )

12 21

2
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2 2
2

1

2

2
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j
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n
h
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= +
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=   (13) 

and 

 
( ) ( )

2 4

2

2

2
2

1

2 22 2

2

2

ln n
j

j
j

xn n
h

x

L 

   =

 
 − + −
 + +
 


= =


 . (14) 

Thus, by employing the iterative rule given by equation (8) with an initial estimation of the   like 0̂ , we 

can easily obtain the ML estimates of the parameters. 

2.2. MOM Estimation 

In this subsection, we discuss method of moments estimators of two-parameter Xgamma distribution. Let 

us assume that 1 2, , , nX X X  be a random sample drawn from ( , )TPXG    distribution. If 

( ),  1,2, ,iX i n=  random variables follow ( , )TPXG    distribution, by using the expression for the r-th 

moment of the two-parameter Xgamma distribution given in Table 1, the first and second population 

moments can easily be written as 
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+
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=  (15) 

and 

 ( )
( )

( )
2

2 2

2 6
E X

 

  


+
==

+
, (16) 

respectively [1]. On the other hands, the first and second sample moments are described as 

 1

1

1 n

i

i

m x
n =

=   (17) 

and 

 
2

2

=1

1
=

n

i

i

m x
n
 . (18) 

In a general point of view, the moment estimators are obtained by equating the first and second population 

moments to the corresponding sample moments for a family of distribution with two unknown parameters. 

Following the general definition of the method of moments estimator, we can write the following system. 

 
( )

1

3
0m

 

  

+
− =

+
 (19) 

 
( )

( )
22

2 6
0m

 

  

+
− =

+
 (20) 

Hence, the MOM estimators of the parameter   and , say ˆ
MOM  and ˆ

MOM , respectively, are obtained as 

 

( )2 2

1 1 2 1
2 1
1 2

2

2

2 1

2 25 12 5 91
25 12

2 2
ˆ

3 4
MOM

m m m m m
m m

m

m m


− +
− − −

=
−

 
(21) 

and 
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− +
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2.3. LS estimation 

The least squares estimators of the paramerers of ( , )TPXG    distribution are obtained in this subsection. 

Suppose 1 2, , , nX X X  be a random sample from the ( , )TPXG    distribution and (1) (2) ( ), , , nx x x  shows 

ordered measurements. By following these assumptions and the notations given by Swain et al. [2], the LS 

estimators of the parameters   and  , say ˆ
LS  and ˆ

LS , respectively, can be easily obtained by minimizing 

 ( ) ( ) ( ) 2

( ) ( )

1

ˆ, , , ( )
n

i i

i

Q F X F x   
=

= −  (23) 

with respect to   and  . 

By considering ( ) ( )1F x S x= − , the quadratic form ( ),Q    can also be written as 

 ( ) ( ) ( )( )
2

( ) ( )

1

ˆ,
n

i i

i

Q S X S x 
=

= − . (24) 

where ( )( )
ˆ

iS x  can be estimated by 

 ( ) ( )( )
ˆ 1 , 1,2,..., .

1
i i

i
S x u i n

n
= − = =

+
. (25) 

By deriving the quadratic form ( ),Q    with respect to parameters and equated them to zero, we achieve 

the following nonlinear equations: 

 
( )

( ) ( )

( )( )

( )

1

,
2 0

n
i

i i
i

S xQ
S x u

 

 =


 = − =
  

  (26) 

 
( )

( ) ( )

( )( )

( )

1

,
2 0

n
i

i i
i

S xQ
S x u

 

 =


 = − =
  

 , (27) 

where 
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, (28) 

 
( )( )

2

(2 ( ( ( ) 1) 4))

2( )

x
iS x xe x x     

  

− + + + +
= −

 +
. (29) 

Therefore, the least-square estimates ˆ
LS  and ˆ

LS  are obtained from numerical solution of the equations 

(26) and (27). 

2.4. L-MOM estimation 

The L-moments estimation method is a more robust estimation technique than the method of moments. It 

was introduced using the linear combinations of the order statistics by Hosking [3]. The L-moment 

estimators are obtained by using the same main idea of the ordinary moments estimation methods, namely, 

by equating the sample L-moments with the population L-moments. In order to estimate the unknown 

parameters of the two-parameter Xgamma distribution according to the L-moments method, we need to the 

first two sample and population L-moments. 

The first and the second sample L-moments are 

 ( )1

=1

1
=

n

i
i

l x
n
  (30) 

and  

 
( )

( ) 2

2 1

=1

2
= 1

1

n

i

i

l i x l
n n

− −
−
 , (31) 

respectively, see [3]. On the other hands, follows the definition of population L-moments given in [3], first 

two population L-moments, say 1L  and 2L , of the two-parameter Xgamma distribution are obtaine as 

 ( ) ( )1 1:1 2

3
L E X E X

 

 

+
= = =

+
 (32) 

 and  
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2 2

2 2:2 1:2 2

15 36 8
,

16 ( )
L E X E X

  

  

+ +
= − =

+
. (33) 

respectively, here ( )2:2E X  denotes the m-th order statistic of a sample of size n. Therefore, the L-MOM 

estimators of the parameters   and  , say ˆ
L MOM −  and ˆ

L MOM − , respectively, are obtained from solution 

of the equation system 

 1 1 0L l− = . (34) 

 2 2 0L l− =  (35) 

as 

 

2 2

1 1 2 2 1 2

2

1

4 51 132 64 33 32ˆ
13

L MOM

l l l l l l

l
 −

− + + −
= . (36) 

and 

 ( ) ( )2 2 2 2 2

1 2 1 1 2 2 2 1 1 2 2 2 1

2

1 1 2

896 46 51 132 64 64 51 132 64 8 334
ˆ

13 (5 16 )
L MOM

l l l l l l l l l l l l l

l l l
 −

− − + + − + − −
=

−
. 

(37) 

2.5. MSP estimation 

In this subsection we study the maximum spacing estimator of the unkonown parameters   and  . 

Maximum spacing estimation method was introduced by Ranneby [4]. The method is also known as 

maximum product space estimation, see [5]. The MSP estimators have nice properties such as consistency 

and asymptotically unbiasedness.  

Suppose that X is a random variable with the ( ),TPXG    distribution and ( ) ( ) ( )1 2
, , ,

n
x x x  shows ordered 

observations. By these assumptions, the MSP estimators of parameters   and   are obtained maximizing  
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(38) 

with respect to   and  , where ( )., ,F    is cdf of the two-parameter Xgamma distribution given by 

equation (2) and ( )( )0
, , 0F x   = , and ( )( )1

, , 1
n

F x  
+

= . 

3. Simulation Study  

Comparing the performances of the estimators studied in the previous section is theoretically a difficult 

task. Therefore, to compare the performance of these estimators, some Monte-Carlo simulation studies are 

carried out in this section. In the simulation studies, we consider the four cases of the parameter values: 

• 0.5 =  and 0.5 =  

• 0.5 =  and 1.5 =  

• 1.5 =  and 0.5 =  

• 1.5 =  and 1.5 =  

Performances of the estimators are compared by using the bias and mean squared errors (MSE) criteria. For 

the different sample of sizes n=30,50,100 and 200, the simulated results by 1000 replicated simulations are 

given by Tables 2-5. 

When the Monte-Carlo simulation study results given by Tables 2-5 are examined, it is seen that the 

estimation performance of all estimators is quite satisfactory. As the sample size n increases, both bias and 

MSE values of all estimators decrease. Therefore, it can be said that these estimators are asymptotically 

unbiased and consistent. In addition, we can conclude that MSP estimators have outperformed the other 

estimators with smaller bias and MSE values in estimating the parameter  , and also ML estimators have 

outperformed the other estimators with smaller bias and MSE values in estimating the parameter  . 
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Table 1: Simulated results for 0.5 =  and 0.5 =  

n Method ̂  Bias( ̂ ) MSE(̂ )  ̂  Bias( ̂ ) MSE( ̂ ) 
30 ML 0.6247 0.1247 0.1622  0.5059 0.0059 0.0061 

 LS 0.5866 0.0866 0.1680  0.4945 -0.0055 0.0066 

 MOM 0.6668 0.1668 0.2194  0.5112 0.0112 0.0061 

 L-MOM 0.5835 0.0835 0.1429  0.4993 -0.0007 0.0056 

 MSP 0.5113 0.0113 0.1210  0.4713 -0.0287 0.0104 

50 ML 0.5462 0.0462 0.0841  0.4945 -0.0055 0.0050 

 LS 0.5242 0.0242 0.1056  0.4873 -0.0127 0.0049 

 MOM 0.5840 0.0840 0.1185  0.5018 0.0018 0.0044 

 L-MOM 0.5163 0.0163 0.0787  0.4907 -0.0093 0.0040 

 MSP 0.4502 -0.0498 0.0751  0.4625 -0.0375 0.0096 

100 ML 0.5473 0.0473 0.0530  0.5027 0.0027 0.0029 

 LS 0.5209 0.0209 0.0582  0.4940 -0.0060 0.0038 

 MOM 0.5868 0.0868 0.0856  0.5079 0.0079 0.0030 

 L-MOM 0.5288 0.0288 0.0517  0.4995 -0.0005 0.0027 

 MSP 0.4786 -0.0214 0.0499  0.4809 -0.0191 0.0050 

200 ML 0.5328 0.0328 0.0274  0.5013 0.0013 0.0013 

 LS 0.5227 0.0227 0.0374  0.4961 -0.0039 0.0021 

 MOM 0.5440 0.0440 0.0347  0.5028 0.0028 0.0015 

 L-MOM 0.5196 0.0196 0.0263  0.4987 -0.0013 0.0013 

 MSP 0.4906 -0.0094 0.0247  0.4896 -0.0104 0.0017 

 

Table 2: Simulated results for 0.5 =  and 1.5 =  

n Method ̂  Bias( ̂ ) MSE(̂ )  ̂  Bias( ̂ ) MSE( ̂ ) 
30 ML 1.0609 0.5609 1.9773  1.6051 0.1051 0.1972 

 LS 1.0578 0.5578 2.1876  1.6290 0.1290 0.1798 

 MOM 1.1094 0.6094 2.5756  1.6047 0.1047 0.2271 

 L-MOM 0.8216 0.3216 1.5337  1.5435 0.0435 0.1795 

 MSP 0.6343 0.1343 0.9498  1.3872 -0.1128 0.1989 

50 ML 0.7139 0.2139 0.5091  1.5280 0.0280 0.0958 

 LS 0.7630 0.2630 0.7315  1.5527 0.0527 0.1225 

 MOM 0.7338 0.2338 0.5581  1.5411 0.0411 0.1083 

 L-MOM 0.6281 0.1281 0.5022  1.5146 0.0146 0.0989 

 MSP 0.4861 -0.0139 0.3546  1.3757 -0.1243 0.1278 

100 ML 0.7019 0.2019 0.3416  1.5355 0.0355 0.0789 

 LS 0.7627 0.2627 0.5305  1.5651 0.0651 0.1023 

 MOM 0.7138 0.2138 0.3628  1.5468 0.0468 0.0794 

 L-MOM 0.6436 0.1436 0.3549  1.5248 0.0248 0.0754 

 MSP 0.5197 0.0197 0.2559  1.4098 -0.0902 0.0993 

200 ML 0.5886 0.0886 0.1706  1.5005 0.0005 0.0571 

 LS 0.6798 0.1798 0.3060  1.5547 0.0547 0.0715 

 MOM 0.5844 0.0844 0.1889  1.5026 0.0026 0.0548 

 L-MOM 0.5441 0.0441 0.2005  1.4924 -0.0076 0.0520 

 MSP 0.4566 -0.0434 0.1581  1.4001 -0.0999 0.0856 
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Table 3: Simulated results for 1.5 =  and 0.5 =  

n Method ̂  Bias( ̂ ) MSE(̂ )  ̂  Bias( ̂ ) MSE( ̂ ) 
30 ML 1.9189 0.4189 1.6386  0.5042 0.0042 0.0020 

 LS 1.7951 0.2951 1.7592  0.4934 -0.0066 0.0023 

 MOM 1.9673 0.4673 2.8649  0.5115 0.0115 0.0028 

 L-MOM 1.9405 0.4405 2.7474  0.5034 0.0034 0.0022 

 MSP 1.6035 0.1035 0.8165  0.4890 -0.0110 0.0021 

50 ML 1.7965 0.2965 0.9965  0.5026 0.0026 0.0018 

 LS 1.8369 0.3369 2.5179  0.4968 -0.0032 0.0021 

 MOM 1.9468 0.4468 2.8683  0.5065 0.0065 0.0024 

 L-MOM 1.9283 0.4283 2.7319  0.5007 0.0007 0.0021 

 MSP 1.5421 0.0421 0.6190  0.4884 -0.0116 0.0019 

100 ML 1.6201 0.1201 0.4227  0.4996 -0.0004 0.0011 

 LS 1.5743 0.0743 0.4824  0.4950 -0.0050 0.0014 

 MOM 1.7389 0.2389 1.7457  0.5021 0.0021 0.0014 

 L-MOM 1.6555 0.1555 0.8300  0.4981 -0.0019 0.0012 

 MSP 1.4624 -0.0376 0.3213  0.4895 -0.0105 0.0013 

200 ML 1.6193 0.1193 0.2932  0.5015 0.0015 0.0007 

 LS 1.5831 0.0831 0.2996  0.4989 -0.0011 0.0008 

 MOM 1.7663 0.2663 0.9965  0.5024 0.0024 0.0009 

 L-MOM 1.6313 0.1313 0.4485  0.5005 0.0005 0.0008 

 MSP 1.5206 0.0206 0.2388  0.4951 -0.0049 0.0007 

 

Table 4: Simulated results for 1.5 =  and 1.5 =  

n Method ̂  Bias( ̂ ) MSE(̂ )  ̂  Bias( ̂ ) MSE( ̂ ) 
30 ML 1.9054 0.4054 2.6984  1.4949 -0.0051 0.0791 

 LS 1.6128 0.1128 2.0198  1.4225 -0.0775 0.0915 

 MOM 2.2990 0.7990 4.6030  1.5404 0.0404 0.0824 

 L-MOM 1.7124 0.2124 2.0507  1.4588 -0.0412 0.0832 

 MSP 1.3820 -0.1180 1.6929  1.3395 -0.1605 0.1421 

50 ML 1.8169 0.3169 1.2603  1.5132 0.0132 0.0416 

 LS 1.6869 0.1869 1.1905  1.4768 -0.0232 0.0551 

 MOM 1.9599 0.4599 1.9271  1.5311 0.0311 0.0406 

 L-MOM 1.7024 0.2024 1.1074  1.4930 -0.0070 0.0400 

 MSP 1.4843 -0.0157 1.0452  1.4074 -0.0926 0.0867 

100 ML 1.6651 0.1651 0.6046  1.4973 -0.0027 0.0317 

 LS 1.6055 0.1055 0.6415  1.4779 -0.0221 0.0367 

 MOM 1.7493 0.2493 0.7669  1.5132 0.0132 0.0282 

 L-MOM 1.5964 0.0964 0.5600  1.4863 -0.0137 0.0277 

 MSP 1.4621 -0.0379 0.5220  1.4368 -0.0632 0.0453 

200 ML 1.6682 0.1682 0.3592  1.5124 0.0124 0.0144 

 LS 1.5996 0.0996 0.3727  1.4896 -0.0104 0.0200 

 MOM 1.7539 0.2539 0.5085  1.5245 0.0245 0.0163 

 L-MOM 1.6478 0.1478 0.3700  1.5076 0.0076 0.0149 

 MSP 1.5410 0.0410 0.3137  1.4775 -0.0225 0.0173 
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4. Conclusion 

In this study, we have considered the two-parameter Xgamma distribution and estimation problem of its 

parameters. The Xgamma distribution introduced by Sen et al.[A] is a relatively new distribution in the vast 

literature of lifetime distributions, which have nice features. To estimate the unknown parameters of the 

two-parameter Xgamma distribution, we have obtained several estimators such as the ML, MOM, LS, L-

MOM, and MSP. By through the different sample of sizes small, moderate, and large, the estimation 

performances of these estimators are demonstrated by a series of Monte-Carlo simulation studies, where 

estimators have been compared regarding biases and MSE. Performed Monte-Carlo simulations have 

shown that all estimators provide satisfactory estimation performances in all sample sizes. In addition, ML 

and MSP estimators have provided the best performances in estimating the parameters   and  , 

respectively. Therefore, it can be recommended that use of the MSP or ML estimators in practical 

applications. 
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Abstract 

It is well known that a concave operator is important for studying positive solutions of 

nonlinear differential and integral equations. In this paper, we study a class of mixed 

monotone operators with convexity, also the properties of monotone iterative technique in 

ordered Banca spaces, some new existence and uniqueness theorems by fixed points of 

operators are investigated. Finally, as applications, we apply the results obtained in this paper 

to study the existence and uniqueness of positive solutions for nonlinear fractional differential 

equation boundary value problems. 

 

Keywords: Fixed point; normal cone; positive solution; fractional differential equation. 
 
1. Introduction  

Suppose (  ‖ ‖) is a Banach space which is partially ordered by a cone      that is,      

if and only if        . We denote the zero element of   by  . Recall that a non-empty 

closed convex set     is a cone if it satisfies( )             ; (  )        
     .   cone   is called normal if there exists a constant     such that       

implies           For all        the notation     means that there exist       

and        such that              Clearly,   is an equivalent relation. Given        we 

denote by    the set     *           +  It is easy to see that        is convex and 

       for all      . If       and        it is clear that         
Let (   ) be a partially ordered set and suppose there is a metric d on   such that (   ) is a 

complete metric space. 

 

Definition 1.1. [2] Let (   ) be a partially ordered set and                 We say   

has the mixed monotone property if for any             
 

                        (      )     (      )  
 

                          (      )     (      )  
 

                           (      )     (      )  
 

Definition 1.2. [2] An element (     )              is called a tripled fixed point of a 

mapping           if  (     )     (     )    and  (     )     
 

2. Main Results 

Definition 2.1. We say an operator                  is an e-concave-convex operator 

if there exists one positive function  (       ) such that 
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( )            (   
 

 
    )    (     (       )) (     )                         

 

Theorem 2.2. Let   be a normal cone of   , and let                     be a mixed 
monotone and e-concave-convex operator. In addition, suppose that there exist 
                             (since                we can choose a sufficiently 
small     (   ) such that                   ) such that 
 

(   )       (        )  (        )        
 

        (  )      (   )    
    
̅̅ ̅̅ ̅̅ ̅   (          )   

 

 
    

 
hold, where  
 
    (               )     (              )     (               )          ..  
 
Then   has exactly one fixed point    in   . Moreover, constructing successively the 
sequences  
 

    (              ) 
 
 
 
  (              )     (              )             

 
for any initial values             , we have, 
 
( )                             

            
               

                
 

3. Application 
 
We study the existence and uniqueness of a solution for the following fractional 
differential equation 
 

  

  
 (     )     (       (     ))       

 
( )                          (                    ,   -               ,   -     ,   -) 
 
subject to condition 
 
( )                             (     )     (     ) (     )    ,   -    ,   -    (   )  
 
where    is the Riemann-Liouville fractional derivative of order   and         (   ) 
with       and      . Let 
 

     (,   -    ,   -    ,   -)  
 
Consider the Banach space of continuous functions on ,   -  ,   -  ,   - with sup 
norm and set 
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    *     (,   -    ,   -    ,   -)      

(     ) ,   - ,   - ,   -
 (     )      +  

 
Then   is a normal cone. 
 
Lemma 3.1. [1] Let (     )    ,   -    ,   -    ,   - (     )    ,   -    ,   -    (   ) 
and          , then the problem 
 

  

  
 (     )     (       (     ))      

 
with the boundary value condition  (     )     (     ) has a solution    if and 
only if    is a solution of the fractional integral equation 
 

 (     )   ∫  (   ) (       (     ))   
 

 

 

 
 
Where 
 

 (   )  

{
  
 

  
 
    (   )        (   )   

(         ) ( )
 
(   )   

 ( )
                    

     (   )   

(         ) ( )
 
(   )   

 ( )
                                              

     (   )   

(         ) ( )
                                                                     

 

 
 
Theorem 3.2. Let           be given and 
 
 (           )     (,   - ,   - ,   - ,   - ,   - ,   -) is increasing in     
 
and decreasing in v and for     (   ) (     )    ,   -    ,   -    ,   -  there exists 
 (       )    (   ) such that 

 (        (     ) 
 

 
 (     )   (     ))) 

    (   (       )) (       (     )  (     )  (     ))  
 
and  (       (     )  (     )  (     ))      whenever  (   )       Suppose that 
there exist                   (   ) such that  
 

  (     )       (     ) 
 

∫  (   ) (        (     )    (     )   (     ))       (     ) 
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∫  (   ) (         (     )   (     )    (     ))        (     ) 
 

 

 

 
for (     )    (,   -    ,   -    ,   -)  where       are comparable. Also suppose 
 

     (   )    
    
̅̅ ̅̅ ̅̅ ̅  (          )   

 

 
   

 
Then the problem (3) with the boundary condition (4) has a unique solution in  . 
Moreover, for the sequences 
 

       ∫  (   ) (        (     )   (     )   (     ))  
 

 

 

 

       ∫  (   ) (        (     )   (     )   (     ))  
 

 

 

 

       ∫  (   ) (        (     )   (     )   (     ))  
 

 

 

 
we have       
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Abstract 

In 2008, Sintamarian has proved some results on absolute retractivity of the common fixed 

points set of two multi-functions. On the other hand, Suzuki generalized the notion of 

contractive mappings in 2008. Since then, there has been a lot of activity and a number of 

results have appeared on Suzuki's method for mappings and multi-functions. Recently 

Mirmostafaee has established set-valued version of Suzuki's fixed point theorem when the 

underling space is a complete b-metric space. In this paper, by using the upper methods, we 

study some new consequences on absolute retractivity of the common fixed points set of 

multi-valued Suzuki type contractions. 

 

Keywords: Absolute retract, Fixed point, Suzuki contractive multifunction. 2010 Mathematics 

Subject Classification: 74H10, 54H25. 
 
1. Introduction  

In 2008, Sintamarian proved some results on absolute retractivity of the common fixed points 

set of two multi-valued operators ([3]). On the other hand, Suzuki generalized the notion of 

contractive mappings in [4]. In 2011, Aleomraninejad et al.developed a new method to prove 

Suzukis fixed point theorem for set-valued mapping([1]). The method was extended by 

Yingtaweesittikul for set-valued functions in general b-metric spaces ([5]). In this paper, we 

investigate some new conclusions on absolute retractivity of the fixed points set of Suzuki 

type contractive multifunctions. 

Let   be a nonempty set. We denote by      the set of all nonempty subsets of  , i.e.  

                      . Let             be a multi-valued operator.We denote by 

   the fixed points set of  , i.e.                      . 
Let                 be two multi-valued operators. We denote by            the common 

fixed points set of   and   , i.e.                                         Let   and   be 

two nonempty sets,       the set of all nonempty subsets of   and              a 

multifunction.   mapping          is called a selection of   whenever           for all 

     . Throughout the paper, we denote the set of all nonempty closed and bounded subsets 

of   by          when   is a metric space.                               . For 

      and          set                        and 
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It is known that   is a metric on closed bounded subsets of   which is called the Hausdorff 

metric (for more details see [3]). We say that a topological space   is an absolute retract for 

metric spaces whenever for each metric space                and continuous function  

          there exists a continuous function          such that        . 

Let   be the set of all metric spaces,      ,          and                 a lower 

semi-continuous multifunction. We say that   has the selection property with respect to   if 

for each      , continuous function f : Y → X and continuous functional              

such that                              ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅    for all                   , every 

continuous selection          of     admits a continuous extension         , which is 

a selection of  . If        then we say that   has the selection property and we denote this 

by            Define    [      
 

 
     as 

 

     

{
  
 

  
                             

√   

 
 

              
√   

 
   

 

√ 

                         
 

√ 
     

   

 

The function   is non-increasing. 

We consider a continuous function    [        [     satisfying the following 

conditions: 

 

a)                                          
 

b)   is sub-homogeneous, that is,                                             for all  

      and all                    [       
 

c) If         [     and         for             then  

 

                                  and                                    

(see [1]). 

 

In this case, we write      . We appeal the following results in the sequel. 

 

Proposition 1.1. [1] If       and       [     are such that 

 

                                                             
 

then       . 

 

Theorem 1.2. [1] Let       be a complete metric space and                     

a multi-functions. Suppose that there exist           and       such that  

            and                    or                    implies 
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for all        . Then               and          
is non-empty. 

 

Theorem 1.3. [1] Let (X, d) be a complete metric space,                 a multifunction. 

Assume that there exists     [ 
  

     such that                     implies 

                                         for all         . Then    is non-empty. 

 

Theorem 1.4. [1] Let       be a complete metric space,                 a 

multifunction. Assume that there exists       [     such that 
 

      
                

implies                                          for all          Then    is 

non-empty. 

In the all over this paper let   be set of all increasing and continuous functions 

   [       [     satisfying the following property:               for all       and 

          We denote by   the family of all increasing functions    [              
 

Definition 1.5. Let                 be a multivalued mapping and          [     

be a given function. Then   is said to be  -admissible if  

 

                for all                      for all         
 

Definition 1.6. Let       be a b-metric space and                 be a multi-valued 

mapping. We say that F is an    -Suzuki-Geraghty multi-valued type contraction 

whenever there exist            [         [     such that 

 

                                                                
 

for all        , where       
 

   
                   

 

2. Main Results 

Theorem 2.1. Let       be a complete b-metric space and absolute retract for b-metric 

spaces,                 be an    -Suzuki-Geraghty multi-valued type contraction,   is 

continuous and          . If            for all       and           then    is an 

absolute retract for b-metric spaces. 

 

Corollary 2.2. Let       be a complete b-metric space and absolute retract for b-metric 

spaces,          an    -Suzuki-Geraghty type contraction, f is continuous and  

           If            for all       and           then    is an absolute retract for 

b-metric spaces. 

 

Theorem 2.3. Let       be a complete metric space and absolute retract for metric spaces, 

                    are multi-functions and               Suppose that there exist  

          and       such that              and the conditions                    

and                       implies 

 

                                                                        
 

159



INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 

3-5 July 2019, Istanbul, Turkey 

 

for all          Then         
 is an absolute retract for metric spaces. 

 

Theorem 2.4. Let       be a complete metric space and absolute retract for metric spaces,  

                  a multifunction and            Suppose that there exist           

and       such that              and                   implies  

 

                                                     

 

for all          Then    is an absolute retract for metric spaces. 

 

 

Corollary 2.5. Let       be a complete metric space and absolute retract for metric spaces, 

                 a multifunction and          . Assume that there exists     [ 
  

      

such that                      implies                                         
for all        . Then    is an absolute retract for metric spaces.  

 

Theorem 2.6. [2] Let   be a complete b-metric space and let                   be two 

set-valued functions and there exist some           and       such that               

and                    or                   implies that 

 

                                                             
 

Then             and      is non-empty. 

 

Theorem 2.7. Let X be a complete b-metric space and absolute retract for metric spaces, 

                  a multifunction and            let                   be two set-

valued functions and there exist some           and       such that               and 

                   or                   implies that 

                                                             
Then          

 is an absolute retract for metric spaces. 
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In this research, an improved version of election algorithm is presented. Election algorithm is 

a swarm intelligence and population-based approach, which inspired from the presidential election 
process. This algorithm starts its optimization process with a population of candidate solutions, which 
every solution is called a person. The individuals in the population are divided into voters and 
candidates, which form some electoral parties in the solution space. Then, using three operators of 
positive advertisement, negative advertisement and coalition, the electoral parties explore the solution 
to reach a global optimum point. The election algorithm suffers from an important problem: no 
convergence to the global optimal point due to inappropriate exploration of the search space in the 
positive advertisement stage. In this research, to alleviate the problem of low speed, a new version of 
positive advertisement is introduced. In addition, a new migration operator is proposed to empower 
the algorithm to escape from local optima. The proposed algorithm is evaluated on ten test functions 
and is compared with other algorithms. The experimental results show that the proposed algorithm 
has better performance in comparison to the counterpart algorithms. 

 
Keyword(s): Optimization, election algorithm, improved election algorithm, positive advertisement 
 
  
1. Introduction  

In this paper, we introduced Improved Election Algorithm (IEA), which is an improved version of the 

traditional Election Algorithm (EA) [1]. The EA is a novel swarm intelligent algorithm inspired by the 

behaviors of candidates and voters in presidential election process. The advertising campaign forms the 

basis of the EA and consists of three main phases: positive advertisement, negative advertisement and 

coalition. These operators causes the individuals converge to the optimal solution in the solution space. 

The EA is easy to implement, simple in the concept, has fewer control parameters and shows superior 

performance in solving numerical optimization problems. However, the EA algorithm deals with an 

important challenge: no guaranty to converge to the global optimum point due to inappropriate 

exploration of the search space in the positive advertisement stage. To alleviate this issue, we proposed 

IEA, which improves the traditional EA algorithm in two folds: (i) introducing new positive 

advertisement operator to searching efficiently the entire solution space, and (ii) introducing migration 
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operator to enhance the diversity of population and preventing early convergence of the algorithm. The 

new version of positive advertisement is introduced to enhance the social information exchange between 

voters and candidates within electoral parties. This enables the individuals to efficiently explore the entire 

solution space and converge to the global optimum. The migration operator is introduced to increases the 

diversity in the population by generating new individuals on different areas of solution space and keeps 

away the IEA to get stuck in local optima.  

Ten benchmark functions are employed to test the performance of IEA algorithm compared with several 

other state-of-the-art algorithms. The results show that the IEA algorithm often outperforms the other 

algorithms in terms of solution quality and convergence speed.  

After this short introduction, the rest of this paper is organized as follows. Section 2 presents the 

traditional EA algorithm. Section 3 presents the detail of IEA algorithm. In Section 4, the IEA algorithm 

is tested on ten benchmark functions, and is compared with several state-of-the-art algorithms. Finally, in 

Section 5, conclusions are drawn and some possible future works are suggested. 

2. Election Algorithm (EA) 

EA is a novel stochastic optimization algorithm that uses presidential election as a source of inspiration 

[1]. Figure 1 shows the pseudo code of the algorithm. EA starts with an initial population. Each individual 

in the population is called a person. For a problem with 
var1 2,  ,  ...,  Nx x x variables, the initial population 

consists of popN  persons. Each person iP  is an var1 N array of variables values and defined as follows: 

var1 2 ,  ,  ...,  NiP x x x         (1) 

The eligibility of a person iP  is found by evaluation of the eligibility function E at the variables 

var1 2,  ,  ...,  Nx x x considering objective function of the problem. The eligibility function is defined as follows:  

var1 2,  ,  ...,  ( )  ( )i NPE E x x x      (2) 

Some of the best persons in the population are selected to be the candidates and the remaining persons 
form the voters. All the voters of initial population are divided among the mentioned candidates based on 
their similarity in opinions. To do this, voter kv is considered as a supporter of candidate ic , if the 
following predicate holds 
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 :   1

k i k ji k v c v c cP v E E E E j N           (3) 

iP  is the ith party, and cN is the number of initial candidates. 
icE  and 

kvE present the eligibility of 
candidate ic  and voter  kv , respectively. In the party formation process, each voter is assigned to exactly 
one party. 

After dividing the voters among candidates and forming the initial parties, the candidates start advertising 
campaign. The advertising campaign consists of three main phases: positive advertisement, negative 
advertisement and coalition.  
The positive advertisement is modeled by conveying some variables of the candidate to its voters inside a 
party. To do this task, in each party, sN  variables of the target candidate are randomly selected and 
replaced with the selected variables of the voters. sN is computed as follows:   

 s s cN X S         (4) 

cS  is the number of candidate’s variables and sX is the selection rate. The selected variables sN are 
weighted with a coefficient  and then embedded in voters. The new value for the ith variable of a voter 
after positive advertisement is given by: 

. 
new oldi ix x      (5) 

  is defined as follows: 

1
- 1

i kc vE E
 


     (6) 

In negative advertisement, powerful candidates try to attract voters of weak candidates toward 
themselves. A party is weak, if its candidate to be the weakest compared to other parties’ candidates. To 
model the negative advertisement, first, a number of voters from the weakest party are selected. Then, a 
race is taken place among powerful parties to possess these voters. To select the weakest voters form the 
weakest party, the eligibility distance between the voters and the weakest candidate is computed, and then 
5% of the farthest voters are selected. The distance between selected voters and the powerful candidates 
are computed, and the voters are assigned to the closest candidates.  

In coalition phase, several candidates join together and form a new party. Among the candidates that wish 
to collate, a candidate is picked at random to be the leader candidate and the remaining is considered as 
the followers. In coalition, all of the follower candidates and their voters become the voters of the leader 
one. 
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Until termination conditions are not satisfied, the advertising campaign operators are iteratively applied to 
update the population. Finally, the update process stops and the candidate with the majority of votes 
announces as the winner. The winner is equal to the best solution found for the optimization problem. 

Population   Create random population (Problem); 
Costs   Evaluate population (Population); 
Parties   Create initial parties (Population, Costs); 
Repeat  

 For number of candidates do 
Parties  Positive advertisement (Parties);  
Parties  Negative advertisement (Parties, Costs);  
Parties  Coalition (Parties, Costs);  
Costs  Evaluation (Parties); 

End For 
Until termination conditions are satisfied 

Figure 1. Pseudo code of the EA algorithm 

3. Improved Election Algorithm (IEA) 

Advertising campaign of the EA suffers from two problems: getting stuck at local optima and inefficiency 
of positive advertisement phase. In advertising campaign, after several iterations, diversity in the 
population may decrease. As a result, the candidates and their voters cannot explore the entire solution 
space and get stuck at local optima. To alleviate these issues, we proposed an improved EA, denoted as 
IEA. Figure 2 shows the pseudo code of the IEA. The IEA enhances the canonical EA algorithm in two 
folds: introducing migration operator, and introducing a new positive advertisement operator.  

Population   Create random population (Problem); 
Costs   Evaluate population (Population); 
Parties   Create initial parties (Population, Costs);     
Repeat  

 For number of candidates do 
Parties  Positive advertisement (Parties);  
Parties  Negative advertisement (Parties, Costs);  
Parties  Coalition (Parties, Costs);  
Parties  Migration (Parties, Costs);  
Costs Evaluation (Parties); 

End For 
Until termination conditions are satisfied 

Figure 2. Pseudo code of the IEA algorithm 
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3.1. Migration 

Migration keeps the EA away from converging too fast before exploring the entire solution space. İn real-
world elections, some individuals can travel from other countries to the target country and vote to their 
favorite candidate. The travelers are referred as migrants, which can increase the popularity of some 
candidates. To model migration, first the number of migrants in every generation of the algorithm is 
calculated as follows: 

 popM N          (7) 

M is the number of new migrants,   is the migration coefficient and popN  is the population size.  

Then, M voters are randomly generated on different areas of the solution space. Here, the new generated 
voters referred as migrants. The migration in every generation of the algorithm adds M new individuals to 
the population.  

3.2. Positive advertisement  
Let ( )iv t  denote the position of voter i in the search space at time step t, il  denote the personal best 
position in the search space, which it has achieved by voter iv  since the first generation, and ig  denote 
the social best position achieved so far by candidate ic . In positive advertisement, the position of voter iv  
at iteration t+1 is computed as  

     1 21 ( ) ,      where  0 ,i i iv t v t L L v U lb ub          (8) 

t indicates the current iteration, 1L  resembles the movement of voter iv  toward his personal best 
experience obtained so far, and 2L  resembles the movement of  voter iv  toward the social best 
knowledge.  ,U lb ub  generates random number with uniform distribution in the range  ,lb ub . 1L  is defined 
as 

      1 1 1 i iL r l t v t V            (9) 

  is a constant value indicating the weight of personal experience, 1 [0,  1]r   is a random value regenerated 
every iteration, and 1V  is a vector which its start point is the current position of the voter iv  and its 
direction is toward the personal best position, il . 1V  is considered to prevent the voter from drastically 

changing its direction and alignment it to its current direction. The length of this vector is set to unity. 
The effect of term 1L  is to linearly attract the voter toward its own best experience. 2L  is defined as 

      2 2 2i iL r g t v t V         (10) 
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  is a constant value indicating the effect of social experience on the voter iv  during advertisement, and 

2 U(- ,+ )r    is a random number with uniform distribution regenerated every iteration. Parameter 2r  adds a 
random amount of deviation to locating the final position of the voter iv  in its movement toward ig . By 
this way, different points around the candidate ig , are explored.   is a parameter that adjusts the 
deviation of voter iv  from its original direction. In our implementation, / 4   is used that resulted in 
good convergence of individuals to the global optimum. 2V  is a unit vector which its start point is the 
current position of the voter iv and its direction is toward the social best position ig . The effect of 2L  is to 
attract the voter iv  toward the social knowledge which is the best position found by the candidate ic  in 
the party iP . Considering minimization problems, the personal best position at the iteration t+1, is updated 
as 

v ( )

v ( )

( )  e ( 1)
( 1)

( 1)  e ( 1)
i i

i i

i l t
i

i l t

l t if t e
l t

v t if t e
      

   (11) 

The global best position discovered by any of the individuals so far in the party iP ,  1ig t   is updated as 

 0 1( 1) min ( ),  ( ),  ...,  ( )
mi ng t l t l t l t     (12) 

mn  is the total number of voters in the party iP . 

4. Experiments 

The proposed IEA algorithm is tested on ten benchmark functions. Four algorithms are used as a 
comparison. The algoithms include Particle Swarm Optimization (PSO) [2], Artificial Bee Colony (ABC) 
[3], Grey Wolf Optimizer (GWO) [4] and canonical EA [1]. Tables 1 lists the characteristic of benchmark 
functions used in the test. A detailed description of the test functions are available in [5] and [6]. 

In experiments, the algorithms ran for 30 times for all test functions, each time using a different initial 
population. The statistical results are reported in Table 2. In these tables, min and mean are respectively 
the minimum and the mean function values obtained by the algorithms over 30 simulation runs. Std 
indicates the standard deviation of the results. In Table 2, in order to make comparison clear, the values 
below 1610 are assumed to be 0. From numerical simulations, it is obvious that all algorithms have almost 
consistent behavior on all benchmark functions. It can be seen that the solution quality and convergence 
accuracy obtained on most test functions using the IEA in 30 independent simulation runs are almost 
exceeding or matching the best performance obtained by other algorithms. This testifies that the IEA has 
better stability behavior on most test functions rather than other algorithms. IEA has the ability of getting 
out of local optima in the search space and finding the global optima. 
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Table 1. Test functions used in the test 

No. Function Formulation  Dimension Range Global minimum 

1f  Beale      2 22 2 3
4 1 1 2 1 1 2 1 1 2( ) 1.5 2.25 2.625        f x x x x x x x x x x  5 [-4.5, 4.5] 0 

2f  
Stepint 5

5 1
( ) 25


     ii

f x x  5 [-5.12, 5.12] 0 

3f  Sphere 2
8 1
( )


 n

ii
f x x  30 [-100, 100] 0 

4f  Quartic 2
10 1

( ) [0,1)


 n
ii

f x ix random  30 [-1.28, 1.28] 0 

5f  Zakharov    422
11 1 1 1

( ) 0.5 0.5
  

    n n n
i i ii i i

f x x ix ix  10 [-5, 10] 0 

6f  Powell    422
12 1 1 1

( ) 0.5 0.5
  

    n n n
i i ii i i

f x x ix ix  24 [-4, 5] 0 

7f  Rosenbrock 1
2 2 2

15 1
1

( ) 100(x x ) ( 1)





     
n

i i i
i

F x x  30 [-30, 30] 0 

8f  Rastrigin  2
27 1

( ) 10 10 (2 )


   n
i ii

f x n x cos x  30 [-5.12, 5.12] 0 

9f  Griewank 
2

28
1 1

1( ) cos 1
4000  

    
      

    
 

nn
i

i
i i

xF x x
i

 
30 [-600, 600] 0 

10f  Ackley 
2

29
1 1

1 1( ) 20exp 0.02 exp cos(2 ) 20 e
 

               
 

n n

i i
i i

f x x x
n n

  
30 [-32, 32] 0 

 

Table 2. Results of test functions 

 

Function Statistics PSO ABC GWO EA IEA 

1f  
 
 

Min  0 1.675e-11 3.8675e-07 1.113e-14 9.5644e-15 
Mean 4.1234e-8 1.9362e-09 5.79e-06 8.35e-11 2.1224e-12 
Std 2.5107e-8 4.2205e-09 5.546e-06 1.1286e-11 1.9246e-12 

2f  
 

Min  0 0 0 0 0 
Mean 0.3 0 0 0 0 
Std  0.45826 0 0 0 0 

3f  
 
 

Min  0 0 0 0 0 
Mean 0 0 0 0 0 
Std  0 0 0 0 0 

4f  
Min  6.8999e-07 0.020563 2.4034e-05 0.00036265 4.7863e-07 
Mean 0.000419 0.29495 0.00014029 0.018397 0.00016881 
Std  6.1983e-05 0.10335 9.1414e-05 43.0045 8.9064e-05 

5f  
Min  0 0.03363 0 0 0 
Mean 0 0.088016 0 0 0 
Std  0 0.065937 0 0 0 

6f  
Min  0 0.019457 1.5268e-07 1.2095e-9 8.2758e-10 
Mean 1.2409e-06 0.037274 6.6783e-06 0.00027755 1.4444e-07 
Std  5.3059e-07 0.012143 7.9129e-06 0.00056147 2.9883e-07 

7f  
Min  0.00010204 0.079482 25.9125 0.0037742 0 
Mean 1.966733 0.43175 26.4394 22.4021 18.4507 
Std  2.1342 0.21306 0.47338 7.4159 13.0478 

8f  
Min  6.2881 4.2165e-09 0 0 0 
Mean 11.4352 1.6453e-06 0 9.4739e-15 0 
Std  2.2662 4.0684e-06 0 2.1184e-14 0 

9f  
Min  0 0 0 0 0 
Mean 0.0005169481 0 0 0 0 
Std  0.00000042 0 0 0 0 

10f  
Min  0 1.7507e-06 2.6645e-15 6.9427e-15 6.7098e-15 
Mean 1.0481e-14 4.5265e-06 5.5067e-15 9.3969e-14 4.4631e-14 
Std  3.4809e-15 2.4668e-06 1.4211e-15 7.7099e-14 7.1143e-15 
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5. Conclusion 

This paper presents Improved Election Algorithm (IEA) to improve the canonical Election Algorithm (EA). The IEA improves 
the EA in two folds: introducing migration operator, and improving positive advertisement phase. With the improve positive 
advertisement, the information is exchange between candidates and voters efficiently, and improves the search ability. With the 
migration operator, diversity in the population is maintained, which keeps the IEA away from converging too fast before 
exploring the entire solution space. IEA algorithm is evaluated on ten benchmarks, and is compared with PSO, ABC, GWO and 
EA. The results show that the proposed IEA algorithm outperforms the canonical EA and other compared counterparts in terms 
of solution quality and convergence speed. There remain several points to improve our research. First, the IEA will trap in local 
optimums on few functions, which can be seen from the benchmark functions. We can combine the IEA with some local 
search strategies or other meta-heuristics to enhance its optimization ability. Second, we can apply the proposed IEA algorithm 
to solve more practical optimization problems to accurately identify its weaknesses and merits.  
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In this paper, we present Seasons Algorithm (SA), a new stochastic globally search and 

optimization strategy. The SA is inspired by the natural growth cycle of trees in the different seasons 
of a year. It is an iterative population-based algorithm working on a set of solutions known as 
population. In the SA terminology, each candidate solution in the population is referred to as a tree 
and the population is called forest. Until the termination condition is satisfied, the population of 
solutions is updated to a new generation by applying four main operators similar to the trees life 
cycles in the seasons of a year including: (i) renew in spring, (ii) growth- competition in summer, (iii) 
reinforcement in autumn, and (iv) resistance in winter. These operators hopefully cause the trees to 
converge to a state of solution space that is the global optimum. The SA algorithm is employed for 
data clustering task. Experiments on real benchmarks for data clustering indicate that the SA 
algorithm is encouraging and outperformed several other comparison algorithms. 

 
Keyword(s): Bio-inspired optimization, evolutionary algorithms, meta-heuristics, global optimization  
 
 
1. Introduction  

Clustering is the process of partitioning a set of unlabeled data objects into clusters such that data objects 

within a cluster shares a high degree of similarity while being dissimilar from data objects of other 

clusters [1]. Clustering needed in a large variety of applications including data mining [2], information 

retrieval [3], [4], information extraction [5], pattern recognition [6], machine learning [4], bioinformatics 

[7] and other fields of science and engineering. 

Clustering algorithms can roughly be classified into two main classes [1], [8], [9], [10]: hierarchical and 

partitional. The goal of hierarchical clustering is dividing the data objects into a hierarchy of nested 

clusters, while partitional clustering is partitioning the data objects into a set of disjoint clusters based on 

a pre-defined objective function [10]. Partitional algorithms initially obtain a set of disjoint clusters and 

iteratively refine them to minimize the objective function. The objective is to minimize the inter-cluster 

connectivity and maximize the intra-cluster compactness [8]. 
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The majority of researchers often formulated the partitional clustering problem as an optimization 

problem. From an optimization viewpoint, clustering can be considered as a particular kind of NP-hard 

problem [11]. Researchers proposed different evolutionary, and swarm intelligence meta-heuristics for 

solving the clustering problem; for survey papers see [3], [11], [12], [13]. Evolutionary algorithms mimic 

the concepts of evolution in nature [14]. The first effort to develop an evolutionary based clustering 

algorithm using genetic algorithm (GA) was proposed by Bezdek et al. [15] in 1994. Then Sarkar et al. 

[16] proposed a clustering method based on evolutionary programming. 

Swarm intelligence algorithms models the intelligent behavior of social insects such as ants, birds, and 

bees or flocks of creatures in nature for the purpose of optimization and search. A particle swarm 

optimization (PSO) algorithm, which models the intelligent behavior of birds was used for clustering by 

Omran et al. [17]. The ant colony optimization (ACO) which is inspired by foraging behavior of real ants 

was applied for clustering by Shelokar et al. [18]. ACO models the way real ants find a shortest path from 

the nest to food source. Karaboga and Ozturk [9] proposed an artificial bee colony (ABC) algorithm for 

clustering.  

In order to improve the quality of solutions and the performance of meta-heuristic based clustering 

methods, some work has been directed towards hybridizing different meta-heuristics. Yan et al. [10] 

proposed HABC algorithm to improve the optimization ability of canonical ABC. In HABC, the 

crossover operator of GA is introduced to enhance the social learning between bees. Yanga et al. [19] 

proposed PSOKHM algorithm based on PSO and K-Harmonic Means (KHM), which makes full use of 

the merits of both algorithms. Emami and Derakhshan [20] proposed two hybrid clustering algorithms 

namely ICAFKM and PSOFKM. ICAFKM combined the advantages aspects of ICA and Fuzzy K-Means 

(FKM) algorithm. Similarly, PSOFKM makes full use of the merits of both PSO and FKM.  

According to NFL principle [21], there is no meta-heuristic best suited for solving all optimization 

problems. This is true for clustering; a particular meta-heuristic may show very promising performance 

on a set of datasets, but the same meta-heuristic may show poor results on a different set of datasets. 

However, the performance far from ideal state and there is a room for more improvement. To alleviate 

this issue, researchers improve the current approaches or introduce new meta-heuristics. This also 
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motivates our attempts to introduce a new meta-heuristic with inspiration from trees' growth cycle in a 

forest.  

The rest of this paper is organized as follows. Section 2 presents a brief review of clustering problem. In 
Section 3, we introduce the proposed SA algorithm. In Section 4, the proposed methods are evaluated 
through benchmark problems, and the experimental results are compared to counterpart optimization 
algorithms. Finally, in Section 5, conclusions are drawn and some possible future works are suggested. 
 
 2. Data clustering 

Let  1 2, , ...,    P
ND O O O R  be a collection of N data objects to be clustered, where P is the number of 

features in the dataset D. Each data object iO D  is an 1 P  array of real value features. The goal of 

partitional clustering is to find a partition set  1 2,  ,  ...,   KC C C C  such that  

1
       1,  2,  ...,  ;    

     ,   and  ,  1,  2,  ...,  


    

    
K

k kk

p q

C k K C D

C C p q p q K
     (1) 

Objects in every cluster kC C  are more similar to each other than different clusters based on some 

prescribed criteria. In order to measure the quality of clustering, an adequacy criterion must be defined. 

The simplest and most widely used criterion to measure the quality of a clustering algorithm is the sum of 

mean-squared error or the total within-cluster variance, which is defined as follows: 

  
1

min ,  ,   1,  2,  ...,  


 
N

i j
i

J D O C j K      (2) 

where ( ,  )i jD O C  denotes the similarity between the object iO  and the center of cluster jC . The most 

popular used similarity metric in clustering is Euclidean distance [10], as Eq. (3). 

   2

1
,  



 
P

i j if jf
f

D O C O C      (3) 

where iO  and jC  are the vectors with P dimension, ifO and jfC  are the fth feature of iO  and jC , 
respectively. The optimal partitioning is defined as the solution that minimizes the cost function J. 
 
3. Seasons optimization algorithm 

Figure 1 shows the flowchart of the SA algorithm. In the following, the components of the algorithm are 

described.  
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Figure 1. Flowchart of the SA algorithm 

3.1 Create initial forest 

The Seasons algorithm starts its search process with a set of candidate solutions collectively known as 

forest. Each individual in the forest is named a tree. For an D-dimensional optimization problem with 

1 2,  ,  ...,  Dx x x , the forest is a NT D  matrix, which consists of NT  trees of dimension D. Every tree iT in the 

forest is an array of variable values, which formalized as 

 1 2,  ,  ...,  i DT t t t     (4) 

it  denotes a candidate value assigned to variable ix . Each it  can be interpreted as a natural characteristic 
of tree iT  such as height, structural strength, roots and the diameter of the trunk. 
 
3.2 Renew  

Let tF  denote the forest at generation t and r denote the renew rate. In order to mathematically model the 

behavior of trees in the spring, we defined a simple formula as 

 1     
t t tF F R r S      (5) 

tS denotes the number of seeds that fall on the land in the last autumn, and 1t
NT  indicates the forest at 

generation t+1. The function R(.) randomly generates   
t
Nr S  new trees in different areas of the solution 

space. The function R(.) simulates the natural sprout of several seeds that fall on the land in the past 
autumn and turning into young trees. It is obvious that only few seeds have the chance to grow up and 
become a tree in the forest. 
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3.3 Competition 

In order to mathematically model the competition process, trees are randomly divided into two groups: the 
trees that are in non-dense areas and the trees in dense areas. The number of trees that are in dense areas is 
computed by  

   1  N round c N     (6) 

1N  indicates the number of tress in dense area, c is the competition that generates randomly every 
iteration, and N is the number of all trees in the forest. The remaining trees are in non-dense areas 

2 1 N N N       (7) 
In order to mathematically model the growth of the trees in non-dense areas, first 2N  trees are randomly 
selected from the forest. Then, from each selected tree, some variable are randomly selected and their 
values are added with small random values. The value of each selected variable j it T  is computed by  

 1 ;      ,       t t
j jt t dx dx U x x     (8) 

x is a random number with uniform distribution regenerated every iteration. The value of x  is 
arbitrary, in our implementation, a value of  / 4  is used that resulted in good convergence of trees to the 
global optimum. 

In order to mathematically model the competition of trees in dense area, first, the trees in dense area 
are sorted in terms of strength in ascending order and then cN  of these trees are selected to be cored trees. 
The remaining Ng of the trees will be the neighbors each of which belongs to a cored tree. Having the 
cored trees, its neighbors are identified and its neighborhood zone is formed. The number of neighbors for 
cored tree ft  is determined by multiplying its normalized strength by the number of all trees in dense 
areas: 

   
ff f tNi NZ round ns Ng          (9) 

fNi is the number of neighbors around cored tree ft , fNZ  denotes neighbors of f-th cored tree such that 
f ft NZ , Ng is the number of all trees in dense area, and 

ftns  is the normalized strength of cored tree. 
ftns  

is defined by 

 
2 2

1

min( )
,        where  | 1,  2,  ...,        




  


f

f k

k

t
t tN

tk

s I
ns I s k N

s
   (10) 

Next, Ni trees are selected randomly from the neighbor trees to form the neighborhood zone of cored 
tree ft . Once the neighbors are identified, the competition begins among the cored tree ft  and its 
neighbors. In order to model the influence of neighbors and cored tree on each other, a simple measure of 
crowding or competition index (W) was calculated. W is defined as a function of the number, distance, 
and size of neighbors: 
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1

1





  
fNi

i i
i

W k S d    (11) 

fNi  is the number of neighbors within the neighborhood zone of cored tree ft ; iS  is the strength of the 
ith neighbor; id  is the Euclidean distance between the ith neighbor and cored tree ft , and k is the effect of 
neighbor it , which is computed as  

 
 

1

1 

  
 

f i

f i

if S S
k

f S S
   (12) 

 0,1  rand  is an asymmetry coefficient which varies from 0 (completely symmetric competition) to 1 
(completely asymmetric competition), and represents the degree to which the effects of relatively smaller 
neighbors are discounted. The smaller trees that have less strength, will have less impact on the cored 
tree, but the stronger trees will weaken the cored tree. The new position of neighbor tree it  after 
competition is as follows:  

1 { }   t t
i it t W rand     (13)

 The rand function generates random numbers in range [0, 1]. Rand is added to search different points 
around the neighbor trees. At final, among the neighbor trees, a tree with the highest strength is selected 
and replaced with the cored tree. Then algorithm will continue by the cored tree in a new position.  

3.4. Seeding  

In the fall, the seeds may fall near the trees or distributed in wide areas of landscape. In order to 
mathematically model the seeding process, at first a number of S best trees are randomly selected to form 
seeding list  1 2,  ,  ...,   SSl T T T . These trees would have chance to disperse their seeds in the forest. S is 
computed as 

  S round s N     (14) 

s is seeding rate and N is the number of all trees in the forest. In order to prevent an ever-increasing 
population size, it is assumed that each tree generates only one seed. Thus, the number of seeds at every 
generation of the algorithm is equal to S. Then, from each selected tree, some variables are randomly 
selected and their values are exchanged with new randomly generated values in the related variable’s 
range. Let  1 2,  ,  ...,  Dt t t  are the variables selected from tree iT Sl . The value of each selected variable 
j it T  is computed by  

 1
2 1,  1   t

jt r U    (15) 

2r  is a random number with uniform distribution regenerated every iteration in range [l, u].  1,  1U  is a 
uniformly distributed random number in range [-1,1], which is considered to change the direction of seed 
dispersal by using the negative values. 
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3.5. Resistance  

To mathematically model the impact of winter on trees, we introduced resistance operator. Resistance 
operator removes the weakest trees from the forest. The weakest trees are those that cannot stand against 
harsh cold weather and deem to collapse. In order to determine the weakest trees that will remove from 
the forest, the following equations are proposed 

   NW T        (16) 

where   is the critical temperature at which the trees may injure and collapse, and W denotes the number 
of weakest trees that will remove from the forest. The algorithm sorts the trees according to their strength 
value in ascending order, and removes W weakest trees from the forest. 

4. Applying the SA Algorithm to Clustering  

SA algorithm is a capable algorithm and can be successfully applied to practical and engineering 
applications. In this section, SA is applied for clustering. Similar to the other evolutionary algorithms 
applied on clustering, it is easy to apply the SA algorithm for clustering. For this purpose, just two 
changes need to be done in SA algorithm, which include: (i) solution representation and (ii) strength 
calculation. 
 
4.1 Solution Representation 

In SA for data clustering, each individual presents a candidate solution for the clustering problem. Each 
individual iP  in initial population is encoded as a set of cluster centers: 

 1 2,  ,  ...,  Ci KP C C    (17) 

K presents the number of clusters and iC  presents center of cluster i, which is defined as follows: 

 , 1 , 2 , ,  ,  ...,  i i i i pC m m m    (18) 

p presents the number of features of the dataset to be clustered and , jim presents the data sample i in 
cluster j. 
 
4.2 Strength Calculation 

When solving data clustering problem, the quality of each individual is measured using the strength 
function, which is defined as follows. 

1
1  ( ,  )


i

i

E
J O P

   (19) 

where O presents the input dataset to be clustered, iP  presents a candidate solution produced by 
clustering algorithm, iE  is the strength value of the solution which is inversely proportional to the 

( ,  )iJ O P as given in Eq. (2). ( ,  )iJ O P is the objective function of the clustering problem. It is obvious that 
the smaller the objective function value is, the higher the strength value is. 
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5. Experiments and results 

To evaluate the performance of SA algorithm for data clustering, we compared it with K-Means (KM) 
[19], canonical GA [22], canonical PSO [19], canonical ABC [9], canonical EA [23], and ICAFKM [20] 
on five real datasets [24]. These datasets include: Iris, Ionosphere, CMC, Balance-Scale and Glass. 
Detailed information about these datasets is provided in [24]. These datasets are varying in characteristics 
and come from different real-world problems. Iris is from the domains of pattern recognition, Ionosphere 
from image recognition domain, CMC from medical diagnosis, Balance-Scale and Glass are from various 
control applications. Table 1 summarizes the characteristics of these datasets in alphabetic order. 

 
Table 1. Characteristics of datasets 

Dataset # class # features #Instances 
Ionosphere 2 34 351 
Iris 3 4 150 
Glass 6 10 214 
CMC 3 9 1473 
Balance-Scale 3 4 625 
 
In the experiments, the evaluation is conducted using success rate measure. We defined success rate as 

follows: 
 

100% r
Cs
T

          (20) 

C is the total number of correctly classified data objects, and T is the number of all objects in dataset. 
The quality of the results is evaluated by comparing the objects classified by the algorithm and those 
objects in the ground truth annotated by annotators. A data object is regarded as a correctly classified 
example, if after applying clustering algorithm the assigned label for that object is exactly same as the 
desired class label in ground truth. In Eq. (20), rs  indicates the percentage of correctly classified 
examples of entire dataset. It is clear that, the bigger rs  is, the higher the quality of clustering algorithm 
is. 

Since the performance of stochastic algorithms is largely dependent on the generation of initial 
population so for every dataset, algorithms are executed 10 times, each time with randomly generated 
initial population. 

In the experiments, for each benchmark, the algorithms were run for 10 times and clustering results are 
given in Table 2.  presents the average total success rate for 10 independent runs and the   indicates the 
standard deviation. In Table 2, the best algorithm in terms of success rate is determined by putting * mark 
beside it. 

As shown in Table 2, SA algorithm relatively obtained the best mean and standard deviation of 
success rate on most datasets. 
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Table 2. Average and variance of the success rate of KM, GA, PSO, ABC, EA, ICAFKM and SA 

algorithms on five datasets. 
 KM GA PSO ABC EA ICAFKM SA 

Balance-Scale 
  
  

19.04 
5.10 

20.60* 
0.89 

20.44 
0.80 

20.54 
1.43 

20.38 
1.07 

19.74 
2.32 

19.32 
1.71 

CMC 
  
  

33.57 
7.70 

36.27 
7.66 

37.93 
2.01 

35.37 
3.36 

37.94 
3.47 

35.87 
7.44 

40.11* 
4.03 

Glass 
  
  

32.24 
12.73 

13.31 
7.95 

41.49 
8.23 

14.76 
13.47 

41.57 
8.13 

41.71 
9.18 

43.05* 
7.16 

Ionosphere 
  
  

59.48 
14.37 

47.46 
14.18 

63.38 
3.81 

48.83 
15.10 

63.15 
9.79 

60.71 
10.43 

63.44* 
11.26 

Iris 
  
  

68.86 
12.74 

34.6 
23.11 

88.93 
6.34 

31.60 
25.34 

90.46 
6.17 

91.05 
9.65 

91.32* 
7.81 

 
 

6. Conclusion  

In this paper, a new optimization algorithm is presented, which is called Seasons Algorithm (SA). The SA 
algorithm is inspired by the growth cycle of the trees in different seasons of a year. The SA algorithm 
includes four operators including renew, competition, seeding and resistance. SA algorithm is tested on 
five well-known real datasets selected from the UCI machine-learning repository and compared with 
baseline and counterpart algorithms. The results show that SA algorithm achieved encouraging results. 
This indicates the SA algorithm is a competitive approach for data clustering. There remain several points 
to improve our research. First, we can combine the SA algorithm with some local search strategies or 
other meta-heuristic algorithms. Furthermore, we can apply the proposed SA algorithm to solve some of 
more practical optimization problems. Also in some specific applications, some components of the 
algorithm can be modified in order to improve the algorithm processing time. 
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Abstract 

The study is about the bounds of the spectral norms of r-circulant and geometric 

circulant matrices with the sequences called biperiodic Jacobsthal numbers. Then we give 

bounds for the spectraal norms of Kronecker and Hadamard products of these r-circulant 

matrices and geometric circulant matrices.  

Keywords: Biperiodic Jacobsthal numbers; geometric circulant matrix; Norms 

 

1 Introduction 

Special integer sequences are encountered in many areas such as architucture, nature, in 

human body, computer programmming. There have been several studies on properties of 

different special integer sequences. For example in [1] the author investigated the Fibonacci 

and Lucas sequences in detail. From these sequences, Jacobsthal and Jacobsthal Lucas numbers 

are given by the recurrence relations jn = jn−1 + 2jn−2, with the initial values of j0 = 0 , j1 =
1 and cn = cn−1 + 2cn−2 ,with the initial values of c0 = 2 , c1 = 1 , n ≥ 2 respectively in [2]. 

The reason of the importance of integer sequences, there have been many generalizations of 

these sequences. For example Edson, Yayenie defined a new generalization of Fibonacci 

sequences called biperiodic Fibonacci sequences in [3]. Then Bilgici gave the properties of 

biperiodic Lucas sequence in [4]. The authors studied biperiodic Jacobsthal sequences in [5]. 

Circulant matrices are important for various reasons since they are widely used in 

probability, coding theory and numerical analysis. There are many articles in the literature that 

study on the norms of circulant, r-circulant matrices with different sequences and their 

generalized sequences. For example, in [10], Solak studied the spectral norms of circulant 

matrices with Fibonacci and Lucas numbers. In [11], Kocer et al. obtained the norms of 

circulant and semicurculant matrices whose entries are Horadam numbers. In [12], Shen and 

Cen found bounds for the spectral norms of r-circulant matrices with Fibonacci and Lucas 

numbers. Uslu and Uygun in [13] have given the relation among k-Fibonacci, k-Lucas and 

generalized k-Fibonacci numbers and the spectral norms of the matrices involving these 

numbers. In [14], Yazlık and Taskara calculated upper and lower bounds for r-circulant 

matrices with generalized k-Horadam numbers. In [15], Bahsi and Solak computed the norms 

of r-circulant matrices with the hyper-Fibonacci and Lucas numbers. In [16], the authors 

established the upper bound estimation on the spectral norm of r-circulant matrices with the 

Fibonacci and Lucas numbers. In [17], Tuğlu and Kızılateş studied the spectral norms of 

circulant and r-circulant matrices with the hyperharmonic Fibonacci numbers. In [18,19], Bahsi 
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gave the spectral norms of circulant and r-circulant matrices with the hyperharmonic numbers 

and generalized Fibonacci numbers. In [20], Uygun computed some bounds for the norms of 

circulant matrices with the k-Jacobsthal and k-Jacobsthal Lucas numbers. In [21], Kızılateş, 

Tuğlu calculated bounds for the spectral norms of geometric circulant matrices with generalized 

Fibonacci, Lucas and hyperharmonic Fibonacci numbers. The bounds for the spectral norms of 

geometric circulant matrices with the generalized k-Horadam numbers are studied in [22]. The 

authors studied the norms of some special matrices with generalized Fibonacci sequence. The 

authors gave.the norms of some special matrices with generalized Fibonacci sequence in [23]. 

In [24]. Kome and Yazlık gave bounds spectral norms of r-circulant matrices with the biperodic 

Fibonacci and Lucas numbers. 

  Inspired by these studies, in this study we give upper and lower bounds for the spectral 

norms of r-circulant and geometric circulant matrices whose entries are the biperiodic 

Jacobsthal numbers. Then we give bounds for the spectral norms of Kronecker and Hadamard 

products of these r-circulant matrices and geometric circulant matrices. 

 

2. Preliminaries 

Definition 1   For any two non-zero real numbers a and b, the bi-periodic Jacobsthal sequence 

is defined as  

 

j0 = 0 , j1 = 1,    jn = {
   ajn−1 + 2jn−2               if n is even

 bjn−1 + 2jn−2              if n is odd
      n ≥ 2                                   

 

The Binet formula for the bi-periodic Jacobsthal sequence is 

 

                                                                  jm = (
a1−ε(m)

(ab)⌊
m
2

⌋
)

αm − βm

α − β
                                             (1) 

where α and β  are the roots of the nonlinear quadratic equation for the biperiodic Jacobsthal 

sequence, which is given as x2 − abx − 2ab = 0, and ⌊a⌋ is the floor function of a and   

ε(n) = n − 2 ⌊
n

2
⌋ is the parity function [5].  

 Definition 2   For any two non-zero real numbers a and b, the bi-periodic Jacobsthal Lucas 

sequence is defined as [26] 

 

            c0 = 2 , c1 = a, cn = {
   bcn−1 + 2cn−2               if n is even

 acn−1 + 2cn−2              if n is odd
      n ≥ 2                                (2) 

The Binet formula for the bi-periodic Jacobsthal Lucas sequence is in the following [5]. 
 

cm = (
aε(m)

(ab)⌊
m+1

2
⌋
)( αm + βm ) 

 

Definition 3   r-circulant matrix Cr   is defined as the following 
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                                             Cr =

[
 
 
 
 

c0 c1 c2 ⋯ cn−1

rcn−1 c0 c1 ⋯ cn−2

rcn−2 rcn−1 c0 ⋯ cn−3

⋮ ⋮ ⋮ ⋱ ⋮
r c1 r c2 r c3 ⋯ c0 ]

 
 
 
 

                                            (3)   

 

 

For brevity, we denote the r-circulant matrix with Cr = circ( c0 , c1 , … , cn−1 )   If we choose r 

= 1, we get the circulant matrix. the matrix was first defined by Davis in [25]. Then the 

researchers found different properties of this matrix. Then it became a popular study in applied 

and pure mathematics. You can encounter different papers about it in references. 

Definition 4  nxn geometric circulant matrix Cr∗  is defined as the following 

 

                                    Cr∗ =

[
 
 
 
 

c0 c1 c2 ⋯ cn−1

rcn−1 c0 c1 ⋯ cn−2

r2cn−2 rcn−1 c0 ⋯ cn−3

⋮ ⋮ ⋮ ⋱ ⋮
rn−1c1 rn−2c2 rn−3c3 ⋯ c0 ]

 
 
 
 

                                            (4)   

 

by Kızılates‚ and Tuğlu in [21]. For brevity, we denote the geometric circulant matrix with 

Cr∗ = circ( c0 , c1 , … , cn−1 ) . If we choose r = 1, we get the circulant matrix. 

 

Lemma 5 The summation of the squares of the first n terms of bi-periodic Jacobsthal 

sequences is given as the following: 

 

 

                                                ∑(
2b

a
)

ε(i+1)n

i=1

(
ji

2⌊
i
2
⌋
)

2

= 
1

a
 
jmjm+1

2m−1
                                                 (5) 

 

Proof. By using Binet forms of bi-periodic Jacobsthal sequences we have 

 

(
2b

a
)
ε(i+1)

(
ji

2⌊
i
2
⌋
)

2

=
2ab

(α − β)2
[(

α2

2ab
)

k

− (
β2

2ab
)

k

−2(−1)k] 

 

Using the properties    ab(α + 2) = α2    and     ab(β + 2) = β2 

 

∑(
2b

a
)
ε(i+1)n

i=1

(
ji

2⌊
i
2
⌋
)

2

=
2ab

(α − β)2
[∑(

α2

2ab
)

k

− ∑(
β2

2ab
)

k

− 2∑ 

n

i=1

(−1)k 

n

i=1

 

n

i=1

] 
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                                            =
(

α2

2ab
)

m+1

− (
α2

2ab
)

(
α2

2ab
) − 1

−
(

β2

2ab
)

m+1

− (
β2

2ab
)

(
β2

2ab
) − 1

+ (−1)m − 1   

 

=
jnjn−1

a 2n−2
                                                   

 

■ 

Lemma 6 The following property is hold for the bi-periodic Jacobsthal sequences 

 

 

     ∑(
2b

a
)
ε(i+1)m

i=1

(
ji

|r|i 2⌊
i
2
⌋
)

2

=
n |r|2n

a2b2 + 8ab
[
 
 
 ab(2cn − |r|c2n+2) + 2ab(|r|(a2b2 + 8ab − 1))

(1 + |r|2 −
|r|
2  (ab + 4))(2|r|)n

+ 2ab[1 − (−1)n]

]
 
 
 

                                                                                               (6) 

 

Proof. The proof is made by using similar procedure with the proof of the previous Lemma. 

■ 

For any A = [aij]ϵMm,n(C), the Frobenious (or Euclidean) norm of matrix A  is displayed by 

the following equality 

                                                       ‖A‖F = (∑∑|aij|
2

n

j=1

m

i=1

)

1
2

   ,                                                         (7) 

and the spectral norm of matrix A is also shown as 

                                                       ‖A‖2 = √
max

1 ≤ i ≤ n
λi(AHA) ,                                                   (8) 

where AH is the conjugate transpose of matrix A and λi(A
HA) is an eigenvalue of AHA 

 

 

Lemma 7 Suppose that A ϵMm,n(C), then the following inequalities are held [7] 

 

                                                           
1

√n
 ‖A‖F ≤ ‖A‖2  ≤  ‖A‖F ,                                                     (9)  
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‖A‖2  ≤  ‖A‖F  ≤  √n‖A‖2 
 

 

 

Lemma 8  Suppose that A, BϵMm,n(C), and the Hadamard product of A,B is entrywise 

product and defined by [6,7,8] 

AoB = (aijbij) 

that has the following properties 

                                                 ‖AoB‖2 ≤ ‖A‖2  ‖B‖2,                                                                  (10) 

and  r1(A), the maximum row length norm, c1(B) , the maximum column length norm are 

given as  r1(A) = max
1≤i≤n

√∑ |bij|
2n

j=1 and c1(B) = max
1≤j≤n

√∑ |cij|
2n

i=1   with the following 

property 

 

                                                            ‖AoB‖2 ≤ r1(A)c1(B),                                                          (11) 

 

Lemma 9 Let A ϵ Mm,n(C),  and  B ϵ Mp,q(C),  be given, then the Kronecker 

product of A ,B is defined by 

 

                              ‖A ⨂ B‖ = [
a11B ⋯ a1nB

⋮ ⋱ ⋮
am1B ⋯ amnB

]                               

 

 

and has the following property [7] 

 

                                                         ‖A ⨂ B‖2 = ‖A‖2  ‖B‖2                                                          (12) 
 

3. Main Results 

 

Lower and Upper Bounds of r- Circulant Matrices Involving   bi-periodic Jacobsthal 

Numbers 

 

 

Theorem 10 Let r ϵ C and Jr = circr ((
2b

a
)

ε(1)

2
j0  , (

2b

a
)

ε(2)

2
j1 , … , (

2b

a
)

ε(n)

2
  

jn−1

2
⌊
n−1

2
⌋
)     be a 

r-circulant matrix with bi-periodic Jacobsthal numbers, then the upper and lower bounds for 

the spectral norm of Jr are obtained as: 

 

(i) If  |r| ≥ 1, then 
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√
jnjn−1

a 2n−2
  ≤ ‖Jr‖2  ≤  √(n − 1)r

jnjn−1

a 2n−2
   

 

 

(ii) If  |r| < 1, then 

 

 

|r|√
jnjn−1

a 2n−2
  ≤ ‖Jr‖2  ≤  √(n − 1)

jnjn−1

a 2n−2
   

 

 

Proof. The r- circulant matrix  Jr is of the form 

 

  Jr =

[
 
 
 
 
 
 
 
 
 
 
 
 

(
2b

a
)

ε(1)
2

j0   (
2b

a
)

ε(2)
2

j1   (
2b

a
)

ε(3)
2 j2

2
⋯ (

2b

a
)

ε(n)
2

  
jn−1

2⌊
n−1
2 ⌋

r (
2b

a
)

ε(n)
2

  
jn−1

2⌊
n−1
2

⌋
   (

2b

a
)

ε(1)
2

j0   (
2b

a
)

ε(2)
2

j1 ⋯    (
2b

a
)

ε(n−1)
2

  
jn−2

2⌊
n−2
2

⌋

  r (
2b

a
)

ε(n−1)
2

  
jn−2

2⌊
n−2
2

⌋
         r (

2b

a
)

ε(n−2)
2

  
jn−1

2⌊
n−1
2

⌋
     (

2b

a
)

ε(1)
2

j0 ⋯     (
2b

a
)

ε(n−2)
2

  
jn−3

2⌊
n−3
2

⌋

⋮ ⋮ ⋮ ⋱ ⋮

  r (
2b

a
)

ε(2)
2

j1           r (
2b

a
)

ε(3)
2 j2

2
r (

2b

a
)

ε(4)
2 j3

2
⋯ (

2b

a
)

ε(1)
2

j0 ]
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

For  |r| ≥ 1 by using (5), (7) we have 

 

‖Jr Jr∗‖F
2  = ∑( n − k)

n−1

k=0

(
2b

a
)

ε(k+1)

( 
jk

2
⌊
k
2
⌋
 )

2

+ ∑ k

n−1

k=1

|r|2 (
2b

a
)
ε(k+1)

( 
jk

2
⌊
k
2
⌋
 )

2

 

 

                   ≥  ∑( n − k)

n−1

k=0

(
2b

a
)

ε(k+1)

( 
jk

2
⌊
k
2
⌋
 )

2

+ ∑ k

n−1

k=1

(
2b

a
)
ε(k+1)

( 
jk

2
⌊
k
2
⌋
 )

2

        

 

= n ∑ (
2b

a
)
ε(k+1)n−1

k=0

( 
jk

2
⌊
k
2
⌋
 )

2

                                                        

 

= n(
jnjn−1

a 2n−2
  )                                                                                   

 

From the equality (9), 
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‖Jr‖2  ≥   
‖Jr‖F

√n
  ≥  √

jnjn−1

a 2n−2
   

 

On the other hand, let Jr = BοC where B = [bij ] and C = [cij ] are defined as 

 

B =

[
 
 
 
 
j0 1 1 ⋯ 1
r j0 1 ⋯ 1
r r j0 ⋯ 1
⋮ ⋮ ⋮ ⋱ ⋮
r r r ⋯ j0]

 
 
 
 

 

and 

C =

[
 
 
 
 
 
 
 
 
 
 
 
 

(
2b

a
)

ε(1)
2

j0   (
2b

a
)

ε(2)
2

j1   (
2b

a
)

ε(3)
2 j2

2
⋯ (

2b

a
)

ε(n)
2

  
jn−1

2⌊
n−1
2

⌋

(
2b

a
)

ε(n)
2

  
jn−1

2⌊
n−1
2

⌋
   (

2b

a
)

ε(1)
2

j0   (
2b

a
)

ε(2)
2

j1 ⋯    (
2b

a
)

ε(n−1)
2

  
jn−2

2⌊
n−2
2

⌋

  (
2b

a
)

ε(n−1)
2

  
jn−2

2⌊
n−2
2

⌋
          (

2b

a
)

ε(n)
2

  
jn−1

2⌊
n−1
2

⌋
     (

2b

a
)

ε(1)
2

j0 ⋯     (
2b

a
)

ε(n−2)
2

  
jn−3

2⌊
n−3
2

⌋

⋮ ⋮ ⋮ ⋱ ⋮

 (
2b

a
)

ε(2)
2

j1           (
2b

a
)

ε(3)
2 j2

2
 (

2b

a
)

ε(4)
2 j3

2
⋯ (

2b

a
)

ε(1)
2

j0 ]
 
 
 
 
 
 
 
 
 
 
 
 

 

 

By the maximum row and column length norm of these matrices, 

 

r1(B) = max
1≤i≤n

√∑|bij|
2

n

j=1

= √∑|bnj|
2

n

j=1

= √j0
2 + (n − 1)r = √(n − 1)r 

 

c1(C) = max
1≤j≤n

√∑|cij|
2

n

i=1

=√
jnjn−1

a 2n−2
                                                              

 

By using (11) we obtain 

‖Jr‖2 ≤ r1(B)c1(C) = √(n − 1)r 
jnjn−1

a 2n−2
  

 

 

The proof is completed fort he first past. 

 

(ii)      For  |r| ≤ 1, by using (5), (7) we have , 
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‖ Jr∗‖F
2  = ∑( n − k)

n−1

k=0

(
2b

a
)

ε(k+1)

( 
jk

2
⌊
k
2
⌋
 )

2

+ ∑ k

n−1

k=1

|r|2 (
2b

a
)
ε(k+1)

( 
jk

2
⌊
k
2
⌋
 )

2

 

 

             ≥  ∑( n − k + k)

n−1

k=0

|r|2 (
2b

a
)
ε(k+1)

( 
jk+1

2
⌊
k+1
2

⌋
 )

2

 = n|r|2 (
jnjn−1

a 2n−2
  )    

                                                       
       

From  (9),  we get 

 

‖ Jr∗‖2  ≥   
‖ Jr∗‖F

√n
  ≥  |r|√

jnjn−1

a 2n−2
   

 

On the other hand, let Jr = BοC where B ,C  are given in the following forms 

 

B =

[
 
 
 
 
j0 1 1 ⋯ 1
r j0 1 ⋯ 1
r r j0 ⋯ 1
⋮ ⋮ ⋮ ⋱ ⋮
r r r ⋯ j0]

 
 
 
 

 

and 

C =

[
 
 
 
 
 
 
 
 
 
 
 
 

(
2b

a
)

ε(1)
2

j0   (
2b

a
)

ε(2)
2

j1   (
2b

a
)

ε(3)
2 j2

2
⋯ (

2b

a
)

ε(n)
2

  
jn−1

2⌊
n−1
2 ⌋

(
2b

a
)

ε(n)
2

  
jn−1

2⌊
n−1
2

⌋
   (

2b

a
)

ε(1)
2

j0   (
2b

a
)

ε(2)
2

j1 ⋯    (
2b

a
)

ε(n−1)
2

  
jn−2

2⌊
n−2
2

⌋

  (
2b

a
)

ε(n−1)
2

  
jn−2

2⌊
n−2
2

⌋
          (

2b

a
)

ε(n)
2

  
jn−1

2⌊
n−1
2

⌋
     (

2b

a
)

ε(1)
2

j0 ⋯     (
2b

a
)

ε(n−2)
2

  
jn−3

2⌊
n−3
2

⌋

⋮ ⋮ ⋮ ⋱ ⋮

 (
2b

a
)

ε(2)
2

j1           (
2b

a
)

ε(3)
2 j2

2
 (

2b

a
)

ε(4)
2 j3

2
⋯ (

2b

a
)

ε(1)
2

j0 ]
 
 
 
 
 
 
 
 
 
 
 
 

 

 

By the maximum row and column length norm of these matrices, 

 

r1(B) = max
1≤i≤n

√∑|bij|
2

n

j=1

= √(
2b

a
)

ε(1)

2

j0
2  + (n − 1)                             

 

c1(C) = max
1≤j≤n

√∑|cij|
2

n

i=1

= √∑ [(
2b

a
)

ε(n)

2

  
j
i

2
⌊
i

2
⌋
]

2n−1

k=0

 = √
jnjn−1

a 2n−2
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By using (11) we obtain the second part of the proof  

 

‖Jr‖2 ≤ r1(B)c1(C) = √ 
(n − 1) jnjn−1

a 2n−2
  

 

Therefore the proof is completed ■ 

Corollary 11 Let A = B = Jr = circr ((
2b

a
)

ε(1)

2
j0  , (

2b

a
)

ε(2)

2
j1 , … , (

2b

a
)

ε(n)

2
  

jn−1

2
⌊
n−1

2
⌋
)      

be an r- circulant matrix with biperiyodic Jacobsthal numbers, then the upper  bounds for 

spectral norm of Kronecker product of A and B are demonstrated by 

 

  
(i) If  |r| ≥ 1, then 

 

‖A ⨂ B‖2 ≤ (n − 1)r 
jnjn−1

a 2n−2
 

 

(ii)  If  |r| ≤ 1, then 

 

‖A ⨂ B‖2 ≤ (n − 1) 
jnjn−1

a 2n−2
 

 

Proof. The proof is easily seen by 

 
‖A ⨂ B‖2 = ‖A‖2  ‖B‖2 

 

■ 

Corollary 12 Let A = B = Jr = circr ((
2b

a
)

ε(1)

2
j0  , (

2b

a
)

ε(2)

2
j1 , … , (

2b

a
)

ε(n)

2
  

jn−1

2
⌊
n−1

2
⌋
) be an r- 

circulant matrix with bi-periodic Jacobsthal numbers, then the upper  bounds for spectral 

norm of Hadamard product of A and B are demonstrated by 

 

(i)  
If  |r| ≥ 1, then 

 

‖A ο B‖2 ≤ (n − 1)r 
jnjn−1

a 2n−2
 

 

(ii)  If  |r| ≤ 1, then 

 

‖A ο B‖2 ≤ (n − 1) 
jnjn−1

a 2n−2
 

 

Proof. The proof is easily seen by 
‖A ο B‖2 ≤ ‖A‖2  ‖B‖2 
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■ 

Lower and Upper Bounds of Geometric Circulant Matrices Involving bi-periodic 

Jacobsthal Numbers 

 

Theorem 13 Let rϵC and  Jr∗ = circr ((
2b

a
)

ε(1)

2
j0  , (

2b

a
)

ε(2)

2
j1 , … , (

2b

a
)

ε(n)

2
  

jn−1

2
⌊
n−1

2
⌋
) be a 

geometric circulant matrix with bi-periodic Jacobsthal numbers, then the upper and lower 

bounds for the spectral norm of 𝐽𝑟 are obtained as : 

 

(i)  If  |r| ≥ 1, then 

 

√
jnjn−1

a 2n−2
  ≤ ‖ Jr∗‖2  ≤  √

jnjn−1

a 2n−2
 
1 − |r|2n

1 − |r|2
  

 

 

(ii) If  |r| < 1, then 

 

 

n|r|2n

a2b2 + 8ab
[
 
 
 
ab(2c2n − |r|c2n+2) + 2ab(|r|(a2b2 + 8ab − 1))

1 + |r|2 −
|r|
2

(ab + 4)(2|r|)n

+ 2ab[1 − (−1)m]

]
 
 
 

≤ ‖ Jr∗‖2  

 

 

 

‖ Jr∗‖2 = √(n − 1)
jnjn−1

a 2n−2
 

 

Proof. The geometric circulant matrix  Jr∗ is of the form 

 

 

  Jr∗ =

[
 
 
 
 
 
 
 
 
 
 
 
 

(
2b

a
)

ε(1)
2

j0   (
2b

a
)

ε(2)
2

j1   (
2b

a
)

ε(3)
2 j2

2
⋯ (

2b

a
)

ε(n)
2

  
jn−1

2⌊
n−1
2 ⌋

r (
2b

a
)

ε(n)
2

  
jn−1

2⌊
n−1
2

⌋
   (

2b

a
)

ε(1)
2

j0   (
2b

a
)

ε(2)
2

j1 ⋯    (
2b

a
)

ε(n−1)
2

  
jn−2

2⌊
n−2
2

⌋

  r2 (
2b

a
)

ε(n−1)
2

  
jn−2

2⌊
n−2
2

⌋
         r (

2b

a
)

ε(n)
2

  
jn−1

2⌊
n−1
2

⌋
     (

2b

a
)

ε(1)
2

j0 ⋯     (
2b

a
)

ε(n−2)
2

  
jn−3

2⌊
n−3
2

⌋

⋮ ⋮ ⋮ ⋱ ⋮

 rn−1 (
2b

a
)

ε(2)
2

j1           rn−2 (
2b

a
)

ε(3)
2 j2

2
rn−3  (

2b

a
)

ε(4)
2 j3

2
⋯ (

2b

a
)

ε(1)
2

j0 ]
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For |r| ≥ 1, by using the definiton of Frebinous norm, we have 

 

‖ Jr∗‖F
2 = ∑( n − k)

n−1

k=0

(
2b

a
)

ε(k+1)

( 
jk

2
⌊
k
2
⌋
 )

2

+ ∑ k

n−1

k=1

|rn−k|
2
(
2b

a
)

ε(k+1)

( 
jk

2
⌊
k
2
⌋
 )

2

 

 

≥ ∑( n − k )

n−1

k=0

(
2b

a
)

ε(k+1)

( 
jk

2
⌊
k
2
⌋
 )

2

+ ∑ k  

n−1

k=1

(
2b

a
)
ε(k+1)

( 
jk

2
⌊
k
2
⌋
 )

2

 

 

= n ∑   

n−1

k=0

(
2b

a
)

ε(k+1)

( 
jk

2
⌊
k
2
⌋
 )

2

                                                                   

 

= n(
jnjn−1

a 2n−2
)                                                                                                

 

From the equality (9), 

 

√(
jnjn−1

a 2n−2
) ≤ ‖ Jr∗‖2 

 

On the other hand, let the matrices B and C be presented by 

 

B =

[
 
 
 
 

1 1 1 ⋯ 1
r 1 1 ⋯ 1
r2 r 1 ⋯ 1
⋮ ⋮ ⋮ ⋱ ⋮

rn−1 rn−2 rn−3 ⋯ 1]
 
 
 
 

 

and 

C =

[
 
 
 
 
 
 
 
 
 
 
 
 

(
2b

a
)

ε(1)
2

j0   (
2b

a
)

ε(2)
2

j1   (
2b

a
)

ε(3)
2 j2

2
⋯ (

2b

a
)

ε(n)
2

  
jn−1

2⌊
n−1
2

⌋

(
2b

a
)

ε(n)
2

  
jn−1

2⌊
n−1
2

⌋
  (

2b

a
)

ε(1)
2

j0   (
2b

a
)

ε(2)
2

j1 ⋯    (
2b

a
)

ε(n−1)
2

  
jn−2

2⌊
n−2
2

⌋

  (
2b

a
)

ε(n−1)
2

  
jn−2

2⌊
n−2
2

⌋
          (

2b

a
)

ε(n)
2

  
jn−1

2⌊
n−1
2

⌋
     (

2b

a
)

ε(1)
2

j0 ⋯     (
2b

a
)

ε(n−2)
2

  
jn−3

2⌊
n−3
2

⌋

⋮ ⋮ ⋮ ⋱ ⋮

  (
2b

a
)

ε(2)
2

j1           (
2b

a
)

ε(3)
2 j2

2
 (

2b

a
)

ε(4)
2 j3

2
⋯ (

2b

a
)

ε(1)
2

j0 ]
 
 
 
 
 
 
 
 
 
 
 
 

 

 

In this case  Jr∗ = BοC. By the maximum row and column length norm of these matrices, 
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r1(B) = max
1≤i≤n

√∑|bij|
2

n

j=1

= √∑|bnj|
2

n

j=1

= √ 
1 − |r|2n

1 − |r|2
  

 

c1(C) = max
1≤j≤n

√∑|cij|
2

n

i=1

=√
jnjn−1

a 2n−2
                                   

By using (11) we obtain 

 

‖ Jr∗‖2 ≤ r1(B)c1(C) = √
jnjn−1

a 2n−2
 
1 − |r|2n

1 − |r|2
  

From |r| < 1, 

 

‖ Jr∗‖F
2 = ∑( n − k)

n−1

k=0

(
2b

a
)

ε(k+1)

( 
jk

2
⌊
k
2
⌋
 )

2

+ ∑ k

n−1

k=1

|rn−k|
2
(
2b

a
)

ε(k+1)

( 
jk

2
⌊
k
2
⌋
 )

2

 

 

≥ n ∑|rn−k|
2

n−1

k=0

(
2b

a
)
ε(k+1)

( 
jk

2
⌊
k
2
⌋
 )

2

                                                    

 

= n|r|2n ∑   

n−1

k=0

(
2b

a
)

ε(k+1)

( 
jk

2
⌊
k
2
⌋
|r|k

 )

2

                                               

 

                    =
n|r|2n

a2b2 + 8ab

[
 
 
 
ab(2c2n − |r|c2n+2) + 2ab(|r|(a2b2 + 8ab − 1))

1 + |r|2 −
|r|
2

(ab + 4)(2|r|)
n

+ 2ab[1 − (−1)m]

]
 
 
 

 

 

 

For the matrices B and C as mentioned above we have 

 

B =

[
 
 
 
 

1 1 1 ⋯ 1
r 1 1 ⋯ 1
r2 r 1 ⋯ 1
⋮ ⋮ ⋮ ⋱ ⋮

rn−1 rn−2 rn−3 ⋯ 1]
 
 
 
 

 

and 
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C =

[
 
 
 
 
 
 
 
 
 
 
 
 

(
2b

a
)

ε(1)
2

j0   (
2b

a
)

ε(2)
2

j1   (
2b

a
)

ε(3)
2 j2

2
⋯ (

2b

a
)

ε(n)
2

  
jn−1

2⌊
n−1
2 ⌋

(
2b

a
)

ε(n)
2

  
jn−1

2⌊
n−1
2

⌋
  (

2b

a
)

ε(1)
2

j0   (
2b

a
)

ε(2)
2

j1 ⋯    (
2b

a
)

ε(n−1)
2

  
jn−2

2⌊
n−2
2

⌋

  (
2b

a
)

ε(n−1)
2

  
jn−2

2⌊
n−2
2

⌋
          (

2b

a
)

ε(n)
2

  
jn−1

2⌊
n−1
2

⌋
     (

2b

a
)

ε(1)
2

j0 ⋯     (
2b

a
)

ε(n−2)
2

  
jn−3

2⌊
n−3
2

⌋

⋮ ⋮ ⋮ ⋱ ⋮

  (
2b

a
)

ε(2)
2

j1           (
2b

a
)

ε(3)
2 j2

2
 (

2b

a
)

ε(4)
2 j3

2
⋯ (

2b

a
)

ε(1)
2

j0 ]
 
 
 
 
 
 
 
 
 
 
 
 

 

 

In this case  Jr∗ = B ο C 

 

r1(B) = max
1≤i≤n

√∑|bij|
2

n

j=1

= √∑|b1j|
2

n

j=1

= √n 

 

c1(C) = max
1≤j≤n

√∑|cij|
2

n

i=1

=√
jnjn−1

a 2n−2
                  

 

By using (11) we obtain 

 

‖ Jr∗‖2 ≤ r1(B)c1(C) = √n  
jnjn−1

a 2n−2
  

■ 

Corollary 12 Let A = B =  Jr = circr ((
2b

a
)

ε(1)

2
j0  , (

2b

a
)

ε(2)

2
j1 , … , (

2b

a
)

ε(n)

2
  

jn−1

2
⌊
n−1

2
⌋
) be a 

geometric circulant matrix with bi-periodic Jacobsthal numbers, then the upper bounds for 

spectral norm of Kronecker product of A and B are demonstrated by 

 

(i) If  |r| ≥ 1, then 

 

‖A ⨂ B‖2 ≤ 
jnjn−1

a 2n−2

1 − |r|2n

1 − |r|2
 

 

 

(ii) If  |r| ≤ 1, then 

 

 

‖A ⨂ B‖2 ≤  n 
jnjn−1

a 2n−2
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Corollary 13 Let A = B =  Jr = circr ((
2b

a
)

ε(1)

2
j0  , (

2b

a
)

ε(2)

2
j1 , … , (

2b

a
)

ε(n)

2
  

jn−1

2
⌊
n−1

2
⌋
) be a 

geometric circulant matrix with bi-periodic Jacobsthal numbers, then the upper bounds for 

spectral norm of Hadamard product of A and B are demonstrated by 

 

(i) If  |r| ≥ 1, then 
 

 

‖A ο B‖2 ≤ 
jnjn−1

a 2n−2
 
1 − |r|2n

1 − |r|2
 

 

(ii)  If  |r| ≤ 1, then 

 

‖A ο B‖2 ≤  n  
jnjn−1

a 2n−2
 

 

Proof. The proof is easily seen by 

 
‖A ο B‖2 ≤ ‖A‖2  ‖B‖2 

 

■ 

4. Conclusion 

In this study we compute upper and lower bounds of spectral norms of r-circulant and 

geometric circulant matrices with the bi-periodic Jacobsthal numbers. If we take a = b = 1, we 

get upper and lower bounds of spectral norms of r-circulant and geometric circulant matrices 

with the Jacobsthal numbers. And also ıf we take r = 1 in geometric and r-circulant matrices 

we get upper and lower bounds of spectral norms of circulant matrices with the Jacobsthal 

numbers 
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Özet 

Bu çalışmada metrik uzayları, ultra metrik uzayları, normlu uzayları ve ultra normlu uzayları 

tanıtıp aralarındaki ilişkileri ve örneklerini gösterdik. Ultra normlu uzaylarda izometri ve ultra izometri 

tanımlarını yaptık. Sonra bazı ultra normlu uzaylara örnek verip ultra Banach uzay olduğunu gösterdik. 

 

Anahtar kelimeler: Ultra Metric, Ultra Norm, İzometri, Krull Sharpening, Ultra izometri, Ultra Banach Uzayı. 
 

1. Giriş  

Bu çalışmada metrik uzay aksiyomlarından     (Üçgen eşitsizliği 

aksiyomu) yerine         (Güçlü üçgen eşitsizliği aksiyomu) alınarak elde 

edilen metriğe ultra metrik denmiş ve bu sayede pek çok şaşırtıcı, doğal olmayan sonuçlar ortaya 

çıkmıştır. Ultra metrik ile metrik uzayları, ultra normlu ile normlu uzayları ve ilişkilerini gösterdik. Biz 

burada güçlü üçgen eşitsizliğini kullanarak ultra metrik uzay örneklerini, ultra normu, ultra metrik Banach 

uzaylarını bu uzayların çeşitli özelliklerini inceledik. Dolayısıyla karşımıza farklı uzaylar ve yapılar 

ortaya çıktı. Ayrıca Diagana, Krull, Ludkovsky ve Şanlıbaba [1,2,3,4] ultrametrik uzayların yapılarını, bu 

uzaylara örnekleri ve kapsama durumlarını göstermişlerdir.  

2. Temel Tanım ve Teoremler 

Tanım 2.1. Bir  boş olmayan bir  küme ve  üzerinde     şeklinde  tanımlı fonksiyonu  

verilmiş olsun.   için aşağıdaki aksiyomları sağlayan d fonksiyonuna metrik,  ikilisine 

metrik uzay denir. 

(m1)     ,  

(m2) ,     

(m3)  . 

Negatif olmayan  reel sayısına  ile elemanları arasındaki uzaklık denir [5]. 
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Metrik uzay tanımının özel hali  olan ultra metrik uzay tanımı aşağıda verilmiştir: 

Tanım 2.2.  bir küme ve    fonksiyonu verilsin.   için  fonksiyonu  

(um1)   

(um2)   

(um3)   

şartlarını sağlıyorsa ya ultrametrik, ( ) ya da ultra metrik uzay, (um1), (um2) ve (um3) ye de ultra 

metrik uzay aksiyomları  denir. 

Dikkat edilirse,  (um1) şartı (m1) şartı ile, (um2) şartı da (m2) şartı ile aynıdır. 

} eşitsizliğinde eğer değer  ise açık olarak 

 eşitsizliği sağlanır. Eğer  değer  ise yine 

  eşitsizliği sağlanır. Şu halde (um3) den (m3) eşitliği elde edilir. Dolayısıyla 

her ultra metrik uzay aynı zamanda klâsik anlamda metrik uzay olur.                                

Şimdi     ile tanımlı  üzerindeki doğal metriği göz önüne alalım.  ’nin 

m1-m3 şartlarını sağladığı açıktır. Fakat     

yazılamayacağından  de bir metrik olmasına rağmen  (um3) şartını sağlamadığından ultra metrik 

değildir. Dolayısıyla   ikilisi ultra metrik uzay olmaz.   

Şu halde aşağıdaki teoremi verebiliriz:                                                                                  

Teorem 2.1. Her ultra metrik uzay bir metrik uzaydır ama her metrik uzay ultra metrik uzay olmak 

zorunda değildir. 

Örnek 2.1. Boş olmayan her hangi bir  kümesi verilsin.  den  ye tanımlanan  

  =        (2.1) 

dönüşümü  için bir ultra metriktir [6], [7]. 
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Tanım 2.3.  bir küme ve  üzerinde toplama ve skalarla çarpma işlemleri tanımlanmış olsun.   

için   olacak şekilde  in birimi  ile gösterelim. 

 Eğer   fonksiyonu  ve  için  

(un1)         

(un2)       

(un3)       

şartlarını sağlıyorsa  ye  üzerinde ultra norm denir. n1-n3 ile un1- un3 karşılaştırıldığında (un3) ile 

(n3) ün farklı olduğu görülür. 

  eşitsizliği    eşitsizliği mevcut iken mevcut 

fakat  olmasının    olmasını gerektirmediğinden 

her ultra norm bir normdur, tersi doğru değildir. 

Biliyoruz ki her norm bir metriktir. Bu önerme ultra metrik ve ultra norm bakımından da geçerlidir [6]. 

Açık olarak bir  normlu uzayının ilk iki şartı ultra normlu uzayların ilk iki şartı ile aynıdır. Yine normlu 

uzaylardaki üçgen eşitsizliği şartının  mevcut iken mevcut ama 

 olmasının  olmasını gerektirmeyeceği görülebilir. 

Demek ki her ultra normlu uzay normlu uzay, tersine her normlu uzay ultra normlu uzay olmak zorunda 

değildir, önermesini verebiliriz. 

Şimdiye kadar söylenenleri aşağıdaki diyagramla özetleyebiliriz: 

 

196



 

INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 

3-5 July 2019, Istanbul, Turkey 

 

Şekil 1. Metrik Uzay, Ultra Metrik Uzay, Normlu Uzay, Ultra Normlu Uzay İlişkilerini                                  

Açıklayan Diyagram 

Tanım 2.4. Bir Arşimedyan olmayan yani ultra normlu  lineer uzayı tam ise bu uzaya Arşimedyan 

olmayan Banach uzayı veya ultra normlu Banach uzayı denir. 

Tanım 2.5.  bir normlu uzay olsun.  ve  olmak üzere  

eşitsizliği sağlanıyorsa  ye Krull özelliğine sahiptir denir [2]. 

3. Bazı Ultra Normlu Uzaylar ve İzomorfiklikleri 

Tanım 3.1. (Ultra izometri)  ve ,  cismi üzerinde ultra normlu uzaylar olsun ve   dönüşümü 

verilsin. Eğer   için 

   

ise yani ultra normu koruyorsa  ye  den  ye bir ultra izometri denir. 

Tanım 3.2.   ve , aynı  cismi üzerinde ultra normlu uzaylar olsun. Eğer   lineer, 1-1, örten 

izometrisi varsa  ve  uzayları ultra izometrik olarak ultra izomorfiktir denir, bu husus   ile 

gösterilir. 

 bir cisim olsun.   fonksiyonu  için    yani     

  eşitsizliğini sağlamak üzere her   için    dizisi  (  ve sınırlı 

olacak şekilde bir dizi,  da bir indis kümesi olmak üzere,  üzerinde  

 

cümlesini tanımlayalım.  

 

  

ile tanmlı   fonksiyonu verilsin.   ikilisi Arşimedyan olmayan Banach uzayıdır. 
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Benzer olarak, 

  ve   

 

kümeleri de    ile beraber Arşimedyan olmayan Banach uzaylarıdır [1,8,9,10]. 

,  ve  kümelerine sırası ile ultra sınırlı (veya Arşimedyan olmayan sınırlı), 

ultra yakınsak (veya Arşimedyan olmayan yakınsak) ve ultra sıfıra yakınsak (veya Arşimedyan olmayan 

sıfıra yakınsak ) dizilerin uzayları adı verilir. 

Biz bunlardan sadece   nin ultra normlu Banach uzayı olduğunu göstereceğiz, diğerleri de 

benzer olarak gösterilebilir. 

(un1)    

(un2)  

(un3)  

 

Demek ki  ultra normlu uzaydır. 

 Şimdi tamlığı ispatlayalım. 

Kabul edelim ki ,   de bir Cauchy dizisi olsun. Eğer  sabit bir dizi ise durum açıktır.  

Eğer  sabit bir dizi  değilse bu takdirde  olacak şekilde 

                                         (*) 
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olacak şekilde bir   tam sayısı vardır. Buradan  ve  olmak üzere keyfi fakat sabit her  

için  olduğunda  

  elde edilir. O halde her sabit  için     ‘ de bir Cauchy dizisidir.  tam 

olduğundan   Her  doğal sayısı için elde edeceğimiz bu limitler yardımıyla  ‘ de 

 dizisini teşkil edelim. 

      

      

       . 

                  

      

        

   

        

               

Şimdi  ve   olduğunu göstereceğiz. (*) ifadesinde   yapılırsa 

 elde edilir. 

  olduğundan  için  olacak şekilde bir   reel dizisi vardır. 

Kuvvetli  üçgen eşitsizliğinden  

          

Bu eşitsizlik her  için geçerli ve sağ tarafta ’ yi ihtiva etmediğinden  dir.⎕ 
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Her ultra normlu uzay, normlu uzaydır (Şekil 1’e bakınız). Yukarıdaki teoremde eğer   alınırsa 

  bildiğimiz anlamda  uzayına,   uzayı c yakınsak dizilerin uzayına    de  

 uzayına dönüşür. 

4. Sonuç 

Bu çalışmada ultra metrik, ultra norm, ultra metrik Banach uzayları incelenmiş, teoremler ve örnekler 

verilmiştir. Sonuç olarak ultra metrik uzaylar metrik uzayların kapsadığı daha özel yapılar olduğu 

görülmüştür ve metrik uzaylarda geçerli olan tüm özelliklerin ultra metrik uzayda olmadığı fark 

edilmiştir. Ultra metrikler daha spesifik oldukları için bazen şaşırtıcı sonuçlar elde edilmiştir. Ayrıca Ultra 

normlu Banach uzayına örnekler verilmiş, ispatlanmış ve ultra izomorfiklik tanımı yapılmıştır. 
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Abstract

Sturm-Liouville type boundary value problems arise throughout in physics, engineering, electro-
magnetics, elasticity and other branches of natural sciences. For example, they describe the energy
eigenfunctions of a quantum mechanical oscillator, the vibrational modes of a various systems, the
heat and mass transfer problems and etc. Usually, the eigenvalue parameter appears linearly only
in the differential equation of the classic Sturm-Liouville problems. However, in solving of many
significant physics problems the eigenvalue parameter appear also in the boundary conditions. There
is quite substantial literature on such type problems. Moreover, Sturm-Liouville problems with the
eigenvalue parameter in boundary conditions together with additional transmission conditions at
some interior points of interaction arise in various problems of applied mathematics. Note that
boundary-value-transmission problems arise in diffraction problems, in vibrating string problems,
when the string loaded additionally with point masses and etc. This study deal with a new type
boundary-value-transmission problems for many-interval Sturm-Liouville equations. For self-adjoint
realization of the considered problem we define alternative inner product in the Lebesgue space of
square-integrable functions. We shall establish some properties of the spectrum.

Keywords : Boundary-value problem, eigenvalue, eigenfunction, Hilbert space.

1 Introduction

Many subjects in physics and engineering are developing depending on the studies in partial dif-
ferential equations. It is not possible to list all these. For example, there are many topics, such
as acoustics, aerodynamics, elastic, electrodynamics, fluid dynamics, geophysics (seismic wave prop-
agation), heat transfer, meteorology, ocean science, optics, petroleum engineering, plasma physics
(liquid and gas ionization), quantum mechanics which are largely dependent on the studies in partial
differential equations (see, for example, [10, 11, 15, 18]).

In order to apply the Fourier method (i.e. the method of separation of variables) in the solution202



of many problems of mathematics physics, it is necessary to express the given function as series
expansion in terms of eigenfunctions of boundary-value problem for ordinary differential equations.
In addition, for justification of this method it is needed investigation also the eigenvalues of the
considered boundary value problem.

This study is concerned with the theory of boundary value problems with supplementary trans-
mission conditions, the spectral theory of linear differential operators and connections between the
two fields. In this paper we consider a Sturm-Liouville equation together with eigenparameter de-
pendent boundary conditions and transmission conditions. By using a new approach we obtain that
the eigenvalues of the pure differential part of the considered problem are real and the corresponding
eigenfunctions are orthogonal with respect to modified inner-product. By modifying some classic
methods we obtain asymptotic formulas for eigenvalues and corresponding eigenfunctions.

In the present work we consider a new class of boundary value problems which consists of a
Sturm-Liouville equation involving an abstract linear operator B, namely the equation

`u := −u′′(x) + q(x)u(x) + (Bu)(x) = λu(x) (1.1)

on (−1, 0) ∪ (0, 1), together with eigen-dependent boundary conditions;

`1(λ)u := α1u
′(−1) − α2u(−1) + λα3u(−1) = 0 (1.2)

`2(λ)u := β1u
′(1) − β2u(1) + λβ3u(1) = 0, (1.3)

and with eigen-dependent transmission conditions at point of discontinuity x = 0;

`3u := u(0+) − u(0−) = 0, (1.4)

`4(λ)u := u′(0+) − u′(0−) + λδ1u(0) = 0 (1.5)

where αi, βi, δ1, (i = 1, 2, 3) are real numbers, the real-valued function q(x) continuous in each
of [−1, 0) and (0, 1] and has a finite limits q(∓0) = limx→∓0 q(x) , λ is a complex spectral
parameter, and B is an abstract linear operator (unbounded and non-self-adjoint in general) in the
Hilbert space L2(−1, 0) ⊕ L2(0, 1). Naturally, everywhere we will assume that δ1 > 0, D(B) ⊂
W 2

2 (−1, 0)⊕W 2
2 (0, 1), α1α3 > 0 and β1β3 > 0.

Since the values of the solutions and their derivatives at the interior point x = 0 is not defined,
an important question is how to introduce a new Hilbert space such a way that the considered
problem can be interpreted as self-adjoint problem in this space. Note that boundary value problems
together with supplementary transmission conditions appear frequently in various fields of physics
and technics. For example, in electrostatics and magnetostatics the model problem which describes
the heat transfer through an infinitely conductive layer is a transmission problem (see, [8] and the
references listed therein). Another completely different field is that of hydraulic fracturing (see,
[6]) used in order to increase the flow of oil from a reservoir into a producing oil well. Boundary
value problems with transmission conditions (but without abstract operator B in the equation) were
investigate extensively in the resent years (see, for example [1, 2, 3, 4, 5, 7, 9, 13, 14, 16, 17]).

2 Some preliminary results in according Hilbert space

For spectral analysis of the Sturm-Liouville problem (1.1)-(1.5) we construct an adequate Hilbert
space and define a symmetric linear operator in such a way that the considered problem can be203



interpreted as the eigenvalue problem of this operator. Namely, in the Hilbert space (L2(−1, 0) ⊕
L2(0, 1))⊕ C3 introduce a new inner product by

〈U, V 〉H0 =

∫ 0

−1

u(x)v(x)dx +

∫ 1

0

u(x)v(x)dx

+
u1v1
α1α3

+
u2v2
β1β3

+
u3v3
δ1

for F =
(
u(x), u1, u2, u3

)
, V =

(
v(x), v1, v2, v3

)
∈ (L2(−1, 0)⊕ L2(0, 1))⊕ C3.

Theorem 2.1. H0 :=
((
L2(−1, 0)⊕ L2(0, 1)

)
⊕ C3 , 〈 , 〉H0

)
is a Hilbert space.

Let us introduce an auxiliary linear operator L : H0 → H0 with action low

LF = (−f ′′ + q(x)f, f ′(1))

and domain D(L) consisting of all U =
(
u(x), u1, u2, u3

)
∈ H0 which satisfy the following

conditions:

i. u, u′ are absolutely continuous functions on [−1,−γ] and [γ, 1] for arbitrary γ > 0,

ii. There are finite one-hand limits u(0±) and u′(0±),

iii. `u ∈ L2(−1, 0)⊕ L2(0, 1),

iv. u1 = α3u(−1), u2 = β3u(1), u3 = δ1u(0).

3 Main Results

Theorem 3.1. The differential operator L is densely defined in the Hilbert space H0, i.e., D(L) =
H0.

Theorem 3.2. The domain of definition of the adjoint operator L∗ coincide with the domain of
definition of L, i.e.,

D(L∗) = D(L).

Theorem 3.3. The operator L is self-adjoint in the Hilbert space H0.

Proof. Let U, V ∈ D(L). By two partial integration we obtain

〈LU, V 〉 = 〈U,LV 〉 + W (u, v ; 0−) − W (u, v ; −1) + W (u, v ; 1) − W (u, v ; 0)

+
1

α1α3

{(
α2u(−1)− α1u

′(−1)

)
α3v(−1) − α3u(−1)

(
α2v(−1)− α1v′(−1)

)}

+
1

β1β3

{
β3u(1)

(
β2v(1)− β1v′(1)

)
−
(
β2u(1)− β1u

′(1)

)
β3v(1)

}

+
1

δ1

{(
u′(0+) − u′(0−)

)
(−δ1v(0)) + δ1u(0)

(
v′(0+) − v′(0−)

)}
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where, as usual, by W (u, v ; x) we denote the Wronskian of the functions u and v :

W (u, v ; x) = u(x)v′(x) − u′(x)v(x).

Since u and v are satisfied the boundary conditions (1.2)-(1.3) and transmission conditions (1.4)-(1.5)
we get

〈LU, V 〉 = 〈U,LV 〉 , (U, V ∈ D(L))
so L is self-adjoint.

Corollary 3.4. The operator L has only real eigenvalues.

Corollary 3.5. Let λ and µ be two eigenvalues of L with the corresponding eigenelements u(x, λ) and u(x, µ)
respectively. If λ 6= µ then

〈u(. , λ) , u(. , µ)〉H0 = 0.

Theorem 3.6. The operator L has an precisely denumerable many eigenvalues λ1 < λ2 <
... with λn → ∞ as n → ∞.

Let us introduce to the consideration the following operators in the Hilbert space H0, as

B̃U := (Bu, 0, 0, 0) and L̃U := LU + B̃U

for U = (u(x), u1, u2, u3) ∈ D(L).

Definition 3.7. [12] Let T be any closed linear operator which has at least one regular value µ, and
let S is linear operator. If the operator S(T − µI)−1 is compact, then the operator S is said to be
S − compact.

Theorem 3.8. Let the operator B̃ be L − compact in the Hilbert space H0. Then

i. The BVTP (1.1)-(1.5) has precisely denumerable many eigenvalues λ̃n,

ii. For any ε > 0 there is n0 = n0(ε) such that |argλ̃n| < ε for all n > n0(ε).

iii. |λ̃n − λn| = o(n2).
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1Department of Mathematics, Faculty of Science,
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Abstract

Transmission problems for the Sturm-Liouville equations with discontinuous coefficients arise in
many problems of physics, such as in modeling toroidal vibrations of the earth, in vibrating of a loaded
string, in diffraction problems and etc. It is important to find a complete set of eigenfunctions, or
equivalently, to diagonalize the suitable differential operator in adequate infinite-dimensional Hilbert
space. In the finite-dimensional case, the spectrum of a linear operator consists only of its eigenvalues.
However, the linear operators on infinite-dimensional Hilbert spaces may have not only a point
spectrum of eigenvalues, but also a continuous spectrum. For many applications in science and
engineering it is required to determine the eigenvalues as well as the corresponding eigenfunctions.
In fact, the general theory of eigenvalues and eigenfunctions is one of the deepest and richest parts
of pure and applied mathematics, mathematical physics and engineering. This study devoted to the
investigation of the Sturm-Liouville type boundary-value problems with supplementary transmission
conditions. We derive some extremal properties of the eigenvalues and corresponding eigenfunctions
of the considered boundary-value-transmission problems by using variational methods. Also, we shall
modified the Rayleigh method for investigation some computational aspects of the eigenvalues.

Keywords : Boundary-value problem, Rayleigh quotient, eigenfunctions, eigenvalue.

1 Introduction

For many important applications in physics, engineering and other branches of natural science it is
required to determine the eigenvalues as well as the corresponding eigenfunctions of corresponding
boundary value problem for Sturm-Liouville equations. Therefore the Sturm-Liouville theory is one
of the most actual and extensively developing fields in pure and applied mathematics. In fact, the
general theory of eigenvalues and eigenfunctions is one of the deepest and richest parts of functional
analysis, operator theory, spectral theory, mathematical physics and engineering. Several problems
of physics and engineering are often stated as boundary value problems (BVP’s, for short). Among207



these BVP’s, the Sturm-Liouville type BVTP’s is a typical one, since Sturm-Liouville theory plays
an important role in solving various problems in mathematical physics and engineering. The Sturm-
Liouville problems that arise from diverse mechanical models and contain the eigenvalue parameter
in the boundary conditions have been studied in various formulations by many authors (see, for
instance, [5, 6, 14, 18, 19] and corresponding references cited therein). In different areas of applied
mathematics and physics many problems arise in the form of boundary value problems involving not
only eigen-parameter in the boundary conditions, but also supplementary transmission conditions at
the interior singular points. This kind of problems are called boundary-value-transmission problems.
For example, such type of problems arise in heat and mass transfer problems in diffraction problem,
in vibrating string problems when the string loaded with additional point masses and etc. (see, for
example, [11, 12, 17, 20]). In the recent years there is a growing interest in discontinuous Sturm-
Liouville problems with the supplementary transmission conditions at the interior singular points
(see, [1, 2, 3, 4, 9, 13, 15]). It is well-known that Sturm-Liouville problems with eigenparameter
dependent boundary conditions can be interpreted as spectral problems for operator polynomials.
The general spectral results about operator polynomials can be found in monographs by Gohberg
and Krein [7], Ladyzhenskaia [10] and Rodman [16]. Completeness and eigenfunction expansions
have been considered in [5, 8, 15].

In the present work we consider a Sturm-Liouville equation

τf := −f ′′(x) + q(x)f(x) = λf(x) (1.1)

on [a, c1 − 0)∪ (c1 +0, c2 − 0)∪ (c2 +0, b], together with eigendependent boundary conditions at the
end-points x = a and x = b, given by

τ1(λ)f := α1f(a) − α3f
′(a) − λα2f

′(a) = 0 (1.2)

τ2f := f ′(b) = 0 (1.3)

and with transmission conditions at two interior points x = c1 and x = c2, given by

τ3f := f(c1 + 0) − `1f(c1 − 0) = 0, (1.4)

τ4f := f ′(c1 + 0) − 1

`1
f ′(c1 − 0) − f(c1 − 0) = 0, (1.5)

τ5f := f(c2 + 0) − `2f(c2 − 0) = 0, (1.6)

τ6f := f ′(c2 + 0) − 1

`2
f ′(c2 − 0) − f(c2 − 0) = 0, (1.7)

where q(x) is a real valued function which is continuous in J = J1 ∪ J2 ∪ J3 , J1 = (a, c1) , J2 =
(c1, c2) and J3 = (c2, b) , and has finite limits q(a+0), q(c1± 0), q(c2± 0), q(b− 0), λ is a complex
spectral parameter, αi, `j (i = 1, 2, 3 and j = 1, 2) are real numbers and ρ = α1α2 > 0 and `j > 0.

2 Definitions and Facts Related to Hilbert Spaces

Let f = f(x) be any function defined on J , then by fi we shall denote the restriction of f(x)
on the interval Ji (i = 1, 2, 3). Below, by H0 we denote the direct sum of the Hilbert spaces
L2(J1)⊕ L2(J2)⊕ L2(J3) with the inner product

〈f, g〉H0 := 〈f1, g1〉L2(J1) + 〈f2, g2〉L2(J2) + 〈f3, g3〉L2(J3). 208



We can prove that the linear subspace

H1 =
{
f(x) ∈ H0

∣∣ fi(x) ∈ W 1
2 (Ji), τ3f = 0 , τ5f = 0

}
(2.1)

equipped with the inner-product

〈f, g〉H1 :=

∫ c1−0

a

(
df1
dx

dg1
dx

+ f1(x)g1(x)

)
dx+

∫ c2−0

c1+0

(
df2
dx

dg2
dx

+ f2(x)g2(x)

)
dx

+

∫ b

c2+0

(
df3
dx

dg3
dx

+ f3(x)g3(x)

)
dx (2.2)

form a Hilbert space, where by W 1
2 (Ji) we denote the Hilbert space of all square-integrable complex

valued functions f having generalized derivatives df
dx

∈ L2(Ji) with the inner product 〈f, g〉W 1
2 (Ji)

=∫
Ji

(
f(x)g(x) + df

dx
dg
dx

)
dx.

By virtue of the embedding theorems for the Sobolev spaces ([7]) the functions in H1 are con-
tinuous on J1 ∪ J2 ∪ J3, but their generalized derivatives can only be assumed to be elements of
H0.

Everywhere in below we shall assume that q(x) is bounded, positively defined and measurable
function on J = J1 ∪ J2 ∪ J3. Consequently, q(x) is integrable on J .

Now, in the Hilbert space H1 we can introduce a new inner-product by

〈f, g〉H1,q := 〈f, qg〉H0 + 〈 df
dx
,
dg

dx
〉H0 . (2.3)

Since q(x) is bounded, positively defined and measurable function, there exist constants m >
0 and M > 0 such that

m ‖f‖H1 < ‖f‖H1,q < M ‖u‖H1

for all f ∈ H1, so the inner-product 〈. , .〉H1,q is equivalent to 〈. , .〉H1 .
The concept of a weak solution is fundamental to this work. To define this concept let us introduce

to the consideration the Hilbert space Ξ, consisting of all vector-functions
(
χ(x) , χ1

)
∈ H1 ⊕ C,

equipped with the inner product

< Γ,Ψ >Ξ := < χ,ϕ >H1 +χ1 ϕ1, (2.4)

where Γ =
(
χ , χ1

)
and Ψ =

(
ϕ , ϕ1

)
∈ Ξ.

By multiplying the differential equation (1.1) by the complex conjugate of an arbitrary function
η ∈ H1 satisfying the transmission conditions τ3η = 0 and τ5η = 0 and integrate by parts over the
intervals Ji(i = 1, 2, 3), we get

〈f , η〉H1 + `1f(c1 − 0)η(c1 − 0) + `2f(c2 − 0)η(c2 − 0) +
ωη(a)

α2

= λ〈f , η〉H0 (2.5)

− f(a)

α2

− α3ω

α2ρ
= λ

ω

ρ
(2.6)

where ω := α2f
′(a).

Thus the BVTP’s (1.1)-(1.7) is transformed into the system of equalities (2.5)-(2.6) all terms of
which are defined for the f, η ∈ H1.

Now we are ready to define the concept of weak solution for the considered BVTP (1.1)-(1.7).209



Definition 2.1. The vector-function Γ = (f(x) , ω) ∈ Ξ is said to be a weak solution of the BVTP
(1.1)-(1.7) if the equations (2.5)-(2.6) are satisfied for any η ∈ H1.

We can show that the concept of weak solution is an extension of a classical solution. The
reduction of identities (2.5)-(2.6) to an operator equation is based on the following result.

Lemma 2.2. The following representations hold

`1f(c1 − 0)η(c1 − 0) + `2f(c2 − 0)η(c2 − 0) := 〈K1f , η〉H1,q (2.7)

〈f , η〉H0 := 〈K2f , η〉H1,q (2.8)

ωη(a)

α2

:= 〈K3ω , η〉H1,q (2.9)

where the operators K1 : H1 → H1, K2 : H1 → H1, K3 : C → H1, K
∗
3 : H1 → C are compact,

the operators K1 and K2 are self-adjoint and K2 is positive and K∗
3 denotes the operator conjugated

to K3.

Since η ∈ H1 is an arbitrary element, we have

f + K1f + K3ω = λK2f. (2.10)

Lemma 2.3. Let

L1 :=

(
I +K1 K3

K∗
3 − α3

α2 ρ
I

)
, L2 :=

(
K2 0
0 1

ρ
I

)
and L(λ) = L1 − λL2.

Then the weak eigenfunctions of the BVTP’s (1.1)-(1.7) satisfy the equation

L(λ)Φ = 0 (2.11)

Here I is the identity operator and Φ :=

(
f(x)
ω

)
∈ Ξ.

Theorem 2.4. L1 and L2 are self-adjoint operators in the Hilbert space Ξ.

Theorem 2.5. The operator L(−λ) = L1 + λL2 is self-adjoint in the Hilbert space Ξ for each
real λ.

Theorem 2.6. There is c > 0 such that for all λ0 > c the operator polynomial L(−λ0) is positive
definite.

Let us consider a new spectral parameter µ = λ0 + λ. Then the considered spectral problem
can be written in the following form

(
L(−λ0) − µL2

)
Φ = 0. (2.12)

210



3 The Rayleigh Principle associated with the BVTP (1.1)-

(1.7)

By using the Rayleigh Principle we have the following variational problem; find a non-trivial element
Φ ∈ Ξ such that the Rayleigh quotient

µ =
〈L1Φ , Φ〉Ξ + λ0〈L2Φ , Φ〉Ξ

〈L2Φ , Φ〉Ξ
(3.1)

yields the minimum value.
The Rayleigh quotient (3.1) also allows a lower bound estimation for eigenvalues to be found.

Indeed, using equality (2.10) we have

µ ≥ C1

∫
J
|f ′(x)|2dx+ C2(λ0)

∫
J
q(x)|f(x)|2dx+ λ0

∫
J
|f(x)|2dx+ C3(λ0)|ω|2∫

J
|f(x)|2dx+ 1

ρ
|ω|2 . (3.2)

Now by applying the inequality

C4

∫

J

|f(x)|2dx ≤
∫

J

q(x)|f(x)|2dx ≤ C5

∫

J

|f(x)|2dx

we have

µ ≥ min (C2(λ0)C4 + λ0 , C3(λ0)ρ) .

Consequently the lower bound estimation for eigenvalues of the BVTP (1.1)-(1.7) has the form

λk ≥ −λ0 + min (C2(λ0)C4 + λ0 , C3(λ0)ρ) .
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Abstract

Sturm-Liouville problems are boundary-value problems that naturally arise when solving certain
partial differential equation problems using the ”separation of variables” method. The ”Rayleigh
quotient” is the basis of an important approximation method that is used in solid mechanics as
well as in quantum mechanics. In the latter, it is used in the estimation of energy eigenvalues of
nonsolvable quantum systems, e.g., many-electron atoms and molecules. The simplest applications
lead to the various Fourier series, and less simple applications lead to generalizations of Fourier series.
Often in physical problems, the sign of the eigenvalue is quite important. The Rayleigh quotient
cannot be used to explicitly determine the eigenvalue since eigenfunction is unknown. However,
interesting and significant results can be obtained from the Rayleigh quotient without solving the
differential equation. Nonetheless, it can be quite useful in estimating the eigenvalue. For example,
the equation dh

dt
+ h = 0 is certain heat flow problems. Here, positive corresponds to exponential

decay in time d2h
dt2

+ λh = 0, while negative corresponds to exponential growth. In the vibration
problems only positive corresponds to ”usually” expected oscillations. Namely, any eigenvalue can
be related to its eigenfunction by the Rayleigh quotient. It is the purpose of this paper to extend
and generalize such important spectral properties as Rayleigh quotient, eigenfunction expansion,
Rayleigh-Ritz formula(minimization principle), Parseval’s equality and Carleman equality for Sturm-
Liouville problems with interior singularities.

Keywords : Sturm-Liouville Problems, Carleman Equalities, jump conditions.

1 Introduction

The solution of a partial differential equation which is appearing in many branches of natural science
usually regarded as a finite expansion of eigenfunctions of a suitable Sturm-Liouville problem. The
importance of Sturm-Liouville problems for spectral methods lies in this fact. The issue of expansion213



in generalized eigenfunctions is a classical one going back at least to Fourier. A relatively recent im-
pact is due to the study of wave propagation in random media [4, 11], where eigenfunction expansions
are an important input in the proof of localization. Eigenfunction expansions and the corresponding
Parseval’s equality problems for classical Sturm-Liouville problems have been investigated by many
authors (see [5, 12, 13] and references cited therein). In this paper we shall investigate one non-
classical eigenvalue problem which consists of a Sturm-Liouville equation,

− u′′ + q(x)u = λu, x ∈ [a, c) ∪ (c, b] (1.1)

together with transmission conditions at the interior point x = c

δ1u(+c) + δ2u(−c) = 0 (1.2)

γ1u
′(+c) + γ2u

′(−c) = 0 (1.3)

and the boundary conditions at the end points x = a and x = a

cosαu(a) + sinαu′(a) = 0, (1.4)

cos βu(b) + sin βu′(β) = 0 (1.5)

where a < c < b the potential q(x) is real-valued, continuous in each of interval [a, c) and (c, b]
and has finite limits q(∓c) ; δ1, δ2, γ1, γ2 are real numbers; α, β ∈ [0, π) δ21 + δ

2
2 6= 0, γ21 +γ

2
2 6= 0; λ is

a complex spectral parameter. Such problems often arise in varied assortment of transfer problems
appearing in physics and engineering. Also, some problems with transmission conditions arise in
thermal conduction problems for a thin laminated plate (i.e., a plate composed by materials with
different characteristics piled in the thickness, see [6]). Some spectral properties of problems with
transmission conditions are studied in [1, 2, 3, 7, 8, 9, 10].

In this paper by applying an our own approach we present a new expansion formula and modified
Parseval and Carleman equalities for the problem (1.1)-(1.5).

Assumption 1.1. Everywhere in below we will assume that δ1δ2 < 0 and γ1γ2 < 0

2 The Green’s Function

At first we shall define four one-sided solutions φ1(x, λ), φ2(x, λ), χ1(x, λ) and χ2(x, λ) of the equation

− u′′ + q(x)u = λu, x ∈ [a, c) ∪ (c, b] (2.1)

by our own procedure as follows. Let φ1(x, λ) and χ2(x, λ) are the solutions of this equation on the
intervals [a, c) and (c, b] , satisfying the conditions

u(−a) = sinα, u′(a) = − cosα

and
u(b) = sin β, u′(b) = − cos β

respectively. Now, we shall define the other solutions φ2(x, λ) and χ1(x, λ) of the equation (2.1) on
the intervals (c, b] and [a, c) satisfying the initial conditions

δ1φ2(c) + δ2φ1(c) = 0, (2.2)214



and
γ1φ

′
2(c) + γ′2φ1(c) = 0 (2.3)

respectively. We can prove that each of these solutions is an entire function of the parameter λ ∈ C
for each fixed x. and each of the Wronskians ωi(λ) := W (φi(x, λ), χi(x, λ)) is an entire function of
the parameter λ. The eigenvalues of the problem (1.1)-(1.4) coincide with the zeros of ωi(λ). Now
let λ ∈ C be not an eigenvalue. Then the Green’s function for our problem is the following function

G(x, ξ;λ) =





− δ1
δ2

φ1(x,λ)χ1(ξ,λ)
ω1(λ)

, a ≤ ξ ≤ x < c,

− δ1
δ2

φ1(ξ,λ)χ1(x,λ)
ω1(λ)

, a ≤ x ≤ ξ < c,

− δ1
δ2

φ2(ξ,λ)χ1(x,λ)
ω1(λ)

, a ≤ x < c, c < ξ ≤ b,

−γ2
γ1

φ2(x,λ)χ1(ξ,λ)
ω2(λ)

, c < x ≤ b, a ≤ ξ < c,

−γ2
γ1

φ2(x,λ)χ2(ξ,λ)
ω2(λ)

, c < ξ ≤ x ≤ b,

−γ2
γ1

φ2(ξ,λ)χ2(x,λ)
ω2(λ)

, c < x ≤ ξ ≤ b.

(2.4)

It is symmetric with respect to x and ξ, and real-valued for real λ. We can show that the function

u(x, λ) = −δ2
δ1

∫ c−

a

G(x, ξ;λ)f(ξ)dξ − γ1
γ2

∫ b

c+

G(x, ξ;λ)f(ξ)dξ (2.5)

satisfies the equation

u′′ + {λ− q(x)}u = f(x) (2.6)

Below, without loss of generality we assume that λ = 0 is not an eigenvalue. Let λ0, λ1, λ2, · · · , λn, · · ·
be the collection of all the eigenvalues of the problem (1.1)-(1.4), and let the corresponding eigen-
functions ϕ0, ϕ1, ϕ2, · · · , ϕn, · · · be normalized by

− δ2
δ1

∫ c−

a

ϕn(x)ϕm(x)dx+−γ1
γ2

∫ b

c+

ϕn(x)ϕm(x) = δnm (2.7)

where δnm = 1 for n 6= m and δnn = 0 for all n. We can prove that the following expansion formula
is hold for the Green’s function

G(x, ξ) = −
∞∑

n=0

(
1

λn
ϕn(x)ϕn(ξ)). (2.8)

Let f(x) be any function square-integrable in each of the intervals [a, c) and (c, b]. From (2.8) it
follows that

f(x) = −
∞∑

n=0

{δ2
δ1

∫ c−

a

f(x)ϕn(x)dx+
γ1
γ2

∫ b

c+

f(x)ϕn(x)dx}ϕn(x). (2.9)
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3 The modified Carleman equation for transmision prob-

lems

We can derive that the expansion of the resolvent is

y(x, λ) = −δ2
δ1

∫ c−

a

G(x, ξ;λ)f(ξ)dξ − γ1
γ2

∫ b

c+

G(x, ξ;λ)f(ξ)dξ =
∞∑

n=0

cn(f)ϕn(x)

λ− λn
.

where cn(f) is the Fourier coefficients, given by

cn(f) = −δ2
δ1

∫ c−

a

G(x, ξ;λ)f(ξ)dξ − γ1
γ2

∫ b

c+

G(x, ξ;λ)f(ξ)dξ

substituting into the right-hand side, we get

δ

∫ 0

−1

G(x, ξ;λ)f(ξ)dξ +
1

γ

∫ 1

0

G(x, ξ;λ)f(ξ)dξ

=
∞∑

n=0

ϕn(x)

λ− λn
{δ
∫ 0

−1

f(ξ)ϕn(ξ)dξ +
1

γ

∫ 1

0

f(ξ)ϕn(ξ)dξ}.

Taking into account that this equality is satisfied for an arbitrary f we find that

G(x, ξ; t) =
∞∑

n=0

ϕn(x)ϕn(ξ)

t− λn
.

Since the set of eigenfunctions ϕn(x) is orthonormal, in the sense of (2.7), putting ξ = x and
integrating with respect to x we obtain

δ2
δ1

∫ c−

a

G(x, x; t)dt+−γ1
γ2
G(x, x; t)dx =

∞∑

n=0

1

t− λn
(3.1)

Denote the number of eigenvalues λn less than λ by N(λ) (i.e. N(λ) =
∑

0≤λn≤λ

1) we get from (3.1)

the modified Carleman equation

δ

∫ 0

−1

G(x, x; t)dx+
1

γ

∫ 1

0

G(x, x; t)dx =

∞∫

0

dN(λ)

t− λ
.
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Abstract

Sturm-Liouville type problems involving additional transmission conditions at some interior sin-
gular points has become an important area of research in recent years because of the needs of modern
technology, engineering, physics and other branches of natural sciences. Many of the mathemati-
cal problems encountered in the study of transmission problem cannot be treated with the usual
techniques within the standard framework of the classical theory of boundary value problems. In
this study it is developed the operator-theoretical method to investigate a new type boundary value
problems consisting of two-interval Sturm-Liouville problem together with additional transmission
conditions at one interior point of interaction. Moreover, the eigenvalue parameter appear not only in
the differential equation but also in the transmission conditions. By suggesting an our own approach
we construct modified Hilbert spaces and a linear operator in it such a way that the considered
problem can be interpreted as a spectral problem for this operator. Finally, we shall investigate
some important properties of the resolvent operator.

Keywords : Sturm-Liouville problems, boundary and transmission conditions.

1 Introduction

The one-dimensional form of the advection-dispersion equation for a nonreactive dissolved solute in
a saturated, homogeneous, isotropic porous medium under steady, uniform flow is

D
∂2w

∂x2
=
∂w

∂t
+ ν

∂w

∂t
, 0 < x < `, t > 0

where w(x, t) is the concentration of the solute, ν is the average linear groundwater velocity, D is
the coefficient of hydrodynamic dispersion, and ` is the length of the aquifer. Using the Fourier’s
method of separation of variables the problem can be written in the classical Sturm-Liouville form

[p(x)u′]′ + λr(x)u = 0, u(x) = 0, u′(`) = 0, 0 < x < `. 218



This example make it clear that the Sturm-Liouville problems is of broad interest. Note that many-
important special equations which appear in physics such as airy equation, Bessel equation, wave
equation, heat equation, Schrödinger equation, Heun equation, advection-dispersion equation, etc.,
are associated with Sturm-Liouville type operators.

There is a well-developed theory for classical Sturm-Liouville problems. Details of the derivation
of the theory and of related background results can be found in the cited references. Although the
subject of Sturm-Liouville problems is over 180 years old this theory is an intensely active field of
research today. The main tool for solvability analysis of Sturm-Liouville problems is the concept
of Green’s function and corresponding resolvent-operator. It is well-known that the possibility of
a transition from the problems in mathematical physics to integral equations is based on the fun-
damental concept of the Green’s function and corresponding resolvent-operator. Therefore, Green’s
function method finds applications not only in standard physics but also at the forefront of current
and, most likely, future developments(see [2]). In terms of resolvent function, the various type non-
homogeneous initial and boundary-value problems with arbitrary data can be solved in a form that
shows clearly the dependence of the solution on the data. Determination of resolvent-operator is also
possible using Sturm-Liouville theory.

In this paper we shall consider a new type Sturm-Liouville problem consisting of two-interval
Sturm-Liouville equation

Ξ(u) := −u′′(x) + q(x)u(x) = λu(x), x ∈ Ω− ∪ Ω+ (1.1)

together with eigenparameter-depending boundary conditions of the form

Bα(u) := cosαu(a) + sinαu′(a) = 0, (1.2)

Bβ(u) := cos βu(b) + sin βu′(b) = 0, (1.3)

and eigenparameter-depending transmission conditions at one interaction point x = c of the form

t1(u) := cos γu(c+) + sin γu(c−) = 0, (1.4)

t2(u) :=
1∑

j=0

[u(j)(c+ 0)− (aj + λbj)u
(j)(c− 0)] = 0, (1.5)

where Ω− = [a, c), Ω+ = (c, b] the potential q(x) is real-valued function which continuous in each
of the intervals Ω− and Ω+, and has a finite limits q(c±) = lim

x→c±0
q(x), λ is a complex spectral

parameter, the coefficients aj, bj, (j = 0, 1) are real numbers. This Sturm-Liouville problem is a
non-classical eigenvalue problem since the eigenvalue parameter λ appears not only in the differen-
tial equation, but also in the transmission conditions. Boundary value problems with transmission
conditions arise in heat and mass transfer problems [6], in vibrating string problems when the string
loaded additionally with point masses [9], in quantum mechanics [4], in thermal conduction prob-
lems for a thin laminated plate [10] etc. For applications an boundary value transmission problem
to different areas, we refer the reader to the well-known monographs and some recent contribution
[1, 3, 5, 7, 8]. 219



2 Operator treatment in modified Hilbert space

In classical point of view, our problem can not be characterized self-adjoint operator in the classical
Hilbert spaces. For self-adjoint characterization of the considered problem (1.1) − (1.5) we shall
define a modified Hilbert space as follows.

Through the paper we shall assume that the conditions

b1 tan γ + θ > 0, b0 cot γ < 0,

holds where θ := a0b1 − a1b0. Define a new inner-product space H as direct sum space (L2(Ω
−) ⊕

L2(Ω
+))⊕ C which is identical with L2(a, b)⊕ C equipped with the modified inner-product

〈U, V 〉H := (b1 tan γ + θ)

c−∫

a

u(x)v(x)dx+ (−b0 cot γ)
b∫

c+

u(x)v(x)dx− u1v1 (2.1)

for U =
(
u(x), u1

)
, V =

(
v(x), v1

)
∈ L2(a, b)⊕ C. It is easy to see that the relation (2.1) really

define a new inner product in the direct sum space L2(a, b)⊕ C.
Lemma 2.1. H is an Hilbert space.

Proof. Let Un = (un(x), u1n), n = 1, 2, ..., be any Cauchy sequence in the inner-product space H.
Then by (2.1) the sequences (un(x)) and (u1n) will be a Cauchy sequences in the Hilbert spaces
L2(a, b) and C respectively and therefore they are convergent. Denote by u0(x) and (u10) the limits
of these sequences, respectively. Defining U0 = (u0(x), u10) we have that U0 ∈ H and Un → U0 in H,
which completes the proof.

Let us define the linear operator S : H → H with the domain

dom(S) :=

{
U = (u(x), u1) : u(x), u

′(x) ∈ ACloc(Ω
−)⊕ ACloc(Ω

+),

with a finite left and right hand limits u(c∓ 0) and u′(c∓ 0); Ξ(u) ∈ L2[a, b];

Bα(u) = 0,Bβ(u) = 0, t1(u) = 0, u1 = b0u(c− 0) + b1u
′(c− 0)

}

and action low

S
(
u(x), u1

)
=
(
Ξf,−(a0u(c− 0) + u′(c+ 0))− (a1u(c− 0) + u′(c+ 0))

)
.

Then the problem (1.1) − (1.5) can be written in the operator equation form as SU = λU, u ∈∈
dom(S) in the Hilbert space H.

Theorem 2.2. The linear operator S is symmetric in the Hilbert space H.

Proof. By applying the method of [5] it is not difficult to prove that the operator S is densely defined
in H, i.e. dom(S) = H. Further, taking in view the definition of S we obtain that

〈SU, V 〉H = 〈U,SV 〉H for all U, V ∈ dom(S).

The proof is complete.

Theorem 2.3. The linear operator S is self-adjoint in H. 220



3 The Green’s function and corresponding resolvent opera-

tor

Consider the equation

(λI −S)U = F (3.1)

for arbitrary F = (f(x), f1) ∈ H. This operator- equation is equivalent to the following nonhomo-
geneous BVTP:

(λ−S)u(x) = f(x), x ∈ Ω− ∪ Ω+ (3.2)

Bα(u) = 0, Bβ(u) = 0, t1(u) = 0, t2(u) = f1. (3.3)

We shall search the resolvent function of this BVTP in the form

u(x, µ) =

{
~11(x, λ)υ−(x, λ) + ~12(x, λ)ω−(x, λ) for x ∈ Ω−

~21(x, λ)υ+(x, λ) + ~22(x, λ)ω+(x, λ) for x ∈ Ω+ (3.4)

where the functions ~11(x, λ) and ~12(x, λ) are the solutions of the system of equations
{

∂~11(x,µ)
∂x

υ−(x, λ) + ∂~12(x,λ)
∂x

ω−(x, λ) = 0
∂~11(x,λ)

∂x
∂υ−(x,λ)

∂x
+ ∂~12(x,λ)

∂x
∂ω−(x,λ)

∂x
= f(x)

(3.5)

and the functions ~21(x, λ), ~22(x, λ) are the solutions of the system of equations
{

∂~21(x,λ)
∂x

υ+(x, λ) + ∂d~22(x,λ)
∂x

ω+(x, λ) = 0
∂~21(x,λ)

∂x
∂υ+(x,λ)

∂x
+ ∂~22(x,λ)

∂x
∂ω+(x,λ)

∂x
= f(x)

(3.6)

for x ∈ Ω− and x ∈ Ω+ respectively. Here (υ±, ω±) is the fundamental solution of the equation
(λ− t)u = 0 on the interval Ω±. We can find that the Green’s function has the form

G(x, s;λ) =





υ−(x,λ)ω−(s,λ)
∆−(λ)

, if x, s ∈ Ω−, s ≥ x

ω−(x,λ)υ−(s,λ)
∆−(λ)

, if x, s ∈ Ω−, s < x

υ−(x,λ)ω+(s,λ)
∆−(λ)

, if x ∈ Ω−, s ∈ Ω+

ω−(x,λ)υ+(s,λ)
∆+(λ)

, if x ∈ Ω+, s ∈ Ω−

ω+(x,λ)υ+(s,λ)
∆+(λ)

, if x ∈ Ω+, s ≤ x

υ+(x,λ)ω+(s,λ)
∆+(λ)

, if x ∈ Ω+, s > x

(3.7)

where Ω± = W (υ±, ω±) is the wronskian. We now shall define the Green’s vector-function as

G̃x,λ :=
(
G(x, .;λ), T̃c(G(x, .;λ))

)
(3.8)221



where T̃c := b0u(c − 0) + b1u
′(c − 0) Consequently for the solution U(F, λ) of the nonhomogeneous

operator equation (3.2) we obtain the following formula

U(F, λ) =
(
〈G̃x,λ, F 〉

)
(3.9)

Using this, the resolvent function (3.4) can be written in the form

u(x, λ) = 〈G̃x,λ, F 〉H (3.10)

where F = (f(x), f 1) ∈ H. Consequently we have the following

Theorem 3.1. For the resolvent operator R(λ,S) = (λI −S)−1 the formula

R(λ,S)F =
(
〈G̃x,λ, F 〉, T̃c(〈G̃x,λ, F 〉)

)
(3.11)

is hold, where F = (f(x), f 1) ∈ H.

Theorem 3.2. The estimation

‖R(λ,S)F‖H ≤| Imλ |−1 ‖F‖H, F ∈ H

holds for all regular value λ, such that Imλ 6= 0.

Proof. Let F = (f(x), f1) ∈ H. Denote U = R(λ,S)F . Since SU = λU − F, taking into account
that the operator S is symmetric we have

λ〈U,U〉H − 〈F,U〉H = 〈SU,U〉H = 〈U,SU〉H = λ〈U,U〉H − 〈F,U〉H.

Using well-known Cauchy-Schwartz inequality we conclude that

| Imλ | ‖U‖2H = |Im〈F,U〉|H ≤ ‖F‖H‖U‖H.

Consequently,
‖R(λ,S)F‖H ≤| Imλ |−1 ‖F‖H.

The proof is complete.
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Abstract 

Let 𝑅 be a commutative Γ-ring and 𝑀 an 𝑅Γ-module which is unitary. In this paper, we aim to 

introduce the concepts of almost prime and almost primary 𝑅Γ-submodules of 𝑅Γ-module 𝑀. We research 

some basic properties of almost prime and almost primary 𝑅Γ-submodules and obtain some 

characterizations of these concepts and the relations among these concepts. 
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1. Introduction  

Let 𝑅 and Γ be two additive abelian groups. We say that 𝑅 is a Γ-ring if there exists a mapping ∙: 𝑅 × Γ ×

𝑅 ⟶ 𝑅, written (𝑟, 𝛾 , 𝑠) ↦ 𝑟𝛾𝑠 for each 𝑟, 𝑠 ∈ 𝑅, 𝛾 ∈ Γ, the following hold for each 𝑟, 𝑠, 𝑢 ∈ 𝑅; 𝛼, 𝛾 ∈ Γ: 

i. 𝑟𝛾(𝑠 + 𝑢) = 𝑟𝛾𝑠 + 𝑟𝛾𝑢; 

ii. (𝑟 + 𝑠)𝛾𝑢 = 𝑟𝛾𝑢 + 𝑠𝛾𝑢; 

iii. 𝑟(𝛼 + 𝛾)𝑠 = 𝑟𝛼𝑠 + 𝑟𝛾𝑠; 

iv. (𝑟𝛼𝑠)𝛾𝑢 = 𝑟𝛼(𝑠𝛾𝑢). 

Let 𝑅 be a Γ-ring. An additive abelian group 𝑀 is called left 𝑅Γ-module (similarly one can defined right 

module) if with the map ∙: 𝑅 × Γ × 𝑀 ⟶ 𝑀, written (𝑟, 𝛾 , 𝑚) ↦ 𝑟𝛾𝑚 for each 𝑟 ∈ 𝑅, 𝛾 ∈ Γ, 𝑚 ∈ 𝑀, it hold 

the followings for every 𝑟, 𝑟1, 𝑟2 ∈ 𝑅; 𝛼, 𝛾 ∈ Γ; 𝑚, 𝑚1, 𝑚2 ∈ 𝑀: 

i. 𝑟𝛾(𝑚1 + 𝑚2) = 𝑟𝛾𝑚1 + 𝑟𝛾𝑚2; 

ii. (𝑟1 + 𝑟2)𝛾𝑚 = 𝑟1𝛾𝑚 + 𝑟2𝛾𝑚; 

iii. 𝑟(𝛼 + 𝛾)𝑚 = 𝑟𝛼𝑚 + 𝑟𝛾𝑚; 

iv. (𝑟1𝛼𝑟2)𝛾𝑚 = 𝑟1𝛼(𝑟2𝛾𝑚).  

𝑀 is called 𝑅Γ-module if it is both left 𝑅Γ-module and right 𝑅Γ-module.  

A left 𝑅Γ-module is unitary if there exist elements, say 1𝑅 in 𝑅 and 𝛾0 in Γ such that 1𝑅𝛾0𝑚 = 𝑚 for every 

𝑚 ∈ 𝑀 (for more information, see [1]). We give the following examples to understand these concepts. If 𝑅 

is a Γ-ring, then every abelian group 𝑀 can be made into an 𝑅Γ-module with trivial module structure by 
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defining 𝑟𝛾𝑚 =  0 for each 𝑟 ∈ 𝑅, 𝛾 ∈ Γ, 𝑚 ∈ 𝑀. For other example: Every Γ-ring 𝑅 is an 𝑅Γ-module 

with the mapping ∙: 𝑅 × Γ × 𝑅 ⟶ 𝑅, written (𝑟, 𝛾, 𝑠) ↦ 𝑟𝛾𝑠 for each 𝑟, 𝑠 ∈ 𝑅;  𝛾 ∈ Γ.  

A non empty subset 𝑁 of 𝑀 is called a left (right) 𝑅Γ-submodule if 𝑁 is a subgroup of 𝑀 and 𝑅𝛤𝑁 ⊆

𝑁(𝑁𝛤𝑅 ⊆ 𝑁) where {𝑟𝛾𝑛 ∶ 𝑟 ∈ 𝑅, 𝛾 ∈ Γ, 𝑛 ∈ 𝑁}({𝑛𝛾𝑟 ∶ 𝑟 ∈ 𝑅, 𝛾 ∈ Γ, 𝑛 ∈ 𝑁}). 𝑁 is both a right 𝑅Γ-

submodule and a left 𝑅Γ-submodule, then we say that 𝑁 is an 𝑅Γ-submodule of 𝑀. We have two statements 

with this definition: i). 𝑛1 − 𝑛2 ∈ 𝑁 for each 𝑛1, 𝑛2 ∈ 𝑁 and ii). 𝑟 𝛾𝑛 ∈ 𝑁 for each 𝑟 ∈ 𝑅, 𝛾 ∈ Γ, 𝑛 ∈ 𝑁. It 

is defined (𝑁 ∶  𝑀) = {𝑟 ∈ 𝑅 ∶ 𝑟𝛾𝑚 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝛾 ∈ Γ, 𝑚 ∈ 𝑀}. An 𝑅Γ-submodule is said to be a prime 

(primary) if 𝐾𝛤𝐼 ⊆ 𝑁 for some 𝑅Γ-submodule 𝐾 of 𝑀 and 𝛤-ideal 𝐼 of 𝑅 implies 𝐾 ⊆ 𝑁 or 𝐼 ⊆ (𝑁 ∶  𝑀) 

(𝐾 ⊆ 𝑁 or 𝐼 ⊆ √(𝑁 ∶  𝑀) ). It can be seen that √(𝑁 ∶  𝑀) is the intersection of the minimal primes of 

(𝑁: 𝑀) (See Theorem 7 in [6]). In this paper, we give basic results about prime and primary 𝑅Γ-submodules. 

In Theorem 2, we have that a prime 𝑅Γ-submodule is an almost prime 𝑅Γ-submodule. Then in Example 1, 

we show that the reverse of Theorem 2 is not always true. In Theorem 3, we give that if an 𝑅Γ-submodule 

N of M is an almost prime, then 𝐾/𝑁 is an almost prime 𝑅Γ-submodule of 𝑀/𝑁 where 𝑁 ⊆ 𝐾. Then from 

Proposition 1, we show that an almost prime 𝑅Γ-submodule 𝑁 of 𝑀 is almost primary if and only if 

(𝑁 ∶  𝑀) = √(𝑁 ∶  𝑀). Additionally, we obtain similar results to almost prime 𝑅Γ-submodule for almost 

primary 𝑅Γ-submodule of 𝑀. 

3. Almost Prime 𝑹𝚪-submodules 

Throughout this paper, we assume that 𝑅 is a commutative 𝑅Γ-ring and 𝑀 is a unitary 𝑅Γ-module. 

Definition 1. Let 𝑀 be an 𝑅Γ-module and 𝑁 an 𝑅Γ-submodule of 𝑀. 𝑁 is called almost prime 𝑅Γ-submodule 

if 𝐾𝛤𝐼 ⊆ 𝑁 − 𝑁𝛤(𝑁: 𝑀) for some 𝑅Γ-submodule 𝐾 of 𝑀 and Γ-ideal 𝐼 of 𝑅 implies 𝐾 ⊆ 𝑁 or 𝐼 ⊆

(𝑁 ∶  𝑀).  

Theorem 1. Let 𝑀 be an 𝑅Γ-module and 𝑁 an 𝑅Γ-submodule of 𝑀. 𝑁 is an almost prime 𝑅Γ-submodule if 

and only if (𝑚)𝛤(𝑟) ⊆ 𝑁 − 𝑁𝛤(𝑁: 𝑀) for some 𝑟 ∈ 𝑅, 𝑚 ∈ 𝑀 implies 𝑚 ∈ 𝑁 or 𝑟 ∈ (𝑁 ∶  𝑀).  

Proof. (⇒) : It is clear. 

(⇐) : Let 𝐾𝛤𝐼 ⊆ 𝑁 − 𝑁𝛤(𝑁: 𝑀) and 𝐾 ⊈ 𝑁 for some 𝑅Γ-submodule 𝐾 of 𝑀. Then there exists 𝑘 ∈ 𝐾 − 𝑁 

such that (𝑘)𝛤𝐼 ⊆ 𝑁 − 𝑁𝛤(𝑁: 𝑀). That is, (𝑘)𝛤(𝑟) ⊆ 𝑁 − 𝑁𝛤(𝑁: 𝑀) for every 𝑟 ∈ 𝑅. Then 𝑟 ∈ (𝑁 ∶  𝑀), 

that is, 𝐼 ⊆ (𝑁 ∶  𝑀) by our assumption. 
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Theorem 2. Every prime 𝑅Γ-submodule of 𝑀 is an almost prime 𝑅Γ-submodule. 

Proof. It is obvious.  

But the inverse of the claim in the previous theorem is not true. In the following, we give an example for 

this situation. 

Example 1. Let 𝑅 = ℤ, 𝛤 = ℤ2 and 𝛤 = ℤ54. Note that 27ℤ = (𝑁 ∶  𝑀). Then the 𝑅Γ-submodule 𝑁 =

(27̅̅̅̅ ) of 𝑀 is an almost prime submodule since 𝑁𝛤(𝑁: 𝑀) = 𝑁. But it is not a prime since (3̅)𝛤(9) ⊆ 𝑁 

but 3̅ ∉ 𝑁 and 9 ∉ (𝑁 ∶  𝑀). 

Let M be an 𝑅Γ-module and 𝑁 an 𝑅Γ-submodule of 𝑀. Note that 𝑀/𝑁 is an 𝑅Γ-module with the map∙

: 𝑅 × Γ × 𝑀/𝑁 ⟶ 𝑀/𝑁, is defined (𝑟, 𝛾 , 𝑚 + 𝑁) ↦ 𝑟𝛾𝑚 for each 𝑟 ∈ 𝑅, 𝛾 ∈ Γ, 𝑚 + 𝑁 ∈ 𝑀/𝑁. Recall 

that 𝐾/𝑁 is an 𝑅Γ-submodule of 𝑀/𝑁 where K is an 𝑅Γ-submodule of 𝑀, containing 𝑁 [2]. 

Theorem 3. Let 𝑀 be an 𝑅Γ-module, 𝐾 and 𝑁 𝑅Γ-submodules of 𝑀 with 𝑁 ⊆ 𝐾. If 𝑁 is an almost prime 

𝑅Γ-submodule of 𝑀, then 𝐾/𝑁 is an almost prime 𝑅Γ-submodule of 𝑀/𝑁. 

Proof. Let 𝐿/𝑁ΓI ⊆ 𝐾/𝑁 − 𝐾/𝑁Γ(𝐾/𝑁: M/N)  and 𝐿/𝑁 ⊈ 𝐾/𝑁 for some 𝑅Γ-submodule 𝐿 of 𝑀 and 𝑅Γ-

ideal 𝐼 of 𝑅. Then we have 𝑚 + 𝑁 ∈ 𝐿/𝑁 − 𝐾/𝑁, that is, 𝑚 ∈ 𝐿 − 𝑁. Note that (𝑚)𝛤𝐼 ⊆ 𝐾 − 𝐾𝛤(𝐾: 𝑀) 

and (𝑚) ⊈ 𝐾. By assumption, we get 𝐼 ⊆ (𝐾 ∶  𝑀), and so 𝐼 ⊆ (𝐾/𝑁 ∶  𝑀/𝑁). 

Corollary 1. If 𝑁 is an almost prime 𝑅Γ-submodule of 𝑀, then 𝑁/𝑁Γ(𝑁 ∶  𝑀) is an almost prime 𝑅Γ-

submodule of 𝑀/𝑁Γ(𝑁 ∶  𝑀). 

Let 𝑁, 𝑁1 and 𝑁2 be 𝑅Γ-submodules of 𝑀. Note that 𝑁 ⊆ 𝑁1 ∪ 𝑁2 implies 𝑁 ⊆ 𝑁1 or 𝑁 ⊆ 𝑁2. 

Theorem 4. Let 𝑀 be an 𝑅Γ-module and 𝑁 an 𝑅Γ-submodule of 𝑀. Then the followings are equivalent: 

1) 𝑁 is an almost prime 𝑅Γ-submodule. 

2) (𝑁 ∶  𝐼)  =  𝑁 ∪ (𝑁Γ(𝑁 ∶  𝑀) ∶  𝐼) for some Γ-ideals 𝐼 with 𝐼 ∩ (𝑁 ∶  𝑀)  = ∅. 

3)  (𝑁 ∶  𝐼)  =  𝑁 or (𝑁: 𝐼) = (𝑁Γ(𝑁 ∶  𝑀) ∶  𝐼)  for some Γ -ideals 𝐼 with 𝐼 ∩  (𝑁 ∶  𝑀)  = ∅. 

Proof. (1 ⇒2): The claim 𝑁 ∪ (𝑁Γ(𝑁 ∶  𝑀) ∶  𝐼)  ⊆ (𝑁 ∶  𝐼) always is satisfied. We show that the inverse 

inclusion is true. Let 𝑚 ∈ (𝑁 ∶  𝐼) for some 𝑚 ∈ 𝑀. Then we have (𝑚)𝛤𝐼 ⊆ 𝑁. If (𝑚)𝛤𝐼 ⊆ 𝑁Γ(𝑁 ∶  𝑀), 
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then 𝑚 ∈ (𝑁Γ(𝑁 ∶  𝑀): 𝐼). Let (𝑚)𝛤𝐼 ⊈ 𝑁Γ(𝑁 ∶  𝑀). Thus we obtain (𝑚) ⊆ 𝑁, that is, 𝑚 ∈ 𝑁 by our 

assumptions. 

(2 ⇒3): The inclusions 𝑁 ⊆ (𝑁 ∶  𝐼) and (𝑁Γ(𝑁 ∶  𝑀): 𝐼) ⊆ (𝑁 ∶  𝐼) always hold. The inverse inclusions 

are true from the above explanation. 

(3 ⇒1): Let 𝐾𝛤𝐼 ⊆ 𝑁 − 𝑁𝛤(𝑁: 𝑀) and 𝐼 ⊈ (𝑁: 𝑀) for some 𝑅Γ-submodule 𝐾 of 𝑀 and Γ-ideal 𝐼 of 𝑅. 

Then 𝐾𝛤𝐼 ⊆ 𝑁 and 𝐾𝛤𝐼 ⊈ 𝑁𝛤(𝑁: 𝑀). Thus (𝑁 ∶  𝐼) ≠ (𝑁Γ(𝑁 ∶  𝑀) ∶  𝐼) since 𝐾𝛤𝐼 ⊈ 𝑁𝛤(𝑁: 𝑀). Then it 

must be (𝑁 ∶  𝐼)  =  𝑁 and so we obtain 𝐾 ⊆ (𝑁 ∶ 𝐼)  =  𝑁. 

4. Almost Primary 𝑹𝚪-submodules 

Definition 2. Let 𝑀 be an 𝑅Γ-module and 𝑁 an 𝑅Γ-submodule of 𝑀. 𝑁 is called almost primary 𝑅Γ-

submodule if 𝐾𝛤𝐼 ⊆ 𝑁 − 𝑁𝛤(𝑁: 𝑀) for some 𝑅Γ-submodule 𝐾 of 𝑀 and Γ-ideal 𝐼 of 𝑅 implies 𝐾 ⊆ 𝑁 or 

𝐼 ⊆ √(𝑁 ∶  𝑀).  

The following sequence is clear: 

Prime 𝑅Γ-submodule ⇒Almost Prime 𝑅Γ-submodule ⇒Almost Primary 𝑅Γ-submodule. 

But the reverse sequence is always not true: 

Example 2. Consider 𝑅 = ℤ, 𝛤 = ℤ and 𝑀 = ℤ. Then note that 𝑁 =  (8) is an almost primary 𝑅Γ-

submodule, however (2)𝛤(2) ⊆ 𝑁 − 𝑁𝛤(𝑁: 𝑀), (2) ⊈  𝑁 and (2) ⊈ (𝑁 ∶  𝑀), that is, 𝑁 is not an 

almost primary 𝑅Γ-submodule.  

We have the following proposition. 

Proposition 1. Let 𝑀 be an 𝑅Γ-module. If an 𝑅Γ-submodule 𝑁 of 𝑀 is almost prime, then it is almost 

primary. But the converse is true if (𝑁 ∶  𝑀) = √(𝑁: 𝑀). 

Proof. It is clear by the definitions of almost prime and almost primary 𝑅Γ-submodule. 

Theorem 5. Let 𝑀 be an 𝑅Γ-module and 𝑁 an 𝑅Γ-submodule of 𝑀. 𝑁 is an almost primary 𝑅Γ-submodule 

if and only if (𝑚)𝛤(𝑟) ⊆ 𝑁 − 𝑁𝛤(𝑁: 𝑀) for some 𝑟 ∈ 𝑅, 𝑚 ∈ 𝑀 implies 𝑚 ∈ 𝑁 or 𝑟 ∈ √(𝑁 ∶  𝑀).  

Proof. (⇒) : It is clear. 
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(⇐) : Let 𝐾𝛤𝐼 ⊆ 𝑁 − 𝑁𝛤(𝑁: 𝑀) and 𝐾 ⊈ 𝑁 for some 𝑅Γ-submodule 𝐾 of 𝑀. Then there exists 𝑘 ∈ 𝐾 − 𝑁 

such that (𝑘)𝛤𝐼 ⊆ 𝑁 − 𝑁𝛤(𝑁: 𝑀). That is, (𝑘)𝛤(𝑟) ⊆ 𝑁 − 𝑁𝛤(𝑁: 𝑀) for every 𝑟 ∈ 𝑅. Then 𝑟 ∈

√(𝑁 ∶  𝑀), that is, 𝐼 ⊆ √(𝑁 ∶  𝑀) by our assumption. 

Theorem 6. Let 𝑀 be an 𝑅Γ-module, 𝐾 and 𝑁 𝑅Γ-submodules of 𝑀 with 𝑁 ⊆ 𝐾. If 𝑁 is an almost primary 

𝑅Γ-submodule of 𝑀, then 𝐾/𝑁 is an almost primary 𝑅Γ-submodule of 𝑀/𝑁. 

Proof. Let 𝐿/𝑁ΓI ⊆ 𝐾/𝑁 − 𝐾/𝑁Γ(𝐾/𝑁: M/N)  and 𝐿/𝑁 ⊈ 𝐾/𝑁 for some 𝑅Γ-submodule 𝐿 of 𝑀 and 𝑅Γ-

ideal 𝐼 of 𝑅. Then we have 𝑚 + 𝑁 ∈ 𝐿/𝑁 − 𝐾/𝑁, that is, 𝑚 ∈ 𝐿 − 𝑁. Note that (𝑚)𝛤𝐼 ⊆ 𝐾 − 𝐾𝛤(𝐾: 𝑀) 

and (𝑚) ⊈ 𝐾. By assumption, we get 𝐼 ⊆ √(𝐾 ∶  𝑀), and so 𝐼 ⊆ √(𝐾/𝑁 ∶  𝑀/𝑁). 

Corollary 2. If 𝑁 is an almost primary 𝑅Γ-submodule of 𝑀, then 𝑁/𝑁Γ(𝑁 ∶  𝑀) is an almost primary 𝑅Γ-

submodule of 𝑀/𝑁Γ(𝑁 ∶  𝑀). 

Theorem 7. Let 𝑀 be an 𝑅Γ-module and 𝑁 an 𝑅Γ-submodule of 𝑀. Then the followings are equivalent: 

1) 𝑁 is an almost prime 𝑅Γ-submodule. 

2) (𝑁 ∶  𝐼)  =  𝑁 ∪ (𝑁Γ(𝑁 ∶  𝑀) ∶  𝐼) for some Γ-ideals 𝐼 with 𝐼 ∩ √(𝑁 ∶  𝑀)  = ∅. 

3)  (𝑁 ∶  𝐼)  =  𝑁 or (𝑁: 𝐼) = (𝑁Γ(𝑁 ∶  𝑀) ∶  𝐼)  for some Γ -ideals 𝐼 with 𝐼 ∩  √(𝐾 ∶  𝑀)  = ∅. 

Proof. It is seen easily to be hold in a similar way to the proof of Theorem 4. 

4. Conclusion 

As the brief of the study, we introduce the concepts of almost prime 𝑅Γ-submodules and almost primary 

𝑅Γ-submodules. 
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Abstract

A great deal of interest has been focused on the applications of the differential transform method
(DTM) to solve many problems appearing in physics and engineering. For example, DTM has been
used to solve differential-difference equations, delay differential equations, differential algebraic equa-
tions, integro-differential systems and etc. A numerical method based on the differential transform
method is introduced in this work for the approximate solution of one third-order boundary-value-
transmission problem. Namely, we investigate the differential equation,

y′′′(x) + y(x) = 0, x ∈ [0,
1

2
) ∪ (

1

2
, 1]

subject to boundary conditions at the end-points x = 0, 1 given by

y(0) = 0, y′(0) = 1, y(1) = 0

and additional transmission conditions at the interior singular point x = 1
2
, given by

y(
1

2
− 0) = y(

1

2
+ 0), y′(

1

2
− 0) = y′(

1

2
+ 0), y′′(

1

2
− 0) = ky′′(

1

2
+ 0)

The main objective of this study is to present the usage of DTM to investigation of discontinuous
problems involving an additional transmission conditions. First, we will find solution of the problem
in the left interval x ∈ (0, 1

2
] . Then, we will investigate solution of the problem in the right interval

(1
2
, 1] . Finaly, we find the approximate solution of the main problem on whole interval.

Keywords : Differential transform method, transmission conditions, approximation solution.
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1 Introduction

The method of the differential transform was first proposed by Zhou [1]. Zhou’s aim was to solve
initial value problems for some linear and non-linear differential equations appearing in electric circuit
analysis.

Initial and boundary value problems for two order ordinary differential equations occur frequently
in physics, engineering and different areas of natural science. For instance, such type of problems
occur in quantum mechanics, fluid mechanics, optimal control, chemical reactor theory, aerodynam-
ics, geophysics, reaction-diffusion process, and other related fields of applied sciences. Also, studies
showed that higher order boundary- value problems arise in the areas of fluid dynamics, hydrodynam-
ics and hydromagnetic stability and other applied sciences. Note that, fifth-order boundary-value
problems arise in viscoelastic fluid [2], sixth-order boundary value problems occur in astrophysics [5],
seventh-order boundary value problems arise in modeling induction motors [4] and eight-order bound-
ary value problem occur in hydrodynamic and hydromagnetic stability [3]. Recently a great deal of
interest has been focused on the applications of the Differential transform method (DTM) to solve
various type of boundary-value problems which appears in physics and engineering. Moreover, DTM
has been used to solve differential-difference equation, delay differential equations, integro-differential
systems, differential algebraic equation.

A numerical method based on the DTM is introduced in this work for the approximate solution of
the third-order boundary-value problems under additional transmission conditions at some interior
singular points.

2 Analysis of Differential Transform Method

Recall that the differential transformation of the k th derivative of function y(x) is defined as k -th
term of the Taylor’s series given by

D(y, k) =
1

k!
[
dky(x)

dxk
]x=x0 (2.1)

Obviously the corresponding inverse transformation of D(Y, k) is defined by

y(x) =
∞∑

k=0

D(y, k)(x− x0)
k. (2.2)

Naturally in real applications, the approximate value of the function y(x) is expressed by a finite
series given by

y(x) ≈
n∑

k=0

D(y, k)(x− x0)
k. (2.3)

It is ease to have the following properties of the DTM.

Theorem 2.1. D(f ± g, k) = D(f, k)±D(g, k) .

Theorem 2.2. D(cf, k) = cD(f, k).

Theorem 2.3. D(d
ng(x)
dxn , k) = (k+n)!

k!
D(f, k).
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Theorem 2.4. D(f(x)g(x), k) =
∑k

n=0D(f, k)D(g, k − n).

Theorem 2.5. D(xn, k) = δ(k − n) where

δ(m) =

{
n, for m = 0
0, for m 6= 0.

3 Solution of the problem by using DTM

We shall consider the third-order differential equation,

y′′′(x) + y(x) = 0, x ∈ [0,
1

2
) ∪ (

1

2
, 1] (3.1)

subject to boundary conditions,

y(0) = 0, y′(0) = 1, y(1) = 0 (3.2)

and additionally transmission conditions at the interior singular point x = 1
2
, given by

y(
1

2
− 0) = y(

1

2
+ 0), y′(

1

2
− 0) = y′(

1

2
+ 0), y′′(

1

2
− 0) = ky′′(

1

2
+ 0) (3.3)

First, let’s get the solution for the problem in the left interval x ∈ [0, 1
2
). If differential transform

method is applied to the differential equation,

D−(y, k + 3) =
−D−(y, k)

(k + 3)(k + 2)(k + 1)
(3.4)

is obtained. Then, using the representation y−(x) =
∑n

k=0(x− x0)
kD−(y, k)|x=x0 , we get

y−(x) =
n∑

k=0

xkD−(y, k)|x=0

= D−(y, 0) + xD−(y, 1) + x2D−(y, 2) + ...+ xnD−(y, n) (3.5)

From y(1) = 0, the following transformed initial condition at x0 = 0 can be obtained as

D−(y, 0) = 0 (3.6)

Taking in view

y′−(x) = D−(y, 1) + 2xD−(y, 2) + ...+ nxn−1D−(y, n) (3.7)

and y′(0) = 0 we have
D−(y, 1) = 1. (3.8)

Let us introduce to the consideration a parameter c by

D−(y, 2) = c (3.9)
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Following the recursive procedure, we find that

D−(y, 3) = 0

D−(y, 4) =
−1

4!

D−(y, 5) =
−2c

5!
.

.

.

Let’s choose n = 5. Then we get the following representations

y−(x) = x+ x2c− x4

4!
− x52c

5!
, y′−(x) = 1 + 2xc− x3

3!
− x42c

4!
, y′′−(x) = 2c− x2

2!
− x32c

3!

Secondly, let’s find the approximate solution of the considered problem in the right interval (1
2
, 1].

If differential transform method is applied to the differential equation, we have

D+(y, k + 3) =
−D+(y, k)

(k + 3)(k + 2)(k + 1)
(3.10)

Using

y+(x) = D+(y, 0) + (x− 1)D+(y, 1) + (x− 1)2D+(y, 2) + ...+ (x− 1)nD+(y, n) (3.11)

and following the similar recursive procedure, we find

y+(x) = a(x− 1) + b(x− 1)2 − a

4!
(x− 1)3 − 2b

5!
(x− 1)5 (3.12)

y′+(x) = a+ 2b(x− 1)− 3a

4!
(x− 1)2 − 2b

4!
(x− 1)4 (3.13)

y′′+(x) = 2b− 6a

4!
(x− 1)− 2b

3!
(x− 1)3 (3.14)

If k = 5 are selected, then we find a = −0.491316, b = −0.220106, c = −1.24034. Finally, we can
obtain the approximate solution which can be written as

y(x) =





x+ (−1.24034)x2 − 1
4!
x4 + 2.48068

5!
x5 + ..., x ∈ [0, 1

2
)

(−0.491316)(x− 1)− (0.220106)(x− 1)2 + 0.491316
4!

(x− 1)3 + ..., x ∈ (1
2
, 1]

Conclusion

In this study, we found the approximate solution of one third-order boundary-value-transmission
problem by using modified DTM.
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Abstract

The Adomian decomposition method has been used widely in solving ordinary and partial dif-
ferential equations, Sturm-Liouville problems, physical problems and stochastic problems. We will
adapt the Adomian decomposition method to nonclassical boundary value problems the main feature
of which is the nature of the equations and boundary conditions imposed. Namely, the boundary
conditions contains not only end points of the considered interval, but also an interior point of sin-
gularity at which given additional so-called transmission conditions, so our problem is nonclassical
once. Based on decomposition method and our approaches, a new analytical treatment is introduced
for such type transmission problems. In this study, we examine the differential equation,

y′′(t)− 2y′(t) + 5y(t) = 0, t ∈ [0,
1

2
) ∪ (

1

2
, 1]

together with initial conditions,

y(0) = −1, y′(0) = 7

and additional transmission conditions at the point of singularity t = 1
2
, given by

y(
1

2
− 0) = k1y(

1

2
+ 0), y′(

1

2
− 0) = k2y

′(
1

2
+ 0)

Particularly, we shall find the Adomian polynomials for left-hand and right-hand solution of this
problem. Afterwards, we will compare the approximate solution with the exact solution of the
considered problem.

Keywords : Adomian Decomposition Method, transmission conditions, approximation solution.
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1 Introduction

In the 1980t’s, George Adomian (1923−1996) introduced a new method for solving linear or nonlinear
differential and functional equations. His technique is known as the Adomian decomposition method
(ADM), [1]- [3]. This method is based on the representation of a solution as series of functions,
each term of which is obtained from a so-called Adomian polynomial generated by a power series
expansion of an analytic function.

In this study, we consider a differential equation together with initial conditions and two supple-
mentary transmission conditions at the point of discontinuity. We will adapt the Adomian decompo-
sition method for solving initial value transmission problems. Comparison with the exact solutions
and graphical illustration will also be presented.

2 Analysis of Adomian Decomposition Method

Let us describe the algoritm of ADM as it applies to the nonlinear differential equations of the form

My +Ny = g, (2.1)

where the linear differential expression term is composed into M = L + R, where L is the higher
derivative differential operator which is easily invertible and the remainder of the linear operator of
less order than L is R, Ny represents the nonlinear term and g is the source term. Operating by the
inverse operator L−1 leads to

L−1Ly = L−1g − L−1Ry − L−1Ny. (2.2)

If L is a second-order operator L = d2

dx2 , then L
−1 is a two-fold integration and therefore L−1Ly =

y − y(0)− ty′(0). Using the given conditions we obtain that the apriori solution y has the form

y = A+Bt+ L−1g − L−1Ry − L−1Ny. (2.3)

Now, assume that the nonlinear term Ny is an analytic function with respect to the variable y and for
a given g there exists a unique solution y of the equation (2.1). The Adomian decomposition method
assumes that the solution y can be decomposed into an infinite series, given by y = y0 + y1 + y2 + ...
and the nonlinear analytic function can be decomposed into an infinite series.

Ny =
∞∑

n=0

An(y0, y1, ..., yn)

where the terms An are specially generated so-called Adomian polinomials depending only on the
variable y0, y1, ..., yn, which are given by

An =
1

n!

dn

dλn

[
N

( ∞∑

i=0

λiui

)]

λ=0

, n = 0, 1, ...

Putting these expression into (2.3) yields

y =
∞∑

n=0

yn = y0 − L−1

(
R

( ∞∑

n=0

yn

))
− L−1

( ∞∑

n=0

An

)
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Thus we have the following iterative formulas

y1 = −L−1(Ry0)− L−1(A0(y0))

y2 = −L−1(Ry1)− L−1(A1(y0, y1))

.

.

.

yn+1 = −L−1(Ryn)− L−1(An(y0, y1, ..., yn))

for all n ∈ N. Consequently we can recursively determine all terms y0, y1, y2... of the series solution

y =
∞∑

n=0

yn.

3 Solution using the Adomian Decomposition Method

We shall consider the Sturm-Liouville equation,

y′′(t)− 2y′(t) + 5y(t) = 0, t ∈ [0,
1

2
) ∪ (

1

2
, 1]

subject to initial conditions,

y(0) = −1

y′(0) = 7

and additional transmission conditions at the interior singular point t = 1
2
, given by

y(
1

2
− 0) = k1y(

1

2
+ 0)

y′(
1

2
− 0) = k2y

′(
1

2
+ 0)

By applying an our own approach, at first we will consider some auxiliary initial-value problems on
the left and right side of the considered interval:

Let us consider the auxiliary initial-value problem on the left interval [0, 1
2
), given by

y′′(t)− 2y′(t) + 5y(t) = 0, t ∈ [0,
1

2
) (3.1)

y(0) = −1, y′(0) = 7 (3.2)

By virtue of existence and uniqueness theorem of differential equation theory, the problem (3.1)-(3.2)
has a unique solution ỹ(x) (see, for example [4]). By applying the decomposition method we have

ỹ0(t) = −1 + 7t
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ỹ1(t) = L−1(2ỹ′0(t)− 5ỹ0(t))

=

∫ t

0

∫ t

0

14− 5(−1 + 7t)dtdt

=
19t2

2!
− 35t3

3!

ỹ2(t) = L−1(2ỹ′1(t)− 5ỹ1(t))

=
19t3

3
− 55t4

8
+

35t5

24

ỹ3(t) = L−1(2ỹ′2(t)− 5ỹ2(t))

=
19t4

6
− 13t5

3
+

235t6

144
− 25t7

144

...................

Thus we get the fourth order approximation of the left solution as

ỹ(t) = −1 + 7t+
19t2

2!
− 35t3

3!
+

38t3

6
− 165t4

24
+

175t5

120
+

19t4

6
− 13t5

3
+

235t6

144
− 25t7

144
+ ...

(3.3)

Now we will consider the right-hand problem on the right interval (1
2
, 1] given by

y′′(t)− 2y′(t) + 5y(t) = 0, t ∈ (
1

2
, 1] (3.4)

y(1) = a, y′(1) = b (3.5)

We know that the problem (3.4)-(3.5) has a unique solution ˜̃y(t) (see [4] ). By using the same

technique we can calculate the following terms of the series solution ˜̃y(t) =∑∞
n=0
˜̃yn(t), as

˜̃y0(t) = a− b+ bt

˜̃y1(t) = −5a

2
+

31b

6
+ 5at− 19bt

2
− 5at2

2
+

7bt2

2
+

5bt3

6

˜̃y2(t) =
1

24
(−1 + t)3(5a(3 + 5t)− b(31 + 60t+ 5t2))

..............................

Consequently, we have the following approximation of the right solution, as

˜̃y(t) = a− b+ bt− 5a

2
+

31b

6
+ 5at− 19bt

2
− 5at2

2
+

7bt2

2
+

5bt3

6

+
1

24
(−1 + t)3(5a(3 + 5t)− b(31 + 60t+ 5t2)) + ... (3.6)
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Using the series solutions (3.3)-(3.6) and to satisfy the transmission conditions , we must solve
the following system of equations:

ỹ(
1

2
) = k1˜̃y(

1

2
) (3.7)

ỹ′(
1

2
) = k2

˜̃
y′(

1

2
) (3.8)

If k1 = 1, k2 = 1 are selected, then a = 6.64943, b = 3.8243 are obtained as a result of the
common solution of the equations (3.7)-(3.8).

Exact solution of the problem is y(t) = −et cos 2t+ 4et sin 2t.

Fig.1 Graph of the the approximate solution and exact solution.

Conclusion

In this study, we found the approximate solution of one initial value transmission problem by using
ADM. Also, we compared the approximate solution with exact solution. Consequently the Adomian
decomposition method is effective and reliable for solving discontinuous boundary-value problems
under additional transmission conditions at the point of discontinuity.
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Abstract

This work is concerned with stabilization of a wave equation stabilized by a boundary

feedback. It was shown in [11] that this problem is not exponentially stable. The purpose

of this work, is to show that the solution of this system decays polynomially by using a

Fourier analysis combined with the multiplier techniques.

Key words and phrases: Stabilization, Ventcel's boundary conditions, Fourier analysis,

The multiplier method, semigroups theory.

1 Introduction

In this paper, we are concerned by the stabilization of the wave equation posed in a disk

Ω = {x ∈ R; 0 < |x| < 1} subject to Ventcel boundary conditions on the boundary Γ = ∂Ω.

Ventcel boundary conditions arise naturally in many contexts. In the context of multidimen-

tional di�usion processes, Ventcel boundary conditions were introduced in the pioneering work

1
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of Ventcel [7, 14] (see also the work of Feller for one-dimensional processes [8]). It is known

in [11] that the resolvent operator of such an equation must be unbounded on the imaginary

axis. Hence we are interested in proving a weaker decay of the energy. More precisely we will

furnish su�cient conditions and methods that guarantee a polynomial decay of the energy of

our system.

The proof is based on a Fourier-Bessel analysis, spectral theory, the multiplier technique and a

speci�c method of the obtained one-dimensional problem combining Ingham's inequality.

The paper is organized as follows: In Section 2 we present the problem and recall that it is

well posed. Section 3 is devoted to the analysis of a one-dimensional wave dissipative equation

depending on a parameter. These results allows to obtain in the last section, our polynomial

stability of the Ventcel-problem using Fourier-Bessel analysis.

2 The problem

Let Ω = {x ∈ R2; 0 < |x| < 1} ⊂ R2 be an open bounded domain with a smooth boundary Γ.

Γ = {x ∈ R2/|x| = 1}

We consider the problem




ψtt −∆ψ = 0 in Ω×R+,

∂νψ −∆Tψ + ψt = 0 on Γ×R+,

ψ (., 0) = ψ0, ψt (., 0) = ψ1 in Ω,

(1)

4T means the tangentiel Laplace operator on Γ [14].

ψ = ψ(x, y, t) where (x, y) ∈ Ω , t ∈ R+ , ν is the unit outward normal vector along the

boundary.

The energy of the solution of (1) is de�ned by

E(t) = E(ψ, ψt)(t) =
1

2
‖ (ψ, ψt) (t) ‖2

H (2)

Using some integration by parts, one can show that for all (ψ0, ψ1) ∈ D (A) we have

d

dt
E (t) = −

∫

Γ

|ψt|2 dΓ (3)
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Hence the system is dissipative.

Problem (1) can be rewritten in the form





Ut(t) = UY (t)

U(0) = U0

(4)

with U = (ψ, ψt), U0 = (ψ0, ψ1) and A was de�ned previously. Semi group theory allows the

next existence and uniqueness results [6]

Theorem 2.1. If (ψ0, ψ1) ∈ D (A), then the problem (1) admits a unique solution

(ψ, υ) ∈ C ([0,∞[ , D (A)) ∩ C1 ([0,∞[ , H) .

Proof. The proof is based on the use of Hille Yosida's theorem, see [11]

3 The one-dimensional problem

We now consider the following expression of ψ

ψ =
∑

κ∈Z
ψ(2κ)(r, t)ei2κθ

This allows us to deduce the following 1− d model





ψ
(k)
tt − 1

r2
(r ∂

∂r
)2ψ(k) + (k)2

r2
ψ(k) = 0 in (0, 1)×R+

∂
∂r
ψ(k)(1) + (k)2ψ(k)(1) + ψ

(k)
t (1) = 0 on R+

ψ(k)(0) = 0 on R+

ψ(k) (0) = ψ
(k)
0 , ψ

(k)
t (0) = ψ

(k)
1 in (0, 1)

(5)

3.1 Exponential Stabilization of a 1-d Model with a parameter.

The energy of the solution of the problem (5) is given by

Ek(t) =
1

2

∫ 1

0

((
∂ψ(k)

∂r
)2 +

k2

r2
(ψ(k))2 + (ψ

(k)
t )2)rdr +

k2

2
(ψ(k)(1))2. (6)

Lemma 3.1. For all regular solutions ψ(k) of (5) , it holds

E
′
k(t) = −((ψ

(k)
t (1))2 (7)

3
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Proof. We use the method of integration by parts and boundary conditions, we obtain

E
′
k(t) =

∫ 1

0

ψ
(k)
t [ψ

(k)
tt −

1

r2
(r
∂

∂r
)2ψ(k) +

(k)2

r2
ψ(k)] rdr + ψ

(k)
t (1)[−k2ψ(k)(1)− ψ(k)

t (1) + k2ψ(k)(1)]

= −((ψ
(k)
t (1))2 ≤ 0

In order to show the exponential stabilization of the problem (5), we write ψ(k) in the form

ψ(k) = y + w

where y is solution of the same problem as ψ(k) but without dissipation, w is the remainder.

We introduce the operator Ak de�ned on L2((0, 1)) by

Ak(υ) = − 1

r2
(r
∂

∂r
)2υ +

(k)2

r2
υ

and domain

D(Ak) = {υ ∈ H2(0, 1); υ(0) = 0 and υr(1) = −k2υ(1)}

Lemma 3.2. The operator Ak is positive, self-adjoint on L2((0, 1)), moreover its resolvent

Rλ(Ak) is compact.

Theorem 3.3. The roots of the equation

Jk(λ)

Jk+1(λ)
=

1

k2 + k
λ, k ∈ Z∗ (8)

are simple, strictly larger than k2 and form the eigenvalues of Ak. Jk is the Bessel functions of

the �rst kind.

The associated normalized eigenvectors are given by

ϕn(r) = AnJk(λnr), n ∈ IN (9)

where

An ≥ 1√
2

(10)

and

ϕn(1) ≥ C√
2

(11)

C is a positive constant
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We are now ready to bound the energy of y with respect to an appropriate boundary term.

Proposition 3.4. Let Ey(t) be the energy of y solution of (py) de�ned by

Ey(t) =
1

2
{
∫ 1

0

((
∂y

∂r
)2 +

k2

r2
(y)2 + (yt)

2) rdr + k2(y(1))2}.

Then there exist two positives constants c1 and c2 independent on k such that for all T > c1

one has

Ey(0) ≤ c2

∫ T

0

(yt(1, t))
2 dt (12)

Theorem 3.5. There exist two positive constants M1, M2 independent on k such that

Ek(t) ≤M1e
−M2

k3
tEk(0) (13)

Theorem 3.6. For all m ∈ IN?,there exists a positive constant Cm > 0 such that for the initial

data (ψ0, ψ1) ∈ Hm+1(Ω)×Hm(Ω) the solution ψ of (1) satis�es

E(t) ≤ Cm
tm

∞∑

κ=−∞
k3mEk(0), ∀ t > 0, (14)

where ∞∑

κ=−∞
k3mEk(0) ≤ ‖ψ0‖2

Hm+1(Ω) + ‖ψ0|Γ1‖2
Hm+1(Γ1) + ‖ψ1‖2

Hm(Ω).
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Abstract

In this paper, the fractional optimal control problem for di�erential system is consid-

ered.

Key words and phrases: Optimal control, Fractional Dirichlet problem, Fractional Neu-

mann problem, Riemann- Liouville fractional derivative.

1 Introduction

In this paper, the fractional optimal control problem for di�erential system is considered. The

fractional time derivative is considered in Riemann-Liouville sense. Necessary and su�cient

optimality conditions for the fractional Dirichlet and Neumann problems with the quadratic

performance functional are derived. Some examples are analyzed in details. We consider

here a di�erent type of equations, namely, fractional partial di�erential equations involving

second order operators. The existence and uniqueness of solutions for such equations were

1
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proved. Fractional optimal control is characterized by the adjoint problem. By using this

characterization, particular properties of fractional optimal control are proved.

2 Fractional Dirichlet Problem for Di�erential System

Let us consider the fractional partial di�erential equations:

Dβ
+ +Ay(t) = f(t) (1)

I1−β
+ y(0+) = y0 , x ∈ Ω (2)

y(x, t) = 0 , x ∈ Γ (3)

Ay = −
n∑

i,j=1

∂

∂xi

(
aij(x)

∂y

∂xj

)
+ a0(x)y, (4)

a0(x), aij(x) ∈ L∞(Ω)

a0(x) ≥ α > 0,
n∑

i,j=1

aij(x)ξiξj ≥ α(ξ2
1 + ...+ ξ2

n), ∀ξ ∈ Rn,

π(t, y, φ) =

∫

Ω

n∑

i,j=1

aij(x)
∂y

∂xi

∂φ

∂xj
dx (5)

Lemma 2.1. The bilinear form π(t, y, φ) is coercive on H1
0 (Ω)

π(t, y, y) ≥ λ ‖y‖H1
0 (Ω) (6)

3 Result and discussions

Lemma 2.2 If (2.6) and (2.7) hold, then the problem (2.1)-(2.3) admits a unique solution

y ∈ H1
0 (Ω) Proof. See [Lions, 1971]. From the coerciveness condition (2.6) and using the

Lax-Milgram lemma, there exists a unique element y(t) ∈ H1
0 (Ω) such that

(
Dβ

+y(t), φ
)
L2(Q)

+ π(t, y, φ) = L(φ) pour tout φ ∈ H1
0 (Ω) (7)

which can be written as

∫

Q

(
Dβ

+y(t) +Ay(t)
)
φ(x)dxdt = L(φ) pour tout φ ∈ H1

0 (Ω). (8)

2
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This know as the variational fractional Dirichlet problem, where L(φ) is a continuous linear

form on H1
0 (Ω) and takes the form

L(φ) =

∫

Q

fφdxdt +

∫

Ω

y0φ(x, 0)dx, f ∈ L2(Q), y0 ∈ L2(Ω) (9)

Then equation (2.9) is equivalent to

Dβ
+y(t) +Ay(t) = f, (10)

4 Optimization Theorem and the Control Problem

For a control u ∈ L2(Q) the state y(u) of the system is given by :

Dβ
+y + Ay(u) = u, (x, t) ∈ Q (11)

y(u)|Σ = 0 (12)

I1−β
+ y(x, 0, u) = y0(x), x ∈ Ω (13)

The observation equation is given by

z(u) = y(u), (14)

The cost function is given by

J(v) =

∫

Q

(y(v)− zd)2 dxdt + (Nv, v)L2(Q) (15)

zd ∈ L2(Σ), N is hermitian positive de�nite operator:

(Nu, u) ≥ c||u||2L2(Q), c > 0. (16)

We de�ne Uad (set of admissible controls) is closed, convex.

Uad ⊂ U = L2(Q)

5 Control Problem

De�nition 5.1. We want to minimize

3
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J(v) = inf
v∈Uad

J(v) (17)

Under the given considerations we have the following theorem:

Theorem 5.2. The problem (17) admits a unique solution given by

(11)− (13), et on a :

∫

Q

(p(u) +Nu) (v − u) dxdt ≥ 0, (18)

where p(u) is the adjoint state.

5.1 Neumann Problem

Dβ
+y +A = f, dans Q (19)

∂y

∂νA
= h, sur Σ (20)

I1−β
+ y(0+) = y0(x), x ∈ Ω (21)

π(y, y) ≥ c||y||2H1(Ω), pour tout y ∈ H1(Ω) (22)

Lemma 5.3. If (22) is satis�ed then there exists a unique element y ∈ H1(Ω) satisfying Neu-

mann problem: (19)− (21)

5.2 Fractional Neumann Problem for Di�erential System

We consider the space U = L2,(the space of controls), for every control u u ∈ U the state of

the system (y(u)), y(u) ∈ H1(Ω) is given by the solution of

Dβ
+y(u) +Ay(u) = f dans Q, (23)

∂y(u)

∂νA
= u sur Σ, (24)

4
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5.3 Observation

For the observation, we consider the following two cases:

z(u) = y(u) (25)

The cost function is given by:

J(v) =

∫

Q

(y(v)− zd)2 dxdt+ (Nv, v)L2(Σ) zd ∈ L2(Q), (26)

where N is hermitian positive de�nite

(Nu, u)L2(Σ) ≥ c||u||2L2(Σ), c > 0. (27)

We de�ne Uad ⊂ U = L2(Σ) ( set of admissible controls) is closed, convex subset of L2(Σ)

inf
v∈Uad

J(v). (28)

Theorem 5.4. Assume that (27) holds and the cost function being given by (26). The optimal

control u is characterized by (23)− (24) together with

:

−Dβp(u) +A∗p(u) = y(u)− zd dans Q (29)

∂p(u)

∂νA∗
= 0 (30)

p(x, T ;u) = 0 x ∈ Ω. (31)

and the optimality condition is
∫

Σ

(p(u) +Nu) (v − u)dΣ ≥ 0, ∀v ∈ Uad (32)

6 Summary and conclusions

An analytical scheme for fractional optimal control of di�erential systems is considered. The

fractional derivatives was de�ned in the Riemann-Liouville sense. The analytical results were

given in terms of Euler-Lagrange equations for the fractional optimal control problems. The

formulation presented and the resulting equations are very similar to those for classical optimal

control problems. The optimization problem presented in this paper constitutes a generalization

5

250



of the optimal control problem of parabolic systems with Dirichlet and Neumann boundary

conditions considered in (Lions, 1971) to fractional optimal control problem for second order

systems.
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Abstract 

We derive the Lie group classification for a class of KdV-Burgers equations with time dependent 

coefficients. The derived Lie symmetries are employed to transform boundary value problems with a 

partial differential equation to problems with corresponding ordinary differential equation. The list of Lie 

reductions is presented. 
 

Keywords: KdV-Burgers equations, Lie group classification, similarity reductions, boundary value problems 

 

1. Introduction  

The compound KdV-Burgers equation 

 
2 0,t xxx xx x xu au bu cu u duu          (1) 

 

where ,  , a b c  and d  are real constants, has considerable interest in Mathematical Physics and in 

particular has significant applications in Fluid Mechanics, see for example in [3,23]. Explicit solutions for 

equation (1) can be found, for example, in [5,10,22]. 

 In many cases the parameters in a differential equation can vary in time so the physical model is 

more accurate. Recently, the variable coefficient compound KdV-Burgers equation 

 
2( ) ( ) ( ) ( ) 0t xxx xx x xu h t u g t u f t u u k t uu          (2) 

 

was studied [1,7,24]. The functions ( ),  ( ),  ( )h t g t f t  and ( )k t  are smooth and we require that 
2 2( ) 0.hg f k   The condition 2 2 0f k   is needed, so the class of equations (2) maintains a nonlinear 

form. 

 In the last years a large number of variable coefficient equations have appeared in the literature 

which are studied from the Lie symmetries point of view. The appearance of the coefficient functions 

which depend on spatial or/and time variables, make the classification problem a difficult task. It is for 

this reason that in a number of cases the group classifications that found in the literature are incomplete 

and sometimes the results are not completely correct. Finding Lie symmetries for a single (or a system) of 

partial differential equation with constant coefficients is a simple routine. The existence of algebraic 

packages, such as MAPLE, MATHEMATICA and REDUCE, make the search for Lie symmetries even 

easier and in fact in most cases provide the complete list of Lie symmetries. However for equations with 

variable coefficients, such algebraic packages are very helpful in the calculations, but they do not provide 

the complete classification. In order to overcome such difficult tasks, we use the equivalence 

transformations admitted by the class of equations under study. Such transformations enable us to reduce 

the number of arbitrary elements (coefficient functions) of the class of equations. This procedure was 
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applied in a number of recent articles, see for example in [9,11-14,17-21], where exhaustive and complete 

group classifications were achieved. 

 Our main task is to present an enhanced group classification for the class (2). However, we can 

equivalently classify the Lie symmetries of the special case of the class (2) 

 
2( ) ( ) ( ) 0.t xxx xx x xu u g t u f t u u k t uu          (3) 

 

In fact, the point transformation 

 

( )d ,   ,  t h t t x x u u        (4) 

 

connects equation (2) and equation (3) (with the variables being tilded). 

 In the next section the Lie group classification is presented. In section 3, we demonstrate the 

application of Lie symmetries to boundary value problems. In section 4 we list the Lie mappings that 

reduce certain forms of the class (3) into an ordinary differential equation. 

 

2. Lie Symmetries 

We derive the group classification of the class (3) using the Lie classical method. We search for vector 

fields of the form 

 

( , , ) ( , , ) ( , , )t x ut x u t x u t x u          

 

which generate one-parameter groups of point symmetry transformations of an equation from the class 

(3). Such vector fields satisfy the infinitesimal invariance criterion. Specifically, we require that the action 

of the third prolongation, 
(3) , of the vector field  on equation (3) results in the condition that it is an 

identity for all solutions for this equation. Hence, the criterion takes the form 

 

2

(3) 2

( ( ) ( ) ( ) )
( ) ( ) ( ) 0.

xxx t xx x x

t xxx xx x x
u u g t u f t u u k t uu

u u g t u f t u u k t uu
   

             (5) 

 

Equation (5) is an identity in the variables , ,t x u  and the derivatives of u  and more specifically, it is a 

multivariable polynomial in the variables ,  ,  , ,  ,  , t x tt tx xx ttt ttxu u u u u u u  and .txxu  Coefficients of these 

variables are equal to zero, which provide the system of determining equations. Solution of these   

equations provide the forms of the coefficient functions ,  ,     and of the arbitrary elements , ,f g k . 

Initially, we use certain results from references [6,14] to deduce that the coefficient functions have the 

simplified forms 

 

1 2 1 2( ),   ( ) ( ),   ( , ) ( , ).t t x t t x u t x             

 

These forms simplify the identity (5). Coefficients of various derivatives of u  lead to the determining 

system which consists of the following equations: 
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13 0,t    

1 13 2 0,x t tg g g        

1 12 0,  t tf f f f        

1 2 12 0,t tk k k f k          

1 1 2 1 23 2 0,xx x t tg x k          

1 0,xf   

1 2 0,x xk f    

1 1 1 2 0,t xxx xx xg k        

2 2 2 0.t xxx xxg      

 

 Solving the above system provide the forms of the functions 1 2 1( ), ( ),  ( ),  ( , )t t t t x     and 

2 ( , )t x  and also the forms of the arbitrary elements   )(,g t f t  and  .k t  Consequently, the desired Lie 

symmetries are derived which are admitted by specific forms of the class of equations (3). Omitting the 

detailed analysis, we state that we find five cases. We tabulate the results in the table 1. 

 
Table 1. The group classification of class (3). 

no.  g t   f t   k t  Basis of 
maxA  

1       x  

2 
1  e t

 
2

1e
t



  
, 

2
x t uu


     

3 
1

3
1t


 nt  

3 2

6
1

n

t


 , 6 2 (3 2)x t x ut x n u        

4 
1

3
1t


 
2

3t


 

2

3
2 ln | |t t



 
1

2 3
2 2, 6 [2 9 (ln | | 3) ] 3x t x ut x t t         

5  G t  0  
3

2 d

1 ( )e
G t

G t
   

, ( ( )d ) , x x uk t t  

21

3 4

1[ ( )] [ ( )] [( ( )d ) ]t t x uG t G t G x k t t u x           

Here  G t is a solution of the equation 
3

2 d4

1 1 e d 0
G t

tG G G t


    and 1 2 10,  0,  ,  , n     and 2  are 

constants. 
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Note 1. Cases 1-3 in table 1 with 1 0   give the results of the group classification for the modified KdV-

Burgers with variable coefficients 

 
2( ) ( ) 0.t xxx xx xu u g t u f t u u         (6) 

 

The present group classification of the class (6) completes the results that appear recently in the literature 

[8]. 

We use the mapping (4) to obtain the group classification for the class (2). The desired results are 

tabulated in the table 2. 

Table 2. The group classification of class (2). 

no.  g t   f t   k t  
Basis of 

maxA  

1       x  

2 
1 ( )h t  d

e
h t

h
   

d
2

1 e
h t

h





 

1
, 

2
x t uu

h


     

3 
1

3
1 ( d )h h t



  ( d )nh h t  

3 2

6
1 ( d )

n

h h t


  

d
, 6 2 (3 2)x t x u

h t
x n u

h
      


 

4 
1

3
1 ( d )h h t



  
2

3( d )h h t


  
2

3
2 ( d ) ln | d |h h t h t



   

d
, 6x t

h t

h
 



1

2 3
2 22 9 (ln | d | 3)( d ) 3x ux h t h t

 
     

 
   

5 
( ) ( ), h t G 

dh t    
0  

3
2 ( ) dξ

1 ( )e( )
G

h Gt
 

   
, ( ( )d ) , x x uk t t  

3 4

1 2 1[ ( ) ( )] [ ( )] [( ( )d ) ]t x uh t G G G x k t t u x             

Here  G  is a solution of the equation 
3

2 dξ4

1 1 e dξ 0
G

G G G


     and 1 2 10,  0, ,  , n     and 2  are 

constants, where ( )h t  is every smooth function. 
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3. Boundary value problems 

We apply the derived Lie symmetries to solve  boundary value problems. The procedure is 

straightforward and it was applied recently in various problems [4,15,16]. We consider the problem of the 

form 

2( ) ( ) ( ) 0, 0, 0t x x xx xxxu f t u u k t uu g t u u t x        

lim ( , ) 0, 0
t

u t x x


   

1 2 3( ,0) ( ), ( ,0) ( ), ( ,0) ( ), 0,x xxu t q t u t q t u t q t t     

 

where 1 2( ),  ( )q t q t  and 3( )q t  are smooth functions in their arguments. A Lie symmetry that leaves 

invariant the partial differential equation of the problem, must also leave invariant the given conditions. 

We use the Lie symmetries of the cases 2 and 3 in table 1 and apply a linear combination of them to 

initial and boundary conditions. This results to restriction of the forms 1 2( ),  ( )q t q t  and 3 ( ).q t  In fact, 

they are specific functions. 

 In the case where 1( ) ,  ( ) e tg t f t    and 2
1 ,( ) e

t

k t


  equation (3) admits the general Lie 

symmetry 

 

1 2 ,
2

x t uu


 
 

       
 

 

 

where 1  and 2  are arbitrary constants. Application of the symmetry   to the first boundary condition 

0x   and 1( ) 0u q t   gives 1 0   and 1 12 0.tq q   Hence, 2
1 1( ) e

t

q t





  and we take w.l.o.g. 

2 1.   In order to examine invariance of the other two boundary conditions we require to have  the  

extension of  up to the second order, 

 

(1) ,
2 2t xt u x uu u
 

        

(2) (1) .
2 2 2tt tx xxtt u tx u xx uu u u
  

          

 

For the second condition, we have 

 

2

(1)

2 ( )
{ ( )} 0

x
x u q t

u q t
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which gives 2
2 2( ) e .

t

q t





   

 

 

Similarly, the invariance condition 
 

3

(2)

3 ( )
{ ( )} 0

xx
xx u q t

u q t


    

 

gives  
3 3

2( ) e .
t

q t





  Now, solving the characteristic system that corresponds to the symmetry ,  we 

find the similarity reduction 

 

2( , ) e ( )
t

u t x F x




  

 

which reduces the above problem to 

 
1

1 1 1 2 32
( ) 0,  (0) ,  (0) ,  (0) .xxx xx x x xxF F F FF F F F F             

 

 Now, we repeat the same procedure for the case where 
1 3 2

3 6
1 1( ) ,  ( ) ,  ( ) .

n

ng t t f t t k t t




    We 

use the linear combination of the two Lie symmetries admitted by equation (3) to obtain the similarity 

mapping 

 
3 2 1

6 3( , ) ( ), 
n

u t x t F xt 


 

   

 

that reduces the boundary value problem 

 
3 2 1

2 6 3
1 1 0, 0, 0

n

n

t x x xx xxxu t u u t uu t u u t x




        

 

0
lim ( , ) 0, 0
t

u t x x


   

 

3 2 3 4 3 6

6 6 6
1 2 3( ,0) , ( ,0) , ( ,0) , 0,

n n n

x xxu t t u t t u t t t  
  

  

     

 

to the problem 

 
2 3 21

1 1 1 2 33 6
(3 3 ) 0,  (0) ,  (0) ,  (0) ,nF F F F F F F F F                  
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where we assume that 
2

.
3

n    In the case 
2

,
3

n    we replace the initial condition with lim ( , ) 0.
t

u t x


  

 Although we have initial value problems with the differential equation being an ordinary, 

finding exact solutions is a very difficult task. In such cases, searching for numerical solutions is a 

possible direction. Such approach was used, for example, in references [2,15,16]. 

 

4. Lie reductions 

The differential operator ( , , ) ( , , ) ( , , ) ,  ( , ) (0,0),t x ut x u t x u t x u             that corresponds to a 

Lie symmetry can be used to construct reduction mappings for the equation under consideration. They 

reduce the number of independent variables by one. For example, in the case of a partial differential 

equation in two independent variables, such mappings reduce it to an ordinary differential equation. In 

fact, construction of such mappings is one of the most important applications of Lie symmetries. 

Reduction operators are derived by solving the invariant surface condition 0.t xu u      

 

 We present the non-trivial Lie reductions of the class (3). We refer to the results that presented 

in the table 1. In the case 2, we have two Lie reductions. The first one corresponds to the Lie symmetry 

2
t uu


    which was presented in the previous section and the second reduction corresponds to the 

linear combination of the two symmetries admitted by the equation, 
2

.t u xu c


      Solving the 

appropriate invariant surface condition, we find the mapping 

 

2 ( ), 
t

u e F x ct


 


    

 

that reduces 

2 2
1 1e e 0

t
t

t xxx xx x xu u u u u uu


       

 

to the ordinary differential equation 

 

2

1 1

1
( ) 0.

2
F F F F c F F          

 

 For the case 3, the only nontrivial reduction corresponds to the differential operator 

6 2 (3 2)t x ut x n u       and the corresponding result appears in the previous section. For the case 4, we 

find one reductions which corresponds to the differential operator 
1

2 3
2 26 [2 9 (ln | | 3) ] 3 .t x ut x t t        

We find the mapping 

 
1

2 231 3
2 22 4

ln | | ( ),  ln | | 6 ln | |u t F xt t t 
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that reduces 
1 2 2

23 3 3
1 2 ln | | 0t xxx xx x xu u t u t u u t t uu
  

      

 

to the ordinary differential equation 
 

2 291 1
1 2 23 2 2

( ) .F F F F        
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Abstract: 

Progress in the mechanical industry increasingly requires the use of special parameters to improve the 

service life of the mechanisms. Among these operating conditions, solid pollution is one of the most 

difficult enemy. 

   Statistical modeling is a simplified way and mathematically formalized to approximate the reality, so it 

is a tool not to neglected to model the degradation of the lifetime of contact surfaces. Although these 

undesirable particles can lead to premature wear of the machine elements or even a total failure of the 

mechanisms. 

The objective of this work is to statistically model the influence of lubricant contamination by solid 

pollution on an elastohydrodynamic contact. Based on TAGUCHI's experimental plans and analysis 

Keywords: Contact, Lubrication, Solid pollution, Wear. 

 

1. Introduction  

Tribological studies and research contribute to the technological renovation of mechanical contacts. For 

that, this modeling study, will try to answer the thematic approach, and this by the use of a plan of 

experiences of Taguchi. 

The main objective of this work is to establish a mathematical model that expresses the loss of dimension 

of an elastohydrodynamic contact under specific operating conditions. A series of experiments are carried 

out on a bench where two metal disks are in contact. 

Lubricants in their use are already polluted even when new, they are more polluted during assembly, 

maintenance or operation. These undesirable particles can damage the surfaces [1] and lead to fatigue and 

wear of the machine elements, including several contributions in this field such as the work of [2, 3,4]. 
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2. Preliminaries 

The test device is taken in such a way as to respond to the smooth running of the experiments. Indeed, it 

is a device in which are mounted in contact a rotating steel disc and a cylindrical test piece. 

2.1. Equipment used: 

In order to carry out the experiments, we will use the following equipment 

Triangological test bench 

Cylindrical specimen (bronze).100Cr6 steel discs; 

Oil ATF; 

Comparator ; 

Loads ; 

Filtered sand at 63 microns; 

 

 

 

 

 

 

 

 

 

 

                                    Fig. I.1 Triangological test bench 

         The experiments are planned by Taguchi L9 plan as shown in table 2.1 

1. Electric motor. 

2. Counter mobile tip. 

3. Charges 

4. Manual lever. 

5. Bronze test tube. 

6. Rotating steel disk. 

7. Transverse trolley 

 l 

 

 

5 
1 

6 2 

7 

3 4 
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                                      Table.2.1 Taguchi L9 plan 

                                     

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Main Results 

After carrying out the tests according to Taguchi orthogonal planes L9, wear (W) is measured. For each 

answer, five measurements were made and the average value was considered. Tables 3.1 show the 

measurement results for the experiment plan adopted. 

 

 

 

 

                           

Concentration (g/l) Load (N) Speed (tr/min°) 

5,0 100 500 

5,0 150 750 

5,0 200 1000 

7,5 100 750 

7,5 150 1000 

7,5 200 500 

10,0 100 1000 

10,0 150 500 

10,0 200 750 
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                               Table 3.1 Table of wear measurements 

Concentration (g/l) Load (N) Speed  (tr/min) Wear (mm) 

5,0 100 500 0,150 

5,0 150 750 0,160 

5,0 200 1000 0,190 

7,5 100 750 0,180 

7,5 150 1000 0,190 

7,5 200 500 0,180 

10,0 100 1000 0,222 

10,0 150 500 0,190 

10,0 200 750 0,200 

 

3.1 Taguchi statistical analysis: 

First, a Taguchi analysis of the wear for the experiment was made, whose objective is to better understand 

the impact of the operating parameters on the degradation of the contacts. EHD. 

In a second step, mathematical models of regression, expressing the relation between the input parameters 

and the output parameters, are established: 

YP = f (x1, x2, x3) 

0

1

k

i i

i

YP b b x


 
 

For the experiment, the model sought is of linear type without interaction. It looks like this With: 

b0: free coefficient. 

b1, b2, ... bk: linear coefficients 

xi: represents the input parameters (factors). 
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In order to show that the predicted values of the responses studied approximate the experimental data in 

the best way, the coefficient of determination R2 is calculated. This coefficient is a number that indicates 

how the observed data adjusts to the values predicted by the statistical model. Indeed, it is a parameter of 

good fit. We find that the value of R2 is very high and tend towards 1 (R2≈ 1). This value gives an 

efficient prediction and therefore it can be assumed that the predicted and experimental values are in 

excellent agreement; Figure.I.2. 

Coefficient of determination R2: 

R2 = 99,30%  
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Fig.I.2 Normal probability plot 

 

3.2 Regression  Equation : 

The experimental regression equation is written as follows 

W  =  0,0733434 + 0,0221308 X1 + 0,00878677 X2 - 0,00024782  X3 - 0,00192503 X1*X3 + 1,65295e-

005 X1*X2 + 1,14904e-005 X3*X2+ e 
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                                                              Table.3.2  Response Table for Means 
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Fig. 3.2 Main effect plot for W 

According to Taguchi's analysis, the effect of the speed, load and concentration parameters is different for 

each answer, Tab.3.2. 

From Fig.2 it is found that the first effect responsible for the degradation of the contact is the 

concentration of the pollutant in the lubricant. 

Level     concentration          Load            speed 

1                0,1667                 0,1840          0,1733 

2                0,1833                 0,1800          0,1800 

3                0,2040                 0,1900          0,2007 

Delta         0,0373                  0,0100          0,0273 

Rank              1                            3                  2 

 W : Wear 

 X1 : concentration 

X2 : Speed 

X3 : Load 

e : error 
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Then, the speed and the load which causes the appearance of the wear expressed by the loss of dimension, 

which leads to the failure. 

4. Conclusion 

In this article it is evident that the effect of particle concentration of sand grains is dominant and 

followed by the other parameters of the study. It is concluded that the wear of the elestohydrodynamic 

contact studied is caused by abrasion by the pollutant levels in the lubricant, which normally has the 

protective role. 
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Abstract 

In this study an analytical solution procedure for the solution of conformable fractional order 

(3+1)-dimensional Telegraph differential equation is presented. For this aim the computer software called 

Mathematica is employed. Solution procedure is summarized with an example. 

 

Keywords: Conformable fractional derivative, analytical solutions, fractional partial differential equations, Telegraph 

equation, quadruple Laplace transform. 

 

1. Introduction  

Fractional calculus, which is concluded as arbitrary order differentiation and integration, is as old 

as traditional derivation and integration. However, the value of the fractional derivative was better 

understood after it was discovered that it had better described events arising in nature. After then it 

attracted many researchers’ attention who study on different natural sciences especially physics, 

engineering, chemistry, medical sciences social sciences etc. [1-4]. The main purpose of fractional 

analysis is to express all aspects of engineering and natural phenomena that the traditional derivative fails 

to explain. For this purpose, different types of derivative and integral definitions are stated. Nevertheless, 

much of them involve integral forms in their definitions. Because of the integral formed definition, the 

calculations became hard and complicated.  However, scientists determined some deficiencies of these 

definitions. For example [5], 

 The Riemann-Liouville derivative does not satisfy 1 0aD  (Caputo derivative satisfies), if   is not a 

natural number. 

 Not all fractional derivatives satisfy the known formula of the derivative of the product of two 

functions. 

 ( ) ( ) ( ).a a aD fg gD f fD g     

 Not all fractional derivatives satisfy the known formula of the derivative of the quotient of two 

functions. 
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2

( ) ( )
.a a

a

f fD f gD g
D

g g

 
   

 
 

 

  Not all fractional derivatives satisfy the chain rule. 

 ( )( ) ( ( )) ( ).aD fog t f g t g t    

 Not all fractional derivatives satisfy D D D     in general. 

 In the Caputo definition, it is assumed that the function f  is differentiable. 

However, in 2014, a new definition of fractional derivative and fractional integral, which satisfy 

the basic properties of known derivative and integral, are expressed by Khalil et al. [5]. 

1.1. Definition Let  : 0,f    be a function. The th  order "conformable fractional derivative” of 

f  is defined by, 

 
1

0

( ) ( )
( )( ) lim

f t t f t
D f t














 
  

for all 0, (0,1).t    

1.2. Definition If f  is  -differentiable in some (0, ), 0a a   and ( )

0
lim ( )
t

f t


 exists then define 

( ) ( )

0
(0) lim ( )

t
f f t 


 . The "conformable fractional integral" of a function f  starting from 0a   is 

defined as: 

 
1

( )
( )( ) ( )

t t

a

a a

f x
I f t f x d x dx

x
  

    

where the integral is the usual Riemann improper integral, and (0,1] . 

This new definition satisfies the following basic properties and theorems referred in [5,6]. 

 ( ) ( ) ( )D cf dg cD f cD g      for all ,a b . 

 ( )  p pD t pt 



 for all .p  

 ( ) 0D    for all constant functions ( ) .f t   

 ( ) ( ) ( ).D fg fD g gD f     

 
2

( ) ( )
.

f gD f fD g
D

g g
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 If in addition to f  is differentiable, then 1( )( ) .
df

D f t t
dt





  

Integral transforms are very useful tools for obtaining the analytical solutions of both ordinary and 

partial differential equations. Considered equation can be turned into an algebraic equation by the help of 

integral transforms so the calculation becomes simpler. In this study we present quadruple Laplace 

transform including conformable Laplace transform to get the exact solutions of time fractional (3 1)  

dimensional second order hyperbolic telegraph equation. The basic properties of quadruple Laplace 

transform is given by Rehman et al. [7]. 

  In this study we combine the quadruple Laplace transform with conformable Laplace transform 

[6,8] to get the exact results for  (3 1)  dimensional second order hyperbolic telegraph equation. Let us 

give some basic properties of conformable Laplace transform. 

2. Conformable Laplace Transform 

2.1. Definition [6] Let 
0t  , 0 1   and 

0: [ , )f t    real valued function. The conformable 

fractional Laplace transform of order   for the function f  is defined by 

 
0 0

0

0 0

( ) ( )

1

0 0[ ( )]( ) ( ) ( , ) ( )( ) .
t t t t

s s
t

t t
f t s e f t d t t e f t t t dt

 

 
 

 
  

      (1.1) 

2.2. Example Here are the fractional Laplace transforms of some elementary functions. 

  
1

[1] , 0s
s

    

  

1/

1
1

1
1

[ ] , 0t s

s










 
 

 

 
  
 

   

 

/

1

1
1
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p

p

p
t s

s










 
 

 

 
  
 

   

 
1

[ ] , 1
1

t

e s
s




  


 

 
2 2

1
[sin ]

t
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2 2

[cos ]
t s

w
w s






 
 

 
 

The relationship between conformable Laplace transform and known Laplace transform can be declares 

as follows. 

2.3. Lemma Let : [0, )f    be a function such that [ ( )] ( )f t F s   exists. Then 

 1/( ) [ ( ) ]F s f t 

   

where 
0

[ ( )] ( )g t g t dt


   [6]. 

 Then Özkan [9] expressed the existence theorem, linearity theorem, conformable Laplace transform of 

the conformable fractional derivative with higher orders and they used conformable Laplace transform for 

solving integral and integro-differential equations in conformable sense. 

2.4. Theorem [Linearity Theorem] Let 
1( )f t  and 

2( )f t  be two functions whose conformable Laplace 

transform exist for 
1s a  and 

2s a  respectively. Then for s  greater than the maximum of 
1a  and

2a , 

 
1 1 2 2 1 1 2 2[ ( ) ( )] [ ( )] [ ( )]c f t c f t c f t c f t      

where 
1c ,

2c  are real constants [9]. 

2.5. Theorem Existence Theorem] Let an exponential order function f  be piecewise continuous on the 

interval 0 t A   for any positive A  and | ( ) |
t

a

e f t M






  when
0t t . In this equality 

0, ,M a t  are 

positive real constants and 0 1  . Then the conformable Laplace transform defined by Eq. (1.1) exists 

for any s a  [9]. 

2.6. Theorem [9] Suppose that ( )f t  is continuous and ( ( ))tD f t  is piecewise continuous on any interval 

0 t A  . Consider further that there exists constants ,M a and 
0t  such that | ( ) |

t
a

f t Me



  for 
0t t .Then 

[ ( ( ))]tD f t

  exists for s a  and moreover 

 [ ( ( ))] [ ( )] (0).tD f t s f t f

    

2.7. Corollary [9] Suppose that (2) ( 1)( ), ( ( )), ( ( )),..., ( ( ))n

t t tf t D f t D f t D f t    are continuous and 

( ) ( ( ))n

tD f t  is piecewise continuous on any interval 0 t A  . Consider further that there exists constants 
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,M a  and 
0t  such that 

( 1)| ( ) | ,| ( ( )) | ,...,| ( ( )) |
t t t

a a a
n

t tf t Me D f t Me D f t Me

  

       for 
0t t .Then 

( )[ ( ( ))]n

tD f t

  exists for s a  and obtained as 

 ( ) 1 ( 2) ( 1)[ ( ( ))] [ ( )] (0) ... (0) (0)n n n n n

t t tD f t s f t s f sD f D f  

 

        

where ( ) ( ( ))n

tD f t  means n  times conformable derivative of function ( )f t . 

2.8. Theorem [9] 

If ( ) [ ( )]F s f t   exists for 0s a  . Then following specialties are satisfied. 

 If c  is a constant then 

[ ( )] ( ).
t

c

e f t F s c




    

 Let m  is a constant 

[ ] .
m

m

m

m

t

s


 










 
 
 

  

 If ,c m are arbitrary constants 

[ ] .

( )

t m
c

m

m

m

t e

s c



 
 










 
 
 





 

Now let us give the quadruple Laplace transform involving conformable Laplace transform inside its 

definition. 

2.9. Definition Let ( , , , )u x y z t  be a continuous function with (3 1)  variables then quadruple Laplace 

transform involving conformable Laplace transform of function  ( , , , )u x y z t  can be expressed by 

 
0 0 0 0

[ ( , , , )] ( , , , ) ( , , , )
t

px ry sz

x y z t u x y z t U p r s e u x y z t dxdydzd t




 


       

       

where , , ,p r s  , 0 1   and subscripts denotes the variables to be Laplace transform applied. 
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3. Application 

3.1. Example 

Consider the following conformable time fractional (3+1) dimensional second order hyperbolic telegraph 

equation 

 
2 2 2 2( , , , ) 2 ( , , , ) 3 ( , , , ) ( , , , ) ( , , , ) ( , , , )t t x y zD u x y z t D u x y z t u x y z t D u x y z t D u x y z t D u x y z t        (1.2) 

with the conditions 

       

( , , ,0) sinh sinh sinh ,

( , , ,0) 2sinh sinh sinh ,

(0, , , ) 0,

t

u x y z x y z

D u x y z x y z

u y z t





 



 

 
2

( , ,0, ) 0,

( , ,0, ) sinh sinh .
t

z

u x y t

D u x y t e x y










  (1.3) 

 

2

2

(0, , , ) sinh ,

( ,0, , ) 0,

( ,0, , ) sinh sinh ,

t

x

t

y

D u y z t e z

u x z t

D u x z t e x z



















   

where 0 1  , 0x  , 0y  , 0z  , 0t  , 2

tD    denotes the two times sequential  -th order 

conformable fractional derivative of function ( , , , )u x y z t .  First of all applying the quadruple conformable 

Laplace transform to Eq. (1.2) yields 

 

 2

2 2

2

( , , , ) ( , , ,0) ( , , ,0) 2 ( , , , ) ( , , ,0)

3 ( , , , ) ( , , , ) (0, , , ) (0, , , ) ( , , , )

( ,0, , ) ( ,0, , ) ( , , , ) ( , ,0, ) ( , ,0, )

t

x

y z

U p r s U p r s D U p r s U p r s U p r s

U p r s p U p r s pU r s D U r s r U p r s

rU p s D U p s s U p r s sU p r D U p r

    

    

    

   

    

    

  (1.4) 

where ( , , , )U p r s   is the quadruple Laplace transformed version of the function ( , , , )u x y z t . Also 

calculating the Laplace transformed versions of the conditions (1.3) yields 
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2 2

2 2 2

2 2 2

2 2

2 2

(0, , , ) 0,

1
(0, , , ) ,

( 2)( 1)( 1)

1
( , , ,0) ,

( 1)( 1)( 1)

2
( , , ,0) ,

( 1)( 1)( 1)

( ,0, , ) 0,

1
( ,0, , ) ,

( 2)( 1)( 1)

( , ,0, ) 0,

1
( , ,0, )

( 2)( 1)( 1)

x

t

y

z

U r s

D U r s
r s

U p r s
p r s

D U p r s
p r s

U p s

D U p s
p s

U p r

D U p r
p r





















  


  




  




  




  

.

  (1.5) 

Substituting the values of Eqns. (1.5) into Eqn. (1.4) and after some algebraic calculations on Eqn. (1.4) 

we handle 

 
   2 2 2

1
( , , , ) .

1 1 1 ( 2)
U p r s

p r s





   
 

So ( , , , )u x y z t  can be obtained as 

 
2

( , ) sinh sinh sinh .
t

u x t e x y z






  

4. Conclusion 

In this study, authors expressed the quadruple Laplace transform involving conformable Laplace 

transform and applied to time fractional (3+1)-dimensional second order hyperbolic telegraph equation. It 

is understood that this new combined type Laplace transform is a relevant, efficient and applicable 

transform which can be applied the various problems arising in different branches of science. 
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Abstract 

The main target of this study is to obtain the numerical solutions of conformable fractional order 

(3+1)-dimensional Telegraph differential equation with the aid of an approximate solution procedure 

namely Residual Power Series Method. Conformable derivative with fractional order is applicable, 

understandable and reliable definition, which satisfies the basic properties of Newtonian concept 

derivative. 

 

Keywords: Fractional differential equations, Conformable fractional derivative, Numerical solution, 

Residual power series method 

1. Introduction 

Partial fractional differential equations (PFDEs) have been influenced by many scientists and researchers 

in recent years and they have been extensively researched and implemented for many real problems 

modeled in various branches of science and engineering [1-4]. It can be included many applications in 

science and engineering. Therefore, finding numerical and analytic-approximate solutions of NPFDEs has 

momentous and special position in these mentioned fields. Till now, classical analytical-approximate 

methods for fractional differential equations (FDEs) have been developed for Adomian decomposition 

method (ADM) that was implemented to solve fractional diffusion equations and fractional modified KdV 

equations [5-6], homotopy perturbation method (HPM) [7-9] that has been used in an enhanced format in 

[10] for solving FDEs and also it has been improved to solve systems of FDEs [11], variational iteration 

method (VIM) that has been applied to solve some types of FDEs in [12] and homotopy analysis method 

(HAM) was used to solve fractional KDV-Burgers-Kuromoto equations [13-15], fractional IVPs [16] and 

time-fractional PDEs [17,18]. 

Time-fractional (3+1)-dimensional Telegraph equation  is defined as follows: 

𝜕2𝛼𝑢

𝜕𝑡2𝛼
+ 2

𝜕𝛼𝑢

𝜕𝑡𝛼
+ 3𝑢 =

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑧2
                                                                                                             (1) 

The equation describes the voltage and current on an electrical transmission line with distance and time. 

For the first time, Oliver Heaviside formulated this model. The parameter αϵ(0,1]  that is the order of the 

fractional derivative, is considered in the conformable sense. Comprehensive mathematical analysis of the 

fractional order. Telegraph equations are still under study and it plays an important role in many parts of 

science and engineering such as telegraph wires and radio frequency conductors.  
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This study looks over the solutions of time-fractional Telegraph equation by residual power series method 

(RSPM).  

2. Basic Definitions 

2.1. Definition The Riemann –Liouville fractional derivative operator 𝐷α𝑓(𝑥) for 𝛼 > 0 and 𝑞 − 1 <
𝛼 < 𝑞  defined as [5]: 

 

𝐷𝛼𝑓(𝑥) =
𝑑𝑞

𝑑𝑥𝑞
[

1

𝛤(𝑞 − 𝛼)
∫

𝑓(𝑡)

(𝑥 − 𝑡)𝛼+1−𝑞

𝑥

𝑎

𝑑𝑡]                                                                                                    (2) 

2.2. Definition The Caputo fractional derivative of order 𝜶 > 𝟎 for ℕ, 𝒏 − 𝟏 < 𝜶 < 𝒏 , 𝑫∗
𝜶 defined as 

[5]: 

𝐷∗
𝛼f(𝑥)  = J𝑛−𝛼𝐷𝑛 𝑓(𝑥) =

1

𝛤(𝑛 − 𝛼)
∫(𝑥 − 𝑡)𝑛−𝛼−1 (

𝑑

𝑑𝑡
)

𝑛

𝑓(𝑡)𝑑𝑡                                                                (3)

𝑥

𝑎

 

 

2.3. Definition For a given a function 𝒇: [𝟎, ∞) → ℝ, the conformable fractional derivative of 𝒇 order 𝜶 

is defined by [19] 

𝑇𝜶(𝑓)(𝑡) = lim
𝜀→0

𝑓(𝑡 + 𝜀𝑡1−𝜶) − 𝑓(𝑡)

𝜀
.                                                                                                                     (4) 

2.4. Theorem Let 𝜶𝝐(𝟎, 𝟏] and 𝒇, 𝒈 be 𝜶 differentiable at a point 𝒕 > 𝟎. Then the following properties 

hold [19,20]. 

i. 𝑇𝜶(𝑚𝑓 + 𝑛𝑔) = 𝑚𝑇𝜶(𝑓) + 𝑛𝑇𝜶(𝑔) for 𝑚, 𝑛 ∈ ℝ. 
ii. 𝑇𝜶(𝑡𝑝) = 𝑝𝑡𝑡−𝛼 for all 𝑝 ∈ ℝ. 

iii. 𝑇𝜶(𝑓. 𝑔) = 𝑓𝑇𝜶(𝑔) + 𝑔𝑇𝜶(𝑓) 

iv. 𝑇𝜶(𝑓/𝑔) =
𝑔𝑇𝜶(𝑓)−𝑓𝑇𝜶(𝑔)

𝑔2
 

v. 𝑇𝜶(𝑐) = 0 when 𝑐 is a constant. 

vi. 𝑓 is differentiable, then 𝑇𝜶(𝑓)(𝑡) = 𝑡1−𝜶 𝑑𝑓

𝑑𝑡
 

2.5. Definition Let 𝒇 be a function with 𝒏 variables as 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏 and the conformable partial 

derivative of 𝒇 order 𝜶𝝐(𝟎, 𝟏] in 𝒙𝒊 is defined as follows [21] 

𝑑𝛼

𝑑𝑥𝑖
𝛼 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) = lim

𝜀→0

𝑓(𝑥1, 𝑥2, … , 𝑥𝑖−1, 𝑥𝑖 + 𝜀𝑥𝑖
1−𝛼, … , 𝑥𝑛) − 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛)

𝜀
                                  (5) 

3. Explanation of Residual Power Series Method 

In this section we will introduce some important definitions and theorems about the residual power series. 

3.1. Definition A power series representation of the form [22]: 
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∑ 𝑐𝑛(𝑡 − 𝑡0)𝑛𝛼

∞

𝑛=0

= 𝑐0 + 𝑐1(𝑡 − 𝑡0)𝛼 + 𝑐2(𝑡 − 𝑡0)2𝛼 + ⋯                                                                                (6) 

where 0 < 𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑚𝜖ℕ and 𝑡 > 𝑡0 is called a fractional power series about 𝑡0. Here 𝑡 is a 

variable and 𝑐𝑛’s are the coefficients of the series.       

3.2. Definition Suppose that f has a FPS representation at 𝑡0 = 0 of the form [23] 

𝑓(𝑡) = ∑ 𝑐𝑛(𝑡)𝑛𝛼, 0 < 𝑡 < 𝑅
1
𝛼, 𝑅 > 0                                                                                                 (7)

∞

𝑛=0

 

and suppose that 𝑓 is an infinitely conformable 𝛼 differentiable function, for some 0 < 𝑚 − 1 < 𝛼 ≤ 𝑚, 

𝑚𝝐ℕ in a neighborhood of a point 𝑡0 = 0 then the coefficients 𝑐𝑛 will take the form 𝑐𝑛 =
𝑓(𝑛𝛼)(0)

𝛼𝑛𝑛!
. Here 

𝑓(𝑛𝛼) stands for the conformable fractional derivative  𝑛 times. 

3.3. Theorem A power series of the form ∑ 𝑓𝑛(𝑥, 𝑦, 𝑧)𝑡𝛼∞
𝑛=0  is called a multiple fractional power series 

about 𝑡0 = 0 [23]. 

3.4. Definition Suppose that 𝑢(𝑥, 𝑡)has a multiple FPS representation at 𝑡0 = 0 of the form [23] 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = ∑ 𝑓𝑛(𝑥, 𝑦, 𝑧)𝑡𝑛𝛼

∞

𝑛=0

, 0 < 𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑥𝜖𝐼, 0 < 𝑡 < 𝑅
1
𝛼.                             (8) 

If 𝑢𝑡
(𝑛𝛼)(𝑥, 𝑦, 𝑧, 𝑡), 𝑛 = 0,1,2, … are continuous on 𝐼 × (0, 𝑅

1

𝛼), then 𝑓𝑛(𝑥, 𝑦, 𝑧) =
𝑢𝑡

(𝑛𝛼)(𝑥,𝑦,𝑧0)

𝛼𝑛𝑛!
. 

To illustrate the basic idea of RPSM, let's take the following fractional differential equation of the form: 

𝑇𝛼𝑢(𝑥, 𝑦, 𝑧, 𝑡) + 𝑅[𝑥, 𝑦, 𝑧]𝑢(𝑥, 𝑦, 𝑧, 𝑡) + 𝑁[𝑥, 𝑦, 𝑧]𝑢(𝑥, 𝑦, 𝑧, 𝑡)𝑔(𝑥, 𝑦, 𝑧, 𝑡), 𝑡 > 0, 𝑥 ∈ ℝ,
𝑛 − 1 < 𝑛𝛼
≤ 𝑛                                                                                                                                 (9) 

expressed by the initial condition 

𝑓0(𝑥, 𝑦, 𝑧) = 𝑢(𝑥, 𝑦, 𝑧, 0) = 𝑓(𝑥, 𝑦, 𝑧),                                                                                                                  (10) 

where𝑅[𝑥, 𝑦, 𝑧] is a linear operator and 𝑁[𝑥, 𝑦, 𝑧] is a non-linear operator and 𝑔(𝑥, 𝑦, 𝑧, 𝑡),   are 

continuous functions. 

The RPSM method consists of expressing the solution of the equation given below as the fractional power 

series expansion around 𝑡 = 0. 

𝑓𝑛−1(𝑥, 𝑦, 𝑧) = 𝑇𝑡
(𝑛−1)𝛼𝑢(𝑥, 𝑦, 𝑧, 0) = ℎ(𝑥, 𝑦, 𝑧)                                                                                                (11) 

The expansion form of the solution is given by: 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = ∑ 𝑓𝑛(𝑥, 𝑦, 𝑧)
𝑡𝑛𝛼

𝛼𝑛𝑛!

∞

𝑛=0

                                                                                                                         (12) 

In the next step, the 𝑘-th truncted series of 𝑢(𝑥, 𝑦, 𝑧, 𝑡), that is 𝑢𝑘(𝑥, 𝑦, 𝑧, 𝑡)can be written as: 
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𝑢𝑘(𝑥, 𝑦, 𝑧, 𝑡)

= ∑ 𝑓𝑛(𝑥, 𝑦, 𝑧)
𝑡𝑛𝛼

𝛼𝑛𝑛!

𝑘

𝑛=0

                                                                                                                       (13) 

Since 𝑢(𝑥, 𝑦, 𝑧, 0) = 𝑓(𝑥, 𝑦, 𝑧) and 𝑇𝜶𝑢(𝑥, 𝑦, 𝑧, 0) = 𝑓1(𝑥, 𝑦, 𝑧) we obtain 

 𝑢𝑘(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢1(𝑥, 𝑦, 𝑧, 𝑡) + ∑ 𝑓𝑛(𝑥, 𝑦, 𝑧)
𝑡𝑛𝛼

𝛼𝑛𝑛!

𝑗
𝑛=2 = 𝑓(𝑥, 𝑦, 𝑧) + 𝑓1(𝑥, 𝑦, 𝑧)

𝑡𝛼

𝛼
+

∑ 𝑓𝑛(𝑥, 𝑦, 𝑧)
𝑡𝑛𝛼

𝛼𝑛𝑛!
                                                                                               (14)

𝑗
𝑛=2  

where 𝑢1(𝑥, 𝑦, 𝑧, 𝑡) =  𝑓(𝑥, 𝑦, 𝑧) + 𝑓1(𝑥, 𝑦, 𝑧)
𝑡𝛼

𝛼
 is assumed to be the first RPSM approximate solution of 

𝑢(𝑥, 𝑡). 

To obtain the rest of the 𝑓𝑛(𝑥, 𝑦, 𝑧) functions for 𝑛 = 2,3,4, …, we solve 𝑇𝑡
(𝑛−2)𝛼𝑅𝑒𝑠𝑘𝑢(𝑥, 𝑦, 𝑧, 0) = 0 for 

𝑘 = 2,3,4, …, where 𝑅𝑒𝑠𝑘𝑢(𝑥, 𝑦, 𝑧, 𝑡) is the 𝑘-th residual function which is defined by for our case 

Res𝑘(𝑥, 𝑦, 𝑧, 𝑡)
= (1 − 𝛼)𝑡1−2𝛼(𝑢𝑘)𝑡(𝑥, 𝑦, 𝑧, 𝑡) + 𝑡2−2𝛼(𝑢𝑘)tt(𝑥, 𝑦, 𝑧, 𝑡) + 2𝑡1−𝛼(𝑢𝑘)𝑡(𝑥, 𝑦, 𝑧, 𝑡)
+ 3𝑢𝑘(𝑥, 𝑦, 𝑧, 𝑡) − (𝑢𝑘)xx(𝑥, 𝑦, 𝑧, 𝑡) − (𝑢𝑘)yy(𝑥, 𝑦, 𝑧, 𝑡) − (𝑢𝑘)zz(𝑥, 𝑦, 𝑧, 𝑡)                   (15) 

To obtain the 𝑓2(𝑥, 𝑦, 𝑧) coefficient, we replace the second approximate solution  𝑢2(𝑥, 𝑦, 𝑧, 𝑡) =

𝑓(𝑥, 𝑦, 𝑧) + 𝑓1(𝑥, 𝑦, 𝑧)
𝑡𝛼

𝛼
+ 𝑓2(𝑥, 𝑦, 𝑧)

𝑡2𝛼

2𝛼2
 into Res2(𝑥, 𝑦, 𝑧, 𝑡) and solve Res2(𝑥, 𝑦, 𝑧, 0) = 0. Similarly, 

we calculate the 𝑓𝑛(𝑥, 𝑦, 𝑧) 

coefficients and 𝑢𝑘(𝑥, 𝑦, 𝑧, 𝑡) unknown functions respectively.      

4. Approximate Solution of the (3 + 1)-Dimensional Telegraph Equation Using the Residual Power 

Series 

Time-fractional (3+1)-dimensional Telegraph equation  is expressed as follows [24]:  

𝜕2𝛼𝑢

𝜕𝑡2𝛼
+ 2

𝜕𝛼𝑢

𝜕𝑡𝛼
+ 3𝑢 =

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑧2
                                                                                                           (16) 

where 𝑢 = 𝑢(𝑥, 𝑦, 𝑧, 𝑡). The initial conditions of the equation can be written as 

𝑓(𝑥, 𝑦, 𝑧, 0) = 𝑠𝑖𝑛ℎ𝑥𝑠𝑖𝑛ℎ𝑦𝑠𝑖𝑛ℎ𝑧 = −𝑇𝑡
𝛼𝑢(𝑥, 𝑦, 𝑧, 0)                                                                                       (17) 

The known exact solution of the equation is 

𝑓(𝑥, 𝑦, 𝑧, 𝑡) = 𝑒−2
𝑡𝛼

𝛼 𝑠𝑖𝑛ℎ𝑥𝑠𝑖𝑛ℎ𝑦𝑠𝑖𝑛ℎ𝑧                                                                                                                 (18) 

Using the RPSM method, the power series expansion of 𝑢(𝑥, 𝑦, 𝑧, 𝑡) is expressed as: 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑓(𝑥, 𝑦, 𝑧) + ∑ 𝑓𝑛(𝑥, 𝑦, 𝑧)
𝑡𝑛𝛼

𝛼𝑛𝑛!

∞

𝑛=0

, 0 < 𝛼 ≤ 1, 𝑥 ∈ 𝐼, 0 ≤ 𝑡 < 𝑅                   (19) 

To find approximate solution of the (3 + 1)-dimensional Telegraph equation, 𝑘-th truncated series 

𝑢𝑘(𝑥, 𝑦, 𝑧, 𝑡); 
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𝑢𝑘(𝑥, 𝑦, 𝑧, 𝑡) = 𝑓(𝑥, 𝑦, 𝑧) + ∑ 𝑓𝑛(𝑥, 𝑦, 𝑧)
𝑡𝑛𝛼

𝛼𝑛𝑛!

𝑘

𝑛=0

, 0 < 𝛼 ≤ 1, 𝑥 ∈ 𝐼, 0 ≤ 𝑡 < 𝑅                 (20) 

  

for 𝑢(𝑥, 𝑦, 𝑧, 𝑡)  is obtained. 

To obtain the values of the expression 𝑓𝑛(𝑥, 𝑦, 𝑧), a series expansion is performed in the equation 

𝑢(𝑥, 𝑦, 𝑧, 𝑡). Residual function 𝑅𝑒𝑠(𝑥, 𝑦, 𝑧, 𝑡) of the (3 + 1)-dimensional Telegraph equation is defined as 

𝑅𝑒𝑠𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑇𝑡
2𝛼𝑢 + 2𝑇𝑡

𝛼𝑢 + 3𝑢 − 𝑢𝑥𝑥 + 𝑢𝑦𝑦 + 𝑢𝑧𝑧                                                                             (21) 

and 𝑘-th residual function 𝑅𝑒𝑠𝑢𝑘(𝑥, 𝑦, 𝑧, 𝑡) is expressed as:  

𝑅𝑒𝑠𝑢𝑘(𝑥, 𝑦, 𝑧, 𝑡) = 𝑇𝑡
2𝛼𝑢𝑘 + 2𝑇𝑡

𝛼𝑢𝑘 + 3𝑢𝑘 − (𝑢𝑘)𝑥𝑥 + (𝑢𝑘)𝑦𝑦 + (𝑢𝑘)𝑧𝑧                                                  (22) 

The 𝑅𝑒𝑠𝑢2(𝑥, 𝑦, 𝑧, 𝑡) term, which will be solved in the first step of the residual power series algorithm is 

𝑅𝑒𝑠𝑢2(𝑥, 𝑦, 𝑧, 𝑡) = 𝑇𝑡
2𝛼𝑢2 + 2𝑇𝑡

𝛼𝑢2 + 3𝑢2 − (𝑢2)𝑥𝑥 + (𝑢2)𝑦𝑦 + (𝑢2)𝑧𝑧                                                    (23) 

inserting 

𝑢2(𝑥, 𝑦, 𝑧, 𝑡) = 𝑓(𝑥, 𝑦, 𝑧) + 𝑓1(𝑥, 𝑦, 𝑧)
𝑡𝛼

𝛼
+ 𝑓2(𝑥, 𝑦, 𝑧)

𝑡2𝛼

2𝛼2
                                                                            (24) 

to the equation yields 

𝑅𝑒𝑠𝑢2(𝑥, 𝑦, 𝑧, 𝑡)
= (1 − 𝛼)𝑡1−2𝛼(𝑢2)𝑡(𝑥, 𝑦, 𝑧, 𝑡) + 𝑡2−2𝛼(𝑢2)tt(𝑥, 𝑦, 𝑧, 𝑡) + 2𝑡1−𝛼(𝑢2)𝑡(𝑥, 𝑦, 𝑧, 𝑡)
+ 3𝑢2(𝑥, 𝑦, 𝑧, 𝑡) − (𝑢2)xx(𝑥, 𝑦, 𝑧, 𝑡) − (𝑢2)yy(𝑥, 𝑦, 𝑧, 𝑡) − (𝑢2)zz(𝑥, 𝑦, 𝑧, 𝑡)                    (25) 

So for 𝑅𝑒𝑠𝑢2(𝑥, 𝑦, 𝑧, 0) = 0 we obtain the first unknown coefficient as 

𝑓2(𝑥, 𝑦, 𝑧) = −3𝑓(𝑥, 𝑦, 𝑧) − 2𝑓1(𝑥, 𝑦, 𝑧) + 𝑓xx(𝑥, 𝑦, 𝑧) + 𝑓xx(𝑥, 𝑦, 𝑧) + 𝑓zz(𝑥, 𝑦, 𝑧)                                  (26) 

And the first approximate solution as 

𝑢2(𝑥, 𝑦, 𝑧, 𝑡) = 𝑓(𝑥, 𝑦, 𝑧) +
𝑡𝛼𝑓1(𝑥, 𝑦, 𝑧)

𝛼

+
𝑡2𝛼(−3𝑓(𝑥, 𝑦, 𝑧) − 2𝑓1(𝑥, 𝑦, 𝑧) + 𝑓xx(𝑥, 𝑦, 𝑧) + 𝑓yy(𝑥, 𝑦, 𝑧) + 𝑓zz(𝑥, 𝑦, 𝑧))

2𝛼2
                (27) 

Similarly, for 𝑘 = 3 

𝑅𝑒𝑠𝑢3(𝑥, 𝑦, 𝑧, 𝑡)
= (1 − 𝛼)𝑡1−2𝛼(𝑢3)𝑡(𝑥, 𝑦, 𝑧, 𝑡) + 𝑡2−2𝛼(𝑢3)tt(𝑥, 𝑦, 𝑧, 𝑡) + 2𝑡1−𝛼(𝑢3)𝑡(𝑥, 𝑦, 𝑧, 𝑡)
+ 3𝑢3(𝑥, 𝑦, 𝑧, 𝑡) − (𝑢3)xx(𝑥, 𝑦, 𝑧, 𝑡) − (𝑢3)yy(𝑥, 𝑦, 𝑧, 𝑡) − (𝑢3)zz(𝑥, 𝑦, 𝑧, 𝑡)                    (28) 

is obtained. Replacing 

𝑢3(𝑥, 𝑦, 𝑧, 𝑡) = 𝑓(𝑥, 𝑦, 𝑧) + 𝑓1(𝑥, 𝑦, 𝑧)
𝑡𝛼

𝛼
+ 𝑓2(𝑥, 𝑦, 𝑧)

𝑡2𝛼

2𝛼2
+ 𝑓3(𝑥, 𝑦, 𝑧)

𝑡3𝛼

6𝛼3
                                            (29) 

to the equation gives 
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𝑅𝑒𝑠𝑢3(𝑥, 𝑦, 𝑧, 𝑡)

= 3𝑓(𝑥, 𝑦, 𝑧) + 𝑓2(𝑥, 𝑦, 𝑧) − 𝑓xx(𝑥, 𝑦, 𝑧) − 𝑓yy(𝑥, 𝑦, 𝑧) − 𝑓zz(𝑥, 𝑦, 𝑧) +
1

6𝛼3
(6𝛼2(3𝑡𝛼

+ 2𝛼)𝑓1(𝑥, 𝑦, 𝑧) + 𝑡𝛼(3𝛼(3𝑡𝛼 + 4𝛼)𝑓2(𝑥, 𝑦, 𝑧) + 3(𝑡2𝛼 + 2𝑡𝛼𝛼 + 2𝛼2)𝑓3(𝑥, 𝑦, 𝑧)
− 6𝛼2((𝑓1)xx(𝑥, 𝑦, 𝑧) − (𝑓1)yy(𝑥, 𝑦, 𝑧) − (𝑓1)zz(𝑥, 𝑦, 𝑧)) − 3𝑡𝛼𝛼((𝑓2)xx(𝑥, 𝑦, 𝑧)

− (𝑓2)yy(𝑥, 𝑦, 𝑧) − (𝑓2)zz(𝑥, 𝑦, 𝑧)) − 𝑡2𝛼((𝑓3)xx(𝑥, 𝑦, 𝑧) − (𝑓3)yy(𝑥, 𝑦, 𝑧)

− (𝑓3)zz(𝑥, 𝑦, 𝑧))))                                                                                                                         (30) 

Now applying 𝑇𝛼 on both sides of it and equating to 0 for 𝑡 = 0 gives 

𝑓3(𝑥, 𝑦, 𝑧) = −3𝑓1(𝑥, 𝑦, 𝑧) − 2𝑓2(𝑥, 𝑦, 𝑧) + (𝑓1)xx(𝑥, 𝑦, 𝑧) + (𝑓1)yy(𝑥, 𝑦, 𝑧) + (𝑓1)zz(𝑥, 𝑦, 𝑧)               (31) 

Therefore, the 2nd RPS approximate solution of Telegraph equation is obtained as 

𝑢3(𝑥, 𝑦, 𝑧, 𝑡)

= 𝑓(𝑥, 𝑦, 𝑧) +
𝑡𝛼𝑓1(𝑥, 𝑦, 𝑧)

𝛼
+

𝑡2𝛼𝑓2(𝑥, 𝑦, 𝑧)

2𝛼2

+
𝑡3𝛼(−3𝑓1(𝑥, 𝑦, 𝑧) − 2𝑓2(𝑥, 𝑦, 𝑧) + (𝑓1)xx(𝑥, 𝑦, 𝑧) + (𝑓1)yy(𝑥, 𝑦, 𝑧) + (𝑓1)zz(𝑥, 𝑦, 𝑧))

6𝛼3
                         (32) 

In this manner, by applying the same procedure for 𝑘 = 4,5, … we obtain the following results 

respectively 

𝑓4(𝑥, 𝑦, 𝑧) = −3𝑓2(𝑥, 𝑦, 𝑧) − 2𝑓3(𝑥, 𝑦, 𝑧) + (𝑓2)xx(𝑥, 𝑦, 𝑧) + (𝑓2)yy(𝑥, 𝑦, 𝑧) + (𝑓2)xzz(𝑥, 𝑦, 𝑧)             (33) 

and 

𝑢4(𝑥, 𝑦, 𝑧, 𝑡)

= 𝑓(𝑥, 𝑦, 𝑧) +
𝑡𝛼𝑓1(𝑥, 𝑦, 𝑧)

𝛼
+

𝑡2𝛼𝑓2(𝑥, 𝑦, 𝑧)

2𝛼2
+

𝑡3𝛼𝑓3(𝑥, 𝑦, 𝑧)

6𝛼3

+
𝑡4𝛼(−3𝑓2(𝑥, 𝑦, 𝑧) − 2𝑓3(𝑥, 𝑦, 𝑧) + (𝑓2)xx(𝑥, 𝑦, 𝑧) + (𝑓2)yy(𝑥, 𝑦, 𝑧) + (𝑓2)xzz(𝑥, 𝑦, 𝑧))

24𝛼4
                      (34) 

Herewith, we have calculated 𝑓5(𝑥, 𝑦, 𝑧) and 𝑢5(𝑥, 𝑦, 𝑧, 𝑡) also. Now we present some 3D surface plots 

and a table to introduce e our numerical results. 
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Figure 1: Surface plot of 𝒖𝟓(𝒙, 𝒚, 𝒛, 𝒕) for 𝜶 = 𝟎. 𝟗𝟓, 𝒚 = 𝒛 = 𝟎. 𝟐𝟓. 

 

Figure 2: Surface plot of exact solution for 𝜶 = 𝟎. 𝟗𝟓, 𝒚 = 𝒛 = 𝟎. 𝟐𝟓. 

 

 

5. Conclusion 

In this case study, the residual power series method is implemented to obtain approximate solutions of 

(3+1)-dimensional time-fractional Telegraph equation. The numerical results are compared with the exact 

solutions and they reveal the fast convergence rate of the present method even after computing a few 

iterations. The method does not require any transformations, perturbations or discretization. It is therefore 

clear that the method is reliable, powerful and easy to implement when compared to other numerical 

methods. The results prove that the present method could be applied to various fractional linear and 

nonlinear models occurring in different branches of science and engineering. 
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Abstract 
In this study, we consider Sumudu transform (ST) which is an important integral 

transformation. It is well-known that using the ST makes the solution method very effective and 

simple. Moreover, ST can be adapted to many differential equations to obtain their solutions. In this 

context, this study addresses to obtain the approximate-analytical solution of the inhomogeneous 

Burgers equation of fractional order by using a method coupled with the ST. Also, by comparing 

the solutions with respect to the fractional parameter, we conclude that how the method coupled 

with the SD is effective and accurate.  
 
Keywords: Fractional differential equation, Sumudu transform, approximate-analytical solution, Caputo 
fractional derivative  
 
 
 

1. Introduction  

In the past decades, scientists at various branches have devoted considerable effort to find robust 

and stable approximate methods for solving fractional differential equations of physical interest. For 

instance, approximate-analytical methods have included homotopy analysis method (HAM) [1], 

Adomian decomposition method (ADM) [2, 3], reduced differential transform method (RDTM) [4, 

5], homotopy perturbation method (HPM) [6, 7], modified homotopy perturbation method (MHPM) 

[8, 9]. On the other hand, Sumudu transform techniques have been used successfully by some 

researchers [10-12].  In this article, the HPM coupled with the Sumudu transform has been 

considered in order to obtain solutions of the inhomogeneous Burgers equation of fractional order. 

Caputo derivative operator has been understood as a fractional operator in this paper.  

 

Since there are several types of fractional derivative and integral operators [13-17] the researchers 

can choose the most comfortable operator to produce the better results of the real-life model 

problems. This appears in the literature as one of the illustrative advantages of the fractional 
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calculus. For example, some researchers [18-23] have pointed out that which fractional derivative 

operator is most suitable in modeling. Moreover, in the theory of fractional operators with singular 

and non-singular kernels and their applications [7, 24-29] and the references stated in these articles. 

 

In this study, we consider the approximate-analytical solutions of fractional nonlinear Burgers 

equation in the frame of fractional derivative in the Caputo setting. In general case it is difficult to 

obtain the exact solutions of fractional order nonlinear differential equations, and then numerical 

solution methods are used to get their solutions. For this reason, theory of numerical and 

approximate-analytical solution methods play an important role in solving these mentioned 

problems. 

 

2. Preliminaries 

In this section, we give some definitions related to the paper.  

Definition 2.1. The Sumudu transform of a function   ,f t  defined for all real numbers 0,t   is 

the function   ,K s  defined by [30]  

       
0

1
exp .


 

    
 t

f t K s f t dt
s s

S   (1) 

Definition 2.2. The Caputo time-fractional derivative is given as [31]:  

  
 

     
1

0

0

1
, 0,

  

 

 
  

  
t

C
tD f t t k f k dk t   (2) 

where  1 , , 1 .     f L a b   

Definition 2.3. The Sumudu transform of the Caputo fractional derivative is given by [32] 

        1 1
0

1 0

, 1 1 .


   



    

 

 
         

 
C

t

t

D f t s s K s s D f tS   (3) 
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3. Sumudu Perturbation Approximate-Analytical Method 

To investigate the fundamental solution method we take the following general form of fractional 

nonlinear PDE [6, 33]: 

             0 , , , , , , 0,1 0, , 1 ,                 
C

tD u x t L u x t N u x t x t x t T   (4) 

with initial condition 

   ,0 , 0,1,..., 1,



  


  



u
x x

t
   (5) 

and the boundary conditions 

       0 10, , 1, , 0,u t t u t t t       (6) 

where 0, ,    and 1  are known functions. In Eq. (4), we represent the linear part of the 

equation with  . ,L  the nonlinear part with  .N  and 0
C

tD
  shows the Caputo fractional 

derivative. We have considered the value of   as 1 when constructing the homotopy due to the 

nature of the problem we used in the study. 

We define the recursive approximations for solving the suggested problems (4)-(6). Using the 

Sumudu transform of the Caputo derivative in Eq. (3), we define the      , , u x t s K x sS   for 

Eq. (4). Then we can obtain the transformed functions for the Caputo fractional derivative  

           , ,0 , , , ,          
K x s u x s L u x t N u x t s x sS   (7) 

where     , , .  x t x sS  Also considering the Sumudu transforms of the boundary conditions 

we get 

          0 10, , 1, , 0.    t K s t K s sS S   (8) 

After that, applying the perturbation method we achieve the solution of Eqs. (4)-(6) as 

    
0

, , , 0,1, 2, ,









    K x s K x s   (9) 

The nonlinear part in Eq. (4) can be computed from  
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0

, , ,








     N u x t x t   (10) 

and the components  , x t  are given in [34] as  

  0 1
0 0

1
, ,..., , 0,1,2,...

!



  



 
 



 

   
      

 i
i

i

u u u N u   (11) 

Substituting Eqs. (9) and (10) into Eq. (7), we get the recursive relation which gives the solution 

for the Caputo operator: 

          
0 0 0

, ,0 , , , .     
  

  


  

  

   
             

    K x s u x s L u x t x t s x sS   (12) 

Then, by solving Eqs. (12) with respect to ,  we identify the following Caputo homotopies: 

                 0
0: , ,0 , ,   K x s u x s x s    (13) 

             1
1 0 0: , , , ,     
 K x s s L u x t x tS  

      2
2 1 1: , , , ,     
 K x s s L u x t x tS  

  

      1
1: , , , .

     
 n
n n nK x s s L u x t x tS  

Considering the case of 1,   we obtain that Eq. (13) shows the approximate solution for 

problem (12), then the solution is 

    
0

, , .
 

  
n

n x s u x s   (14) 

Finally, by applying the inverse Sumudu transform of Eq. (14), we obtain the approximate 

solution of Eq. (4), 

       1, , , .  n nu x t u x t x sS   (15) 

 

288



 

INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 

3-5 July 2019, Istanbul, Turkey 
 

4. Main Results and Discussion 

In this part of the study, we obtain a solution of the following Burgers equation:   

 
 

2 2

0 2

2
, 2 2, 0, , 0 1,

3


 



 
        

   
C

t

u u t
D u x t x t x R

x x
  (16) 

with initial condition 

  2,0 .u x x    (17) 

Using the Sumudu transform of the Caputo derivative in Eq. (3), we can obtain the transformed 

functions for the Caputo fractional derivative for Eq. (16):  

  
 

2 2
2

2

2
, 2 2 .

3


 



     
        

       

 u u t
K x s x s s x

x x
S S   (18) 

We get the recursive relation which gives the solution for the Caputo operator: 

  
 

2 2
2

2
0

2
, 2 2 .

3


   


 





     
         

       
  u u t

K x s x s s x
x x

S S   (19) 

Then, by solving Eqs. (12) with respect to ,  we identify the following Caputo homotopies: 

            

 
 

 

   
 

2
0 2 2 2

0

2 2
0

2
: , 2 2 2 2 1 ,

3

, 2 1 ,
1


 







  
         

   

   
 

 t
K x s x s x x s x s

t
u x t x t x

S

   

       

   

   
   

2
1 20 0

1 2

2

1

: , 2 1 2 ,

2
, 2 1 ,

1 2 1

  

 

 

  
        

  

   
   

 u u
K x s s x s s

x x

t t
u x t x

S

     
(20) 

 

 
 

2
2 21 1

2 2

2

2

: , 2 ,

2
, .

2 1

 





  
     

  


 

 u u
K x s s s

x x

t
u x t

S
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Considering the case of 1,   we obtain that Eq. (20) shows the approximate solution for 

problem (16), then the solution is 

     2 2

0

, , 2 .
 

   
n

n x s u x s x s   (21) 

Finally, by applying the inverse Sumudu transform of Eq. (14), we obtain the solution of Eq. (16), 

       1 2 2, , , .    n nu x t u x t x s x tS   (22) 

5. Conclusion 

In this study, we have obtained the approximate-analytical solution of the nonhomogeneous Burgers 

equation via Sumudu transformation perturbation method. This method is a good mathematical 

technique to obtain approximate solutions for obtaining the solutions of fractional PDEs. In 

addition, this method can gain different meanings depending on the field. Moreover, the mentioned 

method has given analytical solution of the Burgers equation as seen in Eq. (22).  
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Abstract. In this paper, we study the existence of entropy solution for quasillinear para-
bolic problem in bounded open subset Ω of RN , with data and u0 in L1(Ω). For this we
use the Schauder fixed-point method. The results of the problem discussed can be applied
to a variety of different fields in applied mathematics for example in elastic mechanics, image
processing and electro-rheological fluid dynamics, etc..
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1. Introduction

In this article is devoted to presenting the results of existence of solution for a quasilinear
parabolic problem with data in L1, the main difficulty facing one who is interested in such prob-
lems is that the classical theories of existence, either using variational methods or compacite
methods, are not applicable. Hence the need to use new techniques to prove the existence and
uniqueness of solutions for such problems.
In the last years, different methods have been applied to study the existence of the weak so-
lution of elliptic problems with L1 under linear boundary conditions see [4],[6], [11] and [14].
The corresponding parabolic case equations have also been studied by many authors, see for
instance [5],[8], [9] and [14].
Besides, partial differential equation (PDE) methods in image processing have proven to be
fundamental tools for image diffusion and restoration. We refer the readers to [[1],[2]] and
references therein.
The aim of this paper, we treat the existence of solution u for the following quasi-linear para-
bolic problem of the type

(1.1)





ut − div(A(u)Ou) + λ|u|p−2u = f(t, x, u) in Q = [0, T ]× Ω,
u = 0 on Σ = [0, T ]× ∂Ω,
u(0, .) = u0(.) in Ω.

In the problem (1.1). Where λ > 0 and T > 0, Ω is a bounded open spatial domain in RN (N ≥
2) with a lipschitz boundary denoted by ∂Ω, and u0 ∈ L1(Ω). The function γ(u) = λ|u|p−2u
such that γ : R → R is a continuous increasing function with γ(0) = 0 and the operator
A : R →MN (R) (or MN (R) denotes the set of N × N matrices with real coefficients), such
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that satisfies the following assumption for some numbers 0 < α < β <∞:

∀s ∈ R, A(s) = (ai,j(s))i,j=1,...,N where ai,j ∈ L∞(R) ∩ C(R,R),(1.2)

∃ α > 0, such that A(s)ξ.ξ ≥ α |ξ|2 , ∀ξ ∈ RN ,∀s ∈ R,(1.3)
∃ β > 0, such that ‖ai,j‖L∞(R) ≤ β, ∀i, j ∈ {1, ...., N} .(1.4)

We will assume that f : Q × R → R is a Carathèodory function such that the following
hypotheses hold

|f(t, x, s)| ≤ c(t, x) + σ|s|,(1.5)
sf(t, x, s) ≥ 0,(1.6)

for almost every (t, x) ∈ Q, for every s ∈ R, where c is a positive function in L2(Q) and σ > 0.
In this work we are studying the existence of weak solution of the quasilinear parabolic problem
(1.1) using the truncation technique and the Schauder fixed point theory see [2],[10].
This result generalizes an analog of this work were made by N. Alaa and all [2] with an increase
of γ but given L1 and, on the other hand, to extend it to the case f(t, x, u) in L1 data.
To prove our main result, we will proceed by three steps: the first step, we approximate the
problem by the fixed point method. In the second step, we estimate on the approximate
solution.
In the last step, we study the asymptotic behaviour of the approximate solution as n go to
infinity we use the equi-integrable theorem.
The difficulty of this work lies in the fact that the variational method can not be used because
f is in L1.

2. Main results

Before tackling the main problem, we clearly state our definition of weak solution to the
quasilnear parabolic problem.

Definition 2.1. Let 1 < p ≤ N a fixed number with p > 2 − 1

N
. We call u a weak solution

of the problem (1.1) in Q, if u ∈ L2([0, T ] , H1
0 (Ω)) ∩ C([0, T ] , L1(Ω)), u(0, .) = u0 for all

ϕ ∈ C∞0 (Q) we have

(2.1)
∫

Q

− uϕtdxdt+

∫

Q

A(u)∇u∇ϕdxdt+

∫

Q

λ |u|p−2 uϕdxdt =

∫

Q

f(t, x, u)ϕdxdt,

where f(t, x, u) and γ(u) ∈ L1(Q).

The main result of this paper is the following theorem:

Theorem 2.2. Under the assumptions (1.2) − (1.6) satisfies, then for all u0 ∈ L1(Ω), there
exists a weak solution u of problem (1.1) in the sense defined in (2.1).

Now we shall prove our main result.

3. Proof of the Theorem 2.2

The proof of the theorem consists in the three steps in the first step we solve an approximate
problem, in the second step we get estimates on the approximated solutions these estimates
allow us and in the third step to go to the limit.
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3.1. First step: solving an approximated problem. For n ∈ N let us define the following
approximation of un,0 and fn, γn. Set

(3.1) fn(t, x, p) =

{
f(t, x, p) if |f(t, x, p)| ≤ n,
n sign(f(t, x, p)) if |f(t, x, p)| > n.

(3.2) γn(p) =

{
γ(p) if |γ(p)| ≤ n,
0 if |γ(p)| > n.

And (un,0)n∈N be sequences in L2(Ω) such that (un,0)→ (u0) in L1(Ω).

Remark
|fn(t, x)| ≤ n and |γn(p)| ≤ n,
so γn, fn ∈ L∞(Q) ↪→ Lp(Q), p > n ≥ 1.

We consider the sequence of approximate problems

(3.3)





(un)t − div(A(un)Oun) + γn(un) = fn(t, x, un) in Q = [0, T ]× Ω,
un = 0 on Σ = [0, T ]× ∂Ω,
un(0, .) = un,0(.) in Ω.

We show that for all n ∈ N∗ and fn(t, x, un) ∈ L2(Q), un,0 ∈ L2(Ω) there exists un ∈
L2([0, T ] , H1

0 (Ω))∩C([0, T ] , L2(Ω)) and (un)t ∈ L2([0, T ] , H−1(Ω)) verify for all v ∈ L2([0, T ] , H1
0 (Ω)),

we have

T∫

0

〈(un)t, v〉H−1(Ω),H1
0 (Ω) dt+

T∫

0

∫

Ω

A(un)∇un∇vdxdt

+

T∫

0

∫

Ω

γn(un)vdxdt =

T∫

0

∫

Ω

fn(t, x, un)vdxdt,

(3.4)

We will show the existence of a weak solution of the problem (3.3) by the classical Schauder’s
fixed point theorem. Let us show now that the nonlinear application F defined by

F : L2([0, T ] , H1
0 (Ω)) → L2([0, T ] , H1

0 (Ω))
vn 7→ F (vn) = G ◦ Fn(vn) = vn,

solution of
T∫

0

〈(vn)t, ϕ〉H−1(Ω),H1
0 (Ω) dt+

T∫

0

∫

Ω

A(vn)∇vn∇ϕdxdt

+

T∫

0

∫

Ω

γn(vn)ϕdxdt =

T∫

0

∫

Ω

fn(t, x, vn)ϕdxdt,∀ϕ ∈ L2(]0, T [, H1
0 (Ω)),

is completely continous application of L2([0, T ] , H1
0 (Ω)) in L2([0, T ] , H1

0 (Ω)).
Where the operator (Fn) is defined by

Fn : L2([0, T ] , H1
0 (Ω)) → L2([0, T ] , H−1(Ω))

vn 7→ Fn(vn) = (vn)t + div(A(vn)Ovn) = fn(t, x, vn)− γn(vn) = f̃n(vn),
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is continous and compact (natural injection), and G is the Green’s operator defined by :

G : L2([0, T ] , H−1(Ω)) → L2([0, T ] , H1
0 (Ω))

f̃n(vn) = wn 7→ G(wn) = vn,

is continous because the operator of Green is isomorphism of L2([0, T ] , H−1(Ω)) in L2([0, T ] , H1
0 (Ω)).

Therefore, the operator F = G ◦ Fn is completely continous.
The existence of a fixed point of G ◦Fn is an immediate consequence of Schauder’s fixed point
theorem.
To apply the theorem of Schauder’s, you have to choose a closed convex generally suitable a
closed ball

C =
{
v ∈ L2([0, T ] , H1

0 (Ω)) such that ‖v‖L2([0,T ],H1
0 (Ω)) ≤M

}
,

where M is a constant to be determined subsequently, is therefore,

F : L2([0, T ] , H1
0 (Ω)) → L2([0, T ] , H1

0 (Ω))
vn 7→ F (vn) = vn,

transforms the bounds of L2([0, T ] , H1
0 (Ω)) into relatively compact sets in L2([0, T ] , H1

0 (Ω)),
the set C is a closed convex of L2([0, T ] , H1

0 (Ω)) and bounded, so F is relatively compact.
We show that R(F ) = {F (vn), ∀vn ∈ L2([0, T ], H1

0 (Ω))} is bounded in L2([0, T ] , H1
0 (Ω)), as

F (vn) is solution of the variational problem.

T∫

0

〈(F (vn))t, ϕ〉H−1(Ω),H1
0 (Ω) dt+

T∫

0

∫

Ω

A(vn))∇F (vn)∇ϕdxdt

+

T∫

0

∫

Ω

γn(vn)ϕdxdt =

T∫

0

∫

Ω

fn(t, x, vn)ϕdxdt,∀ϕ ∈ L2([0, T ] , H1
0 (Ω)).

(3.5)

We choose F (vn) = ϕ in (3.5), we obtain

T∫

0

〈F (vn)t, F (vn)〉H−1(Ω),H1
0 (Ω) dt+

T∫

0

∫

Ω

A(vn)∇F (vn)∇F (vn)dxdt

+

T∫

0

∫

Ω

γn(vn)F (vn)dxdt =

T∫

0

∫

Ω

fn(t, x, vn)F (vn)dxdt.

(3.6)

By using Cauchy-Schwarz inequality in (3.6), we have

1

2
‖vn(T )‖22 −

1

2
‖vn(0)‖22 +

T∫

0

∫

Ω

A(vn) |∇F (vn)|2 dxdt ≤
∫

Q

|γn(vn)| |F (vn)| dxdt

+

∫

Q

|fn(t, x, vn)| |F (vn)| dxdt,
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by, using generalized Young’s inequality and the hypothesis (1.3), we get

α

T∫

0

∫

Ω

|∇F (vn)|2 dxdt ≤ 1

2
‖vn(0)‖22 + ‖fn(t, x, vn)‖L2(Q) ‖F (vn)‖L2([0,T ],H1

0 (Ω))

+ ‖γn(vn)‖L2(Q) ‖F (vn)‖L2(]0,T [,H1
0 (Ω))

≤ 1

2
‖vn(0)‖22 +

1

2ε
‖fn(t, x, vn)‖2L2(Q) +

ε

2
‖F (vn)‖2L2([0,T ],H1

0 (Ω))

+
1

2ε
‖γn(vn)‖2L2(Q) +

ε

2
‖F (vn)‖2L2([0,T ],H1

0 (Ω)) .

We conclude that,

(α− ε) ‖F (vn)‖2L2(]0,T [,H1
0 (Ω)) ≤

1

2
‖vn(0)‖22 +

1

2ε
‖fn(t, x, vn)‖2L2(Q)(3.7)

+
1

2ε
‖γn(vn)‖2L2(Q) .

Therefore the sequence (F (vn))n∈N is bounded in L2([0, T ] , H1
0 (Ω)). Next we show that

{(F (vn)t)n∈N , F (vn) ∈ R(F )} is bounded in L2([0, T ], H−1(Ω)). We have

T∫

0

〈F (vn)t, F (vn)〉H−1(Ω),H1
0 (Ω) dt+

T∫

0

∫

Ω

A(vn)∇F (vn)∇F (vn)dxdt

+

T∫

0

∫

Ω

γn(vn)F (vn)dxdt =

T∫

0

∫

Ω

fn(t, x, vn)F (vn)dxdt.

By using hypothesis (1.2) and (1.4), we get

‖F (vn)t‖L2([0,T ],H−1(Ω)) ‖F (vn)‖L2([0,T ],H1
0 (Ω))

≤ β ‖F (vn)‖2L2([0,T ],H1
0 (Ω)) + ‖fn(t, x, vn)‖L2(Q) ‖F (vn)‖L2([0,T ],H1

0 (Ω))

+ ‖γn(vn)‖L2(Q) ‖F (vn)‖L2([0,T ],H1
0 (Ω)) .

Eventually,

‖F (vn)t‖L2([0,T ],H−1(Ω))

≤ β ‖F (vn)‖L2([0,T ],H1
0 (Ω)) + ‖fn(t, x, vn)‖L2(Q) + ‖γn(vn)‖L2(Q) .

Therefore the sequence {(F (vn)t)n∈N , F (vn) ∈ R(F )} is bounded in L2([0, T ] , H−1(Ω)). As
(F (vn))n∈N is bounded in L2([0, T ] , H1

0 (Ω)) and the sequence (F (vn)t)n∈N is bounded in L2([0, T ] , H−1(Ω))
according to the lemma of compactness then gives thatR(F ) is relatively compact in L2([0, T ] , L2(Ω)),
which gives the compactness of F . For (3.7), we have F (C) ⊂ C, it is enough to take

M =
1

2(α− ε) ‖vn,0‖
2
2 +

1

2(α− ε)ε ‖fn(t, x, vn)‖2L2(Q) +
1

2(α− ε)ε ‖γn(vn)‖2L2(Q) .

Therefore the hypotheses of Schauder’s fixed point theorem are satisfied consequently there
exists at least one solution to the problem in the set C.
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3.2. Second step: a priori estimates. In thise step we proof the estimates of solution
(un)n∈N the problem (3.3).
For a given constant k > 0 we define the truncated function Tk : R→ R as

Tk(s) =




−k for s < −k,
s for |s| ≤ k,
k for s > k.

For a function u = u(x), x ∈ Ω, we define the truncated function Tku pointwise, i.e., for every
x ∈ Ω the value of (Tku) at x is just Tk(u(x)). Observe that

(3.8) lim
k→0

1

k
Tk(s) = sign(s) =





1 if s > 0,
0 if s = 0,
−1 if s < 0.

Let the function Φk : R→ R such that, Φk ≥ 0, Φk ∈ L∞(R) and |Φk(x)| ≤ k |x|,

Φk(x) =

x∫

0

Tk(s)ds.

(Φk it is the primitive function of Tk). We have

〈vt, Tk(v)〉 =
d

dt



∫

Ω

Φk(v)dx


 ∈ L1(Q).

What implies that
T∫

0

〈vt, Tk(v)〉 =

∫

Ω

Φk(v(T ))dx−
∫

Ω

Φk(v(0))dx,

where 〈., .〉 denotes the duality between H−1(Ω) and H1
0 (Ω).

We choose v = Tk(un) as test function in (3.4), obtaining





∫
Ω

Φk(un(T ))dx−
∫
Ω

Φk(un(0))dx+
T∫
0

∫
Ω

A(un)∇un∇Tk(un)dxdt

+
∫
Q

γn(un)Tk(un)dxdt =
∫
Q

fn(t, x, un)Tk(un)dxdt,∀Tk(un) ∈ L2([0, T ] , H1
0 (Ω)).

By using hypothesis (1.3), we obtain

T∫

0

∫

Ω

An(un)∇un∇Tk(un)dxdt =

T∫

0

∫

Ω

A(un)∇un∇unT
′
k(un)dxdt ≥ α

T∫

0

∫

Ω

|∇un|2 T
′
k(un)dxdt ≥ 0,

and by sf(t, x, s) ≥ 0, we have

T∫

0

∫

Ω

γn(un)Tk(un)dxdt ≤
∫

Ω

Φk(un(0))dx,
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on the other hand, we have γn(un) = λ|un|p−2un ≥ 0 because p > 1 then,
T∫

0

∫

Ω

A(un)∇un∇Tk(un)dxdt ≤
∫

Ω

Φk(un(0))dx,∀Tk(un) ∈ L2([0, T ] , H1
0 (Ω)).

and, ∫

Q

fn(t, x, un)Tk(un)dxdt ≤
∫

Ω

Φk(un(0))dx.

For all t ∈ [0, T ], we definite the set QT by

QT = {(t, x) ∈ Q : un > k} ∪ {(t, x) ∈ Q : un < −k} ∪ {(t, x) ∈ Q : −k ≤ un ≤ k} .
By thise definition of QT , we have




∫
QT

An(un)∇un∇unT ′k(un)dxdt =
∫

{(t,x)∈Q : |un|≤k}
A(un)∇un∇unT ′k(un)dxdt

≤
∫
Ω

Φk(un(0))dx,

so we have, ∀k ∈ R+,

(3.9)
∫

{(t,x)∈Q : |un|≤k}

|A(un)∇un∇un| dxdt ≤ k
∫

Ω

|un,0| dx.

We will now prove that, ∫

{(t,x)∈Q : |un| ≤ k}

A(un)∇un∇undxdt ≤ k ‖u0‖L1(Ω) ,

by hypothesis (1.3), we obtain

(3.10) α

∫

{(t,x)∈Q : |un| ≤ k}

|∇un|2 dxdt ≤ k ‖u0‖L1(Ω) ,

on the other hand, by (3.8), we obtain:

(3.11)
∫

{(t,x)∈Q:|un|>0}

|γn(un)| dxdt ≤ ‖u0‖L1(Ω) ,

and,

(3.12)
∫

{(t,x)∈Q:|un|>0}

|fn(t, x, un)| dxdt ≤ ‖u0‖L1(Ω) .

New we prove that (un)n∈N is bounded in C
(
[0, T ] , L1 (Ω)

)
.

T∫

0

〈(un)t , Tk (un)〉H−1(Ω),H1
0 (Ω) dt ≤

∫

QT

γn(un)Tk(un)dxdt+

∫

QT

fn(t, x, un)Tk(un)dxdt,

we have also, for every t in [0, T ]
∫

Ω

Φk(un(t))dx−
∫

Ω

Φk(un(0))dx ≤ k

∫

{(t,x)∈Q:|un|>k}

|γn(un)| dxdt+ k

∫

{(t,x)∈Q:|un|>k}

|fn(t, x, un)| dxdt,
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we now that Φk(s) ≥ |s| − 1 we deduce that, for every t in [0, T ],
∫

Ω

|un(t)| dx ≤
∫

Ω

1dx+ k

∫

{(t,x)∈Q:|un|>k}

|γn(un)| dxdt+ k

∫

{(t,x)∈Q:|un|>k}

|fn(t, x, un)| dxdt+ k ‖un,0‖L1(Ω)

≤ meas(Ω) + C ‖u0‖L1(Ω) ,

which proves that un is bounded in L2
(
[0, T ] , H1

0 (Ω)
)
and in C

(
[0, T ] , L1 (Ω)

)
, on the other

hand, we get ∫

Ω

Φk(un(T ))dx+ α

∫

QT

|∇Tk (un)|2 dxdt ≤
∫

Ω

Φk(un(0))dx,

∫
Ω

Φk(un(T )) ≥ 0 and for all s ≥ 0, |Φk(s)| ≤ k |s|, we have

(3.13) α

∫

QT

|∇Tk (un)|2 dxdt ≤ k ‖u0‖L1(Ω) .

That Tk (un) is bounded in L2
(
[0, T ] , H1

0 (Ω)
)
for every k > 0.

Now we prove that div (A(vn)∇un) is bounded in L2
(
[0, T ] , H−1 (Ω)

)
. By using hypothesis

(1.4) and Cauchy-Schwarz inequality, we get

|〈−div (A(un)∇un, Tk (un)〉| =

∣∣∣∣∣∣∣

∫

QT

A(un)∇un∇Tk (un) dxdt

∣∣∣∣∣∣∣
≤ β ‖∇un‖L2(Q) ‖∇Tk (un)‖L2(Q)

≤ C.

Since

‖−div (A(un)∇un)‖2L2([0,T ],H−1(Ω)) =

T∫

0

‖−div (A(un)∇un)‖2H−1(Ω) dt

=

T∫

0

sup
‖Tk(un)‖

L2([0,T ],H1
0(Ω))≤1

|〈−div (A(un)∇un) , Tk (un)〉|

≤ C.

We know that div (A(un)∇un) is bounded in L2
(
[0, T ] , H−1 (Ω)

)
.

Finally, denoting (un)t = fn(t, x, un) + div (A(un)∇un) − γn(un) we observe that fn +
div (A(un)∇un) + γn(un) is bounded in L2

(
[0, T ] , H−1 (Ω)

)
+ L1(Q) and by (3.10), (un)n∈N

is bounded in L2
(
[0, T ] , H1

0 (Ω)
)
.

3.3. Third step: passage to the limit. We show that (un)n∈N the solution approache the
problem (3.4) converges to the solution of the original problem (2.1). By the estimate (3.11)
and (3.12), we see that (γn(un))n∈N is bounded in L1(Q) and (fn(t, x, un))n∈N is bounded in
L1(Q). The sequence (un)n∈N is bounded in L2([0, T ] , H1

0 (Ω)) and also the sequence ((un)t)n∈N
is bounded in L2([0, T ] , H−1(Ω)) + L1(Q). Therefore, using Aubin-type compactness lemma
[16], that (un)n∈N is relatively compact in L2([0, T ] , L2(Ω)), thus we can deduce

un → u in L2([0, T ] , L2(Ω)),

8 300



on the other hand (un)n∈N is bounded in L2([0, T ] , H1
0 (Ω)) then, we can extracts a subsequence,

still denoted by (un)n∈N such that:

un → u weakly in L2([0, T ] , H1
0 (Ω)),

and
∇un → ∇u weakly in (L2([0, T ] , L2(Ω)))N,

and ((un)t)n∈N is bounded in L2([0, T ] , H−1(Ω)) and in L1(Q) we can extract a subsequence,
still denoted by ((un)t)n∈N such that

(un)t → ut weakly in L2([0, T ] , H−1(Ω)),

and either un,0 a sequence of L2(Ω) such that

‖un,0‖L1(Ω) ≤ ‖u0‖L1(Ω) ,

and

(3.14) un,0 −→ u0 strongly in L1(Ω).

We will show that

(3.15) γn(un)→ γ(u) strongly in L1(Q),

we have,

‖γn(un)‖L1(Q) =

∫

Q

|γn (un)| dxdt

≤
∫

{(t,x)∈Q:|un|>0}

|γn (un)| dxdt

≤ ‖u0‖L1(Ω) .

Then,

sup

∫

Q

γn (un) dxdt < +∞,

knowing that,

0 ≤
∫

Q

|γn(un)| dxdt, because p > 1,

for each (t, x) ∈ Q, we pose
lim

n→+∞
inf γn(un) = γ(u),

by the Fateau’s lemma, we have γ(u) in L1(Q).
As that

un → u weakly in L2([0, T ] , L2(Ω)),

on the other hand, we have

∇un → ∇u in (L2([0, T ] , L2(Ω)))N,
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we note that

∫

{(t,x)∈Q:|γn(un)|≤n}

|γn(un)− γ(u)| dxdt

≤
∫

Q

|γn(un)− γ(u)| dxdt→ 0 when n→ +∞.

So,

γn(un)→ γ(u) when n→ +∞ on {(t, x) ∈ Q : |γn(un)| ≤ n} .

For every n ∈ N, we have

meas({(x, t) ∈ Q : |γn(un)| > n}) ≤ 1

n

∫

Q

|γn(un)| dxdt

≤ 1

n
‖γn(un)‖L1(Q)

≤ c

n
→ 0 when n→ +∞,

thus {(t, x) ∈ Q : |γn(un)| > n} is the zero measurement set where (γn(un))n∈N may not con-
verge to (γ(u)), which shows that

γn(un)→ γ(u) almost everywhere in Q.

For proof (3.15) we show that the sequence (γn(un))n∈N is equi-integrable.
Let δ > 0 and A be a measurable subset belonging to [0, T ]× Ω, we define the following sets,

Bδ = {(t, x) ∈ Q : |un| ≤ δ},(3.16)
Fδ = {(t, x) ∈ Q : |un| > δ},(3.17)

∫

A

|γn(un)| dxdt =

∫

A∩Bδ

|γn(un)| dxdt+

∫

A∩Fδ

|γn(un)| dxdt

≤
∫

A∩Bδ

|γn(un)| dxdt+ ‖u0‖L1(Ω)

→ 0 when meas(A)→ 0.

Using the generalized Hölder’s inequality and Poincaré inequality, we get
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∫

A

|γn(un)| dxdt ≤



∫

A

|λ|2 dxdt




1
2



∫

Bδ

|un|(p−1)2 dxdt




1
2

+

∫

A

|γn(un)| dxdt

≤
(
|λ|2meas(A)

) 1
2



∫

Bδ

|∇un|2 dxdt




(p−1) 1
2

+

∫

A

|γn(un)| dxdt

≤
(
|λ|2meas(A)

) 1
2

(
k

α

(
‖u0‖L1(Ω)

))(p−1) 1
2

+

∫

A

|γn(un)| dxdt

→ 0 when meas(A)→ 0.

Which shows that (γn(un))n∈N is equi-integrable. By using Vitali’s theorem, we obtain:

(3.18) γn(un)→ γ(u) strongly in L1(Q).

Now we prove that
fn(t, x, un)→ f(t, x, u) strongly in L1(Q),

we have,

‖fn(t, x, un)‖L1(Q) =

∫

Q

|fn(t, x, un)| dxdt

≤
∫

{(t,x)∈Q:|un|>0}

|fn(t, x, un)| dxdt

≤ ‖u0‖L1(Ω) ,

then,

sup

∫

Q

fn(t, x, un)dxdt < +∞.

By (1.6) knowing that, 0 ≤ fn(t, x, un) for each (t, x) ∈ Q, we pose

lim
n→+∞

inf fn(t, x, un) = f(t, x, u),

by the Fateau’s lemma, we have f(t, x, u) in L1(Q). As that

un → u weakly in L2([0, T ] , L2(Ω)),
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on the other hand, we have

∇un → ∇u in (L2([0, T ] , L2(Ω)))N,

we note that,
∫

{(t,x)∈Q:|fn(t,x,un)|≤n}

|fn(t, x, un)− f(t, x, u)| dxdt

≤
∫

Q

|fn(t, x, un)− f(t, x, u)| dxdt→ 0 when n→ +∞.

So,

fn(t, x, un)→ f(t, x, u) when n→ +∞ on {(t, x) ∈ Q : |f(t, x, u)| ≤ n} .

For every n ∈ N, we have

meas({(x, t) ∈ Q : |fn(t, x, un)| > n}) ≤ 1

n

∫

Q

|fn(t, x, un)| dxdt

≤ 1

n
‖fn(t, x, un)‖L1(Q)

≤ c

n
→ 0 when n→ +∞,

thus {(t, x) ∈ Q : |fn(t, x, un)| > n} is the zero measurement set where (fn(t, x, un))n∈N may
not converge to (f(t, x, u)), which shows that

fn(t, x, un)→ f(t, x, u) almost everywhere in Q.

For proof (3.15) we show that the sequence (fn(t, x, un))n∈N is equi-integrable.
By the definitions of the sets (3.16) and (3.17), we get

∫

A

|fn(t, x, un)| dxdt =

∫

A∩Bδ

|fn(t, x, un)| dxdt+

∫

A∩Fδ

|fn(t, x, un)| dxdt

≤
∫

A∩Bδ

|fn(t, x, un)| dxdt+ ‖u0‖L1(Ω)

→ 0 when meas(A)→ 0.

Let δ > 0 be large enough. Using the generalized Hölder’s inequality and Poincaré inequality,
we have

∫

A

|fn(t, x, un)| dxdt =

∫

A∩Bδ

|fn(t, x, un)| dxdt+

∫

A∩Fδ

|fn(t, x, un)| dxdt,
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therefore

∫

A

|fn(t, x, un)| dxdt ≤
∫

A∩Bδ

(c(x, t) + σ |un|) dxdt+

∫

A∩Fδ

|fn(t, x, un)| dxdt

≤
∫

A

c(x, t)dxdt+ σ

∫

Q

|∇Tδ(un)| dxdt

+

∫

A∩Fδ

|fn(t, x, un)| dxdt

≤
∫

A

c(x, t)dxdt+ σ (meas(A))
1
2



∫

QT

|∇Tδ(un)|2 dxdt




1
2

+

∫

A∩Fδ

|fn(t, x, un)| dxdt

≤ K1 + C1

(
k

α
‖u0‖L1(Ω)

) 1
2

+

∫

A∩Fδ

1

|un|
|unfn(t, x, un)| dxdt

≤ K2 +

∫

A∩Fδ

1

δ
|unfn(t, x, un)| dxdt

≤ K2 +
1

δ



∫

A∩Fδ

|un|2 dxdt




1
2


∫

A∩Fδ

|fn(t, x, un)|2 dxdt




1
2

→ 0 when meas(A)→ 0.

Which shows that (fn(t, x, un))n∈N is equi-integrable. By using Vitali’s theorem, we get

(3.19) fn(t, x, un)→ f(t, x, u) strongly in L1(Q).

Since un ∈ C([0, T ] , L2(Ω)), in order to see that u ∈ C([0, T ] , L1(Ω)), we only have to prove
that

un → u in C([0, T ] , L1(Ω)).
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To do this fix τ ∈ [0, T ]. Choosing Tk(un−um)1{[0,τ [} as test function in the weak formulation
of un and −Tk(un − um)1{[0,τ [} in that of um with τ ≤ T , we get

∫

Ω

Φk(un(τ)− um(τ))dx−
∫

Ω

Φk(un(0)− um(0))dx

+

τ∫

0

∫

Ω

A(un − um)∇(un − um)∇Tk(un − um)dxdt

+

τ∫

0

∫

Ω

λ
[
|un|p−2 un − |um|p−2 um

]
Tk(un − um)dxdt

=

τ∫

0

∫

Ω

(fn(t, x, un)− fn(t, x, um))Tk(un − um)dxdt,

where Φk is the primitive of Tk such that Φk(0) = 0,

∫

Ω

Φk(un(τ)− um(τ))dx ≤
τ∫

0

∫

Ω

λ
∣∣∣|un|p−2 un − |um|p−2 um

∣∣∣ dxdt

+k

τ∫

0

∫

Ω

|fn(t, x, un)− fn(t, x, um)| dxdt

+k

∫

Ω

|un,0 − um,0| dx.

Next, we divide this inequality by k and the Monotone convergence theorem and let k go to 0,
to obtain

∫

Ω

|un(τ)− um(τ)| dx ≤
τ∫

0

∫

Ω

λ
∣∣∣|un|p−2 un − |um|p−2 um

∣∣∣ dxdt

+

τ∫

0

∫

Ω

|fn(t, x, un)− fn(t, x, um)| dxdt

+

∫

Ω

|un,0 − um,0| dx.
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Hence,

sup
τ∈[0,T ]

∫

Ω

|un(τ)− um(τ)| dx ≤
τ∫

0

∫

Ω

λ
∣∣∣|un|p−2 un − |um|p−2 um

∣∣∣ dxdt

+

τ∫

0

∫

Ω

|fn(t, x, un)− fn(t, x, um)| dxdt

+

∫

Ω

|un,0 − um,0| dx.

Thus, it follows from (3.14), (3.19) and (3.18), that sequence (un) is a Cauchy sequence in
C
(
[0, T ] , L1 (Ω)

)
then un → u in C([0, T ] , L1(Ω)). Finally,

(3.20) u ∈ C([0, T ] , L1(Ω)).

4. Conclusion

We conclude by the main purpose from our work. In this article we demonstrated the
existence of entropy solution for quasi-linear parabolic problem with L1 data, we also proved
that the problem admits a weak solution according to Schauder fixed point theorem. For
unbounded nonlinearities satisfying suitable conditions, we established equi-integrablity and
we derived a compactness results to be able to pass to the limit to get the desired result.
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Abstract 

In this paper we considered non-reductive homogeneous pseudo Riemannian manifolds of 

dimension four and investigated recurrent curvature tensor condition for those curvature tensor. We 

classified non-reductive homogeneous pseudo Riemannian manifolds with recurrent curvature tensor,  

and in the other cases, admitting the recurrent curvature tensor condition is equivalent to be locally 

symmetric or flat curvature tensor and only for one case we have not any 1-form so that satisfy in 

recurrent curvature tensor. Then we investigated some geometrical concepts for them like Weyl 

tensor, Einstein property and etc., we obtained some results, for example we show when any non-

reductive homogeneous manifold with recurrent curvature tensor is locally conformally flat. We also 

studied Ricci solitons for these spaces and concluded that any non-reductive homogeneous manifold 

with non-trivial recurrent curvature tensor is a steady Ricci soliton.  

 

Keywords: Pseudo Riemannian manifold, Recurrent curvature tensor, Locally Symmetric, Flat, Ricci soliton.  
 

 

1. Introduction  

Let (M,g) be homogeneous pseudo-Riemannian manifold then it is said a reductive manifold if in 

homogeneous space 𝑀 =
𝐺

𝐻
, the lie algebra ℊ can be decompose as sum direct ℊ = 𝓀⊕𝓂, where 𝓀 is 

lie algebra of H, 𝓂 is lie algebra of M  and is Ad(H)-Invariant subspace of ℊ. this conditionis equivalent 

to the algebraic condition [𝓀,𝓂] ⊆ 𝓂. Homogeneous Riemannian manifolds are reductive but there exist 

homogenous pseudo Riemannain manifolds that are not reductive. If a space is not reductive it is said 

non-reductive. Non-reductive homogeneous pseudo Riemannian manifolds were classified in term of 

thier lie algebras in [3] by M.E. Fels and A.G. Renner. In [1] geometry and Ricci solitons on these spaces 

were studied by G. Calvaruso and A. Fino. after several years they with A. Zaeim obtained an explicit 

description in coordinates of invariant metrics on these spaces in [2] In this paper we investigate recurrent 

curvature tensor condition for these spaces and classify non-reductive homogeneous pseudo-Riemannian 

manifolds of dimension four with recurrent curvature tensor and investigate some geometrical concepts 

for them.  
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2. Preliminaries 

Let x1, ..., xn be a coordinate system on pseudo-Riemannian manifold M. The Christoffel symbols for this  

coordinate system comput by: Γ𝑖𝑗
𝑘 =

1

2
  𝑔𝑚𝑘

𝑚  
𝜕𝑔𝑗𝑚

𝜕𝑥𝑖
+

𝜕𝑔𝑖𝑚

𝜕𝑥𝑗
−  

𝜕𝑔𝑖𝑗

𝜕𝑥𝑚
 .               (1) 

Theorem (2.1): 

On a pseudo-Riemannian manifold M there is a unique levi-civita ∇ such that: ∇
𝜕𝑖

𝜕𝑗 = Γ𝑖𝑗
𝑘𝜕𝑘 .          (2) 

Proof  

Refer to [5] 

Lemma(2.2): 

 Let M be a pseudo-Riemannian manifold with Levi-Civita connection . The tensor 𝑅:𝔛3 𝑀 → 𝔛(𝑀) 

given by: 𝑅 𝑋,𝑌 𝑍 =  ∇[𝑋 ,𝑌]𝑍 −  ∇𝑋 ,∇𝑌 𝑍.                 (3) 

Proof  

Refer to [5]   

(0,4)-curvature tensor compute by: R(X,Y,Z,W)=g(R(X,Y)Z,W).         (4) 

Ricci tensor that conclude from contraction on curvature tensor is 2-form and computing by: 

𝜌 𝑋,𝑌 =  𝜀𝑚𝑔(𝑅 𝑋, 𝜕𝑚  𝑌,𝜕𝑚 )

𝑚

.               (5) 

Scalar curvature is contraction on Ricci form and computing by: 𝑆 = 𝑔𝑖𝑗 𝜌𝑖𝑗 .            (6) 

Weyl tensor for pseudo-Riemannian manifolds with dimention greater than three  is as follow: 

𝑊 𝑋,𝑌,𝑍,𝑇 = 𝑅 𝑋,𝑌,𝑍,𝑇 −  
𝑆

 𝑛 − 1 (𝑛 − 2)
 𝑔 𝑋,𝑇 𝑔 𝑌,𝑍 −  𝑔 𝑋,𝑍 𝑔 𝑌,𝑇  

−  
1

(𝑛 − 2)
  𝜌 𝑋,𝑍 𝑔 𝑌,𝑇 +  𝜌 𝑌,𝑇 𝑔 𝑋,𝑍 −  𝜌 𝑋,𝑇 𝑔 𝑌,𝑍 

−  𝜌 𝑌,𝑍 𝑔 𝑋,𝑇  .                          (7) 

Pseudo-Riemannian manifold is conformally flat if and only if W=0.  
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Pseudo-Riemannian manifold is Einstein if Ricci tensor satisfy in: 𝜌 = 𝜆𝑔.             (8) 

Definition(2.3): 

Let (M,g) be a pseudo-Riemannian manifold and if there exist vector field V= 𝑣𝑖𝜕𝑖𝑖  Ricci tensor and 

metric tensor satisfy in following relation then metric g is Ricci Soliton: 

𝜌 + ℒ𝑉𝑔 = 𝜆𝑔,                  (9) 

where ℒ𝑉  is lie derivative in direction V. if V be gradient vector field then metric g is gradient Ricci 

soliton and Ricci soliton relation become as: 𝜌 +  𝐻𝑒𝑠𝑠𝑓 = 𝜆𝑔.               (10)  

where 𝐻𝑒𝑠𝑠𝑓  is hessian of potential function f and following relation is for compute it in coordinate 

system : 
𝜕2𝑓

𝜕𝑥 𝑖𝜕𝑥 𝑗
−   Γ𝑖𝑗

𝑘 𝜕𝑓

𝜕𝑥 𝑘
𝑘 .               (11) 

Definition(2.4): 

Let (M,g) be a pseudo-Riemannian manifold it call with Recurrent curvature tensor if it’s curvature tensor 

satisfy in following relation: 

∇𝑹 = 𝑹⊗𝜔,           (12) 

where R (0,4)-curvature tensor and 𝜔 is 1-form.  

Theorem(2.5):  

Let M be a non-reductive pseudo-Riemannian homogeneous four-manifold, then it is locally isometric to 

ℝ4, equipped with a pseudo-Riemannian metric g, which takes the following explicit form (in terms of 

some real constants a, b, c, q): 

 
  𝐴1   𝑔 =  4𝑏𝑥2

2 +  𝑎 𝑑𝑥1
2 + 4𝑏𝑥2𝑑𝑥1𝑑𝑥2 −  4𝑎𝑥2𝑥4 − 4𝑐𝑥2 +  𝑎 𝑑𝑥1𝑑𝑥3 + 4𝑎𝑥2𝑑𝑥1𝑑𝑥4 + 𝑏𝑑𝑥2

2     
− 2(𝑎𝑥4 − 𝑐)𝑑𝑥2𝑑𝑥3 +   2𝑎𝑑𝑥2𝑑𝑥4 + 𝑞𝑑𝑥3

2, 
𝐴2         𝑔 = −2𝑎𝑒2𝛼𝑥4𝑑𝑥1𝑑𝑥3 + 𝑎𝑒2𝛼𝑥4𝑑𝑥2

2 + 𝑏𝑒2(𝛼−1)𝑥4𝑑𝑥3
2 + 2𝑐𝑒(𝛼−1)𝑥4𝑑𝑥3𝑑𝑥4 +  𝑞𝑑𝑥4

2, 
 𝐴3   𝜀 = 1           𝑔 = 2𝑎𝑒2𝑥3𝑑𝑥1𝑑𝑥4 + 𝑎𝑒2𝑥3 cos(𝑥4)2 𝑑𝑥2

2 + 𝑏𝑑𝑥3
2 + 2𝑐𝑑𝑥3𝑑𝑥4 +  𝑞𝑑𝑥4

2, 
 𝐴3  𝜀 = −1           𝑔 = 2𝑎𝑒2𝑥3𝑑𝑥1𝑑𝑥4 + 𝑎𝑒2𝑥3 cosh(𝑥4)2 𝑑𝑥2

2 + 𝑏𝑑𝑥3
2 + 2𝑐𝑑𝑥3𝑑𝑥4 +  𝑞𝑑𝑥4

2, 

 𝐴4        𝑔 =  
𝑎

2
𝑥4

2 + 4𝑏𝑥2
2 +  𝑎 𝑑𝑥1

2 + 4𝑏𝑥2𝑑𝑥1𝑑𝑥2 + 𝑎𝑥2 4 + 𝑥4
2 𝑑𝑥1𝑑𝑥3 + 𝑎𝑥4 1 + 2𝑥2𝑥3 𝑑𝑥1𝑑𝑥4

+ 𝑏𝑑𝑥2
2    +

𝑎

2
 4 +  𝑥4

2 𝑑𝑥2𝑑𝑥3 +   𝑎𝑥3𝑥4𝑑𝑥2𝑑𝑥4 +
𝑎

2
𝑑𝑥4

2, 
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 𝐵1         𝑔 =  𝑞 4𝑥2𝑥3𝑥4 + 4𝑥2
2𝑥4

2 + 𝑥3
2  + 4𝑐𝑥2𝑥3 +  8𝑐𝑥2

2𝑥4 + 2𝑎𝑥3 + 4𝑏𝑥2
2 𝑑𝑥1

2

+ 2 𝑞 𝑥3𝑥4 + 2𝑥2𝑥4
2  + 4𝑐𝑥2𝑥4 + 𝑐𝑥3 + 2𝑏𝑥2 𝑑𝑥1𝑑𝑥2

+ 2 𝑞 𝑥3 + 2𝑥2𝑥4  + 2𝑐𝑥2 + 𝑎 𝑑𝑥1𝑑𝑥3 + 4𝑎𝑥2𝑑𝑥1𝑑𝑥4 +  𝑞𝑥4
2 + 2𝑐𝑥4 + 𝑏 𝑑𝑥2

2    
+ 2(𝑞𝑥4 + 𝑐)𝑑𝑥2𝑑𝑥3 +   2𝑎𝑑𝑥2𝑑𝑥4 + 𝑞𝑑𝑥3

2, 
 

 𝐵2      𝑔 =  −
𝑎

2
𝑥4

2 + 4𝑏𝑥2
2 +  𝑎 𝑑𝑥1

2 + 4𝑏𝑥2𝑑𝑥1𝑑𝑥2 − 𝑎𝑥2 −4 +  𝑥4
2 𝑑𝑥1𝑑𝑥3

− 𝑎𝑥4 1 + 2𝑥2𝑥3 𝑑𝑥1𝑑𝑥4 + 𝑏𝑑𝑥2
2   −

𝑎

2
 −4 +  𝑥4

2 𝑑𝑥2𝑑𝑥3 −   𝑎𝑥3𝑥4𝑑𝑥2𝑑𝑥4 −
𝑎

2
𝑑𝑥4

2, 

 𝐵3       𝑔 = −2𝑎𝑒−𝑥2𝑥3𝑑𝑥1𝑑𝑥2 + 2𝑎𝑒−𝑥2𝑑𝑥1𝑑𝑥3 + 2 2𝑏𝑥3
2 − 𝑎𝑥4 𝑑𝑥2

2 − 4𝑏𝑥3𝑑𝑥2𝑑𝑥3 + 2𝑎𝑑𝑥2𝑑𝑥4

+  𝑏𝑑𝑥3
2, 

 
or it is locally isometric to: 

(ℝ2 −  0,0 ) × ℝ2 
with following metric: 

 

 𝐴5          𝑔 =
−𝑎𝑥4

4𝑥2
𝑑𝑥1𝑑𝑥2 +

𝑎

2
𝑑𝑥1𝑑𝑥4 +

𝑎(2 + 2𝑥1𝑥4 + 𝑥3
2)

8𝑥2
2 𝑑𝑥2

2 −
𝑎𝑥3

4𝑥2
𝑑𝑥2𝑑𝑥3 −

𝑎𝑥1

4𝑥2
𝑑𝑥2𝑑𝑥4

+  
𝑎

8
𝑑𝑥3

2, 

 
3. Main Results 

Theorem(3.1):  

Let (M,g) be non-reductive homogeneous pseudo Riemannian manifold of dimension four then if M  

admit metric g that has recurrent curvature tensor then (M,g) is isometric to one case of following table: 
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case Condition  If admit recurrent curvature tensor  

A1   Locally symmetric 

A2 

1 𝛼 = 0 w1=w2=w3=0, w4=-2 

2 b=0 Locally symmetric 

3 𝛼 = 0, b=0 Flat  

A3     

A4 b=0 Locally symmetric 

A5   Locally symmetric 

B1 

1 q=0, c=0 Locally symmetric 

2 bq – c
2
=0 Locally symmetric 

 3 b=0, c=0, q=0 Flat  

B2 b=0 Locally symmetric 

B3 

1   Ricci flat  

2 b=0 Flat  

 

Proof:  

For proof of this theorem we studied non-reductive homogeneous pseudo Riemannian manifolds of 

dimension four case-by-case. For example in case A2 first after computing christoffel symbols by using 

(1), by using (2) the levi-civita connection are as follow: 

∇𝜕3

𝜕1 =
𝑐𝛼𝑒2(𝛼−1)𝑥4

𝑞
𝜕1 +  

𝑎𝛼 𝑒2𝛼𝑥4

𝑞
𝜕4, ∇𝜕4

𝜕1 =𝛼𝜕1, ∇𝜕2

𝜕2 =
−𝑐𝛼𝑒2(𝛼−1)𝑥4

𝑞
𝜕1 −  

𝑎𝛼 𝑒2𝛼𝑥4

𝑞
𝜕4, ∇𝜕4

𝜕2 =𝛼𝜕2, 
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∇𝜕3

𝜕3 =
𝑐𝑏 (𝛼−1)𝑒2(𝛼−2)𝑥4

𝑎𝑞
𝜕1 +  

𝑏(𝛼−1)𝑒2(𝛼−1)𝑥4

𝑞
𝜕4, ∇𝜕4

𝜕3 =
−𝑒−2𝑥4 (−𝑏𝑞+ 𝑐2𝛼𝑒2 𝛼−1 𝑥4 )

𝑎𝑞
𝜕1 +  𝛼𝜕2  −  

𝑐𝛼𝑒2(𝛼−1)𝑥4

𝑞
𝜕4, 

∇𝜕4

𝜕4 =
−2𝑐(𝛼−1)𝑒−2𝑥4

𝑎
𝜕1 , 

Now by using (3) curvature tensor is as follow: 

𝑅 𝜕1 ,𝜕2 𝜕2 =
𝑎𝛼2𝑒2𝛼𝑥4

𝑞
𝜕1 , 𝑅 𝜕1, 𝜕2 𝜕3 =

𝑎𝛼2𝑒2𝛼𝑥4

𝑞
𝜕2 , 𝑅 𝜕1, 𝜕3 𝜕1 =

−𝑎𝛼2𝑒2𝛼𝑥4

𝑞
𝜕1,  

𝑅 𝜕1 ,𝜕3 𝜕3 =  
𝑏𝛼2𝑒2(𝛼−1)𝑥4

𝑞
𝜕1  +  

𝑎𝛼2𝑒2𝛼𝑥4

𝑞
𝜕3, 𝑅 𝜕1 ,𝜕3 𝜕4 =  

𝑐𝛼2𝑒2(𝛼−1)𝑥4

𝑞
𝜕1, 𝑅 𝜕1, 𝜕4 𝜕4 = 𝛼2𝜕1, 

𝑅 𝜕1 ,𝜕4 𝜕3 =  
𝑐𝛼2𝑒2(𝛼−1)𝑥4

𝑞
𝜕1  +  

𝑎𝛼2𝑒2𝛼𝑥4

𝑞
𝜕4 , 𝑅 𝜕2, 𝜕3 𝜕2 =  

−𝑏𝛼𝑒2(𝛼−1)𝑥4

𝑞
𝜕1 −  

𝑎𝛼2𝑒2𝛼𝑥4

𝑞
𝜕3 ,  

 𝑅 𝜕2, 𝜕3 𝜕1 =
−𝑎𝛼2𝑒2𝛼𝑥4

𝑞
𝜕2 , 𝑅 𝜕2, 𝜕3 𝜕3 =  

𝑏𝛼 (𝛼−1)𝑒2(𝛼−1)𝑥4

𝑞
𝜕2, 𝑅 𝜕2, 𝜕3 𝜕4 =  

𝑐𝛼2𝑒2(𝛼−1)𝑥4

𝑞
𝜕2, 

𝑅 𝜕2 ,𝜕4 𝜕2 =
−𝑎𝛼2𝑒2𝛼𝑥4

𝑞
𝜕4, 𝑅 𝜕2, 𝜕4 𝜕3 =  

𝑐𝛼2𝑒2(𝛼−1)𝑥4

𝑞
𝜕2, 𝑅 𝜕2, 𝜕4 𝜕4 = 𝛼2𝜕2,  

𝑅 𝜕3 ,𝜕4 𝜕1 =  
𝑎𝛼2𝑒2𝛼𝑥4

𝑞
𝜕1, 𝑅 𝜕3, 𝜕4 𝜕3 =   

2𝑏𝑐 (𝛼−1)𝑒2(𝛼−2)𝑥4

𝑎𝑞
𝜕1 +  

𝑐𝛼2𝑒2(𝛼−1)𝑥4

𝑞
𝜕3 −  

𝑏(𝛼2−2𝛼+2)𝑒2(𝛼−1)𝑥4

𝑞
𝜕4, 

𝑅 𝜕3 ,𝜕4 𝜕4 = 𝛼2𝜕3 −  
𝑐𝛼2𝑒2(𝛼−1)𝑥4

𝑞
𝜕4 , 

and after computing (0,4)-curvature tensor by (4) by using (12) we investigate recurrent curvature 

condition that a PDE system conclude that by solving it we obtain results as written in above table. 

 

 Theorem(3.2):  

Let (M,g) be non-reductive homogeneous pseudo Riemannian manifold with recurrent curvature tensor of 

dimension four non flat then condition for that (M,g) be Einstein and conformally flat and it’s scalar 

curvature tensor are as follow: 
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case Einstein  Conformally flat  Scalar curvature 

A1     −6

𝑎
 

A2 

1     0 

2 
𝜆 =

−3𝛼2

𝑞
   

−12𝛼2

𝑞
 

A4 𝜆 =
−3

𝑎
   

−12

𝑎
 

A5 𝜆 =
−12

𝑎
   

−48

𝑎
 

B1 

1 𝜆 =
3𝑞

2𝑎2
   

6𝑞

𝑎2
 

2 
𝜆 =

3𝑐2

𝑎2𝑏
   

6𝑐2

𝑎2𝑏
 

B2 𝜆 =
−3

𝑎
   

−12

𝑎
 

B3 1     0 

 

Proof  

Proof of this theorem is like previous one. For example consider case A2 again by using (5) Ricci tensor 

is: 

𝜌𝑖𝑗 = 
6𝑎𝛼2𝑒2𝛼𝑥4𝑑𝑥1𝑑𝑥3

𝑞
−  

6𝑎𝛼2𝑒2𝛼𝑥4𝑑𝑥2
2

𝑞
−  

𝑏(3𝛼2−3𝛼+2)𝑒2(𝛼−1)𝑥4𝑑𝑥3
2

𝑞
−  

6𝑐𝛼2𝑒2(𝛼−1)𝑥4𝑑𝑥3𝑑𝑥4

𝑞
−  3𝛼2𝑑𝑥4

2 , 

And now by using (8) we have following equations: 

{
𝑎𝑒2𝛼𝑥4 (𝜆𝑞+3𝛼2)

𝑞
,
𝑏𝑒2 𝛼−1 𝑥4 (𝜆𝑞+3𝛼2−3𝛼+2)

𝑞
,
𝑐𝑒2 𝛼−1 𝑥4 (𝜆𝑞+3𝛼2)

𝑞
, 𝜆𝑞 + 3𝛼2 } 
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Therefore for that this case be Einstein, this above equations must be identically zero hence   

𝜆 =
−3𝛼2

𝑞
 and b=0. This show what written in above table. For that this case be conformally flat by (7) we 

conclude following equations vanish: 

{𝑏𝑒2 𝛼−1 𝑥4 𝛼 − 2 ,
𝑏𝑎𝑒2 2𝛼−1 𝑥4  𝛼−2 

𝑞
}  

Therefore b=0 or 𝛼 = −2, hence A2.1 is not conformally flat and A2.2 is conformally flat. By using (6) 

scalar curvature for A2.1 and A2.2 respectively is 0  and 
−12𝛼2

𝑞
. 

Theorem(3.3): 

Let (M,g) be non-reductive homogeneous pseudo Riemannian manifold with non-trivially recurrent 

curvature tensor of dimension four then (M,g) is steady Ricci Soliton with following vector field 

v1(x1,x2,x3,x4)=c3x2 – c1x1  +  
𝑐(−2+𝑞𝑐1)𝑒−2𝑥4

2𝑎𝑞
, v2(x1,x2,x3,x4)= c3x3 + c4, v3(x1,x2,x3,x4)= c1x3 + c2, 

v4(x1,x2,x3,x4)=
𝑞c1−1

𝑞
 

Proof: 

If (M,g) be non-reductive homogeneous pseudo Riemannian manifold with non-trivially recurrent 

curvature tensor of dimension four then as mentioned in table of theorem (3.1) if in case A2 of non-

reductive homogeneous pseudo Riemannian manifolds 𝛼 = 0 then it’s curvature tensor satisfy in (12) 

now lie derivative of metric tensor in directional of above vector field is negative of  Ricci tensor that this 

show non-reductive homogeneous pseudo Riemannian manifold with non-trivially recurrent curvature 

tensor of dimension four is steady Ricci Soliton with above vector field. 

Theorem(3.4): 

Let (M,g) be non-reductive homogeneous pseudo Riemannian manifold with non-trivially recurrent 

curvature tensor of dimension four then (M,g) is steady gradient Ricci Soliton with following potential 

function : 

f(x1,x2,x3,x4)= 
−2

𝑞
 x1 + c1x2 + c2x3 + c3x4 + c4 

Proof: 
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For proof of this theorem exactly like previous theorem with computing hessian of above potential 

function it will be seen that hessian of f is negative of Ricci tensor that this show non-reductive 

homogeneous pseudo Riemannian manifold with non-trivially recurrent curvature tensor of dimension 

four is steady gradient Ricci Soliton with above potential function. 

4. Conclusion 

Non-reductive homogeneous pseudo Riemannian manifolds with recurrent curvature tensor of dimension 

four are locally symmetric except case A2.1. 

Let (M,g) be non-reductive homogeneous pseudo Riemannian manifold with recurrent curvature tensor of 

dimension four, if it be Einstein with 𝜆 ≠ 0, then 𝜆 =
𝑆

4
.  

Non-reductive homogeneous pseudo Riemannian manifolds with non-trivially recurrent curvature tensor 

of dimension  four are steady Ricci soliton and steady gradient ricci soliton.  
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Abstract 

In this paper we studied some curvature properties of special metrics with physical applications. 

We showed that strictly walker manifolds of dimension four are with recurrent curvature tensor and also 

we specified the sufficient condition for these manifolds to be locally symmetric. We also showed that 

oscillator groups, equipped with a one parameter family of left invariant Lorentzian metrics and with 

recurrent curvature tensor, are locally symmetric. Also recurrent curvature condition for some other 

metrics which are physically relevant significant were checked, e.g., generalized symmetric pseudo 

Riemannian manifolds which were showed that are not with recurrent curvature tensor.  

 

Keywords: Strictly walker manifolds, Pseudo Riemannian manifold, Recurrent curvature tensor, Oscillator group, 

Generalized symmetric, Locally Symmetric.   
 
 

1. Introduction  

The shape of a manifolds and also the geometry of it mainly depends on the curvature therefore curvature 

is one of the most important concepts of a manifold. In the other hands one of the most important 

property of a manifolds is symmetry. Symmetry first time studied by cartan. He classified complete 

simply connected locally symmetric spaces after that cahen and parker do similar work for non-

riemannian case. Later generalization of cartan’s notion such as recurrent manifolds and generalized 

recurrent manifolds were studied. In other hand when analyze the curvature of a manifold, covariant 

derivative must be computed therefore locally symmetric case reduced to purely algebraic level hence 

manifolds with recurrent curvature tensor are considered by many authors 

Manifolds with Recurrent curvature first time introduce by Ruse [6]. At the first he called these spaces 

kappa spaces. But after while he decided to change this name with name that emphasizing to property 

that define them so he called them recurrent curvature manifolds. In [7] walker showed manifolds with 

recurrent curvature tensor admit a parallel vector field but locally symmetric manifolds necessarily don’t 

admit. Garcia, Gilkey and Nikcevic classified locally homogeneous manifolds with recurrent curvature of 

dimension three in [4] and later Calvaroso and zaeim investigated collineation on these spaces.    
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2. Preliminaries 

    Walker metrics, those are important metric and also physically relevant significant, first time introdued 

by walker and a canonical form for a strictly Walker metrics has been obtained by him, showing the 

existence of suitable coordinates where the metric expresses as: 

𝑔 = 2𝑑𝑥1𝑑𝑥3 + 2𝑑𝑥2𝑑𝑥4 + 𝑓 𝑥3,𝑥4 𝑑𝑥3
2  +  2𝑔 𝑥3, 𝑥4 𝑑𝑥3𝑑𝑥4 +   𝑥3,𝑥4 𝑑𝑥4

2, 
   Where f,g and h are smooth functions. The levi-civita connection, curvature tensor and etc, for this 

metric is computed in [2]. 

Definition(2.1): 

Oscillator group is a four dimensional lie group, whose lie algebra is the one generated by the differential 

operators, acting on functions of one variable, associated to the harmonic oscillator problem. This group 

is given by ℝ × ℂ × ℝ with the product:  

 𝑥1, 𝑧1, 𝑦1 .  𝑥2, 𝑧2 ,𝑦2 =  𝑥1 + 𝑥2 + 𝐼𝑚(𝑧1 𝑒
𝑖𝑦1𝑧2 , 𝑧1 + 𝑒𝑖𝑦1𝑧2 , 𝑦1 + 𝑦2) 

oscillator group with one-parameter family of left-invariant Lorentzian metrics that state as: 

𝑔𝑎 =  𝑎𝑑𝑥1
2 + 2𝑎𝑥3𝑑𝑥1𝑑𝑥2 + 2𝑑𝑥1𝑑𝑥4 + (1 +  𝑎𝑥3

2)𝑑𝑥2
2 +   2𝑥3𝑑𝑥2𝑑𝑥4 + 𝑑𝑥3

2  +  𝑎𝑑𝑥4
2, 

Oscillator group with above metric is an interesting object to study both in differential geometry and in 

mathematical physics. Also it is one of the most celebrated examples of Lorentzian naturally reductive 

spaces. 

Definition(2.2): 

Let (M,g) be pseudo-Riemannian manifolds a s-structure on M is a family of isometries {𝑠𝑝 ∣ 𝑝 ∈ 𝑀} such 

that: 

∀𝑝 ∈ 𝑀: p is isolated fix point of 𝑠𝑝 . 

∀𝑝,𝑞 ∈ 𝑀: 𝑠𝑝  𝑜 𝑠𝑞 = 𝑠𝑠𝑝 (𝑞)𝑜 𝑠𝑝   

The following mapping be smooth:  

𝑀 × 𝑀 → 𝑀 
 𝑝, 𝑞 →  𝑠𝑝(𝑞). 

Definition(2.3): 

A generalized symmetric space is a connected, pseudo-Riemannian manifold, carrying at least one regular 

s-structure. 

Theorem(2.4): 
All non-symmetric, simply connected generalized symmetric spaces (M, g) of dimension 4 are belong, up 

to isometry, to the following four types: 

Type A: (M,g) is space ℝ4 (𝑥1,𝑥2,𝑥3, 𝑥4) with pseudo-Riemannian metric: 

 𝑔 =
𝜆 1 + 𝑥2

2 𝑑𝑥1
2 − 2𝜆𝑥1𝑥2𝑑𝑥1𝑑𝑥2 + 𝜆 1 +  𝑥1

2 𝑑𝑥2
2

1 + 𝑥1
2 + 𝑥2

2

±  −2𝑥2
2𝑑𝑥3𝑑𝑥4 +    −𝑥1 +  1 + 𝑥1

2 + 𝑥2
2 𝑑𝑥3

2  +  𝑥1 +  1 + 𝑥1
2 + 𝑥2

2 𝑑𝑥4
2 , 

possible signature are (4, 0) , (0, 4) , (2, 2). 

Type B: (M,g) is space ℝ4 (𝑥1,𝑥2, 𝑥3,𝑥4) with pseudo-Riemannian metric: 

𝑔 = 𝜆 𝑑𝑥1
2 + 𝑑𝑥1𝑑𝑥2 + 𝑑𝑥2

2 + 2𝑒−𝑥2𝑑𝑥1𝑑𝑥4 + 𝑒−𝑥2𝑑𝑥2𝑑𝑥4 + 𝑒−𝑥1𝑑𝑥1𝑑𝑥3 + 2𝑒−𝑥1𝑑𝑥2𝑑𝑥3, 
possible signature is  (2, 2) . 

Type C: (M,g) is space ℝ4 (𝑥1,𝑥2, 𝑥3,𝑥4) with pseudo-Riemannian metric: 
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𝑔 = ± 𝑒2𝑥4𝑑𝑥1
2 + 𝑒−2𝑥4𝑑𝑥2

2 + 𝑑𝑥3𝑑𝑥4, 
possible signature are (1, 3),(3,1). 

Type D: (M,g) is space ℝ4 (𝑥1,𝑥2,𝑥3, 𝑥4) with pseudo-Riemannian metric: 

𝐷     𝑔 = (sinh 2𝑥3 − cosh 2𝑥3 sin(2𝑥4))𝑑𝑥1
2 − 2cosh 2𝑥3 cos(2𝑥4)𝑑𝑥1𝑑𝑥2 + (sinh 2𝑥3 

+ cosh 2𝑥3 sin(2𝑥4))𝑑𝑥2
2 + 𝜆𝑑𝑥3

2 − 𝜆𝑐𝑜𝑠2(2𝑥3)𝑑𝑥4
2. 

possible signature is  (2, 2) . 

Proof: refer to [1].  

 

Definition(2.5): 

Let (M,g) be a pseudo-Riemannian manifold it call with Recurrent curvature tensor if it’s curvature tensor 

satisfy in following relation: 

∇𝑹 = 𝑹⊗𝜔,           (1) 

where R (0,4)-curvature tensor and 𝜔 is 1-form 

3. Main Results 

Theorem(3.1): 

Let (M,g) be strictly walker manifolds of dimension four then it’s metric has recurrent curvature tensor 

with following 1-form: 

𝑤1 = 𝑤2 = 0,   𝑤3 =

−2𝜕3𝑔
𝜕𝑥4𝜕𝑥3

2 +  
𝜕3𝑓

𝜕𝑥4
2𝜕𝑥3

+  
𝜕3
𝜕𝑥3

3

𝜕2
𝜕𝑥3

2 −  
2𝜕2𝑔
𝜕𝑥4𝜕𝑥3

+  
𝜕2
𝜕𝑥4

2

,𝑤4 =

−2𝜕3𝑔
𝜕𝑥4

2𝜕𝑥3
+  

𝜕3𝑓
𝜕𝑥4

3 +  
𝜕3

𝜕𝑥4𝜕𝑥3
2

𝜕2
𝜕𝑥3

2 −  
2𝜕2𝑔
𝜕𝑥4𝜕𝑥3

+  
𝜕2
𝜕𝑥4

2

, 

Proof: 

This theorem will prove with straightforward computation. By theorem 5.5 in [2] the only non-zero 

component of (0,4)-curvature tensor for walker manifold of dimension four is: 

𝑹 𝜕3, 𝜕4, 𝜕3, 𝜕4 =
−1

2
(
𝜕2

𝜕𝑥3
2 −  

2𝜕2𝑔

𝜕𝑥4𝜕𝑥3
+  

𝜕2

𝜕𝑥4
2), 

In the other hand, by using [2] again the levi-civita connection for these manifolds is as follow: 

∇𝜕3

𝜕3 =
1

2

𝜕𝑓

𝜕𝑥3
𝜕1 +   

𝜕𝑔

𝜕𝑥3
+

1

2

𝜕𝑓

𝜕𝑥4
 𝜕2 , ∇𝜕4

𝜕3 =
1

2

𝜕𝑓

𝜕𝑥4
𝜕1 +  

1

2

𝜕

𝜕𝑥3
𝜕2, ∇𝜕4

𝜕3 = 
𝜕𝑔

𝜕𝑥4
−

1

2

𝜕

𝜕𝑥4
 𝜕1 +  

1

2

𝜕

𝜕𝑥4
𝜕2 , 

Now by straightforward computation, it will be seen that the curvature tensor of strictly walker manifolds 

satisfy in (1)  
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Corollary(3.2):  

Let (M,g) be strictly walker manifolds of dimension four if  

𝑓 𝑥3,𝑥4 =  ( (−
𝜕2

𝜕𝑥3
2 +  

2𝜕2𝑔

𝜕𝑥4𝜕𝑥3
)𝑑𝑥4 +  𝑐1𝑥4)𝑑𝑥4 +  𝑓1 𝑥3 𝑥4 +  𝑓2(𝑥3) 

Then (M,g) is locally symmetric. where f1 and f2 are arbitrary function of x3. 

 In the during proof of theorem (3.1) we saw that if f has been above condition then (M,g) is locally 

symmetric. 

Theorem(3.3): 

Let (M,ga) be lorentzian oscillator group of dimension four if curvature tensor of ga satisfy in (1) then 

(M,ga) is locally symmetric. 

Proof: 

The levi-civita connection and non-zero components of (0,4)-curvature tensor for these manifolds by [3] 

are as follow: 

∇𝜕1

𝜕3 =
−1

2
𝑎𝑥3𝜕1 +  

1

2
𝑎𝜕2 ,  ∇𝜕1

𝜕2 =
−1

2
𝑎𝜕3,  ∇𝜕2

𝜕2 = −𝑎𝑥3𝜕3, ∇𝜕2

𝜕3= (
−1

2
𝑎𝑥3

2 +  
1

2
)𝜕1 +  

1

2
𝑎𝑥3𝜕2, ∇𝜕2

𝜕4=
−1

2
𝜕3 , 

∇𝜕3

𝜕4 =
−1

2
𝑥3𝜕1 +  

1

2
𝜕2 ,  

𝑹 𝜕3, 𝜕4, 𝜕1, 𝜕3 =
−1

4
𝑎, 𝑹 𝜕4,𝜕2 , 𝜕1, 𝜕2 =

1

4
𝑎, 𝑹 𝜕3, 𝜕1, 𝜕1, 𝜕3 =

1

4
𝑎2 , 𝑹 𝜕2,𝜕1 ,𝜕1 , 𝜕2 =

−1

4
𝑎2, 

𝑹 𝜕3, 𝜕2, 𝜕2 ,𝜕3 =
−1

4
𝑎2𝑥3

2 +  
3

4
𝑎, 𝑹 𝜕3, 𝜕1, 𝜕3 ,𝜕2 =

1

4
𝑎2𝑥3, 𝑹 𝜕4,𝜕3 ,𝜕3 , 𝜕2 =

−1

4
𝑎𝑥3, 

𝑹 𝜕4, 𝜕3, 𝜕3, 𝜕4 =
−1

4
, 𝑹 𝜕4, 𝜕2 ,𝜕2 ,𝜕4 =

−1

4
, 

Now by using (1) for that these manifolds be recurrent curvature tensor, a PDE system conclude that 

solving it show that {a} must be zero and if a=0 then these manifolds are locally symmetric 

In next theorem in addition generalized symmetric manifold we checked recurrent condition for following 

pseudo-Riemannian metric that are physically relevant significant. 

𝑔 =  1 +
2𝑒𝑥1

𝜇
  𝑑𝑥1

2 +  𝑑𝑥2
2 + 𝑑𝑥3

2 + 𝑑𝑥4
2,              (2) 
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𝑔 =  1 +
2𝑒𝑥1

𝜇
  𝑑𝑥1

2 +  𝑑𝑥2
2 + 𝑑𝑥3

2  + 𝑑𝑥4
2 .              (3) 

Where 𝜇 is real constant. 

 

Theorem(3.4): 

Let (M,g) be generalized symmetric manifold of dimension four such that it is isometric to one of type A, 

B, D or is pseudo-Riemannian manifold with metric (3 ,4) then there aren’t 1-form such that curvature 

tensor of this manifolds satisfy in (1), i.e, these manifolds are not with recurrent curvature tensor. 

Proof: 

Exactly like previous theorems that’s enough to checking recurrent condition (1) and by considering levi-

civita connections and curvature tensor that is brought in [1] and [4] and with straightforward 

computation  will obtain some equations that are not solvable for example for generalized symmetric 

manifolds of dimension four of type B, must 
1

3
𝑒−𝑥1  be zero that’s impossible. 

Corollary(3.5): 

When we checked recurrent condition for pseudo-Riemannian manifold with metric (2) we understood 

that if we change this metric as follow also it don’t admit recurrent curvature tensor 

𝑔 =  1 +
2𝑒𝑥1

𝜇
  𝑑𝑥1

2 −  𝑑𝑥2
2 − 𝑑𝑥3

2 − 𝑑𝑥4
2,   

𝑔 =  1 +
2𝑒𝑥1

𝜇
  −𝑑𝑥1

2 +  𝑑𝑥2
2 + 𝑑𝑥3

2 + 𝑑𝑥4
2,  

𝑔 =  1 +
2𝑒𝑥1

𝜇
  𝑑𝑥1

2 +  𝑑𝑥2
2 + 𝑑𝑥4

2 + 𝑑𝑥3
2,   

𝑔 =  1 +
2𝑒𝑥1

𝜇
  𝑑𝑥1

2 +  𝑑𝑥3
2 + 𝑑𝑥4

2 + 𝑑𝑥2
2,   
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4. Conclusion 

strictly walker manifolds of dimension four are manifolds with recurrent curvature.  

lorentzian oscillator group of dimension four with recurrent curvature tensor are locally symmetric. 

generalized symmetric manifold with recurrent curvature tensor of dimension four is locally symmetric 

and isometric to type C . 
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Abstract 

 

In this paper, first we generalize the definition of Aluthge transform for non-negative 

continuous functions $f, g$ such that $f(x)g(x)=x\,\,(x\geq0)$. Then, by using this 

definition, we get some numerical radius inequalities. 

Keywords: Aluthge transform, Numerical radius, Operator matrices, Polar decomposition. 
 

1. Introduction  

Let  denote the algebra of all bounded linear operators on a complex Hilbert 

space  with an inner product  and the corresponding norm .  The numerical 

radius of  is defined by 

}. 

It is well known that  defines a norm on , which is equivalent to the usual 

operator norm. In fact for any . The quantity  is 

useful in studying perturbation, convergence and approximation problems as well as 

interactive method, etc.  The classical Young inequality says that if , then  

 During the last decades several generalizations, 

reverses, refinements and applications of the Young Inequality. 

In this present talk, we refine the numerical radius inequalities and find an upper bound 

for the functional . 

2. Preliminaries 

Let )(HB  denotes the *C -algebra of all bounded linear operators on a complex Hilbert 

space H  with an inner product ,  and the corresponding norm PP  . In the case when 

nim =d H , we identify )(HB  with the matrix algebra nM  of all nn  matrices with entries in 

the complex field. For an operator )(HBA , let ||= AUA  (U is a partial isometry with 

||= ArangekerU ) be the polar decomposition of A . The Aluthge transform of the operator 

A , denoted by A
~

, is defined as .|||=|
~

2

1

2

1

AUAA  In [6, 20], a more general notion called t-

Aluthge transform has been introduced which has later been studied. This is defined for any 
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1<0 t  by tt

t AUAA 1|||=|
~

. Clearly, for 
2

1
=t  we obtain the usual Aluthge transform. For 

the case 1=t , the operator UAA |=|
~

1
 is called the Duggal transform of )(HBA . For 

)(HBA , we generalize the Aluthge transform of the operator A  to the form  

 |),(||)(|=
~

, AUgAfA gf  

 in which gf ,  are non-negative continuous functions such that 0).(=)()( xxxgxf  The 

numerical radius of )(HBA  is defined by  

 1}.=,|:,{|sup:=)( PPH xxxAxAw   

 It is well known that )(w  defines a norm on )(HB , which is equivalent to the usual operator 

norm PP  . In fact, for any )(HBA , PPPP AAwA  )(
2

1
; see [7]. Let )(r  denote the 

spectral radius. It is well known that for every operator )(HBA , we have )()( AwAr  . An 

important inequality for )(A  is the power inequality stating that )1,2,=()()( nAA nn   . 

For further information about the numerical radius we refer the reader to [9, 10, 11] and 

references therein. The quantity )(Aw  is useful in studying perturbation, convergence and 

approximation problems as well as integrative methods, etc. For more information see [3, 5, 

8, 12, 13, 14, 16]. 

Let )(,,, HBDCBA . The operator matrices 








D

A

0

0
 and 









0

0

C

B
 are called the 

diagonal and off-diagonal parts of the operator matrix 








DC

BA
, respectively. 

In [15], it has been shown that if A  is an operator in )(HB , then  

 .
2

1
)( 2

1

2














 PPPP AAAw

 (1.1) 

Several refinements and generalizations of inequality (1.1) have been given; see [4, 1, 20, 21, 

22, 23]. Yamazaki [21] showed that for )(HBA  and [0,1]t  we have  
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  .)
~

(
2

1
)( tAwAAw  PP

 (1.2) 

 Davidson and Power [6] proved that if A  and B  are positive operators in )(HB , then  

 .},{max 2

1

PPPPPPPP ABBABA 

 (1.3) 

Inequality (1.3) has been generalized in [2, 19] and improved in [17, 18]. In [19], the author 

extended this inequality to the form  

  ,||||||||
2

1
},{max 1*1** tttt BABABABA   PPPPPP

 (1.4) 

in which )(, HBBA  and [0,1]t . 

3. Main Results 

We are ready to present our first result. The following theorem shows a generalization of 

inequality (1.2).  

Theorem 1  Let )(HBA  and gf ,  be two non-negative continuous functions on 

)[0,  such that 0)(=)()( xxxgxf . Then, for all non-negative and non-decreasing convex 

function h  on )[0, , we have 

           .~

2

1

4

1
)( ,

22

gfAwhAfhAghAwh   

Theorem 2  Let )(, HBBA , gf ,  be two non-negative continuous functions on 

)[0,  such that 0)(=)()( xxxgxf  and 1s . Then  

         BfBgAfAg
B

A
w sssss 2222 ,max

4

1

0

0






















 

 ).|)(||)(||)(||)(|(
4

1 ss BgAfAgBf PPPP    
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Theorem 3  Let )(HBA  and hgf ,,  be non-negative and non-decreasing 

continuous functions on )[0,  such that 0)(=)()( xxxgxf  and h  is convex. Then  

      ).|)(|
~

(
2

1
)( , AhAwhAwh gf   

Remark 4 For the special case txxf =)(  and [0,1])(=)( 1  txxg t , we obtain the 

inequality (1.2)  

   ,~

2

1
)( PPAAwAw t   

 where )(HBA .  

 Let 








0

0
=

B

A
T . Using Theorem 2.10, we get the following result.  

Corollary 5 Let )(, HBBA  and gf ,  be two non-negative and non-decreasing 

continuous functions such that 0)(=)()( xxxgxf . Then  

 ),|)(||)(||)(||)(|(
2

1
},{max

0

0
2

ss
sss BgAfAgBfBA

B

A
w  





















PPPP  

 where 1s .  

 

Corollary 6 Let )(, HBBA  and gf ,  be two non-negative and non-decreasing 

continuous functions on )[0,  such that 0)(=)()( xxxgxf . Then  

).|)(||)(||)(||)(|(
2

1
},{max PPPPPPPPPP  BgAfAgBfBABA  
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Abstract 

A new and applicable approach based on cubic B-spline wavelets and spectral 

methods is applied for solving a special case of strongly nonlinear two-point boundary value 

problems, namely Troesch problem. The purposed method is devoted to application of cubic 

B-spline wavelets and their operational matrix of derivative via Galerkin and collocation 

methods to approximate the numerical solution of Troesch equation. Comparison the results 

of presented method with the results of some other exiting methods for solving this kind of 

equations, show the high accuracy and efficiency of suggested scheme.  

 

Keywords: Troesch problem, cubic B-spline wavelets, spectral methods, operational matrices 

 

1. Introduction  

Troesch problem arises from a system of nonlinear ordinary differential equations which 

occur in the theory of gas porous electrodes [1] and investigation of the confinement of a 

plasma column by radiation pressure [2]. Troesch problem is a special nonlinear two point 

boundary value problem, defined as 

𝜈′′  𝑥 − 𝜆 𝑠𝑖𝑛ℎ 𝜆  𝜈 𝑥  = 0, 0 ≤  𝑥 ≤  1,                                     (1) 

𝜈 0 = 0,       𝜈 1 = 1,                                                             (2) 

where Troesch parameter 𝜆 is a positive constant. Existence of the solution of (1)-(2) is 

proved in [3] for 𝜆 < 5. The closed form solution to this problem in terms of the Jacobian 

elliptic function has been given [4] as 

𝜈(𝑥) =
2

𝜆
 𝑆𝑖𝑛ℎ−1   

𝜈′ 0 

2
𝑠𝑐(𝜆 𝑥|1−

1

4
𝜈′ 0 2) , 

where 𝜈′(0) = 2 1 − 𝜇, and 𝜇 satisfies the transcendental 𝑠𝑐 𝜆 𝜇) =
𝑆𝑖𝑛ℎ 

𝜆

2
 

 1−𝜇
 , where the 

Jacobian elliptic function 𝑠𝑐 𝜆   𝜇  = tan(𝛼), and 𝛼 and 𝜆 are related through the integral 

𝜆 =  
1

𝐶𝑜𝑠ℎ 𝜃 − 𝜇

𝛼

0

𝑑𝜃. 

It is clear that 𝜈(𝑥) has a singularity located at a pole of 𝑠𝑐(𝜆 𝑥|𝜇) or approximately at 
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𝑥𝑠 =
1

𝜆
𝐿𝑛  

8

𝜈′(0)
  [5], which implies that for  𝜈′(0) > 8𝑒−𝜆  the singularity lies within the 

integration range. Because of difficulty in direct solving of this equation, many researchers 

have paid considerable attention for numerical solving of this equation; see [4], [6]-[10]. 

In this paper we apply collocation and Galerkin methods via operational matrix of derivative 

based on cubic B-spline wavelets for reducing the main equation to some algebraic equation. 

2. Cubic B-spline wavelets 

The basic concepts and preliminaries of the wavelet theory and multi resolution analysis are 

given in literature [11]-[12]. Cubic B-spline scaling function is defined as 

𝜌4(𝑥) =
1

6

 
 
 

 
 
𝑥3 ,                                                    𝑥 ∈  [0,1)

−3𝑥3 + 12𝑥2 − 12𝑥 + 4 , 𝑥 ∈  [1,2)

3𝑥3 − 24𝑥2 + 60𝑥 − 44, 𝑥 ∈  [2,3)

 4− 𝑥 3,                                      𝑥 ∈  [3,4)
0,                                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

2.1. Boundary scaling adaptation 

We define the boundary near functions at the left boundary by 

𝜚3,𝑘 𝑥 = 𝜌4 8𝑥 − 𝑘 𝜒 0,1  𝑥 ,         𝑘 = −3,−2,−1,                                    (3) 

and for other levels of 𝑚, we have 

𝜚𝑚 ,𝑘 𝑥 = 𝜌4 2
𝑚𝑥 − 𝑘 𝜒 0,1  𝑥 , 𝑘 = −3,−2,−1, 𝑚 = 4,5,…  .          (4) 

For the right end of the interval, by symmetry we have the following relations 

𝜚3,5 𝑥 = 𝜌3,−1 1− 𝑥 ,   𝜚3,6 𝑥 = 𝜌3,−2 1− 𝑥 ,   𝜚3,7 𝑥 = 𝜌3,−3 1− 𝑥 ,         (5) 

and for other levels of 𝑚, we have 

𝜚𝑚 ,2𝑚−𝑘−3 𝑥 = 𝜌3,𝑘 2
𝑚𝑥 − 𝑘 ,   𝑘 = −3,−2,−1,   𝑚 = 4,5,… .                         (6) 

2.2. Interior scalings 

Interior cubic B-spline scaling functions are chosen as 

𝜚3,𝑘 𝑥 = 𝜌4 8𝑥 − 𝑘 𝜒 0,1  𝑥 , 𝑘 = 0,1,2,3,4,                                  (7) 

and for other levels of 𝑚, we get 
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𝜚𝑚 ,𝑘 𝑥 = 𝜌4 2
𝑚𝑥 − 𝑘 𝜒 0,1  𝑥 , 𝑘 = 0,1, . . . , 2𝑚 − 4, 𝑚 = 4,5,…  .       (8) 

Two scale dilation equation for cubic B-spline wavelet is given by 

𝜛4 𝑥 =  
 −1 𝑘

8

10

𝑘=0

  
4
𝑙
 

4

𝑙=0

𝜌8 𝑘 − 𝑙 + 1 𝜌4 2𝑥 − 𝑘 .                             (9) 

Other inner and boundary wavelets are constructed similarly as in [13]. 

2.3. Function approximation 

We can use cubic B-spline wavelets as basic functions for representing any function 𝜈 𝑥 ∈

𝐿2(𝑅) as 

𝜈 𝑥 =  𝜂𝑚 ,𝑖𝜚𝑚 ,𝑖 𝑥 

2𝑚−1

𝑖=−3

+    𝜁𝑗 ,𝑘𝜛𝑗 ,𝑘 𝑥 

2𝑗−4

𝑘=−3

 ∞

𝑗=𝑚

,                                      (10) 

where 𝜚𝑚 ,𝑖  and 𝜛𝑗 ,𝑘  are scaling functions and wavelets, respectively. By truncating the 

infinite series in equation (10) we can rewrite 

𝜈 𝑥 ≃  𝜂𝑚 ,𝑖𝜚𝑚 ,𝑖(𝑥)

2𝑚−1

𝑖=−3

 +    𝜁𝑗 ,𝑘𝜛𝑗 ,𝑘 𝑥 

2𝑗−4

𝑘=−3

𝑀

𝑗=𝑚

= 𝜃𝑇Λ 𝑥 ,                            (11) 

where 𝜃 and Λ are 2𝑀+1 + 3 column vectors given by 

𝜃 =  𝜂𝑚 ,−3, . . . , 𝜂𝑚 ,2𝑚−1, 𝜁𝑚 ,−3, . . . , 𝜁𝑀,2𝑀−4 
𝑇

,                                     (12) 

Λ =  𝜚𝑚 ,−3, . . . , 𝜚𝑚 ,2𝑚−1,𝜛𝑚 ,−3, . . . ,𝜛𝑀,2𝑀−4 
𝑇

,                                  (13) 

with 

𝜂𝑚 ,𝑖 =  𝜈 𝑥  𝜚 𝑚 ,𝑖(𝑥)

1

0

𝑑𝑥,     𝑖 = −3, . . . , 2𝑗0 − 1,      

𝜁𝑗 ,𝑘 =  𝜈 𝑥 𝜛 𝑗 ,𝑘(𝑥)𝑑𝑥

1

0

,     𝑗 = 𝑚, . . . ,𝑀,   𝑘 = −3, . . . , 2𝑀 − 4, 

where 𝜚 𝑚 ,𝑖  and 𝜛 𝑗 ,𝑘  are dual functions of 𝜚𝑚 ,𝑖  and 𝜛𝑗 ,𝑘 , respectively, which can be made by 

linear combinations of 𝜚𝑚 ,𝑖  and 𝜛𝑗 ,𝑘  [13]. 331
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2.4. Operational matrices of product and derivative 

Put 

𝜚(𝑥) =  𝜚𝑚 ,−3(𝑥), 𝜚𝑚 ,−2(𝑥), . . . , 𝜚𝑚 ,2𝑚−4(𝑥) , 

𝜛 𝑥 =  𝜛𝑚 ,−3 𝑥 ,… ,𝜛𝑚 ,2𝑚−4 𝑥 ,… ,𝜛𝑀,−3 𝑥 ,… ,𝜛𝑀,2𝑀−4 𝑥  . 

the product matrices of vectors 𝜚 and 𝜛 are defined as 

 𝜚 𝑥 𝜚𝑇(𝑥)

1

0

𝑑𝑥 = Π1 ,         𝜛 𝑥 𝜛𝑇(𝑥)

1

0

𝑑𝑥 = Π2,    

and the product matrix of B-spline wavelets is defined as 

Π =  
Π1 0
0 Π2

 . 

The derivative of vector Λ in equation (13) can be expressed as Λ′ 𝑥 = 𝐷 Λ 𝑥 , where 𝐷 is 

(2𝑀+1 + 3)-dimensional square operational matrix of derivative for cubic B-spline wavelets 

on [0,1]. The matrix 𝐷 can be obtained by considering 

𝐷 =  Λ′ 𝑥 Λ 𝑇(𝑥)

1

0

𝑑𝑥 = 𝐸  Π−1 𝑇 , 

where 𝐸 (2𝑀+1 + 3)-dimensional square matrix defined as follows 

𝐸 =  Λ′ 𝑥 Λ𝑇(𝑥)

1

0

𝑑𝑥 =  
𝐸1 𝐸2

𝐸3 𝐸4
  

𝐸1 =   𝜚𝑚 ,𝑖
′  𝑥 𝜚𝑚 ,𝑟 𝑥 𝑑𝑥

1

0

 

𝑖 ,𝑟

,                     𝐸2 =   𝜛𝑗 ,𝑘
′  𝑥 𝜚𝑚 ,𝑟 𝑥 𝑑𝑥

1

0

 

𝑗 ,𝑘 ,𝑟

, 

𝐸3 =   𝜚𝑚 ,𝑖
′  𝑥 𝜛𝑙 ,𝑠 𝑥 𝑑𝑥

1

0

 

𝑖 ,𝑙 ,𝑠

,                     𝐸4 =   𝜛𝑗 ,𝑘
′  𝑥 𝜛𝑙 ,𝑠 𝑥 𝑑𝑥

1

0

 

𝑗 ,𝑘 ,𝑙 ,𝑠

, 

and the subscripts 𝑖, 𝑟, 𝑘, 𝑗, 𝑙 and 𝑠 assume values as given below 

𝑖, 𝑟 = −3,−2, . . . , 2𝑚 − 1,        𝑘, 𝑠 = −3, . . . , 2𝑗 − 4,       𝑗, 𝑙 = 𝑚, . . . ,𝑀. 332
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3. 𝐍𝐮𝐦𝐞𝐫𝐢𝐜𝐚𝐥 𝐦𝐞𝐭𝐡𝐨𝐝 

In this section we put 𝜔 𝑥 = 𝑆𝑖𝑛ℎ 𝜆 𝜈(𝑥)  and by using cubic B-spline operational 

matrix of derivative we can write 

𝜈 𝑥 = 𝜃𝜈
𝑇Λ 𝑥 ,         𝜈′′  𝑥 = 𝜃𝜈

𝑇𝐷2Λ 𝑥 ,           𝜔 𝑥 = 𝜃𝜔
𝑇Λ 𝑥 .                    (16) 

Substituting equations (16) in the equation (1) we have 

𝜃𝜈
𝑇𝐷2Λ 𝑥 − 𝜆 𝜃𝜔

𝑇Λ 𝑥 = 0,                                         (17) 

now we apply Galerkin approach via cubic B-spline wavelets as weighting functions for 

solving equation (17) 

  𝜃𝜈
𝑇𝐷2 − 𝜆 𝜃𝜔

𝑇 

0

0

Λ 𝑥 ΛT 𝑥 𝑑𝑥 =  𝜃𝜈
𝑇𝐷2 − 𝜆 𝜃𝜔

𝑇 Π = 0, 

therefore  𝜃𝜈
𝑇𝐷2 − 𝜆 𝜃𝜔

𝑇 = 0, in the obtained system there are 2 × (2𝑀+1 + 3) 

unknowns and (2𝑀+1 + 3) equations. The difference between numbers of equations and 

number of unknowns is removable by using the relation between 𝜈 𝑥  and 𝜔 𝑥 : 

𝜔 𝜃𝜈
𝑇Λ 𝑥  = 𝑆𝑖𝑛ℎ 𝜆𝜃𝜈

𝑇Λ 𝑥  = 𝜃𝜔
𝑇Λ 𝑥 .                                     (18) 

By collocating the equation (18) in the points  

𝑥𝑗 =
𝑗

2𝑀+1 + 3
,       𝑗 = 1, 2, . . . , 2𝑀+1 + 1, 

we get 

𝑆𝑖𝑛ℎ  𝜆𝜃𝜈
𝑇Λ 𝑥𝑗   = 𝜃𝜔

𝑇Λ 𝑥𝑗  ,                           𝑗 = 1,2, . . . , 2𝑀+1 + 1, 

and applying the boundary conditions 

𝜃𝜈
𝑇Λ(0) = 0,                             𝜃𝜈

𝑇Λ(1) = 1. 

So we get a system of 2 ×  (2𝑀+1 + 3)  equations with 2 ×  (2𝑀+1 + 3) unknowns, which 

can be solved easily. 

4. Test problem 

Using purposed method, we solve nonlinear boundary value problem (1)-(2) for start 

level 𝑚 = 3 and scales 𝑀 = 4, 5 and different values of Troesch parameter 𝜆 and 
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compare our findings with results of some other exiting methods. The attained results 

for 𝜆 = 0.5 are given in table 1 and are compared with the solutions of decomposition 

method (DM) of [4]. Table 2 contains the numerical solutions for scales 𝑀 = 4, 5  and 

Troesch parameter 𝜆 = 1 and also the results of coupled Laplace Transform and 

modified decomposition method (LT-MDM) of [8]. In table 3 numerical solution of 

problem (1)-(2) for 𝜆 = 5 are given in some arbitrary points and compared with the 

results of Fortran code (FD) [14] and B-spline collocation method (B-SCM) [14].  

Table 1. Approximated solutions for 𝝀 = 𝟎.𝟓 

𝑥 𝑀 = 4 𝑀 = 5 DM [4] Exact 

0 0.000000 0.000000 0.000000 0.000000 

0.2 0.196057 0.186122 0.1921352 0.1906339 

0.4 0.393094 0.378081 0.3861955 0.3835229 

0.6 0.592097 0.576957 0.5841442 0.5810020 

0.8 0.794063 0.783875 0.7880234 0.7855718 

1 1.0000000 1.0000000 1.0000000 1.0000000 

 

Table 2. Approximated solutions for 𝝀 = 𝟏 

𝑥 𝑀 = 4 𝑀 = 5 LT-MDM [8]  Exact 

0.1 0.0930076 0.0852337 0.0846631 0.0817969 

0.3 0.2736864 0.2591218 0.2573995 0.2491673 

0.5 0.4565536 0.4434094 0.4406094 0.4283471 

0.7 0.6529541 0.6454926 0.6421421 0.6289711 

0.9 0.8750744 0.8734816 0.8713749 0.8639700 
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Table 3. Approximated solutions for 𝝀 = 𝟓 

𝑥 𝑀 = 4 𝑀 = 5 FD [14]  B-SCM [14] 

0.1 0.0076520 0.0095523 -- -- 

0.2 0.0110199 0.0109043 0.01075342 0.01002027 

0.3 0.0213986 0.0250004 -- -- 

0.4 0.0314220 0.0328037 0.0332005 0.0309979 

0.5 0.0537343 0.0720751 -- -- 

0.6 0.0114229 0.9600047 -- -- 

0.7 0.1349407 0.1579514 -- -- 

0.8 0.2496878 0.2600308 0.2582166 0.2417049 

0.9 0.4369226 0.4544960 0.4550603 0.4246183 

1 1.0000000 1.0000000 1.0000000 1.0000000 

 

5. Conclusion 

In this paper a new and applicable method is implemented on a class of strongly nonlinear 

differential equations. The purposed method is based on cubic B-spline wavelets spectral 

methods. Common property of the presented method was reducing the nonlinear equation to a 

system of algebraic equations. Comparison between our results and the findings of some 

other exiting methods for solving this kind of problems, shows the high accuracy and 

efficiency of the methods. Because of some significant properties of B-spline wavelets, such 

as semi orthogonality, having compact support and vanishing moments, the operational 

matrices are so sparse and consequently relevant required computational time and memory is 

so low. The presented method is attractive and can be extended for similar high order 

nonlinear differential equations even fractional order with little additional work. 
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Abstract 

In this paper cubic B-spline scaling fuvctions and their operational matrix of fractional 

integration are applied for solving a special case of fractional delay differential equations, 

namely pantograph equation. Comparison the results of presented method with the exact 

solution of main problem in spacial cases, show the high accuracy and efficiency of 

suggested scheme.  
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1. Introduction  

Delay differential equations (DDEs) have numerous applications in mathematical modeling, 

such as; physiological and pharmaceutical kinetics, chemical kinetics, navigational control of 

ships and aircrafts, population dynamics, and infectious diseases [1]. They arise when the rate 

of change of a time-dependent process in its mathematical modeling is not only determined 

by its present state but also by a certain past state. The pantograph equation is one of the most 

important kinds of DDEs and plays an important role in explaining many different 

phenomena [2]. Fractional delay differential equation (FDDE) is a generalization of the delay 

differential equation to arbitrary non-integer order. FDDEs have also been in center of 

attention of some authors and been played a significant role in modeling of many real areas of 

sciences such as physics, engineering, biology, medicine, and economics. FDDEs often 

cannot be solved analytically so the approximate and numerical methods should be adapted to 

solve this type of equations. During the last decades, several methods have been used to solve 

this kind of problems such as; Adams-Bashforth-Moulton algorithm [3], Bernoulli wavelet 

method [4], Shifted Chebyshev approximations [5], Legendre multiwavelet collocation 

method [6], Finite difference method [7] and the references therein.  

The main aim of this research is evaluating the numerical solution of fractional delay 

differential equation, well known as pantograph equation, in the following form 

𝐷𝛽  𝜉 𝑡 = 𝜈 𝑡 𝜉 𝑡 + 𝜔𝑗   𝑡 𝐷𝛽𝑗𝜉 𝜌𝑗 𝑡 

𝑚

𝑗=1

,     0 ≤ 𝑡 ≤  𝑇,                      (1) 
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𝜉 𝑘  𝑡 = 𝜆𝑘 ,   𝑘 = 0,1, . . . ,𝑛 − 1,                                                 (2) 

where 

𝑛 − 1 < 𝛽 ≤  𝑛,     0 ≤ 𝛽𝑗 < 𝛽,       0 < 𝜌𝑗 < 1,    𝑗 = 1,2,… ,𝑚.   

 

For this aim, cubic B-spline scaling functions and their operational matrix of fractional 

integration is utilized via collocation method to transform the fractional delay differential 

equation to some algebraic system. 

2. Preliminaries of fractional calculus 

In this section we briefly present some definitions and results in fractional calculus for our 

subsequent discussion [8]. 

Definition 1. Fractional integral operator of order 𝛼 >  0 in the means of Riemann Liouville 

is defined as 

𝐽𝛼𝑢 𝑡 =
1

Γ 𝛼 
 

𝑢 𝑠 

 𝑡 − 𝑠 1−𝛼

𝑡

0

𝑑𝑠.                                              (3) 

Definition 2. Fractional derivative operator of order 𝛼 > 0 in Caputo means is defined as 

𝐷𝛼𝑢 𝑡 =
1

Γ 𝑛 − 𝛼 
 

𝑢 𝑛  𝑠 

 𝑡 − 𝑠 𝛼−𝑛+1

𝑡

0

𝑑𝑠,    𝑛 − 1 < 𝛼 ≤  𝑛,      𝑛 ∈ 𝑁.      (4) 

For constants 𝛼, 𝛽, 𝜈, 𝜆, 𝜇 and 𝐶, Riemann Liouville fractional integral operator and Caputo 

fractional derivative operator are subject to the following conditions: 

i. 𝐽𝛼𝑢 𝑡 𝐽𝛽𝑢(𝑡) = 𝐽𝛼+𝛽𝑢(𝑡), 

ii. 𝐽𝛼𝑥𝜈 =
Γ(𝜈+1)

Γ(𝛼+𝜈  +1)
𝑥𝛼+ 𝜈  , 

iii. 𝐷𝛼  𝑥𝛽 =  
0;                      𝛼 ∈ 𝑁,   𝛽 < 𝛼
Γ(𝛽+1)

Γ(𝛽+1−𝛼)
𝑥𝛽−𝛼 ;          𝛽 ≥ 𝛼,

  

iv. 𝐷𝛼𝐽𝛼𝑢(𝑡) = 𝑢(𝑡), 

v. 𝐽𝛼𝐷𝛼𝑢 𝑡 = 𝑢 𝑡 −  𝑢 𝑗   0 𝑛−1
𝑗=0

𝑡 𝑗

𝑗 !
. 

3. Cubic B-Spline scaling functions 
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Cubic B-spline scaling function 𝜙4(𝑥) is given by [9] 

𝜙4 𝑥 =  
1

6
  

4
𝑘
  −1 𝑘 𝑥 − 𝑘 +

3

4

𝑘=0

 .𝜒 0,4  𝑥 ,                             (5) 

𝑥+
𝑛 =  

 𝑥𝑛 ;         𝑥 > 0,
0;           𝑥 ≤ 0 ,

  

and its two-scale dilation equation defined as follows 

𝜙4 𝑥 =  
1

8

4

𝑘=0

  
4
𝑘
 𝜙4(2𝑥 − 𝑘). 

Let 𝜑𝑗 ,𝑘 𝑥 = 𝜙4 2𝑗𝑥 − 𝑘 ,   𝑘, 𝑗 ∈ 𝑍. 𝜑𝑗 ,𝑘  are given by 

𝜑𝑗 ,𝑘(𝑥) =
23𝑗

6
 

 
 
 
 
 

 
 
 
 𝛾 𝑥 3,                                                                𝑥 ∈    

𝑘

2𝑗
,
𝑘 + 1

2𝑗
    

−3𝛾 𝑥 3 + 12𝛾 𝑥 2 − 12𝛾 𝑥 + 4,                𝑥 ∈    
𝑘 + 1

2𝑗
,
𝑘 + 2

2𝑗
     

   

3𝛾 𝑥 3 − 24𝛾 𝑥 2 + 60𝛾 𝑥 − 44,              𝑥 ∈    
𝑘 + 2

2𝑗
,
𝑘 + 3

2𝑗
    

− 𝛾 𝑥 −
4

2𝑗
 

3

,                                                𝑥 ∈    
𝑘 + 3

2𝑗
,
𝑘 + 4

2𝑗
    

0,                                                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (6)     

where 𝛾 𝑥 = 𝑥 −
𝑘

2𝑗
. Scaling functions can be used to expand any function in 𝐿2(𝑅). 

3.1. Function approximation 

A function 𝑓(𝑥) defined over [0,1] may be approximated by cubic B-spline scaling functions 

as 

𝑓 𝑥 =  𝑐𝑘

2𝑗−1

𝑘=−3

𝜑𝑗 ,𝑘   𝑥 = 𝐶𝑇Φj 𝑥 ,                                                    (7) 

where 

𝐶 =  𝑐−3,… , 𝑐2𝑗−1 
𝑇

,                      Φj =  𝜙𝑗 ,−3,… ,𝜙𝑗 ,2𝑗−1 
𝑇

, 

𝑐𝑘 =  𝑓 𝑥 

1

0

𝜙 𝑗 ,𝑘(𝑥)𝑑𝑥,      𝑘 = −3, . . . , 2𝑗 − 1, 
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and 𝜙 𝑗 ,𝑘  are dual functions of 𝜑𝑗 ,𝑘  which can be obtained by linear combinations of 𝜑𝑗 ,𝑘 . 

Let 

 Φ𝑗  𝑥 Φ𝑗
𝑇(𝑥)𝑑𝑥

1

0

= Π𝑗 ,                                                           (8) 

where Π𝑗  is   2𝑗 + 3 × (2𝑗 + 3) matrix. Suppose Φ 𝑗 (𝑥) is the dual function of Φ𝑗  𝑥 , given 

by 

Φ 𝑗  𝑥 =  𝜙 𝑗 ,−3 𝑥 ,𝜙 𝑗 ,−2 𝑥 ,… ,𝜙 𝑗 ,2𝑗−1 𝑥  
𝑇

. 

Using equation (8) we have 

 Φ 𝑗  𝑥 Φ𝑗
𝑇 𝑥 𝑑𝑥

1

0

= I2𝑗+3,  

So we get 

Φ 𝑗 =  Π𝑗
−1Φ𝑗 .                                                                  (9) 

3.2. Fractional integration of cubic B-spline scaling function 

In this section using Laplace transform, we evaluate the Riemann-Liouville fractional 

integration of cubic B-spline scaling functions. For this purpose, Suppose 𝑢(𝑥) be Heaviside 

step function, we can rewrite 𝜑𝑗 ,𝑘  as follows 

𝜑𝑗 ,𝑘 𝑥 =
23𝑗

6
  −1 𝑙

4

𝑙=0

  
4
𝑙
  𝑥 −

𝑘 + 𝑙

2𝑗
 

3

𝑢  𝑥 −
𝑘 + 𝑙

2𝑗
 ,                             (10) 

taking Laplace transform of 𝜑𝑗 ,𝑘 𝑥 , we get 

  𝜑𝑗 ,𝑘 𝑥  =
23𝑗

𝑠3
  −1 𝑙  

4
𝑙
 

4

𝑙=0

𝐸𝑥𝑝  −
𝑘 + 𝑙

2𝑗
𝑠 . 

Now using convolution theorem for Laplace transform and definition of Riemann-Loiuville 

fractional integration we have 

  𝐽𝛼𝜑𝑗 ,𝑘 𝑥  =
1

Γ 𝛼 
 𝑥𝛼−1   𝜑𝑗 ,𝑘 𝑥  =

23𝑗

𝑠3+𝛼
  −1 𝑙  

4
𝑙
 

4

𝑙=0

𝐸𝑥𝑝  −
𝑘 + 𝑙

2𝑗
𝑠 .     (11) 341
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It is clear that by taking inverse Laplace transform of equation (9), we get 

𝐽𝛼𝜑𝑗 ,𝑘 𝑥 =
23𝑗

Γ(3 + 𝛼)
  −1 𝑙  

4
𝑙
  𝑥 −

𝑘 + 𝑙

2𝑗
 

+

34

𝑙=0

. 

3.3. Operational matrix of fractional integration 

Suppose that 𝑱𝛼  be the operational matrix of fractional integration, that is  

𝐽𝛼Φj 𝑥 = 𝑱𝛼Φj 𝑥 ,                                                           (12) 

multiplying equation (10) in Φ 𝑗
𝑇(𝑥) and integrating from 0 to 1 and using equation (9) we get 

𝑱𝛼 =   𝐽𝛼Φ𝑗  (𝑥)Φ𝑇
𝑗 (𝑥)𝑑𝑥

1

0

 Π−1 = Θ𝑗
𝛼Π−1 

where 

Θ𝑗
𝛼 =   𝐽𝛼𝜑𝑗 ,𝑘   𝑥 𝜑𝑗 ,𝑙   𝑥 𝑑𝑥

1

0

 

𝑘 ,𝑙

,              𝑘, 𝑙 = −3,−2, . . . ,3. 

4. Numerical Implementation 

In this section, pantograph fractional differential equation is solved using cubic B-spline 

scaling functions. First we represent the fractional derivative of unknown function by cubic 

B-spline scaling functions as equation (1) 

𝐷𝛽𝜉 𝑡 = 𝐶𝑇Φ𝑗  𝑡 ,                                                       13  

applying property vii of fractional calculus, we get 

𝐽𝛽𝐷𝛽𝜉 𝑡 = 𝜉 𝑡 − 
𝜉 𝑖   0 

𝑖!

𝑛−1

𝑖=0

𝑡𝑖 ,                                            (14) 

also 

𝐽𝛽  𝐶𝑇Φ𝑗  𝑡  = 𝐶𝑇𝐽𝛽  Φ𝑗  𝑡  = 𝐶𝑇𝑱𝛽  Φ𝑗  𝑡  ,                                           (15) 

considering equation (14)-(15), we have 

𝜉 𝑡 = 𝐶𝑇𝑱𝛽  Φ𝑗  𝑡  +  
𝜉 𝑖   0 

𝑖!

𝑛−1

𝑖=0

𝑡𝑖 .                                         (16) 
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For evaluating 𝐷𝛽𝜇 𝜉(𝜌𝜇 𝑡), 𝜇 = 0,1, . . . ,𝑚 in equation (1), first 𝜉 𝜌𝜇 𝑡  is obtained. Using 

equation (16) we get 

𝜉(𝜌𝜇 𝑡) = 𝐶𝑇𝑱𝛽 Φ𝑗 (𝜌𝜇 𝑡) +  
𝜆𝑖𝜌𝜇

𝑖

𝑖!

𝑛−1

𝑖=0

𝑡𝑖 , 

thus 

𝐷𝛽𝜇 𝜉 𝜌𝜇 𝑡 = 𝐶𝑇𝐷𝛽𝜇 𝑱𝛼 Φ𝑗 (𝜌𝜇 𝑡 +  
𝜆𝑖𝜌𝜇

𝑖

𝑖!

𝑛−1

𝑖=0

𝐷𝛽𝜇 𝑡𝑖 , 

note that 

𝐷𝛽𝜇 𝑱𝛼 Φ𝑗 (𝑡) = 𝐷𝛽𝜇 𝐽𝛼Φ𝑗  𝑡 = 𝐽𝛼−𝛽𝜇  Φ𝑗  𝑡  = 𝑱𝛼−𝛽𝜇Φ𝑗  𝑡 , 

therefore we get 

𝐷𝛽𝜇 𝜉 𝜌𝜇 𝑡 = 𝐶𝑇𝑱𝛼−𝛽𝜇Φ𝑗  𝜌𝜇 𝑡 + + 
𝜆𝑖𝜌𝜇

𝑖

𝑖!

𝑛−1

𝑖=0

𝐷𝛽𝜇 𝑡𝑖 .                           (17) 

Substituting equations (13) and (17) in (1), we have 

𝐶𝑇Φ𝑗  𝑡 = 𝜈 𝑡  𝐶𝑇𝑱𝛽  Φ𝑗  𝑡  +  
𝜆𝑖
𝑖!

𝑛−1

𝑖=0

𝑡𝑖                                                                      

+ 𝜔𝜇 (𝑡)

𝑚

𝜇=1

 𝐶𝑇𝑱𝛽−𝛽𝜇Φ𝑗  𝜌𝜇 𝑡  +   𝜔𝜇  𝑡  
𝜆𝑖𝜌𝜇

𝑖

𝑖!
𝐷𝛽𝜇 𝑡𝑖 

𝑛−1

𝑖=0

𝑚

𝜇=1

,                 (18) 

consequently the following algebraic system is obtained 

𝐶𝑇  Φ𝑗  𝑡 − 𝜈(𝑡)𝑱𝛽Φ𝑗  𝑡 − 𝜔𝜇 (𝑡)

𝑚

𝜇=1

 𝑱𝛽−𝛽𝜇Φ𝑗  𝜌𝜇 𝑡   = 𝑆 𝑡 ,               (19) 

where 

𝑆 𝑡 =   𝜈 𝑡 
𝜆𝑖
𝑖!
𝑡𝑖 +  𝜔𝜇  𝑡  

𝜆𝑖𝜌𝜇
𝑖

𝑖!
𝐷𝛽𝜇 𝑡𝑖 

𝑚

𝜇=1

 

𝑛−1

𝑖=0

. 

Now for solving the current algebraic system we collocate equation (19) in the following 

points 

𝑡𝑘 =
𝑘

2𝑗 + 3
,       𝑘 = 1,2,… , 2𝑗 + 3. 
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The obtained system can be solved by some iterative method, in this paper we applied 

Newton method for evaluating the approximated solution.   

 

5. Illustrative example 

In this section, for showing the applicability and accuracy of the purposed method an 

illustrative example is solved by introduced method in section 4. Computations have been 

done using Wolframe Mathematica software. 

Example. Consider the following pantograph differential equation 

𝐷𝛽  𝜉 𝑡 = 2𝜉 𝑡 + 27𝜉  
𝑡

3
 − 3𝑡3 + 44𝑡 + 6,     1 < 𝛽 ≤ 3 

𝜉 0 = 0,     𝜉′ 0 = −4,   𝜉′ ′ 0 = 0, 

where the exact solution for 𝛽 = 3 is 𝜉 𝑡 = 𝑡3 − 4𝑡. The approximated solution for 𝛽 = 3, 

𝑗 = 4 and 𝛼 = 1, 1.5, 2, 3 are evaluated and the absolute error are given in Table 1. 

 

Table 1. The absolute errors for 𝜷 = 𝟑, 𝒋 = 𝟒 and 𝜶 = 𝟏,𝟏.𝟓,𝟐,𝟑 

𝑡 𝛼 = 𝟏 𝛼 = 𝟏. 5 𝛼 = 𝟐 𝛼 = 𝟑 

0.0 1.05 × 10−3 2.87 × 10−4 9.05 × 10−9 8.49 × 10−16 

0.4 2.38 × 10−2 4.68 × 10−4 4.20 × 10−9 1.11 × 10−16 

0.8 5.00 × 10−2 7.01 × 10−3 1.03 × 10−8 5.09 × 10−15 

1.2 2.94 × 10−2 3.07 × 10−3 5.51 × 10−8 7.72 × 10−15 

1.6 3.31 × 10−2 4.93 × 10−2 4.73 × 10−8 8.32 × 10−15 

2.0 6.42 × 10−1 8.99 × 10−2 6.95 × 10−8 6.00 × 10−15 

 

6. Conclusion 

In this paper a new and applicable approach based on cubic B-spline scaling functions is 

implemented for numerically solving a class of fractional delay differential equations. For 

this purpose fractional cubic B-spline scaling functions are constructed and consequently the 

operational matrix of fractional integration is made. Then by expanding the unknown 

functions of main problem by fractional B-spline scaling functions, the main problem is 

reduced to some algebraic system. Comparison between obtained results and exact solution, 

shows the high accuracy and efficiency of presented method. 344
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(A,ϕ)− ALMOST STATISTICAL CONVERGENCE OF ORDER γ

EKREM SAVAŞ

Abstract. The purpose of this paper is to introduce and study some prop-

erties of the almost statistical convergence of order γ, which is defined using
almost convergence and the ϕ-function. Additional we prove some inclusion
theorems.

1. Introduction and Background

Let s denote the set of all real and complex sequences x = (xk). By l∞ and c, we
denote the Banach spaces of bounded and convergent sequences x = (xk) normed
by ||x|| = supn|xn|, respectively.

If x = (xk) is a sequence and A = (ank) is an infinite matrix, then Ax is the
sequence whose nth term is given by An(x) =

∑∞
k=0 ankxk. Thus we say that x is

A-summable to L if limn→∞An(x) = L. Let X and Y be two sequence spaces and
A = (ank) an infinite matrix. If for each x ∈ X the series An(x) =

∑∞
k=0 ankxk

converges for each n and the sequence Ax = An(x) ∈ Y we say that A maps X
into Y . By (X,Y ) we denote the set of all matrices which maps X into Y , and
in addition if the limit is preserved then we denote the class of such matrices by
(X,Y )reg.

A linear functional L on l∞ is said to be a Banach limit if it has the following
properties:

(1) L(x) ≥ 0 if n ≥ 0 (i.e. xn ≥ 0 for all n),
(2) L(e) = 1 where e = (1, 1, . . .),
(3) L(Dx) = L(x), where the shift operator D is defined by D(xn) = {xn+1}.

Let B be the set of all Banach limits on l∞. A sequence x ∈ ℓ∞ is said to be almost
convergent if all of its Banach limits coincide. Let ĉ denote the space of almost
convergent sequences .

Lorentz [8] has shown that

ĉ =
{
x ∈ l∞ : lim

m
tm,n(x) exists uniformly in n

}

where

tm,n(x) =
xn + xn+1 + xn+2 + · · · + xn+m

m+ 1
.

The space [ĉ] of strongly almost convergent sequences was introduced by Maddox
[9] and also independently by Freedman et al [5] as follows :

[ĉ] =
{
x ∈ l∞ : lim

m
tm,n(|x− L|) = 0, uniformly in n, for some L

}
.

2010 Mathematics Subject Classification. Primary 40H05; Secondary 40C05.
Key words and phrases. ϕ-function, almost convergence of order γ, almost statistical conver-

gence of order γ.
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Let λ = (λi) be a non-decreasing sequence of positive numbers tending to ∞
such that

λi+1 ≤ λi + 1, λ1 = 1.

Waszak [17] defined the lacunary strong (A,ϕ)− convergence with respect to a
modulus function.

2. Main results

The idea of statistical convergence of a sequence was introduced by Fast [4] (see
also Schoenberg [16]) . Statistical convergence was generalized by Buck [2] and
studied by other authors, using a regular nonnegative summability matrix A in
place of Cesàro matrix.

The idea of convergence of a real sequence was extended to statistical convergence
by Fast [4] ( see also Schoenberg [16] ) as follows : If N denotes the set of natural
numbers and E ⊂ N then E(m,n) denotes the cardinality of the set E∩ [m,n]. The
upper and lower natural density of the subset E is defined by

d(E) = lim
n→∞

sup
E(1, n)

n
and d(E) = lim

n→∞
inf

E(1, n)

n
.

If d(E) = d(E) then we say that the natural density of E exists and it is denoted

simply by d(E). Clearly d(E) = lim
n→∞

E(1, n)

n
.

Statistical convergence turned out to be one of the most active areas of research in
summability theory after the work of Fridy [6] and Šalát [12]. In another direction,
a new type of convergence called λ- statistical convergence was introduced in [11]
as follows: A sequence (xk) of real numbers is said to be λ- statistically convergent
to L ( or, Sλ-convergent to L ) if for any ε > 0,

lim
j→∞

1

λj
|{k ∈ Ij : |xk − L| ≥ ε}| = 0,

where |A| denotes the cardinality of A ⊂ N. In [11] the relation between λ- sta-
tistical convergence and statistical convergence was established among other things.

A sequence (xk) of real numbers is said to be almost statistically convergent to
L if for arbitrary ε > 0, for all m, the set

E(ε) = {k ∈ N : |xk+m − L| ≥ ε}
has natural density zero.

Recently E.Savas [13] defined almost λ-statistical convergence as follows by using
the notion of (V, λ)-summability to generalize the concept of statistical convergence.
A sequence (xk) of real numbers is said to be λ- almost statistically convergent to
L ( or, Sλ-convergent to L ) if for any ε > 0,

lim
j→∞

1

λj
|{k ∈ Ij : |xk+m − L| ≥ ε}| = 0, uniformly in m.

If we take λj = j, the definition of λ- almost statistically convergent reduces to
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(A, ϕ)− ALMOST STATISTICAL CONVERGENCE 3

almost statistically convergent. Kolk [7] has given very interesting definition which
is A-statistical convergence.

Assume that A is a non-negative regular summability matrix. Then the sequence
x = (xk) is called A-statistically convergent to L provided that, for every ε > 0,

limj

∑

n:|xk−L|≥ε

ajn = 0

We denote this by stA − limnxk = L.
Let A = (ank) be the real matrix and the sequence x = (xk), the ϕ- function

ϕ(u) and a positive number ε > 0 be given. We write, for all m

Kλj ((A,ϕ), ε,m) = {n ∈ Ij :

∞∑

k=1

ankϕ(|xk+m|) ≥ ε}.

The sequence x is said to be (A,ϕ)- statistically almost convergent of order γ,
0 < γ ≤ 1, to a number zero if for every ε > 0

limj
1

λγ
j

µ(Kλj ((A,ϕ), ε,m)) = 0, uniformly in m,

where µ(Kγ
λj

((A,ϕ), ε,m)) denotes the number of elements belonging toKγ
λj

((A, γ), ε,m).

We denote by ŝγ
λ((A,ϕ))0, the set of sequences x = (xk) which are (A,ϕ)− almost

statistical convergent to zero.
If we take A = I and ϕ(x) = x respectively, then ŝγ

λ((A,ϕ))0 reduce to (ŝγ
λ)0.

(ŝγ
λ)0 =

{
x = (xk) : limj

1

λγ
j

|{k ∈ Ij : |xk+m| ≥ ε}| = 0, uniformly in m

}
.

If we take A = I, ϕ(x) = x and γ = 1 respectively, then we get the following:

(ŝλ)0 =

{
x = (xk) : limj

1

λj
|{k ∈ Ij : |xk+m| ≥ ε}| = 0,uniformly in m

}
.

Remark 1. (i) If

ank := {
1
n , if n ≥ k,
0, otherwise.

then ŝγ
λ((A,ϕ))0 reduce to ŝγ

λ((C, ϕ))0,i.e., (C, ϕ)− almost statistical convergence of
order γ to zero. (ii) If for all m,

ank := {
pk

Pn
, if n ≥ k,

0, otherwise.

then ŝγ
λ((A,ϕ))0 reduce to ŝS

γ

λ((N, p), ϕ))0,i.e., ((N, p), ϕ)− almost statistical con-
vergence of order γ to zero, where p = pk is a sequence of nonnegative numbers
such that p0 > 0 and

Pn =
n∑

k=0

pk → ∞(n → ∞).

We now have
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Theorem 2.1. If ψ ≺ ϕ then ŝγ
λ((A,ψ))0 ⊂ ŝγ

λ((A,ϕ))0.

Proof. By assumption we have ψ(|xk|) ≤ bϕ(c|xk|) and we have for all i,

∞∑

k=1

ankψ(|xk+m|) ≤ b
∞∑

k=1

ankϕ(c|xk+m|) ≤ L
∞∑

k=1

ank(i)ϕ(|xk+m|)

for b, c > 0, where the constant L is connected with properties of ϕ. Thus, the
condition

∑∞
k=1 ankψ(|xk+m|) ≥ ε implies the condition

∑∞
k=1 ankϕ(|xk+m|) ≥ ε

and in consequence we get

µ(Kγ
λj

((A,ϕ), ε,m)) ⊂ µ(Kγ
λj

((A,ψ), ε,m))

and

limj
1

λj
γ µ

(
Kγ

λj
((A, ϕ), ε,m)) ≤ limj

1

λj
γ µ(Kγ

λj
((A,ψ), ε,m))

)
.

This completes the proof. �

Theorem 2.2. If 0 < α ≤ β ≤ 1 then ŝγ
λ(A,ϕ)0 ⊂ ŝβ

λ(A, ϕ)0.

Proof. Let 0 < γ ≤ β ≤ 1. Then

1

λγ
j

µ(K(A, ϕ), ε,m) ≤ 1

λβ
j

µ(K(A,ϕ), ε,m)

for every ε > 0 and finally we have that ŝγ
λ(A,ϕ)0 ⊂ ŝβ

λ(A,ϕ)0. This proves the
theorem. �

Theorem 2.3. Let λ = (λn) and µ = (µn) be two sequences in Λ such that λn ≤ µn

for all n ∈ N and let γ and β be fixed real numbers such that 0 < α ≤ β ≤ 1, If

(2.1) lim
n→∞

inf
λγ

n

µβ
n

> 0

then ŝγ
µ(A,ϕ)0 ⊆ ŝβ

λ(A,ϕ)0.

Proof. Suppose that λn ≤ µn for all n ∈ N and let (2.1) be satisfied. For given
ε > 0 we have

{
n ∈ Jn :

∣∣∣∣∣
∞∑

k=1

ankφ(|xk+m|)
∣∣∣∣∣ ≥ ε

}
⊇

{
n ∈ In :

∣∣∣∣∣
∞∑

k=1

ankφ(|xk+m|)
∣∣∣∣∣ ≥ ε

}

where In = [n− λn + 1, n] and Jn = [n− µn + 1, n]. Therefore we can write

1

µβ
n

∣∣∣∣∣

{
n ∈ Jn :

∣∣∣∣∣
∞∑

k=1

ankφ(|xxk+m
|)

∣∣∣∣∣ ≥ ε

}∣∣∣∣∣ ≥ λγ
n

µβ
n

1

λγ
n

∣∣∣∣∣

{
n ∈ In :

∣∣∣∣∣
∞∑

k=1

ankφ(|xxk+m|)

∣∣∣∣∣ ≥ ε

}∣∣∣∣∣

Hence ŝβ
µ(A,ϕ)0 ⊆ ŝβ

λ(A, ϕ)0.

349



(A, ϕ)− ALMOST STATISTICAL CONVERGENCE 5

References

[1] S. Banach, Theorie des Operations Lineaires (Warszawa)(1932).

[2] R. C. Buck, Generalized asymptotic density, American J. math. 75(1953), 335-346.
[3] R. Colak, C. A. Bektas,λ-statistical convergence of order α, Acta Math. Scientia, 31B (3)

(2011), 953-959.
[4] H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241-244.

[5] A. R. Freedman, J. J. Sember, M. Raphel, Some Cesaro-type summability spaces, Proc.
London Math. Soc. 37(1978), 508-520.

[6] J. A. Fridy, On statistical convergence, Analysis, 5 (1985), 301-313.
[7] E. Kolk, matrix summability of statistically convergent sequences , Analysis. 18 (1993), 77-83.

[8] G. G. Lorentz, A contribution to the theory of divergent sequences, Acta. Math. 80 (1948),
167-190.

[9] I. J. Maddox, Spaces of strongly summable sequences, Quart. J. Math., 18(1967), 345-355.
[10] I. J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Camb. Philos. Soc., 100

(1986), 161-166.
[11] Mursaleen, λ-statistical convergence, Math. Slovaca, 50 (2000), 111 - 115.
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E-mail address: ekremsavas@yahoo.com

350



INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 

3-5 July 2019, Istanbul, Turkey 

ICOM-2019  ISTANBUL / TURKEY 
 

 

 

On the Spectrum of Dissipative Singular Differential Operators of First Order 

Pembe Ipek Al, Zameddin I. Ismailov 

  Mathematics, Karadeniz Technical University, Turkey 

E-mails:  ipekpembe@gmail.com, zameddin.ismailov@gmail.com 

 

Abstract 

     In this paper, firstly all maximally dissipative extensions of the minimal operator generated 

by first order linear singular differential expression in the weighted Hilbert space of vector-

functions on right semi-axis are described. Later on, the structure of spectrum set of these 

extensions has been researched. Then, the obtained results are supported by application. 

Keywords: Dissipative  operator, Deficiency index, Space of  boundary  values, Spectrum 

 

1. Introduction  

     Operator theory is important to understand the nature of the spectral properties of an operator 

associated with a boundary value problem acting on a Hilbert space. To obtain such an 

information as is well known that the corresponding inner product is useful. A linear closed 

densely defined operator 𝑇: 𝐷(𝑇) ⊂ 𝑋 → 𝑋 in a Hilbert space 𝑋 is called to be dissipative if 

and only if  

𝐼𝑚 (𝑇𝜗, 𝜗) ≥ 0, 

where 𝐼𝑚(∙,∙) and 𝐷(𝑇) denote the imaginary part of the inner product and the domain of the 

operator 𝑇, respectively (see [3]). If a dissipative operator has no any proper dissipative 

extension, then it is called maximally dissipative [3]. A direct result on dissipative operators is 

that their spectrum lie in the closed upper half-plane. Therefore open lower half-plane does not 

belong to the spectrum of 𝑇 . Maximally dissipative operators play a very important role in 

mathematics and physics. In physics, there are many interesting applications of the dissipative 

operators in areas like hydrodynamic, laser and nuclear scattering theories.  

     Note that the general theory of self-adjoint extensions of linear densely-defined closed 

symmetric operators in any Hilbert space was mentioned in the well-known work of Neumann 

[7]. 

     The complete informations of Vishik's and Birman's investigations on the all non-negative 

selfadjoint extensions of a positive closed symmetric operator have been given by Fischbacher 

in [1]. Functional model theory of Nagy and Foias [4] is a basic method for investigation the 

spectral properties of dissipative operators. 

     The maximal dissipative extensions and their spectral analysis of the minimal operator 

having equal deficiency indices generated by formally symmetric differential-operator 

expression in the Hilbert space of vector-functions defined in one finite or infinite interval case 

have been researched by Gorbachuk, Gorbachuk [3] and Rofe-Beketov, Kholkin [6] in terms 

of generalized boundary values.  

     In this work, In Section 3, using the Calkin-Gorbachuk method the representation of all 

maximally dissipative extensions of the minimal operator generated by the first order linear 

symmetric differential expression with operator coefficient in the weighted Hilbert spaces of  
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vector-functions defined in the right semi-infinite interval case is given. In section 4, the 

structure of the spectrum of these type extensions is investigated. 

 

2. Statement of the problem 

     Let 𝑋 be a separable Hilbert space and 𝑎 ∈ ℝ. In the weighted Hilbert space 

𝐿1
𝜅⁄

2 (𝑋, (𝑎, ∞)) of vector-functions consider the following linear differential-operator 

expression for first order in the form  

𝑙(𝜈) = 𝑖𝜅(𝜍)𝜈′(𝜍) + 𝐴𝜈(𝜍), 

where 𝜅 ∈ 𝐶(𝑎, ∞),
1

𝜅
∈ 𝐿1(𝑎, ∞) for simplicity assumed that 𝐴 is a linear bounded selfadjoint 

operator in 𝑋. 

     In similar way in [3] the minimal Υ0 and maximal Υ operators associated with differential 

expression  in 𝑙(∙) in 𝐿1
𝜅⁄

2 (𝑋, (𝑎, ∞)) can be constructed. 

     The operators Υ0 and Υ in the Hilbert space 𝐿1
𝜅⁄

2 (𝑋, (𝑎, ∞)) are called minimal and maximal 

operators associated with differential expression 𝑙(∙), respectively. It is clear that the operator 

Υ0 is a symmetric and (Υ0)∗ = Υ in 𝐿1
𝜅⁄

2 (𝑋, (𝑎, ∞)) . The minimal operator  Υ0 is not maximal. 

Indeed, differential expression 𝑙(∙) with boundary condition 𝜈(𝑎) = 𝜈(∞) generates a 

dissipative extension of Υ. 

     The main goal of this paper is to describe all dissipative extensions of the minimal operator 

Υ0 in 𝐿1
𝜅⁄

2 (𝑋, (𝑎, ∞))  in terms of boundary values (see Section 3). In section 4, the structure of 

the spectrum of these extensions will be investigated. 

 

3. Description of maximally dissipative extensions 

     In this section using the Calkin-Gorbachuk method will be investigated the general 

representation of all maximally dissipative extensions of the minimal operator Υ0 in 

𝐿1
𝜅⁄

2 (𝑋, (𝑎, ∞)). 

     Firstly, let us define the deficiency indices of any symmetric operator in a Hilbert space. 

Definition 3.1 [5] Let 𝑇 be a symmetric operator, 𝜆 be an arbitrary non-real number and 𝑋 be 

a Hilbert space. We denote by 𝑅�̅� and 𝑅𝜆 the ranges of the operator (𝑇 − �̅�𝐼) and 

(𝑇 − 𝜆𝐼), respectively, where 𝐼 is identity operator on 𝑋. Clearly, 𝑅�̅� and 𝑅𝜆 are subspaces of  

𝑋, which need not necessarily be closed. We call (𝑋 − 𝑅�̅�) and (𝑋 − 𝑅𝜆 ), which are their 

orthogonal complements, the deficiency spaces of the operator 𝑇 and we denote them by 𝑁�̅� 

and 𝑁𝜆  respectively: thus 

𝑁�̅� =  𝑋 − 𝑅�̅�,    𝑁𝜆 = 𝑋 − 𝑅𝜆. 
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The numbers  

𝑛�̅� = 𝑑𝑖𝑚𝑁�̅�,  𝑛𝜆 = 𝑑𝑖𝑚𝑁𝜆, 

are called deficiency indices of the operator 𝑇.  

     Firstly, prove the  following proposition. 

Lemma 3.2 The deficiency indices of the operator Υ0 are in the form 

(𝑛+(Υ0), 𝑛−(Υ0)) = (dim 𝑋, dim 𝑋). 

Proof.  For the simplicity of calculations it will be taken 𝐴 = 0. It is clear that the general 

solutions of the differential equations  

𝑖𝜅(𝜍)𝜈′±(𝜍) ± 𝑖𝜈±(𝜍) = 0, 𝜍 > 𝑎 

in  𝐿1
𝜅⁄

2 (𝑋, (𝑎, ∞)) are in form  

𝜈±(𝜍) = 𝑒𝑥𝑝 (∓ ∫
𝑑𝜉

𝜅(𝜉)

𝜍

𝑎

) 𝑓, 𝑓 ∈ 𝑋,   𝜍 > 𝑎 . 

From these representations we have  

‖𝜈+‖
𝐿1

𝜅⁄
2 (𝑋,(𝑎,∞)) 

2 = ∫
1

𝜅(𝜍)

∞

𝑎

‖𝜈+(𝜍)‖𝑋
2 𝑑𝜍 = ∫

1

𝜅(𝜍)

∞

𝑎

‖𝑒𝑥𝑝 (− ∫
𝑑𝜉

𝜅(𝜉)

𝜍

𝑎

) 𝑓‖

𝑋

2

𝑑𝜍 

                                               = ∫
1

𝜅(𝜍)

∞

𝑎

𝑒𝑥𝑝 (−2 ∫
𝑑𝜉

𝜅(𝜉)

𝜍

𝑎

) 𝑑𝜍‖𝑓‖𝑋
2   

                                               =
1

2
(1 − 𝑒𝑥𝑝 (−2 ∫

𝑑𝜉

𝜅(𝜉)

∞

𝑎

)) ‖𝑓‖𝑋
2 < ∞. 

Hence 𝑛+(Υ0) = dim ker(Υ + 𝑖𝐸) = dim 𝑋. 

Similarly, 

               ‖𝜈−‖
𝐿1

𝜅⁄
2 (𝑋,(𝑎,∞)) 

2 = ∫
1

𝜅(𝜍)

∞

𝑎

‖𝜈−(𝜍)‖𝑋
2 𝑑𝜍 = ∫

1

𝜅(𝜍)

∞

𝑎

‖𝑒𝑥𝑝 (∫
𝑑𝜉

𝜅(𝜉)

𝜍

𝑎

) 𝑓‖

𝑋

2

𝑑𝜍 
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                                               = ∫
1

𝜅(𝜍)

∞

𝑎

𝑒𝑥𝑝 (2 ∫
𝑑𝜉

𝜅(𝜉)

𝜍

𝑎

) 𝑑𝜍‖𝑓‖𝑋
2  

                                               =
1

2
(𝑒𝑥𝑝 (2 ∫

𝑑𝜉

𝜅(𝜉)

∞

𝑎

) − 1) ‖𝑓‖𝑋
2 < ∞. 

Hence, 𝑛−(Υ0) = dim ker(Υ − 𝑖𝐸) = dim 𝑋. This completes the proof. 

     Consequently, the minimal operator has a maximally dissipative extension (see [3]). In order 

to describe these extensions we need to obtain the space of boundary values.  

Definition 3.3 [3] Let 𝒳 be any Hilbert space and 𝑆: 𝐷(𝑆) ⊂ 𝒳 → 𝒳 be a closed densely 

defined symmetric operator in the Hilbert space 𝒳 having equal finite or infinite deficiency 

indices. A triplet  (𝕏, 𝛽1, 𝛽2) where 𝕏 is a Hilbert space, 𝛽1 and 𝛽2 are linear mappings from 

𝐷(𝑆∗) into 𝕏, is called a space of boundary values for the operator 𝑆 if for any 𝜈, 𝜗 ∈ 𝐷(𝑆∗) 

(𝑆∗𝜈, 𝜗)𝒳 − (𝜈, 𝑆∗𝜗)𝒳 = (𝛽1(𝜈), 𝛽2(𝜗))𝕏 − (𝛽2(𝜈), 𝛽1(𝜗))𝕏 

while for any 𝐹1, 𝐹2 ∈ 𝕏, there exists an element 𝜈 ∈ 𝐷(𝑆∗) such that 𝛽1(𝜈) = 𝐹 1 and 

𝛽2(𝜈) = 𝐹2. 

     It is known that for any symmetric operator with equal deficiency indexes have at least one 

space of boundary values (see [3]). 

Lemma 3.4 The triplet (𝑋, 𝛽1, 𝛽2), where 

𝛽1: 𝐷(Υ) → 𝑋, 𝛽1(𝜈) =
1

√2
(𝜈(∞) − 𝜈(𝑎)) 

                   𝛽2: 𝐷(Υ) → 𝑋, 𝛽2 (𝜈) =
1

𝑖√2
(𝜈(∞)+𝜈(𝑎)), 𝜈 ∈ 𝐷(Υ) 

is a space of boundary values of  Υ0 in 𝐿1
𝜅⁄

2 (𝑋, (𝑎, ∞)) .  

Proof.  For any 𝜈, 𝜗 ∈ 𝐷(Υ), 

(Υ𝜈, 𝜗)𝐿1
𝜅⁄

2 (𝑋,(𝑎,∞))  − (𝜈, Υ𝜗)𝐿1
𝜅⁄

2 (𝑋,(𝑎,∞))  

= (𝑖𝜅(𝜍)𝜈′(𝜍) + 𝐴𝜈(𝜍), 𝜗(𝜍))𝐿1
𝜅⁄

2 (𝑋,(𝑎,∞))  − (𝜈(𝜍), 𝑖𝜅(𝜍)𝜗′(𝜍) + 𝐴𝜗(𝜍))𝐿1
𝜅⁄

2 (𝑋,(𝑎,∞)) 
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= 𝑖 [(𝜅(𝜍)𝜈′(𝜍), 𝜗(𝜍))𝐿1
𝜅⁄

2 (𝑋,(𝑎,∞)) + (𝜈(𝜍), 𝜅(𝜍)𝜗′(𝜍))𝐿1
𝜅⁄

2 (𝑋,(𝑎,∞))] 

= 𝑖 ∫
1

𝜅(𝜍)
[(𝜅(𝜍)𝜈′(𝜍), 𝜗(𝜍))𝑋 + (𝜈(𝜍), 𝜅(𝜍)𝜗′(𝜍))𝑋]𝑑𝜍

∞

𝑎

 

= 𝑖 ∫ (𝜈(𝜍), 𝜗(𝜍))′𝑋𝑑𝜍

∞

𝑎

 

= 𝑖 [(𝜈(∞), 𝜗(∞))
𝑋

−(𝜈(𝑎), 𝜗(𝑎))𝑋] 

= (𝛽1(𝜈), 𝛽2(𝜗))𝐗 − (𝛽2(𝜈), 𝛽1(𝜗))𝐗 

Now let  𝑓, 𝑔 ∈ 𝑋.  Let us  find the function 𝜈 ∈ 𝐷(Υ) such that  

𝛽1(𝜈) =
1

√2
(𝜈(∞) − 𝜈(𝑎)) = 𝑓, 𝛽2 (𝜈) =

1

𝑖√2
(𝜈(∞)+𝜈(𝑎)) = 𝑔. 

From this we can obtain  

𝜈(𝑎) = (−𝑓 + 𝑖𝑔) √2,   ⁄ 𝜈(∞) = (𝑓 + 𝑖𝑔) √2.⁄  

If we choose the function 𝜈(∙) as 

𝜈(𝜍) = 𝑒𝑎−𝜍 (−𝑓 + 𝑖𝑔) √2⁄ + (1 − 𝑒𝑎−𝜍) (𝑓 + 𝑖𝑔) √2,   𝜍 > 𝑎,⁄  

then it is obvious 𝜈 ∈ 𝐷(Υ) and  𝛽1(𝜈) = 𝑓, 𝛽2(𝜈) = 𝑔. Hence the lemma is proof. 

     By using the method in [3] it can be established the following result.  

Theorem 3.5 If  Υ̃ is a maximally dissipative extension of  Υ0 in  𝐿1
𝜅⁄

2 (𝑋, (𝑎, ∞)), then it is 

generated by the differential-operator expression  𝑙(∙) and the boundary condition  

𝜈(𝑎) = Γ𝜈(∞), 

where Γ: 𝑋 → 𝑋 is a contraction operator. Moreover, the contraction operator Γ in 𝑋 is uniquely 

determined by the extension  Υ̃, i.e. Υ̃  = ΥΓ and vice versa.  

Proof. It is known that each maximally dissipative extension  Υ̃ of the operator Υ0 is described 

by differential-operator expression 𝑙(∙) with boundary condition 

(𝑉 − 𝐼)𝛽1(𝜈) + 𝑖(𝑉 + 𝐼)𝛽2(𝜈) = 0, 
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where  𝑉: 𝑋 → 𝑋 is a contraction operator and 𝐼 is identity operator on 𝑋. Therefore from 

Lemma 3.4 we obtain  

(𝑉 − 𝐸)(𝜈(∞) − 𝜈(𝑎)) + (𝑉 + 𝐸)(𝜈(∞)+𝜈(𝑎)) = 0, 𝜈 ∈ 𝐷(Υ̃). 

From this it is implies that  𝜈(𝑎) = −𝑉𝜈(∞). Choosing Γ = −𝑉 in the last boundary condition 

we have  

𝜈(𝑎) = Γ𝜈(∞). 

4. The spectrum of the maximally dissipative extension 

     In this section the structure of the spectrum of the maximally dissipative extensions of  Υ0 

in  𝐿1
𝜅⁄

2 (𝑋, (𝑎, ∞)) will be investigated. 

Theorem 4.1 The spectrum of any maximally dissipative extension ΥΓ is of the form 

𝜎(ΥΓ) = {𝜆 ∈ ℂ: 𝜆 = (∫
1

𝜅(𝜍)
𝑑𝜍

∞

𝑎

)

−1

(𝑎𝑟𝑔𝜇 + 2𝑛𝜋 + 𝑖𝑙𝑛|𝜇|−1), 

                                             𝜇 ∈  𝜎 (Γ𝑒𝑥𝑝 (𝑖𝐴 ∫
1

𝜅(𝜍)
𝑑𝜍

∞

𝑎

)) , 𝑛 ∈ ℤ}. 

    

Proof. Consider the following problem to spectrum for the extension ΥΓ , i.e.  

ΥΓ(𝜈) = 𝜆𝜈 + 𝑓, 𝑓 ∈ 𝐿1
𝜅⁄

2 (𝑋, (𝑎, ∞)), 𝜆 ∈ ℂ, 𝜆𝑖 = 𝐼𝑚𝜆 ≥ 0. 

Then we have  

𝑖𝜅(𝜍)𝜈′(𝜍) + 𝐴𝜈(𝜍) = 𝜆𝜈(𝜍) + 𝑓(𝜍), 𝜍 > 𝑎, 

𝜈(𝑎) = Γ𝜈(∞). 

The general solution of the last differential equation is of the form 

𝜈(𝜍; 𝜆) = 𝑒𝑥𝑝 (𝑖(𝐴 − 𝜆𝐼) ∫
1

𝜅(𝜉)
𝑑𝜉

𝜍

𝑎

) 𝑓𝜆 

−𝑖 ∫ 𝑒𝑥𝑝 (𝑖(𝐴 − 𝜆𝐼) ∫
1

𝜅(𝜏)
𝑑𝜏

𝜍

𝜉

)

𝜍

𝑎

 
𝑓(𝜉)

𝜅(𝜉)
𝑑𝜉,  𝑓𝜆 ∈ 𝑋, 𝜍 > 𝑎. 

  

In this case  
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‖𝑒𝑥𝑝 (𝑖(𝐴 − 𝜆𝐼) ∫
1

𝜅(𝜉)
𝑑𝜉

𝜍

𝑎

) 𝑓𝜆‖

𝐿1
𝜅⁄

2 (𝑋,(𝑎,∞))

2

 

=
1

2𝜆𝑖
(𝑒𝑥𝑝 (2𝜆𝑖 ∫

1

𝜅(𝜉)

∞

𝑎

𝑑𝜉) − 1) ‖𝑓𝜆‖𝑋
2 < ∞ 

and  

‖−𝑖 ∫ 𝑒𝑥𝑝 (𝑖(𝐴 − 𝜆𝐼) ∫
1

𝜅(𝜏)
𝑑𝜏

𝜍

𝜉

)

𝜍

𝑎

 
𝑓(𝜉)

𝜅(𝜉)
𝑑𝜉‖

𝐿1
𝜅⁄

2 (𝑋,(𝑎,∞)) 

2

 

= ∫
1

𝜅(𝜍)
‖∫ 𝑒𝑥𝑝 (𝑖(𝐴 − 𝜆𝐼) ∫

1

𝜅(𝜏)

𝜍

𝜉

𝑑𝜏)

𝜍

𝑎

𝑓(𝜉)

𝜅(𝜉)
𝑑𝜉‖

𝑋 

2

𝑑𝜍

∞

𝑎

 

≤ ∫
1

𝜅(𝜍)
(∫ 𝑒𝑥𝑝 (𝜆𝑖 ∫

1

𝜅(𝜏)

𝜍

𝜉

𝑑𝜏)

𝜍

𝑎

‖𝑓(𝜉)‖𝑋

𝜅(𝜉)
𝑑𝜉)

2

𝑑𝜍

∞

𝑎

 

= ∫
1

𝜅(𝜍)
(∫

1

√𝜅(𝜉)
𝑒𝑥𝑝 (𝜆𝑖 ∫

1

𝜅(𝜏)

𝜍

𝜉

𝑑𝜏)

𝜍

𝑎

‖𝑓(𝜉)‖𝑋

√𝜅(𝜉)
𝑑𝜉)

2

𝑑𝜍

∞

𝑎

 

≤ ∫
1

𝜅(𝜍)
(∫

1

𝜅(𝜉)
𝑒𝑥𝑝 (2𝜆𝑖 ∫

1

𝜅(𝜏)

∞

𝜉

𝑑𝜏) 𝑑𝜉

∞

𝑎

) (∫
‖𝑓(𝜉)‖2

𝑋

𝜅(𝜉)
𝑑𝜉

∞

𝑎

) 𝑑𝜍

∞

𝑎

 

=
1

2𝜆𝑖
∫

1

𝜅(𝜍)
𝑑𝜍 (𝑒𝑥𝑝 (2𝜆𝑖 ∫

1

𝜅(𝜏)

∞

𝑎

𝑑𝜏) − 1) ‖𝑓𝜆‖
𝐿1

𝜅⁄
2 (𝑋,(𝑎,∞)) 

2 < ∞

∞

𝑎

. 

Hence, for 𝜆 ∈ ℂ, 𝜆𝑖 = 𝐼𝑚𝜆 ≥ 0,  𝜈(∙, 𝜆) ∈  𝐿1
𝜅⁄

2 (𝑋, (𝑎, ∞)) . 

From the boundary condition we have  

(Γ𝑒𝑥𝑝 (𝑖(𝐴 − 𝜆𝐸) ∫
1

𝜅(𝜉)

∞

𝑎

𝑑𝜉) − 𝐼) 𝑓𝜆 = 𝑖Γ ∫ 𝑒𝑥𝑝 (𝑖(𝐴 − 𝜆𝐼) ∫
1

𝜅(𝜏)

∞

𝜍

𝑑𝜏)

∞

𝑎

 
𝑓(𝜉)

𝛼(𝜉)
𝑑𝜉. 

Therefore in order to 𝜆 ∈ 𝜎(ΥΓ) the necessary and sufficient condition is  

𝑒𝑥𝑝 (𝑖𝜆 ∫
1

𝜅(𝜉)

∞

𝑎

𝑑𝜉) = 𝜇 ∈ 𝜎 (Γ𝑒𝑥𝑝 (𝑖𝐴 ∫
1

𝜅(𝜉)

∞

𝑎

𝑑𝜉)) . 

Consequently,  
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𝜆 ∫
1

𝜅(𝜉)

∞

𝑎

𝑑𝜉 = 𝑖𝑙𝑛|𝜇|−1 + 𝑎𝑟𝑔𝜇 + 2𝑛𝜋, 𝑛 ∈ ℤ, 

that is, 

𝜆 = (∫
1

𝜅(𝜉)

∞

𝑎

𝑑𝜉)

−1

(𝑎𝑟𝑔𝜇 + 2𝑛𝜋 + 𝑖𝑙𝑛|𝜇|−1), 𝜇 ∈ 𝜎 (Γ𝑒𝑥𝑝 (𝑖𝐴 ∫
1

𝜅(𝜉)

∞

𝑎

𝑑𝜉)) , 𝑛 ∈ ℤ. 

This completes proof of theorem.  

Example 4.2 All maximally dissipative extensions Υ𝑟  of the minimal operator Υ0 generated 

by the following first order linear symmetric singular differential expression  

𝑙(𝜈) = 𝑖𝜍𝛾−𝛿𝜈′(𝜍) + 𝑎𝜈(𝜍), 𝛾, 𝛿, 𝑎 ∈ ℝ and 𝛾 − 𝛿 − 1 > 0 

in the Hilbert space 𝐿
𝜍𝛿−𝛾
2 (1, ∞) are described by the boundary condition  

𝜈(1) = 𝑟𝜈(∞), 

where 𝑟 ∈ ℂ and |𝑟| ≤ 1. Moreover, in case when 𝑟 ≠ 0 the spectrum of maximally 

dissipative extension Υ𝑟 is of the form   

𝜎(Υ𝑟) = (𝛾 − 𝛿 − 1) (arg(𝑟) +
𝑎

𝛾 − 𝛿 − 1
+ 2𝑛𝜋 + 𝑖𝑙𝑛|𝑟|−1) , 𝑛 ∈ ℤ. 
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Abstract 

     In this work, the Lorentz-Schatten properties of the compact inverses of normal extensions 

of a minimal operator generated by linear differential-operator expression for first order in the 

weighted Hilbert space of vector-functions on right semi-axis is investigated. 

Keywords: Differential and normal operators, s-numbers of compact operator, Lorentz-Schatten operator classes 

 

1. Introduction  

It is known that operator theory plays an exceptionally important role in modern mathematics 

and physics, quantum mechanics, deformation theory and etc. And also spectral analysis of 

operators is one of the most important area of modern mathematical physic. In addition the 

investigation of normal extensions of densely defined closed formal normal operators in any 

Hilbert space is among the fundamental mathematical problems arising in any physical model. 

It should be noted that the detail analysis of selfadjoint extensions of any linear closed densely 

defined having equal deficiency indexes in Hilbert space of vector-functions has been given in 

[1]. 

Let us remember that a linear densely defined closed operator 𝑇 in any Hilbert space 𝐻 is 

called formally normal if 𝐷(𝑇) ⊂ 𝐷(𝑇∗) and ‖𝑇𝑥‖𝐻 = ‖𝑇∗𝑥‖𝐻 for all 𝑥 ∈ 𝐷(𝑇). If a formally 

normal operator has no formally normal non-trivial extension, then it is called maximally 

formally normal operator. If a formally normal operator 𝑇: 𝐷(𝑇) ⊂ 𝐻 → 𝐻 satisfies the 

condition 𝐷(𝑇) = 𝐷(𝑇∗), then it is called normal operator (see [2]). The general theory of 

normal extensions of linear unbounded densely (and non-densely) defined formally normal 

operators has been given in [2]. Some application of this theory to the theory of differential 

operators in Hilbert space of vector-functions can be found in [3]-[5] ( see references in it).  

The general theory of singular numbers and operator ideals was given by A. Pietsch in [6], 

[7] and the case of linear compact operators was investigated by I. C. Gohberg and M. G. Krein 

in [8]. However, the first result in this area can be found in the works of E. Schmidt [9],   and 

J. von Neumann, R. Schatten [10] who used these concepts in the theory of non-selfadjoint 

integral equations.  

Later on, the main aim of the mini-workshop hold in Oberwolfach (Germany) was to present 

and discuss some modern applications of the functional-analytic concepts of 𝑠 −numbers and 

operator ideals in areas like numerical analysis, theory of function spaces, signal processing, 

approximation theory, probability of Banach spaces and statistical learning theory (see [11]). 

Let ℋ be a Hilbert space, 𝑆∞(ℋ) be a class of linear compact operators in ℋ and 𝑠𝑛(𝑇) be 

the 𝑛 − 𝑡ℎ  singular numbers of the operator 𝑇 ∈ 𝑆∞(ℋ). The Lorentz-Schatten operator ideals 

are defined as 359
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𝑆𝑝,𝑞(ℋ) = {𝑇 ∈ 𝑆∞(ℋ): ∑ 𝑛
𝑞
𝑝

−1
𝑠𝑛

𝑞(𝑇)

∞

𝑛=1

< ∞} , 0 < 𝑝 ≤ ∞, 0 < 𝑞 < ∞ 

and 

𝑆𝑝,∞(ℋ) = {𝑇 ∈ 𝑆∞(ℋ): 𝑠𝑢𝑝𝑛≥1𝑛
1
𝑝𝑠𝑛(𝑇) < ∞} , 0 < 𝑝 ≤ ∞ 

in [6], [7], [13]. 

In this work,, the problem of belonging to Lorentz-Schatten operator classes of the inverse 

(consequently of resolvent operator) of the normal extensions of the minimal operator generated 

by  the differential-operator expression for first order in the weighted Hilbert space of vector-

functions on right semi-axis is studied. 

2. On the singular numbers of inverses of normal extensions of the minimal operator 

Let 𝐻 be a separable Hilbert space, 𝑎 ∈ ℝ and 𝐿𝛼
2 (𝐻, (𝑎, ∞)) be a Hilbert space 𝐻 −valued 

vector-functions on (𝑎, ∞). In the 𝐿𝛼
2 (𝐻, (𝑎, ∞))  consider the following differential-operator 

expression for first order in the form 

 

𝑙(𝑢) = (𝛼𝑢)′(𝑡) + 𝐴𝑢(𝑡),                                                                                  (1) 

where, 

1. 𝛼: (𝑎, ∞) → (0, ∞), 𝛼 ∈ 𝐶(𝑎, ∞) and 𝛼−1 ∈ 𝐿1(𝑎, ∞), 

2. 𝐴: 𝐷(𝐴) ⊂ 𝐻 → 𝐻 and 𝐴∗ = 𝐴 ≥ 𝐼 where 𝐼 is identity operator on 𝑋. 

     By standard method the minimal 𝐿0(𝐿0
+) and maximal 𝐿(𝐿+) operators corresponding to 

differential expression 𝑙 (𝑙+ = −
𝑑

𝑑𝑡
(𝛼) + 𝐴∗) in 𝐿𝛼

2 (𝐻, (𝑎, ∞))  can be easily defined (see [4]). 

In this case the minimal operator 𝐿0 is formally normal, but it is not maximal in 𝐿𝛼
2 (𝐻, (𝑎, ∞)). 

     Let give auxiliary propositions from [14]. 

Theorem 1 Let 𝐴
1

2⁄ 𝑊2,𝛼
1 (𝐻, (𝑎, ∞)) ⊂ 𝑊2

1(𝐻, (𝑎, ∞)). Each normal extensions �̃�, 𝐿0 ⊂ �̃� ⊂

𝐿 of the minimal operator  𝐿0 in 𝐿𝛼
2 (𝐻, (𝑎, ∞)) generated by the differential operator expression 

𝑙(∙) with boundary condition  

(𝛼𝑢)(∞) = 𝑊(𝛼𝑢)(𝑎), 

where 𝑊 and 𝐴
1

2⁄ 𝑊𝐴
−1

2⁄  are unitary operators in 𝐻.  The unitary operator 𝑊 is uniquely 

determined by the extension �̃�, i.e. �̃� = 𝐿𝑊. 

     On the contrary, the restriction of the maximal operator 𝐿 to the linear manifold of vector-

functions (𝛼𝑢) ∈ 𝑊2,𝛼
1 (𝐻, (𝑎, ∞)) that satisfy mentioned above condition for some unitary  360
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operator  𝑊, where 𝐴
1

2⁄ 𝑊𝐴
−1

2⁄  is also unitary operator in 𝐻, is a normal extension of the 

minimal operator 𝐿0 in 𝐿𝛼
2 (𝐻, (𝑎, ∞)). 

Theorem 2  The spectrum of any normal extension 𝐿𝑊 in 𝐿𝛼
2 (𝐻, (𝑎, ∞)) of the minimal 

operator 𝐿0  has a form 

𝜎(𝐿𝑊) = {𝜆 ∈ ℂ: 𝜆 = (∫
𝑑𝑠

𝛼(𝑠)

∞

𝑎

)

−1

(𝑙𝑛|𝜇|−1 + 2𝑛𝜋𝑖 − 𝑖𝑎𝑟𝑔𝜇), 𝑛 ∈ ℤ, 

𝜇 ∈ 𝜎 (𝑊∗𝑒𝑥𝑝 (−𝐴 ∫
𝑑𝑠

𝛼(𝑠)

∞

𝑎

))}. 

     Let now give auxiliary two propositions from [15]. 

Theorem 3 If 𝐴−1 ∈ 𝑆∞(𝐻) and the operator 𝐿𝑊 is any normal extension of the minimal 

operator  𝐿0, then 𝐿𝑊
−1 ∈ 𝑆∞ (𝐿𝛼

2 (𝐻, (𝑎, ∞))). 

Theorem 4  If  𝐴−1 ∈ 𝑆∞(𝐻) and 𝜆𝑛(𝐴)~𝑐𝑛𝛼 , 0 < 𝑐, 𝛼 < ∞ as 𝑛 → ∞, then 

𝐿𝑊
−1 ∈ 𝑆∞ (𝐿𝛼

2 (𝐻, (𝑎, ∞)))  and  𝑠𝑛(𝐿𝑊
−1)~𝑑𝑛−𝛽, 0 < 𝑑 < ∞, 𝛽 =

𝛼

1+𝛼
  as 𝑛 → ∞. 

3. Lorentz-Schatten characteristic of inverses of normal extensions of the minimal      

    operator 

     Now give the main results of this work in the following theorems. 

Theorem 5 Let  𝐴−1 ∈ 𝑆∞(𝐻),  𝜆𝑛(𝐴)~𝑐𝑛𝛼, 0 < 𝑐, 𝛼 < ∞ as 𝑛 → ∞ and 𝐿𝑊 be any normal 

extension of the minimal operator  𝐿0.  In order to 𝐿𝑊
−1 ∈ 𝑆𝑝,𝑞 (𝐿𝛼

2 (𝐻, (𝑎, ∞))) , 0 < 𝑞 < ∞  the 

necessary and sufficient condition is 𝑝 > 1 +
1

𝛼
. 

Proof. In this case from mentioned above Theorem 4 we have  

𝑠𝑛(𝐿𝑊
−1)~𝑑𝑛−𝛽 , 0 < 𝑑 < ∞, 𝛽 =

𝛼

1+𝛼
  as 𝑛 → ∞. 

Consequently, for the convergence of the series  ∑ 𝑛
𝑞

𝑝
−1

𝑠𝑛
𝑞(𝐿𝑊

−1),   ∞
𝑛=1   0 < 𝑝, 𝑞 < ∞, i.e., 

∑ 𝑛
𝑞

𝑝
−

𝛼𝑞

1+𝛼
−1∞

𝑛=1  the necessary and sufficient condition is 1 +
𝛼𝑞

1+𝛼
−

𝑞

𝑝
> 1.  From this implies 

that 
1

𝑝
<

𝛼

1+𝛼
 . From the last inequality we obtain 𝑝 > 1 +

1

𝛼
 . 
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Theorem 6 If 𝐴−1 ∈ 𝑆∞(𝐻),  𝜆𝑛(𝐴)~𝑐𝑛𝛼 , 0 < 𝑐, 𝛼 < ∞ as 𝑛 → ∞ and 𝐿𝑊 be any normal 

extension of the minimal operator  𝐿0.  In order to 𝐿𝑊
−1 ∈ 𝑆𝑝,∞ (𝐿𝛼

2 (𝐻, (𝑎, ∞))) , 0 < 𝑝 ≤ ∞  the 

necessary and sufficient condition is 𝑝 > 1 +
1

𝛼
. 

Proof. In this case from mentioned above Theorem 4 we have  

𝑠𝑛(𝐿𝑊
−1)~𝑑𝑛−𝛽 , 0 < 𝑑 < ∞, 𝛽 =

𝛼

1+𝛼
  as 𝑛 → ∞. 

Then for the validity of following condition 𝑠𝑢𝑝𝑛≥1𝑛
1

𝑝𝑠𝑛(𝐿𝑊
−1) < ∞, that is, 

𝑠𝑢𝑝𝑛≥1𝑛
1
𝑝

−
𝛼

1+𝛼 < ∞, 

the necessary and sufficient condition is 
1

𝑝
<

𝛼

1+𝛼
. From this we obtain 𝑝 > 1 +

1

𝛼
 . 

Corollary 7 Under the conditions of above two theorems  𝐿𝑊
−1 ∉ 𝑆𝑝,𝑞 (𝐿𝛼

2 (𝐻, (𝑎, ∞))) for 

0 < 𝑝 ≤ 1, 0 < 𝑞 ≤ ∞. 

Corollary 8 Under the conditions of the Theorem 4,  𝐿𝑊
−1 ∈ 𝑆𝑝 (𝐿𝛼

2 (𝐻, (𝑎, ∞)))  if and only if  

1 +
1

𝛼
 < 𝑝 < ∞, where 𝑆𝑝(∙) denotes a Schatten-von Neumann operators ideal. 
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Abstract 

Nowadays we are very interested about the infections caused by different viruses, to know the most 

activity spread during years and to make predictions for the future. According to the world health 

organization WHO online data updated every week, we can evaluate the seasonal influence activity of 

viruses A, B and their subtypes. We will propose a decision-making model based on two methods AHP 

and ANP. According to the decision-maker Goal, we can choose the most spread virus by his activity. 

There are 5 types of activity according to one year of study: no activity, sporadic, local outbreak, 

widespread outbreak, regional outbreak. The software used is "Super Decision" version 2.10. In fact we 

can`t agree that one method is better than another because it depends on the purpose of the problem. We 

will see results in both methods and we will make their comparisons in each case. Generally in the last 10 

years, the two methods show that the priority activity in general in each season is no activity, and the 

more spread virus is AH1N1. 

 
Keywords: Super decisions, AHP, ANP, influenza virus activity, pairwise comparisons. 
 

1. Introduction  

In 1952 the World Health Organization (WHO) Executive Board decided to have a system for the 

influenza surveillance in order to collect some data regarding occurrence, epidemiology, viruses etc. The 

laboratory is called “The Global Influenza Surveillance and Response Systems” (GISRS). It includes 143 

institutions and 113 member states, as a network built on voluntary collaboration and real time reporting. 

In 11 March 2019 GISRS launched the strategy for 2019-2030 in order to protect people from the threat 

of influenza. The goal of the strategy is to prevent seasonal influenza, in order to prevent the next 

influenza from animals to humans. Regarding the situation about the predictive modeling, we have used 

the multi criteria decision making (MCDM) models as: analytic hierarchic process (AHP) and analytic 

network process (ANP) for the data collected from WHO European Region, United Kingdom of Great 

Britain and North Ireland from 2010 till nowadays. The report is updated every week, and data are at real 

time collected. The aim of this study is to compare the two models. T. L. Saaty developed the AHP in 

1971- 1975 (University of Pennsylvania, Philadelphia). AHP is used to determine relative priorities on 

absolute scales from both discrete and continuous cases of the paired comparisons in hierarchic structures 

(Saaty and Vargas, 1996). The importance measurement has been developed by Saaty (1980, 1996) to 

represent the relative importance of the criteria, known as Saaty Scale. Pairwise comparisons matrices of 

these factors provide the means for calculation of importance (Sharma et al., 2008). AHP is a hierarchic 

decision model with a Goal (Main scope), then next level is Criteria as a cluster of nodes that are being 

pairwise compared for their importance to the goal, next level of criteria are alternatives also evaluated 

for the preference to each criterion. In other hand ANP does not have a Goal, it has only Criteria and 

Alternatives.  The ANP method is a mathematical theory for evaluating a network and all kinds of 

dependence and feedback on it, by priorities as ratio scales of criterion and alternatives. The connection 
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between nodes of each cluster is anyway for the inner and outer dependence. The AHP model is an 

hierarchic structure that rank the alternatives according to the Goal, while ANP compares the dependence 

between the nodes of criteria cluster and nodes of alternatives cluster called outer dependence, and the 

inner dependence between nodes to a cluster [6]. 

 

Fig. 1 Structure models 

2. Materials and Methods  

The data used in this paper are from World Health Organization (WHO) from GISRS, Flu-Net functions 

online data for United Kingdom of Great Britain and North Ireland, from 01.01.2010 to 29.04.2019, week 

by week all these years. They are organized with type A viruses including subtypes AH1, AH1N1, AH3, 

A and B viruses that are B Yamangata Lineage, B Victoria Lineage, B Lineage. For every week, we have 

a column named “ILI activity” for each virus with types: no activity, sporadic, local outbreak, widespread 

outbreak, regional outbreak. We have formulated a Goal Cluster named “the most spread virus” for the 

decision-maker. The Goal: Which is the most spread virus over these years for these “ILI activities”? 

According to the data we will built a hierarchy with AHP method by taking as a first level a cluster that 

will be called Criteria, and the next level a cluster that will be Alternative. The Criteria cluster will have 

nodes of five activities, and Alternative cluster will have seven nodes of types of viruses. While the ANP 

process will be the same hierarchy without the goal, and the clusters will be the same with their nodes as 

AHP Hierarchy. 

AHP Method 

In the literature AHP, has been widely used in solving many decision making problems, in many areas 

and applications. Kangas et al., 2001, Kajanusa et al., 2004; Arslan and Turan, 2009; Kandakoğlu et al., 

2009; Dinçer and Görener, 2011; Lee and Walsh, 2011; Saaty and Vargas, L.G. (1982, 1991, 2000, 

2006); Dinçer and Görener, 2011; Lee and Walsh, 2011; Amir Azizi 2014; Naila Jan 2018; Luis G 

Vargas, H. J. Zoffer 2019. Clusters are connected by a line, we say nodes in them are connected and it 

means that the criteria must be pairwise compared for their importance with respect to the Goal, similarly 

Alternatives must be pairwise compared for their importance to Criteria. Clusters are connected by a line, 

we say nodes in them are connected and it means that the criteria must be pairwise compared for their 

importance with respect to the Goal, similarly Alternatives must be pairwise compared to Criteria for 

their importance. In order to determine the relative importance we have used Saaty’s scale. Many 

questionnaire have been formulated to answer by experts in health based on Saaty scale, evaluations are 

made from mathematicians [5]. 
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Table 1 

Relative 

importance value 

 

      Importance   

 

    Explanation  

1 Equal  Two nodes have equal importance. 

3 Moderate Experience moderately favors one node over the other. 

5 Strong  Experience strongly favors one node over the other. 

7 Demonstrated  A node is strongly favored and has a demonstrated dominance. 

9 Extreme strong A node is on the highest possible order domination. 

2,4,6,8 Intermediate values A node with compromise intermediate value. 

 

The relative weights were measured using the Super Decision Software. The instructions on how to use 

the Super Decisions software were prepared by Rozann W. Saaty,wife of Thomas L. Saaty of the Creative 

Decisions Foundation. The software that implements the Analytic Network Process, Super Decisions, was 

developed by William J. Adams of Embry Riddle Aeronautical University, Daytona Beach, Florida, 

working with Rozann W. Saaty. The dictionary of ANP applications, the Encyclicon, included here as an 

appendix, was compiled from materials by Thomas L. Saaty and his students, Luis Vargas etc [3]. 

 
 

 

 

 

 

 

 

 

Fig.2 AHP model with Super Decision 

The matrix of pairwise comparisons of Criteria cluster is a matrix with elements 1-9 according to the data 

obtained for the ILI Activity (Figure 2) of the viruses as: 

          
  

       

   
       

   (1). 

The relative weights are given by the right eigenvector  , corresponding to the largest eigenvalue      

where            [4]. Decision makers can weight the elements at each level using Saaty’s scale 

from 1 to 9 and then calculate the global weights at the bottom level using pairwise comparisons (2).   
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     ,      

 
          (2) 

The inconsistency index is associated with matrix of the weights    
      

   
. The consistence ratio is 

        , where RI is the average of the eigenvalues as shown in the table nr 2 below. In order to 

improve the consistency of the pairwise comparisons CR, we need to adjust CI, but not larger as the 

judgment is, and thus the overall inconsistency should be less than 10%.  

       Table nr 2 

 

 

ANP Method 

 

Everything we decide to do, and the decisions we make, in essence we are all decision-makers. To 

improve our understanding and judgments is not useful all the information. In some papers authors say 

that too much information is as bad as little information. The information that we have to use for the 

judgments is to help us understand occurrences. There are many uses of the ANP model. Dağdeviren and 

Yüksel (2007) developed an ANP-based personel selection system and weighted personel selection 

factors.Yang et al. (2009) developed a manufacturing evaluation system model with ANP approach for 

wafer fabricating industry. Valmohammadi (2010) used the ANP to identify specific resources and 

capabilities of an Iranian dairy products firm and to develop an evaluation framework of business 

strategy, Amir Azizi (2014) proposed a paper in comperative study of AHP and ANP on multi automotive 

suppliers with Multi Criteria, Feibert (2016) used the ANP to assess the distribution of pharmaceuticals in 

hospitals, Sajad Zare (2018) used the ANP method for prioritizing and weighting shift work disorders 

among the personnel of hospitals of Kerman University of medical Science. The ANP model does not 

have the top-bottom form of the AHP hierarchy. ANP structure seems like a network with cycles 

connecting the criteria level itself and with the alternative level, and vice versa. ANP consist of four steps 

(Satty, 1996), [8],[9]. 

 

Step 1. The problem have to be construct like a network with connections and loops. We have criteria 

cluster with five nodes as subcriteria, and alternative cluster with seven nodes connected respectively to 

each other and with  the loops itself.  

Step 2. Perform pairwise comparisons on the clusters connected to each others, evaluating their 

importance respectively to criteria and alternative. 

Step 3. Compute the limit supermatrix. Synthesize to obtan the limit priority and ideal alternative.       

Step 4. Create a ratings model and conduct a sensitivity analysis for the final outcame. 

 

Order  1 2 3 4 5 6 7 8 9 10 

R.I 0 0 0.52 0.89 1.11 1.25 1.35 1.40 1.45 1.49 
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Fig.3 ANP model with Super Decision 

The ANP provides a way to judge and measure ratio scales priorities for the distribution of influenza data. 

In fact the AHP theory is a special case of ANP theory. It’s not true that an ANP model always outputs 

better results than the AHP. ANP is a theory that extends the AHP to a structure of dependence and 

feedback and generalizes on the supermatrices approach introduced in Thomas Saaty’s 1980 book. It 

allows interactions and feedback to all nodes of the cluster as inner dependence and between clusters 

outer dependence. Similarly as the AHP method the pairs of comparisons for each cluster are being 

compared respectively to their importance within the nodes of the cluster and between the clusters [7]. A 

questionnaire was made to the decision makers to respond for the Saaty scale of two comparisons. 

 

3. Main Results 

AHP Method. [9],[10] Firstly we have to construct the A matrix of comparisons to criteria cluster by 

Saaty scale. Using the super decision software we have these values for our data base [2]: 

 

 Sporadic   No activity    Local      Widespread       Regional 

Sporadic            1            0.2              0.33             3.03                  1.85 

No activity 5                     1                1.11            2                        3 

Local 3                    0.9                1                4                       2 

Widespread 0.33                 0.5              0.25            1                      0.5 

Regional              0.54               0.33             0.5              2                       1 
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The weights of the   vector of pairwise comparisons are: 

                                                   

                                                      with                    , 

If    is larger than 10%, the input data have to be reconsider by Saaty scale to explain better the problem 

decision making. The next step is the pairwise comparison between each node of criteria cluster to all 

nodes of alternative cluster. The consistence ratio for cluster of 5 nodes is  

     
         

            

The values of a higher CR also depend on the specific decision making problem, the out coming priorities 

and the required accuracy. The perfectly priorities are being selected well if the number of the criteria is 

5-9 nodes. This is because the human limits on our capacity for generating information, published by 

George A. Miller in 1956, and taken-up Saaty and Ozdemir in 2003. For our data we have to do the 

pairwise comparisons for each node of Criteria to the alternative cluster. 

The   normalized vector for Sporadic node, by computing the comparisons with alternative nodes is: 

                                                               

                                             with                

      
         

            

The    normalized vector for No Activity node, by computing the pairwise comparisons with alternative 

nodes is:                                                                   

                                                         with               

     
          

            

The   normalized vector for Local outbreak node, by computing the pairwise comparisons with 

alternative nodes is:                                                                      

                                                             with              

     
         

           

The   normalized vector for Widespread outbreak node, by computing the comparisons with alternative 

nodes is:                                                                           

                                                                  with               
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The   normalized vector for Regional outbreak node, by computing the pairwise comparisons with 

alternative nodes is: 

                                                                        

                                                                with              

     
         

            

The matrix of the   weights normalized for the alternatives have to be multiplicative with the   global 

weights of the criteria cluster. 

0.092 0.159 0.176 0.130 0.128

0.322 0.165 0.343 0.271 0.267 0.1

0.077 0.067 0.112 0.118

0.207 0.238 0.087 0.083 0.148

0.122 0.179 0.086 0.163 0.121

0.086 0.08 0.082 0.111 0.115

0

0.062

.091 0.108 0.162 0.127 0.098
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Ranking the most spread virus we find out that the most spread is AH1N1 about 25.7%, then the second 

virus is A with its subtypes about 16.3%, then virus AH1 about 14.5%, virus B Yamagata about 13.2%, 

virus B lineage 12%, virus AH3 10.4%, the last virus B Victoria 7.54%. 

 

ANP Method 

ANP method is composed as a network, in which we have to compare the dependences in the same level 

and between levels [9]. So the calculations have to be double compared to AHP method. Since there are 

many calculations for ANP, we better share the nodes in the cluster for having the efficient results. There 

are three supermatrices with the network [1]: The Unweighted Supermatrix contains the priorities from 

the pairwise comparisons, the Weighted supermatrix obtains the multiplications of all the elements in a 

component of the unweighted supermatrix by the corresponding cluster weight, and Limit Supermatrix is 

obtained by raising the weighted supermatrix to powers until the column of numbers is the same for every 

column, in alphabetical order for their nodes of comparisons [3]. The inner dependence is for the same 

nodes of the clusters [10]. So we have results for Criteria and Alternatives nodes: 
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IC=0.08714                                       IC=0.08533 

 

 

 

 

 

After comparing the outer dependence and constructing the supermatrices, we have the priorities: [3] 

 

Fig. 4 Priorities ANP 

For the whole network the most spread virus is AH1N1 with 0.43=43% priority value for the alternatives, 

and the best activity node NO Activity with 0.58=58% priority value for criteria cluster. The importance 

is ranked as follows: AH3=14.28%, A=11.4%, B Yamagata=8.9%, AH1=8.7%, B Victoria=7.8%, B 

lineage=5.4%. Comparing to AHP we have: 

Rank AHP 1.AH1N1 2.A 3.AH1 4.B Yamagata 5.B Lineage 6.AH3 7.B Victoria 

Rank ANP 1.AH1N1 2.AH3 3.A 4. B Yamagata 5. AH1 6.B Victoria 7. B Lineage 

 

4. Conclusion 

The final ranking for the most spread virus during the application of the AHP and ANP methods are 

significantly the same for the best alternative node AH1N1, but different for the other nodes. The reason is 

Local outspread 0.29971 

No activity 0.35739 

Regional 0.11636 

Sporadic  0.14464 

Widespread 0.08189 

AH1 0.09246 

AH1N1 0.32266 

AH3 0.07708 

A 0.20768 

B Yamagata 0.12258 

B Victoria 0.08649 

B Lineage 0.09194 
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that AHP is a hierarchy model with a main goal, but ANP a network with inner and outer dependence. Is 

better using AHP method instead of ANP wherever possible, trying to keep the nodes in a cluster between 

5-9 for both methods. Always use AHP as a method to get consolidated results in ranking alternatives  

and use ANP as a tool to gain deeper inside into a decision problem, evaluated its ranking by decision 

makers main scopus.  
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Abstract 

The aim of the education system is the continuous and progressive preparation of students' skills so that 

they can contribute to the sustainable development of their country. 

Among the different levels of education, university education plays a very important role in completing 

basic knowledge and methods of scientific research for  their best performance and success  in the future. 

The university education performance, results and success largely depends on the quality of programs, 

performance of the lectors, students achievements, and academic services. The Albanian universities have 

completed successfully their accreditation process by the Albanian Quality Assurance Agency for Higher 

Education (ASCAL), while it is the process of accreditation of bachelor and master programs. Still, 

Albanian universities need to perform better and have higher expectations. Albanian universities are always 

under the "watch" of international academic community ranking. And, to our disappointment, Albanian 

universities are behind universities of Balkan neighboring countries. İt needs a lot to be done. The process 

of academic staff evaluation should be a daily concern for the higher education Institutions as it is a  very 

useful procedure which will help faculties and universities to have useful information about academic 

activities, qualifications, and projects, teaching process, achievements, and problems. Performance 

evaluation includes academic achievement, publications and projects, scientific research, teaching process, 

student’s evaluations, and other activities, inside or outside the university area. Regular evaluation creates 

a healthy competition among university lectors. But for  correct and successful evaluation, it is necessary 

to develop a performance-based, structured and effective evaluation model.       The purpose of this study 

is to develop some performance indicators and an evaluation mechanism to evaluate the lectors’ 

performance of  a math department with respect to those indicators. Criteria and factors will be evaluated 

through the method of pairwise decision analysis. The Analytical Hierarchy Process (AHP) will be used to 

determine the weights of those performance indicators and, after evaluating alternatives for each criterion, 

we will have the rankings of alternatives which is the purpose and the outcome of our study. 

 

Keywords: academic, evaluation, performance, ahp, mcda, university. 
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1. Introduction  

The intention of the education system is to educate and improve students' skills and capacity so that they 

can contribute to the sustainable development of their country. It is the first and principal and factor of 

human resource development. Education is the key to a better future for any nation. Among the different 

levels of education, higher university education plays a significant role in the development of students' 

capability to meet the social, economic and technological needs of the country and to ensure the continuity 

of economic progress and well-being. The Albanian education system has been through many reforms since 

the fall of the communist system, many reforms are implemented in the education system, not all of them 

successful, to our opinion. The need to improve system performance and quality is becoming urgent, in 

order to prepare capable specialists, teachers, doctors, and future leaders. Among about 20 public 

universities and more than 20 private colleges and universities and other higher institutions, there are only 

a few institutions that are performing better in terms of producing globally quality graduates. However, 

there are still many quality and performance problems in the 9-year and high school institutions that prepare 

students for admission to Albanian or foreign universities that are related to teacher level, pupil preparation, 

scientific and educational level books, etc. Yet, the quality of higher education falls short of keeping up 

with the global level of excellence. Many graduates from high schools fail to pass the first year of 

Universities, or, their grades are far below the average of high school results. On the other hand, graduate 

students do not succeed in competing successfully in the labor market because they are not fully equipped. 

Yet, there is a lack of day-to-day and clear information to help them understand the rules and job-seeking 

requirements. One of the major causes of this condition is the lack of highly qualified high school teachers 

and poor performance of them. There is no cooperation and understanding among university professors and 

high school teachers, the first helping others to get qualified and improved with new knowledge and 

teaching materials and methods.                                                                     

In short, there is a great need for creating a performance evaluation mechanism for that matter and there 

are hopeful signs in the right direction. ASCAL, Albanian Quality Assurance Agency for Higher Education 

is working to evaluate the whole higher university system, as part of “University pact” in order to 

understand, find and create methods and procedures to improve the education system. Still, there is no 

regulated practice of identifying key performance indicators of university academic staff and evaluating 

them on a regular yearly basis. If no evaluation mechanism in accordance with some key performance 

indicators exists, then any improvement in the quality and performance of the lectors will be limited in 

scope and conclusions. Key performance indicators help to identify the areas on which strong focus should 

be given for achieving better results. Identifying these important indices and evaluating the lectors on these 

indices regularly will help them to understand their strength and weakness and will stimulate them to 

overcome the weakness in the future. 
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2. Preliminaries 

Regular and periodic performance evaluation of academic staff of higher education institution is important 

because the quality of teaching depends largely on the performance and academic services of the 

departments, faculties, and university. It depends on other academic factors, anyway, such as study 

programs, bachelor, master and doctorate, academic services, projects, students’ performance, investment 

on programs, laboratories, etc. The evaluation result will be a higher and more complete knowledge of the 

situations and problems and will be helpful to academic staff members in order to improve their 

performance and the skills needed for better results. The problem of performance evaluation of lecturers is 

not a simple linear problem because the quality of teaching depends on many factors. The performance 

evaluation should be treated as a multidimensional problem for higher educational institutions and the state 

institutions on the basis of numerical and qualitative criteria. Chen et al. (2014) [1] proposed a   method for 

compiling a lector evaluation system using the fuzzy AHP method and fuzzy assessment.  In his study, 

fuzzy AHP was used to determine the weight of key performance factors and the fuzzy technique was used 

to evaluate the faculty performance. Kumar et al. (2013) [2] used multiple decision- making method 

(MCDM) to select the best candidate among some choices for academic staff. Some other methods like 

Simple Additive Weight method (SAW), weighted product method (WPM), AHP, and TOPSIS were used 

to evaluate the performance of department members. Ghosh (2011) [3] proposed a two-step AHP and 

TOPSIS method for evaluating the performance of academic staff at the Engineering Faculty. Wu et al. 

(2009) [4] used the Balanced Scorecard (BSC) to create performance indicators for bank performance 

evaluation. Lee et al. (2008) [5] used a Balanced Scorecard (BSC) and a Fuzzy Analytic Hierarchic process 

(AHP) to evaluate the company IT service performance. Bozbura et al. (2006) [6] proposed a model that 

uses Fuzzy AHP to give priority to factors to measure human capital weight. In this paper, we have built a 

model for evaluation of a random department and its staff members. The key performance factors were 

chosen based on literature models and expertise. Here, AHP is used to assign a weight to these factors. 

Finally, TOPSIS or other tools are used to ranking department staff    members   by measuring performance 

and using the quantitative and qualitative data collected by students. 

 

3. Main Results 

Multiple-criteria decision analysis, making (MCDA/ MCDM) is a powerful tool of operations research 

which is used for screening, prioritizing, ranking, or selecting a set of alternatives under given criteria, 

(Hwang & Yoon, 1981) [7]. First of all, selecting the criteria is very important  because they influence the 

decision making process of MCDA/MCDM methods. A combination of AHP and TOPSIS or other tools, 

ELECTRE, PROMETHEE, etc, has been used in faculty performance evaluation. The evaluation procedure 

consists of four main steps, figure 1. 
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Fig 1. Criteria and alternatives for performance evaluation. 

Step1. The identification of evaluation criteria, 

Step 2. The construction of hierarchy of the evaluation criteria, 

Step 3. Calculation of weights of chosen criteria using AHP method of MCDA, 

Step 4. Calculate values for alternatives and get the final ranking results. 

 

3.1 Determining the criteria weights. AHP approach 

The Analytic Hierarchy Process (AHP) is a very popular MCDA/ MCDM method which was developed 

by Thomas L. Saaty (1980), [8]. It is widely used for solving complex problems having several attributes. 

This method converts unstructured problem under study into hierarchical forms of elements which are the 

main goal of the selected problem, criteria that affect the overall goal, and sub-criteria that influence the 

main criteria and finally the alternatives available to the problem. 

The stepwise procedure to calculate the criteria weights by AHP as follows: 

Step 1: Construct the structural hierarchy. 

Step 2: Construct the pair-wise comparison matrix.  

 

Matrix: 

Let’s assuming  𝑛 attributes, then the pairwise comparison of any attribute 𝑖 with any attribute 𝑗 yields a 

square matrix 𝐴𝑛 x 𝑛 where the term 𝑎𝑖,𝑗  denotes the comparative importance of attributes 𝑖 with respect to 

attribute  𝑗.  

In the comparison matrice 𝐴𝑛 x 𝑛 we have;   𝑎𝑖,𝑗 = 1, 𝑓𝑜𝑟 𝑖 = 𝑗, and  𝑎𝑖,𝑗 =
1

𝑎𝑗,𝑖
, 𝑖 ≠ 𝑗.  
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𝐴𝑛𝑥𝑛 =

(

 
 

1
2
…
…
𝑛)

 
 

⏞  
𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠

[
 
 
 
 
𝑎11  𝑎12  … 𝑎1𝑛−1  𝑎1𝑛
𝑎21  𝑎22…𝑎2𝑛−1  𝑎2𝑛
… ….    ….    ……   … . .
….  ….   ….    ……   …… 
𝑎𝑛1   𝑎𝑛2 … 𝑎𝑛𝑛−1   𝑎𝑛𝑛]

 
 
 
 

  

 

Step 3. Construct normalized decision matrix,    

𝑐𝑖,𝑗 =
𝑎𝑖,𝑗

∑ 𝑎𝑖,𝑗
𝑛
𝑗=1

, 𝑖 = 1, 𝑛;   𝑗 = 1, 𝑛.                                                                                   (1) 

Step 4. Construct the weighted normalized matrix,  

𝑤𝑖 = ∑
𝑐𝑖,𝑗

𝑛
𝑛
𝑗=1 , 𝑖 = 1, 𝑛                                                                                                  (2) 

 

      𝑊 =

[
 
 
 
 
𝑤1
𝑤2
…
…
𝑤𝑛]
 
 
 
 

                                                                                                                (3) 

Step 5. Calculate eigenvectors and Row matrix 

     𝐸 =
𝑁𝑡ℎ𝑟𝑜𝑜𝑡𝑣𝑎𝑙𝑢𝑒

∑𝑁𝑡ℎ𝑟𝑜𝑜𝑡𝑣𝑎𝑙𝑢𝑒
                                                                                                      (4) 

𝑅𝑜𝑤𝑚𝑎𝑡𝑟𝑖𝑥 = ∑ 𝑎𝑖𝑗 ∗ 𝑒𝑗1
𝑛
𝑗=1                                                                                            (5) 

Step 6. Calculate the largest Eigen value which is called the Principal Eigen value, 

        𝜆𝑚𝑎𝑥 =
𝑅𝑜𝑤𝑚𝑎𝑡𝑟𝑖𝑥

𝐸
                                                                                                   (6) 

Step 7. Calculate the consistency index   𝐶𝐼 =
(𝜆𝑚𝑎𝑥−𝑛)

𝑛−1
                                                 (7) 

where 𝑛 is the matrix order  

and consistent ratio    𝐶𝑅 =
𝐶𝐼

𝑅𝐼
                                                                                          (8)                                                                                                                    

RI is called random Consistency index.  

If the value of Consistency Ratio is smaller or equal to 10%, then the inconsistency is acceptable. If the 

Consistency Ratio is greater than 10%, we need to revise the subjective judgment of the criteria pairwise 

comparison. 
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3.2 Description of academic staff activities 

Teaching and materials. 

Teaching  includes: the amount and scope of teaching; tutorials, classes, online distribution, field, work, 

studies, and labs, the degree of coordination at the level of the bachelor course, diploma or master program. 

İt includes supervision and research of high- level students, the orientation, examination and supervision of 

students in training programs and specialized programs, the level of development of teaching materials, the 

participation in conferences and other forums, membership in the (internal and external), and the 

participation in teaching and learning network and forums, integrating innovative pedagogical and 

technological network practices, etc.  

Teaching quality and impact. 

Teaching quality and impact includes results for independent, University- approved teaching evaluations, 

numbers of students, the outcomes for students, industry satisfaction on the preparation of students for 

practice, prizes, and awards. 

İt includes effective response to students’ feedback and students’ outcomes, continuous improvement of 

curricula, teaching resources, and teaching approaches, peer review of teaching methods, course design, 

and improvement of teaching materials, courses and programs to improve content, performance and results. 

İt includes student progression into research, contribution to mentoring and peer review of colleagues in 

teaching and learning, contribution to tutor training, provision of opportunities for students to engage with 

key researchers and industry partners, student seminars, laboratory and other research and industry-based 

projects and tasks, integration of relevant case studies and industry experiences into teaching, etc.   

Research and creative work.  

Research and creative work includes publications: journals, books, chapters, monographs, conference 

papers, edited books, and special journal issues, conference presentations and organization. İt includes 

research grants for collaborations and contracts with industry, government, community, etc. Leadership and 

project management in major projects, editorial and industry board memberships and book series 

editorships. Significance of research collaborations: interdisciplinary initiatives; major international 

collaborations, international awards and fellowships, national awards from academies and  societies.   

Membership government advisory committees, significance of research, collaborations of major industry, 

government, profession, business, not-for-profit organizations, and community partnerships. 

Service and engagement.  

Service and engagement includes contribution to activities that create benefits and improve performance 

and productivity, services for the University, Faculty, and Department, offer and contributions to ensure 

his effective leadership in any possible area of the University's activity, within his expertise and knowledge, 

contributions to provide effective connection and cooperation between University and outside activities, 

local community, companies, businesses, social and professional interests, etc. 
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3.3 AHP, criteria, weighting and ranking 

The chosen department of the University of Durres has 20 lectors of different ages and experiences of work. 

We have used the academic activities of lectors during the last 5 years. We have used the data for only 10 

random lectors out of 20 lectors, for the purpose of this study.  

The four fields of activities mentioned before will be the criteria for evaluating the lectors’ performance. 

For each criterion, a 100 points maximum is selected for the top performance, based on literature 

recomendation, commission evaluation opinion, lectors’ self- evaluation form, and student’s feedback. Pair 

wise comparison is used to measure the relative importance of criteria and calculate the criteria relative 

weighs.  The results of AHP are in tables 1, 2, 3, 4, 5. 

 

       Table 1. AHP coeficcients of pair wise comparison. 

 

       Table 2. The resulting weights for the criteria based on pairwise comparisons. 

Criteria Priority Rank (+) (-) 

C1 Teaching and materials 45.7% 1 11.0% 11.0% 

C2 Teaching quality and impact 27.1% 2 6.9% 6.9% 

C3 Research and Creative work 19.3% 3 8.1% 8.1% 

C4 Service and engagement 8.0% 4 2.6% 2.6% 

 

       Table 3. Decision Matrix. 

Criteria  1 2 3 4 

1 1 2.00 3.00 4.00 

2 0.50 1 2.00 3.00 

3 0.33 0.50 1 4.00 

4 0.25 0.33 0.25 1 

       

Rating  Description 

1- Equal  

3- Moderate 

5- Strong.  

7- Very Strong,  

9- Extreme Importance  

  - 2,4,6,8 

Both alternatives have equal importance. 

One of the criteria is slightly more important than the other   

One of the criteria is strongly more important than the other one  

One of the criteria is very strongly important to the other one. 

One of the criteria is strictly superior to the other one. 

Intermediate values. 
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      Number of comparisons = 6 

      Consistency Ratio CR = 5.6% < 10%. 

      Principal Eigenvalue = 4.154 

      Eigenvector solution: 5 iterations, delta = 4.4E-8 

 

      Table 4.  Value estimation of lector performance and their ranking. 

 

  

 

 

 

 

 

 

 

 

 4. Conclusion 

 The process of University performance evaluation, departments, faculties, and academic staff is a 

multi-staged decision- analyzing- making problem having both numerical and qualitative criteria. 

 Evaluation of department‘s member performance in higher education Institutions is a very important 

and useful process in order to know each member’s contribution to the department and Institution. 

 Performance evaluation helps to improve the cooperation among departments ‘members for the 

benefit of academic services, better performance, and better results.  

 Performance evaluation helps to improve the quality of the education system through determining 

student’s opinions and academic criteria of qualifications.  

 Performance evaluation is still missing in the Albanian academic system as a useful tool of internal 

evaluation of academic services.  

 The proposed method is also effective in group decision studies like service companies, 

manufacturing industry, mobile companies, hotels, and restaurants, environmental, everywhere there 

are criteria to fulfill and alternatives to choose.  

 The evaluation of performance within any university will help to recognize the overall state of the  

university, in terms of the importance of the factors, the comparison of work as well as the promotion of           

the of best lecturers and as a result, the improvement university or Institution performance in the international 

ranking. 

 

Alternatıves, crıterıa estımatıon of performance and their rankıng. 

Lectors C1 C2 C3 C4 Poınts Lectors Poınt Nr Poınts Rankıng 

L1 70 80 60 60 70 L1 70 1 77.3 L2 

L2 80 80 70 70 77.3 L2 77.3 2 71.1 L5 

L3 70 60 70 80 68.1 L3 68.1 3 70 L1 

L4 60 50 50 70 42.7 L4 42.7 4 69.5 L7 

L5 80 50 80 70 71.1 L5 71.1 5 68.9 L8 

L6 50 40 80 70 54.6 L6 54.6 6 68.1 L3 

L7 70 50 100 60 69.5 L7 69.5 7 67.3 L9 

L8 60 80 70 80 68.9 L8 68.9 8 58.1 L10 

L9 60 70 80 70 67.3 L9 67.3 9 54.6 L6 

L10 40 70 80 70 58.1 L10 58.1 10 42.7 L4 
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1. Introduction  

Let 𝐴 be a bounded linear operator on a Banach space. It is well-known that the only formula 

for spectral radius is 𝑟(𝐴) = lim𝑛→∞‖𝐴𝑛‖
1

𝑛⁄  and it has been given by I.M. Gelfand. For a 

normal bounded linear operator 𝐴, the spectral radius is the operator norm of 𝐴. In generally 

for the operators which are linear bounded but not normal, the spectral radius may not be 

equal to the norm of the operator. Practically, some operators such as generated by square 

matrices has been constructed as follows: 

1. 𝐴 =   (
1 0
2 0

) : ℝ2 → ℝ2, ‖𝐴‖ = 2,   r( Α ) = 1.  

2. 𝑉: 𝐿2(0,1) → 𝐿2(0,1), 𝑉(𝑓)(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

0
, 𝑓 ∈ 𝐿2(0,1), 𝑟(𝑉) = 0, ‖𝑉‖ = 2

𝜋⁄ .  

3. 𝑉0: 𝐿2(−1,1) → 𝐿2(−1,1), 𝑉0(𝑓)(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

−𝑥
, 𝑓 ∈ 𝐿2(−1,1), 𝑟(𝑉0) = 0 and 

‖𝑉0‖ = 4
𝜋⁄ . 𝑉0 is anti-symmetric and nilpotent of index 2.    

In [3], the norm of Hardy operator has been discussed and it has been shown that this operator 

is compact, quasinilpotent and type of Volterra by M.Gürdal, M.Karaev and S.Saltanın. In [4], 

R.Withley has investigated the nilpotentness of the Volterra composition operator on 

𝐿 𝑝( 0,1), 1 ≤ 𝑝 ≤ ∞. In [5], Y.S.Tong has generalized this result for integral operators 

defined on the space of continuous functions and Lebesque spaces but the property 𝑟(𝐴) <

‖𝐴‖ has not been studied. 

Besides this, for the integral operator (𝐴𝑓)(𝑡) =  𝐿 ∫ 𝑡𝛼𝑓(𝑡𝛽)
𝑡

 0
𝑑𝑡 , 𝑓 ∈ 𝐶[0,1] , 𝛼 > 0,   
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𝛽 > 0 on 𝐶[0,1] the spectral radius has been calculated as r( 𝐴)=
𝐿 

𝛼+1
 

1

∑ 𝛽𝑛∞
𝑛=1

. In [6], I. 

Domanov has given the exact formula of the point spectrum of the composition operator 

which has the form 𝜑  ⃘𝑉 where 𝜑(𝑥) = 𝑥𝛼 , 0 < 𝛼 < 1 and 𝑉: 𝐿2(0,1) → 𝐿2(0,1) the 

classical Volterra operator. It has been found as 𝜎𝑝(𝜑  ⃘𝑉 ) = {(1 − 𝛼)𝛼𝑛−1} and r(𝜑  ⃘𝑉)= 

1 −  𝛼. In [7], I. Domanov has also studied the composition operator 𝜑  ⃘𝑉 for 𝜑(𝑥) > 𝑥  , 𝑥 ∈

(0, 1). But in [6], [7] the norms of the operator have not been calculated. The details of the 

spectral theory of such composition operators on 𝐿𝑝(0,1), 1 ≤ 𝑝 ≤ ∞ can be found in [8].  

Furthermore in [9], F. Kittaneh has investigated the relations between spectral radius 

and spectral norm of the sum, product and commutator operators but the strict inequality has 

not been touched. In [10], the fine spectra of upper triangular double-band matrices over the 

sequence spaces 𝑐0 and 𝑐 has been determined and it has been observed that the strict 

inequality between the spectral radius and spectral norm does not hold.  

In this work, we provide a class of finite square upper triangular block operator 

matrices on direct sum of Hilbert spaces for which spectral radius is strongly less than of 

operator norm.  

  Note that this research has been motivated from M. Demuth's open problem which is stated 

in conference of AIM in 2015 (see [11]). 

2. Spectrum of Finite Upper Triangular Block Operator Matrix   

In the direct sum 𝐻 =
𝑛
⊕

𝑚 = 1
𝐻𝑚 of Hilbert spaces 𝐻𝑚, 1 ≤ 𝑚 ≤ 𝑛 consider the following 

finite square upper triangular block operator matrix  

 𝐴 = (

𝐴11 𝐴12 … 𝐴1𝑛

𝐴22 … 𝐴2𝑛

0 ⋱
𝐴𝑛𝑛

),  

 𝐴: 𝐷(𝐴) ⊂ 𝐻 → 𝐻 

where 

 𝐴𝑚𝑗: 𝐷(𝐴𝑚𝑗) ⊂ 𝐻𝑗 → 𝐻𝑚, 1 ≤ 𝑚 ≤ 𝑗 ≤ 𝑛 

are linear closed densely defined operators.  

 First of all we prove the next proposition.  
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Theorem 2.1. Let 𝐴 be the operator as above. Then   

1. 𝜌(𝐴) =
𝑛
∩

𝑚 = 1
𝜌(𝐴𝑚𝑚),  

2. 𝜎(𝐴) =
𝑛
∪

𝑚 = 1
𝜌(𝐴𝑚𝑚).  

Proof. 1. For any 𝜆 ∈
𝑛
∩

𝑚 = 1
𝜌(𝐴𝑚𝑚) from  

 (𝐴 − 𝜆𝐼)𝑥 = 𝑦, 𝑥, 𝑦 ∈ 𝐻 

one can obtain that   

 𝑥𝑛 = 𝑅𝜆(𝐴𝑛𝑛)𝑦𝑛 

 𝑥𝑛−1 = 𝑅𝜆(𝐴𝑛−1,𝑛−1)𝑦𝑛−1 − 𝑅𝜆(𝐴𝑛−1,𝑛−1)𝐴𝑛−1,𝑛𝑅𝜆(𝐴𝑛𝑛)𝑦𝑛 

 ⋮ 

 𝑥1 = 𝑅𝜆(𝐴11)𝑦1 

Therefore 𝜆 ∈ 𝜌(𝐴) which implies that 

𝑛
∩

𝑚 = 1
𝜌(𝐴𝑚𝑚) ⊂ 𝜌(𝐴).  

Now let us 𝜆 ∈ 𝜌(𝐴). Then the equation  

 (𝐴 − 𝜆𝐼)𝑥 = 𝑦 

is solvable for any 𝑥, 𝑦 ∈ 𝐻. In special case this equation is solvable in 0⨁0 ⨁ … ⨁0⨁𝐻𝑛. 

This means that 𝜆 ∈ 𝜌(𝐴𝑛𝑛). Similarly it is solvable in subspaces 0⨁0 ⨁ … ⨁𝐻𝑛−1⨁𝐻𝑛. 

Consequently the following equations  

 {
(𝐴𝑛−1,𝑛−1 − 𝜆)𝑥𝑛−1 + 𝐴𝑛−1,𝑛𝑥𝑛 = 𝑦𝑛−1

(𝐴𝑛𝑛 − 𝜆)𝑥𝑛 = 𝑦𝑛
 

are solvable for any 𝑦𝑛−1 ∈ 𝐻𝑛−1, 𝑦𝑛 ∈ 𝐻𝑛. Since 𝑥𝑛 = 𝑅𝜆(𝐴𝑛𝑛)𝑦𝑛, then the equation  

 (𝐴𝑛−1,𝑛−1 − 𝜆)𝑥𝑛−1 = 𝑦𝑛−1 − 𝐴𝑛−1,𝑛𝑅𝜆(𝐴𝑛𝑛)𝑦𝑛 

is solvable for any 𝑦𝑛−1 ∈ 𝐻𝑛−1, 𝑦𝑛 ∈ 𝐻. This means 𝜆 ∈ 𝜌(𝐴𝑛−1,𝑛−1). This procedure can be 

applied repeatedly (𝑛 − 1) times and this implies 

 𝜌(𝐴) ⊂
𝑛
∩

𝑚 = 1
𝜌(𝐴𝑚𝑚).  
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Hence  

 𝜌(𝐴) =
𝑛
∩

𝑚 = 1
𝜌(𝐴𝑚𝑚). 

2. By (1) one can easily obtain  

 𝜎(𝐴) =
𝑛
∪

𝑚 = 1
𝜌(𝐴𝑚𝑚).   

Theorem 2.2. If  

 max2≤𝑚≤𝑛‖𝐴𝑚𝑚‖ < ‖𝐴11‖ or  

 max1≤𝑚≤𝑛−1‖𝐴𝑚𝑚‖ < ‖𝐴𝑛𝑛‖ 

and 𝑟(𝐴11) < ‖𝐴11‖ or 𝑟(𝐴𝑛𝑛) < ‖𝐴𝑛𝑛‖ respectively, then  

 𝑟(𝐴) < ‖𝐴‖.  

Proof. First of all we prove the following inequality   

 ‖𝐴11‖ ≤ ‖𝐴‖.  

In the subspace  

 {(𝑥1, 0,0, … . . ): 𝑥1 ∈ 𝐻1} ⊂ 𝐻 

we have  

 
‖𝐴11𝑥1‖

‖𝑥1‖
=

‖𝐴𝑥‖

‖𝑥‖
  for any 𝑥1 ≠ 0, 𝑥1 ∈ 𝐻1. 

Then  

 ‖𝐴11‖ ≤ ‖𝐴‖. 

By similar technique, it can be shown that  

 ‖𝐴𝑛𝑛‖ ≤ ‖𝐴‖. 

Consequently from this and the assumptions of the theorem, we have  

 max1≤𝑚≤𝑛‖𝐴𝑚𝑚‖ < ‖𝐴11‖ ≤ ‖𝐴‖ or  

 max1≤𝑚≤𝑛‖𝐴𝑚𝑚‖ < ‖𝐴𝑛𝑛‖ ≤ ‖𝐴‖ 

respectively.  

Then from these inequality and Theorem 2.1 it is obtained  
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 𝑟(𝐴) < ‖𝐴‖. 

This completes the proof.  

Corollary 2.3. If  

 𝐴𝑚𝑗 ∈ 𝐿(𝐻𝑗 , 𝐻𝑚), 1 ≤ 𝑚 ≤ 𝑗 ≤ 𝑛,  

 𝐴𝑚𝑚 = 0, 𝑚 = 1,2, … , 𝑛 and 𝐴 ≠ 0,  

then 𝑟(𝐴) < ‖𝐴‖.  

Remark 2.4. In similar way, the analogues of this problem can be researched for finite square 

lower triangular block operator matrices in the direct sum of Hilbert spaces.  

Example 1. Let 𝐻 = ℝ⨁𝐿2(0,1),  

 𝐴11𝑥 = 𝑥, 𝑥 ∈ ℝ 

 𝐴12: 𝐿2(0,1) → 𝐿2(0,1), 𝐴12 ∈ 𝐿(𝐿2(0,1)),  

 𝐴22𝑓(𝑡) = ∫ 𝑓(𝑥)𝑑𝑥
𝑡

0
, 𝑓 ∈ 𝐿2(0,1),  

 𝐴 = (
𝐴11 𝐴12

0 𝐴22
) : 𝐻 → 𝐻.  

Then one can easily obtain  

 ‖𝐴11‖ = 1, 𝑟(𝐴11) = 1 

‖𝐴22‖ =
2

𝜋
, 𝑟(𝐴22) = 0. 

Hence by Theorem 2.3, we have that 

 𝑟(𝐴) = 1 < ‖𝐴‖.  

Example 2. Let  

 𝐴11 = (
1 2
0 0

),  𝐴12 = (
𝑎 𝑏
𝑐 𝑑

),  𝐴22 = (
4 0
3 0

), 

 𝐴11, 𝐴12, 𝐴22: ℂ2 → ℂ2,  

 𝐴 = (
𝐴11 𝐴12

0 𝐴13
) : ℂ4 → ℂ4. 

Then one can easily obtain  

 𝑟(𝐴11) = 1, ‖𝐴11‖ = √5,  386
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 𝑟(𝐴22) = 4, ‖𝐴22‖ = 5.  

Since ‖𝐴11‖ < ‖𝐴22‖, by Theorem 2.3 we have that  

 𝑟(𝐴) = 4 < 5 < ‖𝐴‖.  
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Abstract 

In this paper, the parametrization of maximally dissipative extensions of the 

minimal operator generated by first order linear symmetric singular differential-operator 

expression in the Hilbert space of vector-functions defined at the right semi-axis has been 

given with the using of Calkin-Gorbachuk method. Finally, the structure of spectrum set 

of such extensions is researched. 
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1. Introduction  

It is known that a linear closed densely defined operator 𝑇: 𝐷(𝑇) ⊂ 𝐻 → 𝐻 in Hilbert space 𝐻 

is said to be dissipative if and only if  

𝐼𝑚 (𝑇𝑥, 𝑥) ≥ 0  

for all 𝑥 ∈ 𝐷(𝑇), i.e. in other words its numerical range is contained in the upper complex 

plane. Moreover, it is called maximally dissipative if it has no non-trivial dissipative 

extension [2].  

Maximally dissipative operators play a very important role in mathematics and 

physics. Dissipative operators have many interesting applications in physics like 

hydrodynamic, laser and nuclear scattering theories.  

Note that the study of abstract extension problems for operators in Hilbert spaces goes 

at least back to J.von Neumann [7] such that in [7] a full characterization of all selfadjoint 

extensions of a given closed symmetric operator with equal defect indices has been 

investigated. The characterization of all non-negative selfadjoint extensions of a positive 

closed symmetric operator has been studied by M. I. Vishik and M. S. Birman in details (see 

[3]). More general information can also be found in [1]. The class of dissipative operators is 

an important class of non-selfadjoint operators in the operator theory. Functional model 

theory of B. Sz.-Nagy and C. Foias [5] is a basic method for investigation the spectral 

properties of dissipative operators. Note that spectrum set of the dissipative operator lies in 

closed upper half-pane. The maximal dissipative extensions and their spectral analysis of the 

minimal operator having equal deficiency indices generated by formally symmetric 
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differential-operator expression in the Hilbert space of vector-functions defined in one finite 

or infinite interval case have been researched by V. I. Gorbachuk, M. I. Gorbachuk [2] and F. 

S. Rofe-Beketov, A. M. Kholkin [6] in terms of generalized boundary values. 

2. Statement of the Problem  

Let 𝐻 be a separable Hilbert space and 𝑎 ∈ ℝ. In the Hilbert space 𝐿2(𝐻, (𝑎, ∞)) consider the 

following differential-operator expression in a form  

 𝑙(𝑢) = 𝑖𝜌𝑢′ +
1

2
𝑖𝜌′𝑢 + 𝐴𝑢,  

where:  

(1) 𝜌: (𝑎, ∞) → (0, ∞); 

(2) 𝜌 ∈ 𝐴𝐶𝑙𝑜𝑐(𝑎, ∞);  

(3) ∫
𝑑𝑠

𝜌(𝑠)

∞

𝑎
< ∞;  

(4) 𝐴∗ = 𝐴: 𝐷(𝐴) ⊂ 𝐻 → 𝐻.  

The minimal operator 𝐿0 corresponding to differential-operator expression 𝑙(∙) in 

𝐿2(𝐻, (𝑎, ∞)) can be defined by standard way (see [3]). The operator 𝐿 = (𝐿0)∗ is called the 

maximal operator corresponding to 𝑙(∙) in 𝐿2(𝐻, (𝑎, ∞)) (see [3]).  

 In this paper, firstly the representation of maximally dissipative extensions of the 

minimal operator 𝐿0 will be described. Then, structure of the spectrum of these extensions 

will also be investigated.  

3. Description of Maximally Dissipative Extensions  

In this section, the general representation of maximally dissipative extensions of the minimal 

operator 𝐿0 will be investigated by using the Calkin-Gorbachuk method. 

Now, we present the following lemma which we need for the proofs of our main 

results. 

Lemma 3.1. The deficiency indices of the operator 𝐿0 is in form (𝑚(𝐿0), 𝑛(𝐿0)) =

(dim 𝐻 , dim 𝐻).  

Proof. For the simplicity of calculations it will be taken 𝐴 = 0. It is clear that the general 

solutions of following differential equations  

 𝑖𝜌(𝑡)𝑢±
′ (𝑡) +

1

2
𝑖𝜌′(𝑡)𝑢±(𝑡) ± 𝑖𝑢±(𝑡) = 0,  
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in the 𝐿2(𝐻, (𝑎, ∞)) are in forms  

 𝑢±(𝑡) = exp (∓ ∫
2±𝜌′(𝑠)

2𝜌(𝑠)
𝑑𝑠

𝑡

𝑎
) 𝑓,  𝑓 ∈ 𝐻,  𝑡 > 𝑎.  

From these representations, we have  

 ‖𝑢+‖
𝐿2(𝐻,(𝑎,∞))
2 = ∫ ‖𝑢+(𝑡)‖𝐻

2 𝑑𝑡
∞

𝑎
  

     = ∫ exp (− ∫
2+𝜌′(𝑠)

𝜌(𝑠)
𝑑𝑠

𝑡

𝑎
) 𝑑𝑡

∞

𝑎
‖𝑓‖𝐻

2   

          = ∫
𝜌(𝑎)

𝜌(𝑡)
exp (− ∫

2

𝜌(𝑠)
𝑑𝑠

𝑡

𝑎
) 𝑑𝑡

∞

𝑎
‖𝑓‖𝐻

2   

       =
𝜌(𝑎)

2
[1 − exp (− ∫

2

𝜌(𝑠)
𝑑𝑠

∞

𝑎
)] ‖𝑓‖𝐻

2 < ∞.  

Consequently 𝑚(𝐿0) = dim ker(𝐿 + 𝑖𝐸) = dim 𝐻.  

On the other hand it is clear that for any 𝑓 ∈ 𝐻  

 ‖𝑢−‖
𝐿2(𝐻,(𝑎,∞))
2 = ∫ ‖𝑢−(𝑡)‖𝐻

2 𝑑𝑡
∞

𝑎
  

     = ∫ exp (∫
2−𝜌′(𝑠)

𝜌(𝑠)
𝑑𝑠

𝑡

𝑎
) 𝑑𝑡

∞

𝑎
‖𝑓‖𝐻

2   

          = ∫
𝜌(𝑎)

𝜌(𝑡)
exp (∫

2

𝜌(𝑠)
𝑑𝑠

𝑡

𝑎
) 𝑑𝑡

∞

𝑎
‖𝑓‖𝐻

2   

       =
𝜌(𝑎)

2
[exp (− ∫

2

𝜌(𝑠)
𝑑𝑠

∞

𝑎
) − 1] ‖𝑓‖𝐻

2 < ∞  

holds. It follows from that 𝑛(𝐿0) = dim ker(𝐿 − 𝑖𝐸) = dim 𝐻. This completes the proof of 

theorem.  

 Consequently, the operator 𝐿0 has a maximally dissipative extension (see [2]). In order 

to describe maximally dissipative extensions of 𝐿0, it is necessary to construct a space of 

boundary values for it. 

Definition 3.2. [2] Let ℋ be any Hilbert space and 𝑆: 𝐷(𝑆) ⊂ ℋ → ℋ be a closed densely 

defined symmetric operator in the Hilbert space ℋ having equal finite or infinite deficiency 

indices. A triplet (𝑯, 𝛾1, 𝛾2), where 𝑯 is a Hilbert space, 𝛾1 and 𝛾2 are linear mappings from 

𝐷(𝑆∗) into 𝑯, is called a space of boundary values for the operator 𝑆 if for any 𝑓, 𝑔 ∈ 𝐷(𝑆∗)  

 (𝑆∗𝑓, 𝑔)ℋ − (𝑓, 𝑆∗𝑔)ℋ = (𝛾1(𝑓), 𝛾2(𝑔))
𝑯

− (𝛾2(𝑓), 𝛾1(𝑔))𝑯 
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while for any 𝐹1, 𝐹2 ∈ 𝑯, there exists an element 𝑓 ∈ 𝐷(𝑆∗) such that 𝛾1(𝑓) = 𝐹1 and 

𝛾2(𝑓) = 𝐹2.  

Lemma 3.3. The triplet (𝐻, 𝛾1, 𝛾2),  

 𝛾1: 𝐷(𝐿) → 𝐻, 𝛾1(𝑢) =
1

√2
((√𝜌𝑢)(∞) − (√𝜌𝑢)(𝑎)),  

 𝛾2: 𝐷(𝐿) → 𝐻, 𝛾2(𝑢) =
1

𝑖√2
((√𝜌𝑢)(∞) + (√𝜌𝑢)(𝑎)), 𝑢 ∈ 𝐷(𝐿)  

is a space of boundary values of the minimal operator 𝐿0 in 𝐿2(𝐻, (𝑎, ∞)).  

Proof. In this case by direct calculations we have the following for arbitrary 𝑢, 𝑣 ∈ 𝐷(𝐿)  

 (𝐿𝑢, 𝑣)𝐿2(𝐻,(𝑎,∞)) − (𝑢, 𝐿𝑣)𝐿2(𝐻,(𝑎,∞)) = (𝑖𝜌𝑢′ +
1

2
𝑖𝜌′𝑢 + 𝐴𝑢, 𝑣)

𝐿2(𝐻,(𝑎,∞))
 

           −(𝑢, 𝑖𝜌𝑣′ +
1

2
𝑖𝜌′𝑣 + 𝐴𝑣)𝐿2(𝐻,(𝑎,∞))  

        = (𝑖𝜌𝑢′, 𝑣)𝐿2(𝐻,(𝑎,∞)) +
1

2
(𝑖𝜌′𝑢, 𝑣)𝐿2(𝐻,(𝑎,∞)) 

                            −(𝑢, 𝑖𝜌𝑣′)𝐿2(𝐻,(𝑎,∞)) − (𝑢,
1

2
𝑖𝜌′𝑣)𝐿2(𝐻,(𝑎,∞)) 

          = 𝑖 [(𝜌𝑢′, 𝑣)𝐿2(𝐻,(𝑎,∞)) + (𝜌′𝑢, 𝑣)𝐿2(𝐻,(𝑎,∞)) + (𝜌𝑢, 𝑣′)𝐿2(𝐻,(𝑎,∞))] 

        = 𝑖 [((𝜌𝑢)′, 𝑣)𝐿2(𝐻,(𝑎,∞)) + (𝜌𝑢, 𝑣′)𝐿2(𝐻,(𝑎,∞))] 

        = 𝑖((𝜌𝑢, 𝑣))
𝐿2(𝐻,(𝑎,∞))
′  

        = 𝑖((√𝜌𝑢, √𝜌𝑣))
𝐿2(𝐻,(𝑎,∞))

′
 

        = 𝑖 [((√𝜌𝑢)(∞), (√𝜌𝑣)(∞))
𝐻

− ((√𝜌𝑢)(𝑎), (√𝜌𝑣)(𝑎))
𝐻

] 

        = (𝛾1(𝑢), 𝛾2(𝑣))𝐻 − (𝛾2(𝑢), 𝛾1(𝑣))𝐻.  

Now for any given elements 𝑓, 𝑔 ∈ 𝐻, one can find the function 𝑢 ∈ 𝐷(𝐿) satisfying  

 𝛾1(𝑢) =
1

√2
((√𝜌𝑢)(∞) − (√𝜌𝑢)(𝑎)) = 𝑓 and  

 𝛾2(𝑢) =
1

𝑖√2
((√𝜌𝑢)(∞) + (√𝜌𝑢)(𝑎)) = 𝑔.  

From this  

 (√𝜌𝑢)(∞) =
𝑖𝑔+𝑓

√2
 and (√𝜌𝑢)(𝑎) =

𝑖𝑔−𝑓

√2
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is obtained.  

 If we choose the function 𝑢 in the following form  

 𝑢(𝑡) =
1

√𝜌(𝑡)
(1 − 𝑒𝑎−𝑡)

𝑖𝑔+𝑓

√2
+

1

√𝜌(𝑡)
𝑒𝑎−𝑡 𝑖𝑔−𝑓

√2
,  

𝑢 ∈ 𝐷(𝐿) we have that 𝛾1(𝑢) = 𝑓 and 𝛾2(𝑢) = 𝑔.  

Finally, using the method given in [2], we can immediately obtain the following result. 

Theorem 3.4. If �̃� is maximally dissipative extension of the minimal operator 𝐿0 in 

𝐿2(𝐻, (𝑎, ∞)), then it is generated by the differential-operator expression 𝑙(∙) and boundary 

condition  

 (√𝜌𝑢)(𝑎) = 𝑊(√𝜌𝑢)(∞),  

where 𝑊: 𝐻 → 𝐻 is a contraction operator. Moreover, the contraction operator 𝑊 in 𝐻 is 

determined uniquely by the extension �̃�, i.e. �̃� = 𝐿𝑊 and vice versa.  

Proof. Each maximally dissipative extensions of the minimal operator 𝐿0 are described by 

differential-operator expression 𝑙(∙) and the boundary condition  

 (𝑉 − 𝐸)𝛾1(𝑢) + 𝑖(𝑉 + 𝐸)𝛾2(𝑢) = 0,  

where 𝑉: 𝐻 → 𝐻 is a contraction operator. So from Lemma 3.3, we have  

 (𝑉 − 𝐸) ((√𝜌𝑢)(∞) − (√𝜌𝑢)(𝑎)) + (𝑉 + 𝐸) ((√𝜌𝑢)(∞) + (√𝜌𝑢)(𝑎)) = 0.  

Hence, we obtain   

 (√𝜌𝑢)(𝑎) = −𝑉(√𝜌𝑢)(∞). 

Choosing 𝑊 = −𝑉 in last boundary condition, we have  

 (√𝜌𝑢)(𝑎) = 𝑊(√𝜌𝑢)(∞).  

4. The Spectrum of the Maximally Dissipative Extensions  

In this section the structure of the spectrum of the maximally dissipative extensions 𝐿𝑊 of the 

minimal operator 𝐿0 in 𝐿2(𝐻, (𝑎, ∞)) will be investigated. 

First of all let us prove the following result. 

Theorem 4.1. The spectrum of any maximally dissipative extension 𝐿𝑊 is in form 
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 𝜎(𝐿𝑊 ) = {𝜆 ∈ ℂ: 𝜆 = (∫
𝑑𝑠

𝜌(𝑠)

∞

𝑎
)

−1
(𝑖 ln|𝜇|−1 + arg 𝜇 + 2𝑛𝜋),   𝑛 ∈ ℤ,   𝜇 ∈

                                               𝜎 (𝑊 exp (𝑖𝐴 ∫
𝑑𝑠

𝜌(𝑠)

∞

𝑎
))}.  

Proof. Consider the following problem for spectrum of the extension 𝐿𝑊  

 𝑙(𝑢) = 𝜆𝑢 + 𝑓,  𝑢, 𝑓 ∈ 𝐿2(𝐻, (𝑎, ∞)),  𝜆 ∈ ℂ,  𝜆𝑖 = Im 𝜆 ≥ 0,  

 (√𝜌𝑢)(𝑎) = 𝑊(√𝜌𝑢)(∞),  

that is,  

 𝑖𝜌(𝑡)𝑢′(𝑡) +
1

2
𝑖𝜌′(𝑡)𝑢(𝑡) + 𝐴𝑢(𝑡) = 𝜆𝑢(𝑡) + 𝑓(𝑡), 𝑡 > 𝑎,  

 (√𝜌𝑢)(𝑎) = 𝑊(√𝜌𝑢)(∞).  

The general solution of the last differential equation is in the following form 

 𝑢(𝑡; 𝜆) =
1

√𝜌(𝑡)
exp (𝑖(𝐴 − 𝜆𝐸) ∫

𝑑𝑠

𝜌(𝑠)

∞

𝑎
) 𝑓𝜆  

  +
𝑖

√𝜌(𝑡)
∫ exp (𝑖(𝐴 − 𝜆𝐸) ∫

𝑑𝜏

𝜌(𝜏)

𝑡

𝑠
)

𝑓(𝑠)

√𝜌(𝑠)
𝑑𝑠

∞

𝑡
,  𝑓𝜆 ∈ 𝐻,  𝑡 > 𝑎.  

In this case  

         ‖
1

√𝜌(𝑡)
exp (𝑖(𝐴 − 𝜆𝐸) ∫

𝑑𝑠

𝜌(𝑠)

𝑡

𝑎
) 𝑓𝜆‖

𝐿2(𝐻,(𝑎,∞))

2

=
1

2𝜆𝑖
(exp (2𝜆𝑖 ∫

𝑑𝑠

𝜌(𝑠)

∞

𝑎
) − 1) ‖𝑓𝜆‖𝐻

2 < ∞ 

and  

 ‖
𝑖

√𝜌(𝑡)
∫ exp (𝑖(𝐴 − 𝜆𝐸) ∫

𝑑𝜏

𝜌(𝜏)

𝑡

𝑠
)

𝑓(𝑠)

√𝜌(𝑠)
𝑑𝑠

∞

𝑡
‖

𝐿2(𝐻,(𝑎,∞))

2

 

  = ∫
1

𝜌(𝑡)
‖∫ exp (𝑖(𝐴 − 𝜆𝐸) ∫

𝑑𝜏

𝜌(𝜏)

𝑡

𝑠
)

𝑓(𝑠)

√𝜌(𝑠)
𝑑𝑠

∞

𝑡
‖

𝐻

2

𝑑𝑡
∞

𝑎
 

  ≤ ∫
1

𝜌(𝑡)
[∫ ‖exp (𝑖(𝐴 − 𝜆𝐸) ∫

𝑑𝜏

𝜌(𝜏)

𝑡

𝑠
)‖

𝐻

∞

𝑡

‖𝑓(𝑠)‖𝐻

√𝜌(𝑠)
𝑑𝑠]

2

𝑑𝑡
∞

𝑎
 

  = ∫
1

𝜌(𝑡)
[∫ exp (𝜆𝑖 ∫

𝑑𝜏

𝜌(𝜏)

𝑡

𝑠
)

∞

𝑡

‖𝑓(𝑠)‖𝐻

√𝜌(𝑠)
𝑑𝑠]

2

𝑑𝑡
∞

𝑎
 

  ≤ ∫
1

𝜌(𝑡)
(∫

1

𝜌(𝑠)
exp (2𝜆𝑖 ∫

𝑑𝜏

𝜌(𝜏)

𝑡

𝑠
) 𝑑𝑠

∞

𝑡
) (∫ ‖𝑓(𝑠)‖𝐻

2 𝑑𝑠
∞

𝑡
)𝑑𝑡

∞

𝑎
 

  ≤ ∫
1

𝜌(𝑡)
(∫

1

𝜌(𝑠)
exp (2𝜆𝑖 ∫

𝑑𝜏

𝜌(𝜏)

𝑡

𝑠
) 𝑑𝑠

∞

𝑎
) 𝑑𝑡

∞

𝑎
‖𝑓‖

𝐿2(𝐻,(𝑎,∞))
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  =
1

4𝜆𝑖
2 (exp (2𝜆𝑖 ∫

𝑑𝜏

𝜌(𝜏)

∞

𝑎
) + exp (−2𝜆𝑖 ∫

𝑑𝜏

𝜌(𝜏)

∞

𝑎
) − 2) ‖𝑓‖

𝐿2(𝐻,(𝑎,∞))
2 < ∞.  

Hence for 𝑢(∙, 𝜆) ∈ 𝐿2(𝐻, (𝑎, ∞)) for 𝜆 ∈ ℂ, 𝜆𝑖 = Im 𝜆 ≥ 0.  

Using this and boundary condition, we have  

 (exp (𝑖𝜆 ∫
𝑑𝑠

𝜌(𝑠)

∞

𝑎
) − 𝑊 exp (𝑖𝐴 ∫

𝑑𝑠

𝜌(𝑠)

∞

𝑎
)) 𝑓𝜆 

  = 𝑖 exp (𝑖𝜆 ∫
𝑑𝑠

𝜌(𝑠)

∞

𝑎
) ∫ exp (𝑖(𝐴 − 𝜆) ∫

𝑑𝜏

𝜌(𝜏)

𝑎

𝑠
)

∞

𝑎

𝑓(𝑠)

√𝜌(𝑠)
𝑑𝑠.  

In order to get 𝜆 ∈ 𝜎(𝐿𝑊), the necessary and sufficient condition is  

 exp (𝑖𝜆 ∫
𝑑𝑠

𝜌(𝑠)

∞

𝑎
) = 𝜇 ∈ 𝜎 (𝑊 exp (𝑖𝐴 ∫

𝑑𝑠

𝜌(𝑠)

∞

𝑎
)).  

Consequently,  

 𝜆 = (∫
𝑑𝑠

𝜌(𝑠)

∞

𝑎
)

−1
(𝑖 ln|𝜇|−1 + arg 𝜇 + 2𝑛𝜋),   𝑛 ∈ ℤ.  

Remark. In the special case the representation of selfadjoint extensions of corresponding 

mentioned above minimal operator and their spectral analysis on right semi-axis have been 

studied in [4].    
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The (p,q)-Chebyshev polynomial coefficients for a certain subclass of analytic and bi-univalent 

functions 
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In the present investigation, we consider the (p,q)-Chebyshev polynomials to find upper bounds for a 

certain subclass of analytic and bi-univalent functions. We also determine the Fekete-Szegö functional for 

functions in this class. 

 

Keywords: (p,q)-Chebyshev polynomials, coefficient estimates, analytic functions, bi-univalent functions, subordination.  

 

 

1. Introduction 

Let ( , )    be the set of real numbers,  be the set of complex numbers and  

  0: 1,2,3, \{0}   

be the set of positive integers. Let also  : 1z z  U  be open unit disc in . 

For any integer 2n   and 0 1,q p    the (p,q)-Chebyshev polynomials of the second kind is defined 

by the following recurrence relations: 

1

1 2( , , , ) ( ) ( , , , ) ( ) ( , , , )n n n

n n nU x s p q p q xU x s p q pq sU x s p q

     

with the initial values 0 1( , , , ) 1, ( , , , ) ( )U x s p q U x s p q p q x    and s  is a real variable. 

 

In the light of this recurrence relation, we will give the following interesting table: 

 

x  s  p q ( , , , )nU x s p q  (p,q)-Chebyshev polynomials of the second kind 

2x

 

x  

 
2x  

1 2  

x  

 

1 

1 2  

 

s  

-1 

1 

1 

1 

1 

2 y  

p  

1 

1 

1 

1 

1 

1 

q  

1 

1 

1 

1 

1 

1 

( , , , )nF x s p q  

( )nU x  

1( )nF x  

1nF   

1( )nP x  

1nP   

1( )nJ y  

(p,q)-Fibonacci polynomials 

Second kind of Chebyshev polynomials 

Fibonacci polynomials 

Fibonacci numbers 

Pell polynomials 

Pell numbers 

Jacobsthal polynomials 
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1 2  2 1 1 
1nJ   Jacobsthal numbers 

 

These polynomials defined recursively over the integers share numerous interesting properties and have 

been extensively studied. They have been also found to be topics of interest in many different areas of 

pure and applied science, please see the papers Doha 1994, Mason 1967, Filipponi and Horadam 1991, 

Wang and Zhang 2012 and closely related references therein. 

Very recently, Kızılateş et al. (2012) defined (p,q)-Chebyshev polynomials of the first and second kind 

and derived explicit formulas, generating functions and some interesting properties of these polynomials. 

The generating function of the (p,q)-Chebyshev polynomials of the second kind is as follows: 

, 2

,

0

1
( )

1

( , , , ) ( ),

p q

p q p q

n

n

n

G z
xpz xqz spqz

U x s p q z z

  






  

  U

 

where the Fibonacci operator p  was introduced in Mason and Handscomb (2003), by ( ) ( ).q f z f qz   

Similarly, , ( ) ( ).p q f z f pqz   

 

Let A be the class of functions f  of the form: 

                                                      ,)( 3
3

2
2  zazazzf                                                     (1) 

which are analytic in the open unit disc U  and normalized by ,0)0( f 1)0( f . Further, by S  we shall 

denote the class of all functions in A  which are univalent in U .  

For two analytic functions, f  and g , such that )0()0( gf  , we say that f is subordinate to g  in U  and 

write ( ) ( ),f z g z zU , if there exists a Schwarz function )(zw with 0)0( w  and ( ) ,w z z z U  

such that ( ) ( ( )),f z g w z z U .  

The Koebe-One Quarter Theorem (Duren 1983) ensures that the image of U  under every univalent 

function Af   contains a disc of radius ¼. Thus every univalent function f  has an inverse 
1f  

satisfying 1( ( )) ,f f z z z  U  and ).41)(),((,))(( 00
1  frfrwwwff  The inverse function 

1f  

is given by 

                            1 2 2 3 3 3

2 2 3 2 2 3 4( ) ( ) (2 ) (5 5 ) .g w f w w a w a a w a a a a w                                    (2) 

A function Af   is said to be bi-univalent in U  if both f  and 
1f  are univalent in U . Let   denote 

the class of bi-univalent functions defined in U .  For a brief history and interesting examples in the class 
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,  see Srivastava et al. 2010 (see also Altınkaya and Yalçın 2015, Brannan and Clunie 1979, Brannan 

and Taha 1986, Hussain et al. 2017, Khan et al. 2017, Lewin 1967). However, there are only a few works 

determining the general coefficient bounds na  for the analytic bi-univalent functions in the literature, 

that is, the coefficient estimate problem for each of 

    , 1,2,3 1,2,3,na n    

is still an open problem. 

The classical Fekete-Szegö inequality, presented by means of Loewner's method, for the coefficients of 

f S  is 

 2

3 2 1 2exp( 2 / (1 )) for 0,1 .a a          

As 1,   we have the elementary inequality 2

3 2 1.a a  Moreover, the coefficient functional 

2

3 2( )f a a     on the normalized analytic functions f  in the unit disc U  plays an important role in 

function theory. The problem of maximizing the absolute value of the functional ( )f  is called the 

Fekete-Szegö problem (Fekete-Szegö 1933). 

 

Now, we will de.ne the bi-univalent function class ( ; , )M p q associated with the (p,q)-Chebyshev 

Chebyshev polynomials. 

 

Definition 1.2. A function f   given by (1) is said to belong to the class  

 ( ; , ) 0 1, ,M p q z w    U  

if the following subordinations are satisfied: 

,

( )
( )

(1 ) ( ) ( )
p q

zf z
G z

f z zf z 



 
 

and 

,

( )
( )

(1 ) ( ) ( )
p q

wg w
G w

g w wg w 



 
 

where the function g  is the extension of 
1f  to U . 

Remark 1.3. It should be remarked that the class ( ; , )M p q  is a generalization of well-known classes 

consider earlier. For example: 

 For 0, 1 and 1,p q s       the class ( ; , )M p q  reduce to the class , ( )S t 


 which was 

introduced recently by Altınkaya and Yalçın (2017). 
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2. Coefficient estimates 

In this section, we will derive the (p,q)-Chebyshev polynomial bounds for the initial coefficients and 

determine the Fekete-Szegö functional for ( ; , ).f M p q  

 

Theorem 2.1. Let the function f  given by (1) be in the class ( ; , )M p q . Then 

2
2 2 2 2 2 2 2

( ) ( )
,

( 2 1)( ) (1 ) ( )( )

p q x p q x
a

p q x p q p q x pqs  

 


         

 

3

( ) 2( )
1

2(1 ) 1

p q x p q x
a

 

  
    

 

and for any real number   

2

3 2

2 2

2 2

3 3 2 2

2 22 2 2 2 2 2 2

( ) (1 )
, 1 1

2(1 ) 2 ( )
.

1 ( ) (1 )
, 1 1

2 ( )( 2 1)( ) (1 ) ( )( )

a a

p q x p q pqs

p q p q x

p q x p q pqs

p q p q xp q x p q p q x pqs








 


  

 

    
     

   


                      

 

 

Proof. Suppose that ( ; , )f M p q . In view of the definition of subordination, we can write 

,

( )
( ( )),

(1 ) ( ) ( )
p q

zf z
G z

f z zf z 


 

 
 

,

( )
( ( ))

(1 ) ( ) ( )
p q

zf z
G w

f z zf z


 




 
 

or, 

                        2

0 1 2

( )
( , , , ) ( , , , ) ( ) ( , , , ) ( ) ,

(1 ) ( ) ( )

zf z
U x s p q U x s p q z U x s p q z

f z zf z 


     

 
         (4) 

                      2

0 1 2

( )
( , , , ) ( , , , ) ( ) ( , , , ) ( )

(1 ) ( ) ( )

wg w
U x s p q U x s p q w U x s p q w

g w wg w
 

 


   

 
           (5) 

for some analytic functions ,  such that (0) (0) 0,    2

1 2( ) 1,z m z m z    

2

1 2( ) 1w n w n w      and 

                                                                 1, 1,i im n i    .                                                             (6) 

In the light of (4) and (5), we obtain  

                                                                2 1 1(1 ) ( , , , ) ,a U x s p q m                                                           (7) 

                             2 2 2

2 3 1 2 2 1( 1) 2(1 ) ( , , , ) ( , , , ) ,a a U x s p q m U x s p q m                                                 (8) 

                                                                2 1 1(1 ) ( , , , ) ,a U x s p q n                                                           (9) 

                             2 2 2

2 3 1 2 2 1( 4 3) 2(1 ) ( , , , ) ( , , , ) .a a U x s p q n U x s p q n                                          (10) 
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From (7) and (9), it follows that 

                                                                                1 1m n                                                                       (11) 

and 

                                                              2 2 2 2 2

2 1 1 12(1 ) ( , , , )( ).a U x s p q m n                                             (12) 

If we add (8) to (10), we get 

                                                
2 2 2 2

2 1 2 2 2 1 12( 2 1) ( , , , )( ) ( , , , )( ).a U x s p q m n U x s p q m n                  (13)                

Therefore, by using (6) and (11) in the equality (13), we immediately have 

2
2 2 2 2 2 2 2

( ) ( )
,

( 2 1)( ) (1 ) ( )( )

p q x p q x
a

p q x p q p q x pqs  

 


         

 

Next, if we subtract (10) from (8), we have 

                                                  
2

3 2 1 2 24(1 )( ) ( , , , )( ).a a U x s p q m n                                                   (14) 

In view of (6) and (12), we readily get the bound on 3a as asserted in Theorem 2.1.  

From (13) and (14), we have  

 

3
2 1 2 2

3 2 2 2 2

1 2

1 2 2

1 2 2

( , , , )(1 )( )

2 ( 2 1) ( , , , ) (1 ) ( , , , )

( , , , )( )

4(1 )

1 1
( , , , ) ( ) ( ) ,

4(1 ) 4(1 )

U x s p q m n
a a

U x s p q U x s p q

U x s p q m n

U x s p q h m h n




  



 
 

 
 

   






    
       

     

 

where 

 

2

1

2 2 2

1 2

( , , , )(1 )
( ) .

2 ( 2 1) ( , , , ) (1 ) ( , , , )

U x s p q
h

U x s p q U x s p q




  




   
 

Along the way, we conclude that 

2

3 2

( ) 1
, 0 ( )

2(1 ) 4(1 )
.

1
2( ) ( ) , ( )

4(1 )

p q x
h

a a

p q x h h
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In the present paper, by using the , , ( )p q nL x  functions, our methodology intertwine to yield the 

Theory of Geometric Functions and that of Special Functions, which are usually considered as very 

different fields. Thus, also making use of the Ruscheweyh derivative operator ,nD  we aim at 

introducing a new class of bi-univalent functions defined through the (p,q)-Lucas polynomials. 

Furthermore, we derive coefficient inequalities and obtain Fekete-Szegö problem for this new function 

class. 

 

Keywords: (p,q)-Lucas polynomials, coefficient bounds, bi-univalent functions, Ruscheweyh derivative operator.  

 

 

1. Introduction 

Let A be the class of functions f  of the form: 

                                                      ,)( 3
3

2
2  zazazzf                                                      (1) 

which are analytic in the open unit disc  : 1z z  U  and normalized by ,0)0( f 1)0( f . Further, 

by S  we shall denote the class of all functions in A  which are univalent in U .  

For two analytic functions, f  and g , such that )0()0( gf  , we say that f is subordinate to g  in U  and 

write ( ) ( ),f z g z zU , if there exists a Schwarz function )(zw with 0)0( w  and ( ) ,w z z z U  

such that ( ) ( ( )),f z g w z z U .  

The Koebe-One Quarter Theorem (Duren 1983) ensures that the image of U  under every univalent 

function Af   contains a disc of radius ¼. Thus every univalent function f  has an inverse 
1f  satisfying 

1( ( )) ,f f z z z  U  and ).41)(),((,))(( 00
1  frfrwwwff  The inverse function 

1f  is given 

by 

                            1 2 2 3 3 3

2 2 3 2 2 3 4( ) ( ) (2 ) (5 5 ) .g w f w w a w a a w a a a a w                                    (2) 

A function Af   is said to be bi-univalent in U  if both f  and 
1f  are univalent in U . Let   denote the 

class of bi-univalent functions defined in U .  For a brief history and interesting examples in the class 

,  see Srivastava et al. 2010 (see also Altınkaya and Yalçın 2015, Brannan and Clunie 1979, Brannan and 

Taha 1986, Lewin 1967, Nehanyahu 1969). However, there are only a few works determining the general 

coefficient bounds na  for the analytic bi-univalent functions in the literature, that is, the coefficient 

estimate problem for each of 

    , 1,2,3 1,2,3,na n    
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is still an open problem. 

The classical Fekete-Szegö inequality, presented by means of Loewner's method, for the coefficients of 

f S  is 

 2

3 2 1 2exp( 2 / (1 )) for 0,1 .a a          

As 1,   we have the elementary inequality 2

3 2 1.a a  Moreover, the coefficient functional 

2

3 2( )f a a     on the normalized analytic functions f  in the unit disc U  plays an important role in 

function theory. The problem of maximizing the absolute value of the functional ( )f  is called the 

Fekete-Szegö problem (Fekete-Szegö 1933). 

 

For ,f A  Ruscheweyh (1975) defined the symbol ( )nD f z  by 

  1

0( ) ( ) 0 .
!

n
n n

n

z d
D f z z f z n

n dz

       

This symbol referred to as the the thn  order Ruscheweyh derivative of f  by Al- Amiri (1980). Given f  

of the form (1), we notice that 

1
2

1
( ) * ( )

(1 )

n k

kn
k

n kz
D f z f z z a z

nz






  
    

  
  

for all zU , where the operator "*" is the usual Hadamard product of series, that is, if 
2

( ) k

k

k

f z z a z




   

and 
2

( ) ,k

k

k

g z z b z




   then 
2

( * )( ) .k

k k

k

f g z z a b z




   

 

Fibonacci polynomials, Lucas polynomials, Lucas-Lehmer polynomials, Chebychev polynomials, Pell 

polynomials, Morgan-Voyce polynomials, Orthogonal polynomials and the other special polynomials and 

their generalizations are of wide spectra in a variety of branches such as Physics, Engineering, Architecture, 

Nature, Art, Number Theory, Combinatorics and Numerical analysis (see, for example, Lupas 1999, Özkoç 

and Porsuk 2017, Filipponi and Horadam 1991, Velluci and Bersani 2016). 

 

The well-known (p,q)-Lucas polynomials are defined by the following definition: 

 

Definition 1.1. (Lee and Aşçı 2012) Let ( )p x  and ( )q x  be polynomials with real coefficients. The (p,q)- 

Lucas polynomials , , ( )p q nL x  are established by the recurrence relation 

, , , , 1 , , 2( ) ( ) ( ) ( ) ( ) ( 2),p q n p q n p q nL x p x L x q x L x n     

from which the first few Lucas polynomials can be found as 

                                   

2

, ,0 , ,1 , ,2

3

, ,3

( ) 2, ( ) ( ), ( ) ( ) 2 ( ),

( ) ( ) 3 ( ) ( ), .

p q p q p q

p q

L x L x p x L x p x q x

L x p x p x q x

   

 

                                       (3) 
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For the special cases of ( )p x  and ( )q x , we can get the polynomials given in the following table. 

( )p x  ( )q x  
, , ( )p q nL x  

x  

2x  

1 

3x  

2x  

1 

1 

2x  

2  

1  

Lucas polynomials ( )nL x  

Pell-Lucas polynomials ( )nD x  

Jacobsthal-Lucas polynomials ( )nj x  

Fermat-Lucas polynomials ( )nf x  

Chebyshev polynomials first kind ( )nT x  

 

Theorem 1.1. (Lee and Aşçı 2012) Let 
 , , ( )

( )
p q nL x

G z  be the generating function of the (p,q)-Lucas 

polynomials sequence , , ( )p q nL x . Then 

 , ,
, , 2( )

0

2 ( )
( ) ( ) .

1 ( ) ( )p q n

n

p q nL x
n

p x z
G z L x z

p x z q x z






 

 
  

 

Definition 1.2. A function f   given by (1) is said to belong to the class  

 ( ; ) 1, ,nT x z w   U  

if the following subordinations are satisfied: 

 , , ( )

( )
(1 ) ( ) ( ) 1

p q n

n
n

L x

D f z
D f z G z

z
 

      
 

 

and 

 , , ( )

( )
(1 ) ( ) ( ) 1,

p q n

n
n

L x

D g w
D g w G w

w
 

      
 

 

where the function g  is the extension of 
1f  to U . 

The remaining case is established by the following remark. 

Remark 1.1. For 0,n   a function f   given by (1) is said to belong to the class  

 ( ; ) 1, ,T x z w   U  

if the following subordinations are satisfied: 

 , , ( )

( )
(1 ) ( ) ( ) 1,

p q nL x

f z
f z G z

z
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 , , ( )

( )
(1 ) ( ) ( ) 1.

p q nL x

g w
g w G w

w
 

 
   

 
 

2. Coefficient estimates 

In this section, In this section, we shall make use of the (p,q)-Lucas polynomials to get the estimates on 

the coefficients 2 ,a  3a  and provide the Fekete-Szegö inequalities for functions in the class ( ; )nT x  

proposed by Definition 1.2.  

 

Theorem 2.1. Let ( ; )nf T x . Then 

2
2 2 2

( ) 2 ( )
,

( 1) ( 2)(1 2 ) 2( 1)(1 ) ( ) 4( 1)(1 ) ( )

p x p x
a

n n n p x n q x  


          

 

2

3 2 2

2 ( )( )

( 1) (1 ) ( 1)( 2)(1 2 )

p xp x
a

n n n 
 

    
 

and for    

2

3 2

2

2

3 2

22 2 2

2 ( ) 2( 1)(1 ) 2 ( )
, 1 1 1

( 1)( 2)(1 2 ) ( 2)(1 2 ) ( )
.

2 ( ) 1 2( 1)(1 ) 2 ( )
, 1 1 1

( 2)(1 2 ) ( )( 1) ( 2)(1 2 ) 2( 1)(1 ) ( ) 4( 1)(1 ) ( )

a a

p x n q x

n n n p x

p x n q x

n p xn n n p x n q x






 

 


  

 

   
     

      


                      

 

Proof. Suppose that ( ; )nf T x . In view of the definition of subordination, we can write 

                          2

, ,0 , ,1 , ,2

( )
(1 ) ( ) 1 ( ) ( ) ( ) ( ) ( ) ,

n
n

p q p q p q

D f z
D f z L x L x z L x z

z
                       (4) 

                        2

, ,0 , ,1 , ,2

( )
(1 ) ( ) 1 ( ) ( ) ( ) ( ) ( )

n
n

p q p q p q

D g w
D g w L x L x w L x w

w
                        (5) 

for some analytic functions ,  such that (0) (0) 0,    2

1 2( ) 1,z t z t z    

2

1 2( ) 1w s w s w      and 

                                                                   1, 1,i it s i    .                                                             (6) 

In the light of (4) and (5), we obtain  

                                                                  
2 , ,1 1( 1)(1 ) ( ) ,p qn a L x t                                                                      (7) 

                                             2

3 , ,1 2 , ,2 1

( 1)( 2)(1 2 )
( ) ( ) ,

2
p q p q

n n
a L x t L x t

  
                                             (8) 

                                                                
2 , ,1 1( 1)(1 ) ( ) ,p qn a L x s                                                                       (9) 

                                     2 2

2 3 , ,1 2 , ,2 1

( 1)( 2)(1 2 )
(2 ) ( ) ( ) .

2
p q p q

n n
a a L x s L x s

  
                                               (10) 
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From (7) and (9), it follows that 

                                                                                1 1t s                                                                          (11) 

and 

                                                              
2 2 2 2 2 2

2 , ,1 1 12( 1) (1 ) ( )( ).p qn a L x t s                                                     (12) 

Now, by adding (8) and (10), we obtain 

                                                
2 2 2

2 , ,1 2 2 , ,2 1 1( 1)( 2)(1 2 ) ( )( ) ( )( ).p q p qn n a L x t s L x t s                             (13)                

Therefore, by using (3), (6) and (11) in the equality (13), we immediately have 

2
2 2 2

( ) 2 ( )
.

( 1) ( 2)(1 2 ) 2( 1)(1 ) ( ) 4( 1)(1 ) ( )

p x p x
a

n n n p x n q x  


          

 

Additionaly, in order to calculate the bound on 3a , by subtracting (10) from (8), we obtain 

                                             
2

3 2 , ,1 2 2( 1)( 2)(1 2 )( ) ( )( ).p qn n a a L x t s                                                (14) 

In view of (3), (6) and (12), we readily get the bound on 3a as asserted in Theorem 2.1.  

From (13) and (14), we have  
3

, ,1 2 22

3 2 2 2

, ,1 , ,2

, ,1 2 2

, ,1 2 2

( )(1 )( )

( 1) ( 2)(1 2 ) ( ) 2( 1)(1 ) ( )

( )( )

( 1)( 2)(1 2 )

1 1
( ) ( ; ) ( ; )

( 1)( 2)(1 2 ) ( 1)( 2)(1 2 )

p q

p q p q

p q

p q

L x t s
a a

n n L x n L x

L x t s

n n

L x K x t K x s
n n n n




 



 
 

 
 

       




  

    
       

         

 

where 
2

, ,1

2 2

, ,1 , ,2

( )(1 )
( ; ) .

( 1) ( 2)(1 2 ) ( ) 2( 1)(1 ) ( )

p q

p q p q

L x
K x

n n L x n L x




 




       

 

Along the way, in view of (3), we conclude that 

2

3 2

2 ( ) 1
, 0 ( ; )

( 1)( 2)(1 2 ) ( 1)( 2)(1 2 )
.

1
2 ( ) ( ; ) , ( ; )

( 1)( 2)(1 2 )

p x
K x

n n n n
a a

p x K x K x
n n


 



 



 

     
  

 
   

 

Corollary 2.1. Let ( ; )f T x . Then 

2
2 2 2

( ) ( )
,

( ) 2(1 ) ( )

p x p x
a

p x q x 


 
 

2

3 2

2 ( )( )

(1 ) 1 2

p xp x
a
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and for    

2

2

2

3 2 3 2

22 2 2

( ) (1 ) 2 ( )
, 1 1 1

1 2 (1 2 ) ( )
.

( ) 1 (1 ) 2 ( )
, 1 1 1

(1 2 ) ( )( ) 2(1 ) ( )

p x q x

p x
a a

p x q x

p xp x q x
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Abstract 

The aim of this study is to discuss an optimal control of advection-diffusion process governed 

by a bilinear control. The problem formulation, uniqueness and controllability of the system are 

examined. Performance index is defined as a measure of the dynamic response and a penalty term on 

control energy. The proposed approach uses a reduction of order in the model and the Pontryagin’s 

maximum principle. Using a modal space expansion method the distributed parameter system is 

transformed into a lumped parameter system. The obtained system corresponds to a bilinear system in 

the temporal term. Pontryagin’s maximum principle is used by means of introducing a suitable 

Hamiltonian to obtain the optimal control function. By using the Pontryagin’s maximum principle 

optimal control problem is reduced to solve a nonlinear two-point boundary value problem.   

 

Keywords: Bilinear control, one-dimensional advection-diffusion equation, Pontryagin’s maximum principle. 

 

1. Introduction  

Bilinear systems are one of the most important subclasses of nonlinear systems due to their various 

applications in engineering and other fields. Linear models cannot represent many systems in which control 

is applied in multiplicative ways. These multiplicative controls yield bilinear systems (BLS). The BLS 

concept was first introduced by a U.S scientist, Mohler in the 1960s [1]. Bilinear systems are specific types 

of nonlinear systems. In order to approximate and analyze complex nonlinear systems, the BLS are used 

due to the simplicity of the system. The BLS include products of control and state, namely, they are linear 

in state and control but not jointly linear in control and state. The terms formed by multiplication of control 

vector and state vector make these systems nonlinear. Due to the fact that the linearization of nonlinear 

systems loses real features, bilinear systems are important to understand their natural properties and to 

improve their performance. Thus, modeling and control of nonlinear systems in a bilinear framework are 

crucial problems in engineering [2]. In various chemical and biological reactions, bilinear controls are used 

in modeling reaction diffusion-convection processes controlled via catalysts that can accelerate or 

decelerate the reaction [3]. Advection-diffusion equation is used to represent the heat transfer, fluid flow, 

mass transport etc. [4, 5, 6, 7]. 
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In this study, optimal control of advection-diffusion process with a bilinear control is considered. The 

optimal control problem formulation, uniqueness and controllability of the system are examined. The 

presented approach is based on reduced order modeling and the Pontryagin’s maximum principle. The 

obtained system corresponds to a bilinear system in the temporal term. Pontryagin’s maximum principle is 

used to obtain the optimal control function that leads to a nonlinear two-point boundary value problem 

(TPBVP).  

2. Bilinear-Quadratic Optimal Control Problem Setting 

Consider the one-dimensional advection-diffusion equation with a source parameter  

𝑢𝑡 + 𝑈𝑢𝑥 = 𝐷𝑢𝑥𝑥 + 𝑝(𝑡)𝑢 + 𝜙(𝑥, 𝑡)                                                                                                                      (1) 

where 𝑢 = 𝑢(𝑥, 𝑡) ∈ Ω = Ω𝑥 × Ω𝑡 is the displacement of the system at position 𝑥 and time 𝑡, 𝐷 is the 

diffusion coefficient and 𝑈 is the constant advection velocity. 𝑝(𝑡) is the control function to be determined 

optimally with the source term 𝜙(𝑥, 𝑡). The set Ω𝑥 = [0, ℓ] is a subset of Euclidean space ℝ1 and Ω𝑡 denote 

a given time interval (0, 𝑡𝑓) where 𝑡𝑓 is a predetermined terminal time. Eq. (1) is subjected to the following 

initial and boundary conditions, respectively; 

𝑢(𝑥, 0) =  𝑢0(𝑥)                                                                                                                                                           (2) 

𝑢(0, 𝑡)  =  𝑔0(𝑡),      𝑢(ℓ, 𝑡)  =  𝑔1(𝑡)                                                                                                                      (3) 

for given functions 𝑔0(𝑡), 𝑔1(𝑡) and 𝑢0(𝑥). Let the admissible control set be 

𝑃𝑎𝑑  =  {𝑝(𝑡) ∶  𝑝(𝑡)  ∈  𝐿
2(Ω𝑡)}. 

H (0, ℓ) = 𝐿2 (0, ℓ) is a Hilbert space such that 

𝐻(0, ℓ)  =  {𝑝(𝑡) ∶ (0, 𝑡𝑓) → ℝ, ‖𝑝(𝑡)‖2 <  ∞}. 

The performance index functional 𝐽[𝑝(𝑡)] is specified as a weighted quadratic functional of the dynamic 

response which is to be minimized at the terminal time 𝑡𝑓 subject to Eq. (1) − (3), 

𝒥[𝑝(𝑡)] =
1

2
∫ [𝑟1𝑢

2(𝑥, 𝑡𝑓) + 𝑟2𝑢𝑡
2(𝑥, 𝑡𝑓)]𝑑𝑥

Ω𝑥

+
1

2
∫ 𝑞𝑢2(𝑥, 𝑡)𝑑𝑥𝑑𝑡 +

1

2
∫ 𝑠𝑝2(𝑡)𝑑𝑡                         (4)
Ω𝑡Ω
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where 𝑟1, 𝑟2, 𝑞 and 𝑠 are weighting constants satisfying the condition 𝑟1, 𝑟2, 𝑞 ≥  0 and 𝑠 >  0. The last 

term on the right hand side of Eq. (4) is a penalty term which limits expending large amounts of control 

effort. 

It is desired to find optimal control function 𝑝∗(𝑡)  ∈  𝑃𝑎𝑑 that minimizes the performance index 

𝒥[𝑝∗(𝑡) ] = min
𝑝(𝑡) ∈𝑃𝑎𝑑

𝒥[𝑝(𝑡)]                                                                                                                                    (5)  

providing equations Eqs. (1) − (3). 

2.1. Uniqueness of the Solution and the Controllability 

The existence of the problem Eqs. (1) − (3) are discussed in [8]. The uniqueness of the problem is proved 

by means of energy methods, because the uniqueness of the solution of the system yields the uniqueness of 

the control. 

2.1.1. Lemma. The solution 𝑢(𝑥, 𝑡)  ∈ 𝐿2(ℝ𝑁)  of Eq. (1) subject to Eqs. (2) − (3) is unique. 

Proof. Suppose that 𝑢1 and 𝑢2 are two solutions to the system given by Eqs. (1) − (3). Then, the difference 

function 

�̃� = 𝑢1 − 𝑢2 

satisfies the following homogeneous equation 

�̃�𝑡 + 𝑈�̃�𝑥 − 𝐷�̃�𝑥𝑥 − 𝑝(𝑡)�̃� = 0 

with zero initial-boundary conditions 

�̃�(0, 𝑡) =  �̃�(ℓ, 𝑡) = 0, 0 < 𝑡 < 𝑡𝑓 

�̃�(𝑥, 0) = 0.   0 < 𝑥 < ℓ       

Now define the following energy integral as follows 

𝐸[�̃�] =
1

2
∫|�̃�(𝑥, 𝑡)2|𝑑𝑥

ℓ

0

                                                                                                                                             (6) 

Differentiating Eq. (6) with respect to time, and using the equation (1) gives 
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𝑑

𝑑𝑡
𝐸 = ∫ �̃��̃�𝑡𝑑𝑥 = ∫ �̃�(𝐷�̃�𝑥𝑥 + 𝑝(𝑡)�̃� − 𝑈�̃�𝑥)𝑑𝑥.

ℓ

0

ℓ

0

 

Using integrating by parts in the last integral leads to 

𝑑

𝑑𝑡
𝐸[�̃�] = −𝐷∫ �̃�𝑥

2𝑑𝑥 + ∫𝑝(𝑡)�̃�2𝑑𝑥 ≤ 𝑝(𝑡)‖�̃�‖𝐿2
2

ℓ

0

ℓ

0

 

Then the following inequality is obtained 

𝑑

𝑑𝑡
‖�̃�‖𝐿2 ≤ 𝑝(𝑡)‖�̃�‖𝐿2 

Applying the Gronwall’s lemma gives 

‖𝑢1 − 𝑢2‖𝐿2 ≤ ‖𝑢1 − 𝑢2‖𝑡=0exp (∫ 𝑝(𝑟
𝑡𝑓

0

)𝑑𝑟) 

As an immediate consequence uniqueness of solutions is obtained.  

The control function 𝑝(𝑡) is unique to preserve the uniqueness of the solution provided by Lemma 2.1.1. 

The system (1) − (3) is observable because the system has a unique solution and control function. By 

taking Hilbert Uniqueness into account, the observability is equivalent to the controllability [9], [10]. 

Briefly, the system is controllable. 

3. Modal Control Space Problem 

In the present section, the optimal control of distributed parameter system (1) − (5) is transformed into the 

optimal control of lumped parameter system by implementing modal space expansion technique. New 

system gives rise to a bilinear system in the temporal term. In order to achieve the transformation, first a 

new parameter 𝑤(𝑥, 𝑡) is introduced to convert nonhomogeneous boundary conditions to homogeneous 

boundary conditions. 

By letting 

𝑤(𝑥, 𝑡) =  𝑢(𝑥, 𝑡) −  
ℓ − 𝑥

ℓ
𝑔
0
(𝑡) −

𝑥

ℓ
𝑔
1
(𝑡)                                                                                                                      (7)   
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in (1), the following new distributed parameter system is obtained  

𝑤𝑡 + 𝑎𝑤𝑥 − 𝑏𝑤𝑥𝑥 =
(𝑥−ℓ)

ℓ
𝑔
0𝑡
(𝑡) −

𝑥

ℓ
𝑔
1𝑡
(𝑡) + 𝑎

𝑔0(𝑡)

ℓ
− 𝑎

𝑔1(𝑡)

ℓ
+ 𝑝(𝑡)(𝑤 +

ℓ−𝑥

ℓ
𝑔
0
(𝑡) +

𝑥

ℓ
𝑔
1
(𝑡))+ 𝜙(𝑥, 𝑡)    (8) 

subject to 

𝑤(𝑥, 0) = 𝑢0(𝑥) −
ℓ − 𝑥

ℓ
𝑔0(0) −

𝑥

ℓ
𝑔1(0)                                                                                                                              (9) 

𝑤(0, 𝑡) = 𝑤(ℓ, 𝑡) = 0                                                                                                                                                                (10) 

3.1. Theorem. Any 𝑤(𝑥, 𝑡)  ∈  H(0, ℓ) has a unique representation [11] 

𝑤(𝑥, 𝑡) = ∑𝜓𝑛(𝑥)𝑦𝑛(𝑡)                                                                                                                                        (11)

𝑁

𝑛=1

 

where{𝜓𝑛(𝑥)}𝑛=1
∞ is a complete orthonormal basis in H(0, ℓ)  and 𝑦𝑛(𝑡) is the temporal term. 

Having a modal space expansion gives rise to an infinite-dimensional system theoretically which makes the 

problem physically insurmountable since there will be a large number of modes to control. Hence, a 

truncated Fourier series expansion of (11) is taken in the computations hereafter 

𝑤(𝑥, 𝑡) ≈ ∑𝜓𝑛(𝑥)𝑦𝑛(𝑡)

𝑁

𝑛=1

 

Denoting a complete orthonormal basis as 

𝑉 = {𝑣|𝑣,
 𝜕𝑣 

 𝜕𝑥
 ∈  H(0, ℓ) 𝑎𝑛𝑑 𝑣|𝜕(0,ℓ)  =  0}                                                                                            (12) 

and by multiplying both sides of  (8) by a basis function 𝑣, and by integrating by parts, the solution 𝑤(𝑥, 𝑡) 

of the system satisfies 

∫
𝜕𝑤

𝜕𝑡
𝑣𝑑𝑥

ℓ

0
+ 𝑈∫

𝜕𝑤

𝜕𝑥
𝑣𝑑𝑥

ℓ

0
− 𝐷 ∫

𝜕2𝑤

𝜕𝑥2
𝑣𝑑𝑥

ℓ

0
= ∫ (

(𝑥−ℓ)

ℓ
𝑔0𝑡(𝑡) −

𝑥

ℓ
𝑔1𝑡(𝑡)) 𝑣𝑑𝑥 + 𝑈 ∫ (

𝑔0

ℓ
−
𝑔1

ℓ
) 𝑣𝑑𝑥

ℓ

0
+

ℓ

0

∫ 𝑝 (𝑤 +
(ℓ−𝑥)

ℓ
𝑔0 −

𝑥

ℓ
𝑔1) 𝑣𝑑𝑥 + ∫ 𝜙(𝑥, 𝑡)𝑣𝑑𝑥 

ℓ

0

ℓ

0
  

where 𝑤, 𝑣 ∈  𝑉. If the expression (11) for 𝑤(𝑥, 𝑡) and 𝑣 =  𝜓𝑚, 𝑚 = 1,2, … are used the finite 

dimensional system is got: 

𝑑𝑧

𝑑𝑡
= 𝐿𝑧 + 𝑝𝑧 + 𝐺𝑝 + 𝑆                                                                                                                                           (13) 
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where 𝑧(𝑡) =  (𝑧1(𝑡),  𝑧2(𝑡), … , 𝑧𝑛(𝑡)) 
𝑇
∈ ℝ𝑁,  𝑀,𝑁,𝐾, 𝐿 ∈ ℝ𝑁×𝑁 ,   𝐹, 𝐺,𝐻, 𝑆 , 𝑆 ∈ ℝ𝑁 and 𝑝 =  𝑝(𝑡) 

is control function. The vector 𝑧(𝑡) is the finite dimensional approximation to the temporal term. The initial 

values are determined by 

                         𝑧𝑚(0) =  (w(x, 0), 𝜓𝑚  ),                                                                                                                (14) 

𝑚 = 1,2, . . . , 𝑁. 

In Eq. (13), the following notations are used (𝒟 ≜∂/∂x): 

𝑀𝑚𝑛 = (𝜓𝑚,  𝜓𝑛) = ∫ 𝜓𝑚(𝑥)𝜓𝑛(𝑥)𝑑𝑥 = 𝛿𝑚𝑛,                                                                                                (15)
ℓ

0
  

𝛿𝑚𝑛 = {
1,     𝑖𝑓 𝑚 = 𝑛

0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

𝑁𝑚𝑛 = 𝑈(𝜓𝑚,  𝒟𝜓𝑛) = 𝑈 ∫ 𝜓𝑚(𝑥)
𝜕(𝜓𝑛(𝑥))

𝜕𝑥
𝑑𝑥

ℓ

0
,                                                                                              (16)  

𝐾𝑚𝑛 = 𝐷(𝜓𝑚,  𝒟
2𝜓𝑛) = 𝐷 ∫ 𝜓𝑚(𝑥)

𝜕2(𝜓𝑛(𝑥))

𝜕𝑥2
𝑑𝑥,                                                                                          

ℓ

0
(17)                                                                      

𝐹𝑚 = ∫ (
(𝑥−ℓ)

ℓ
𝑔0𝑡 −

𝑥

ℓ
𝑔1𝑡 + 𝑈

𝑔0

ℓ
− 𝑈

𝑔1

ℓ
)𝜓𝑚(𝑥)𝑑𝑥

ℓ

0
,                                                                                       (18)  

𝐺𝑚 = ∫ (
(ℓ−𝑥)

ℓ
𝑔0 +

𝑥

ℓ
𝑔1)𝜓𝑚(𝑥)𝑑𝑥,                                                                                             

ℓ

0
                     (19)                

𝐻𝑚 = ∫ 𝜙(𝑥, 𝑡)𝜓𝑚(𝑥)𝑑𝑥
ℓ

0
,                                                                                                                                      (20)  

𝑆𝑚 = 𝐹𝑚 + 𝐻𝑚,                                                                                                                                                           (21)  

𝐿𝑚𝑛 = 𝐾𝑚𝑛 −𝑁𝑚𝑛,                                                                                                                                                   (22)  

  

4. Derivation of the Pontryagin’s Maximum Principle for the Bilinear System 

4.1. Theorem. If the Pontryagin’s Maximum Principle is applied to the bilinear system in (13), a canonical 

optimality condition is obtained, 

�̇�(𝑡) = 𝐿𝑧(𝑡) − 𝑠−1Λ𝑇(𝑡)(𝑧(𝑡) + 𝐺)2 + 𝑆

Λ̇(𝑡) = −𝑄𝑧(𝑡) − 𝐿𝑇Λ(𝑡) − 𝑠−1(𝑧(𝑡) + 𝐺)𝑇Λ2(𝑡)

Λ(𝑡𝑓) = 𝑅1𝑧(𝑡𝑓) + 𝑅2�̇�(𝑡𝑓)

𝑧(𝑡0) = 𝑧0 }
 
 

 
 

                                                                                (23) 
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which is a nonlinear two-point boundary value problem (TPBVP). In (23), 𝑄, 𝑅1 and 𝑅2 are positive 

semidefinite symmetric 𝑛 ×  𝑛 matrices, 𝐺, 𝑆, 𝐿 are defined in (19), (21) and (22), respectively. 

Proof.  

Consider the optimal control problem of the bilinear system (13) − (14)  

𝑑𝑧

𝑑𝑡
= 𝐿𝑧 + 𝑝𝑧 + 𝐺𝑝 + 𝑆  

where 𝑧(𝑡) is the finite dimensional approximation of 𝑤(𝑥, 𝑡) and 𝑝(𝑡) is the control input. The quadratic 

cost functional is given by 

𝑚𝑖𝑛𝑝  𝒥 =
1

2
[𝑧(𝑡𝑓)]

𝑇𝑅1[𝑧(𝑡𝑓)] +
1

2
[�̇�(𝑡𝑓)]

𝑇𝑅2[�̇�(𝑡𝑓)] +
1

2
∫ 𝑧(𝑡)𝑇𝑄𝑧(𝑡)𝑑𝑡 +

1

2
∫ 𝑠𝑝2(𝑡)𝑑𝑡
𝑡𝑓
𝑡0

𝑡𝑓
𝑡0

  

where 𝑅1𝑚𝑛 = ∫ 𝑟1𝜓𝑚(𝑥)𝜓𝑛(𝑥)𝑑𝑥
ℓ

0
, 𝑅2𝑚𝑛 = ∫ 𝑟2𝜓𝑚(𝑥)𝜓𝑛(𝑥)𝑑𝑥

ℓ

0
  and 𝑄𝑚𝑛 = ∫ 𝑞𝜓𝑚(𝑥)𝜓𝑛(𝑥)𝑑𝑥

ℓ

0
, 

respectively, for 𝑚,𝑛 = 1,2, . . . , 𝑁. 

Using the augmented cost functional, the cost functional is minimized 

𝒥∗[𝑧, 𝑝, Λ] = ∫ {
1

2
(𝑧𝑇𝑄𝑧 + 𝑠𝑝2) −

𝑡𝑓

𝑡0

Λ𝑇(𝑡)(�̇�(𝑡) − 𝐿𝑧(𝑡) − 𝑝(𝑡)𝑧(𝑡) − 𝐺𝑝(𝑡) − 𝑆)}𝑑𝑡

+  
1

2
[𝑧(𝑡𝑓)]

𝑇
𝑅1[𝑧(𝑡𝑓)] +  

1

2
[�̇�(𝑡𝑓)]

𝑇
𝑅2[�̇�(𝑡𝑓)]. 

Introducing the so-called Hamiltonian,  

ℋ(𝑡, 𝑧, 𝑝, Λ) =
1

2
(𝑧(𝑡)𝑇𝑄𝑧(𝑡) + 𝑠𝑝2(𝑡)) + Λ𝑇(𝑡)(𝐿𝑧(𝑡) + 𝑝(𝑡)𝑧(𝑡) + 𝐺𝑝(𝑡) + 𝑆), 

the augmented functional becomes 

  𝒥∗[𝑧, 𝑝, Λ] = ∫ [ℋ(𝑡, 𝑧, 𝑝, Λ) −
𝑡𝑓
𝑡0

Λ𝑇(𝑡)�̇�(𝑡)]𝑑𝑡 +
1

2
[𝑧(𝑡𝑓)]

𝑇
𝑅1[𝑧(𝑡𝑓)] +  

1

2
[�̇�(𝑡𝑓)]

𝑇
𝑅2[�̇�(𝑡𝑓)].       (24) 

If (𝑧, 𝑝, 𝛬) is a minimizer of  𝒥∗ 

  𝛿𝒥∗ = ∫ [
𝜕ℋ

𝜕𝑧
 𝛿𝑧 +

𝜕ℋ

𝜕𝑝
 𝛿𝑝 +

𝜕ℋ

𝜕Λ
 𝛿Λ − 𝛿

𝑡𝑓
𝑡0

(Λ𝑇(𝑡)�̇�(𝑡))]𝑑𝑡 + 𝛿[
1

2
𝑧(𝑡𝑓)

𝑇
𝑅1𝑧(𝑡𝑓) ] +

𝛿 [
1

2
�̇�(𝑡𝑓)

𝑇
𝑅2�̇�(𝑡𝑓)] = 0        
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After processing of variation operations and using integrating by parts the followings are obtained firstly, 

ℋ𝑝 = 0 

𝑝(𝑡) = −𝑠−1Λ𝑇(𝑡)(𝑧(𝑡) + 𝐺) 

Secondly, 

ℋ𝑧 + Λ̇
𝑇 = 0 

Λ̇𝑇 = −𝑄𝑧(𝑡) − 𝐿𝑇Λ(𝑡) − 𝑝𝑇Λ(𝑡) 

Thirdly, 

ℋΛ − �̇�(𝑡) = 0 

�̇�(𝑡) =  𝐿𝑧(𝑡) − 𝑠−1Λ𝑇(𝑡)(𝑧(𝑡) + 𝐺)2 + 𝑆 

Lastly, 

[𝑧(𝑡𝑓)]
𝑇𝑅1 + [�̇�(𝑡𝑓)]

𝑇𝑅2 − Λ
𝑇(𝑡𝑓) = 0 

𝑅1𝑧(𝑡𝑓) + 𝑅2�̇�(𝑡𝑓) = Λ(𝑡𝑓) 

In this proof, Pontryagin’s maximum principle leads to a nonlinear two-point boundary-value problem that 

cannot be solved analytically to obtain the control law. The difficulty of solving this optimal control 

problem is caused by the combination of split boundary values and nonlinear differential equations. 

4. Conclusion 

In this paper, an optimal control problem of the advection-diffusion process with bilinear control by means 

of Pontryagin’s Maximum Principle is studied. Uniqueness of the solution and controllability of the system 

are considered. Using a modal space expansion method the distributed parameter system is transformed 

into a lumped parameter system. The obtained system corresponds to a bilinear system in the temporal term. 

Pontryagin’s maximum principle is used to obtain the optimal control function that leads to a nonlinear 

two-point boundary value problem (TPBVP). The difficulty of solving the TPBVP involving state and 

costate equations is caused by combination of nonlinear equations and split boundary values. To further 

this study, iterative numerical techniques are to be implemented to solve the nonlinear TPBVP. 
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Abstract 
In this study, some new inequalities of the right-hand side of Hermite-Hadamard type for 

differentiable s-preinvex functions are established. Also some parallel results are obtained which are 

based on preincavity. 
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1. Introduction  

 

Definition 1. A function           is said to be convex on   if the inequality  

 (   (   ) )    ( )  (   ) ( ) 

holds for all       and   [   ].  

Many inequalities have been established for convex functions but the most famous is the Hermite-

Hadamard inequality, which is given as (see [4]) : 

Let         be a convex mapping defined on the interval   of real numbers and       with      

Then 

 (
   

 
)  

 

   
∫  

 

 

 ( )   
 ( )   ( )

 
   

In recent years, many mathematicians generalized the classical convexity in many ways and some of 

those are given as follows.  

Definition 2 [5]. Let   be a closed set in   . Suppose that       and         be continuous 

functions. Let    , then the set   is said to be invex at each   with respect to  (   )  if      (   )  

           [   ]  

  is said to be an invex set with respect to    if   is invex at each      The invex set   is also called  -

connected set.  
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Note that if  (   )       invexity reduces to convexity. Thus, every convex set is also an invex set 

with respect to  (   )       but the converse is not true in general. 

Definition 3 [5]. The function   on the invex set   is said to be preinvex with respect to  , if the 

inequality  

  (    (   ))  (   ) ( )    ( ) 

holds for all       and   [   ]   

The function   is said to be preincave if and only if    is preinvex. 

In [3], Noor has obtained the new form of Hermite-Hadamard inequality for the preinvex functions: 

Theorem 4 [3]. Let     [     (   )]  (   ) be a preinvex function on the interval of the real 

numbers    (the interior of  ) and        with  (   )     Then the following inequalities hold: 

 (  
 

 
 (   ))  

 

 (   )
∫  

   (   )

 

 ( )   
 ( )   (   (   ))

 
  

Recently, Li [2] introduced the notion of  -preinvexity and established Hermite-Hadamard type 

inequalities for this class of functions. 

Definition 5 [2]. Let   [   ) be an invex set with respect to          A function       is said 

to be  -preinvex with respect to    if for all          [   ] and   (   ]  the following inequality holds: 

 (    (   ))  (   )  ( )     ( )  

The function   is said to be  -preincave if and only if    is  -preinvex.  

Theorem 6 [2]. Let     [     (   )]  [   )  [   ) be  -preinvex function on the interval of the 

real numbers    (the interior of  ) and        with  (   )     Then the following inequalities hold: 

     (  
 

 
 (   ))  

 

 (   )
∫  

   (   )

 

 ( )   
 ( )   ( )

   
  

Lemma 7 [1]. Let     (   ) be a differentiable mapping and      (   )    with      (   )  If 

    [     (   )], then 

 

 (   )
∫  

   (   )

 

 ( )   
 ( )   (   (   ))

 
 

 (   )

 
∫  

 

 

(    )  (   (   ))    
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2. Main Results 

 

Theorem 8. Let       be a differentiable mapping on          (   )     with      (   ) and  

    [     (   )]  If |  |  is  -preinvex on [     (   )] for       
 

   
   then  

|
 ( )   (   (   ))

 
 

 

 (   )
∫  

   (   )

 

 ( )  |  
 (   )

 
(   )

  
 
 (

|  ( )|  |  (   (   ))|
 

   
)

 
 

  

Proof. From Lemma 7, the properties of modulus and Hölder’s inequality, we have 

|
 ( )   (   (   ))

 
 

 

 (   )
∫  

   (   )

 

 ( )  | 
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∫  

 

 

|    ||  (    (   ))|   
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(∫  
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|  (    (   ))|
 
  )

 
 

                                              ( ) 

Since |  |  is  -preinvex on [     (   )] then 

|  (    (   ))|  (   ) |  ( )|    |  (   (   ))|  

Further, we have 

∫  
 

 

|    |    
 

   
                                                                           ( ) 

and 

∫  
 

 

|  (    (   ))|
 
   

|  ( )|  |  (   (   ))|
 

   
                                           ( ) 

By ( ) and ( ), we get ( ). 

Theorem 9. Let the assumptions of Theorem 8 are satisfied with     such that   
 

   
  If the mapping 

|  |  is  -preincave on [     (   )]  then 

|
 ( )   (   (   ))

 
 

 

 (   )
∫  

   (   )

 

 ( )  |  
 (   )

 (   )
 
 

  
   
 |  (  

 

 
 (   ))|                ( ) 
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Proof. We proceed similarly as in Theorem 8. By  -preincavity of |  |   we obtain 

∫  
 

 

|  (    (   ))|
 
       |  (  

 

 
 (   ))|  

Now the inequality ( ) immediately follows from Theorem 6. 

Theorem 10. Let the assumptions of Theorem 8 are satisfied. If |  |  is  -preinvex on [     (   )]   

then the following inequality holds: 

|
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for        
 

   
  

Proof. Using Lemma 7, the properties of modulus and Hölder’s integral inequality for    , we have 
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By  -preinvexity of |  |  on [     (   )], the inequality ( ) can be written as:  
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where 

∫  
 

 

  |    |   ∫  
 

 

(   ) |    |   
      

  (   )(   )
  

This completes the proof of theorem. 

Theorem 11.  Let the assumptions of Theorem 8 are satisfied with     such that   
 

   
  If the  

mapping |  |  is  -preincave on [     (   )]  then 

|
 ( )   (   (   ))

 
 

 

 (   )
∫  
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 (   )

 
   
 

(
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 (   ))|               ( ) 

Proof. We proceed similarly as in Theorem 9. 

By  -preincavity of |  |   we obtain 

∫  
 

 

|    ||  (    (   ))|
 
   

   
  

 (   )
|  (  

 

 
 (   ))|

 

  

Now the inequality ( ) immediately follows from Theorem 6. 
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Abstract 
The object of this study is to establish new inequalities for some differentiable mappings that are 

connected with the Hermite-Hadamard integral inequality for s-preinvex functions. 
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1. Introduction  

 

Definition 1 [4]. Let   be a closed set in   . Suppose that       and         be continuous 

functions. Let    , then the set   is said to be invex at each   with respect to  (   )  if      (   )  

           [   ]  

      is said to be an invex set with respect to    if   is invex at each      The invex set   is also called 

 -connected set.  

    Note that if  (   )       invexity reduces to convexity. Thus, every convex set is also an invex set 

with respect to  (   )       but the converse is not true in general. 

Definition 2 [4]. The function   on the invex set   is said to be preinvex with respect to  , if the 

inequality  

  (    (   ))  (   ) ( )    ( ) 

holds for all       and   [   ]   

Theorem 3 [3]. Let     [     (   )]  (   ) be a preinvex function on the interval of the real 

numbers    (the interior of  ) and        with  (   )     Then the following inequalities hold: 

 (  
 

 
 (   ))  

 

 (   )
∫  

   (   )

 

 ( )   
 ( )   (   (   ))

 
  

Definition 4 [2]. Let   [   ) be an invex set with respect to          A function       is said 

to be  -preinvex with respect to    if for all          [   ] and   (   ]  the following inequality holds: 
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 (    (   ))  (   )  ( )     ( )  

Theorem 5 [2]. Let     [     (   )]  [   )  [   ) be  -preinvex function on the interval of the 

real numbers    (the interior of  ) and        with  (   )     Then the following inequalities hold: 
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 (   ))  
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∫  
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 ( )   ( )

   
  

2. Main Results 

 

Lemma 6. Let     (   ) be a differentiable mapping and      (   )    with      (   )  If    
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Theorem 7. Let       be a differentiable mapping on          (   )     with      (   ) and 

    [     (   )]  If |  | is  -preinvex on [     (   )]   then 

|
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Proof. From Lemma 6 and the properties of modulus, we have 
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By using  -preinvexity of |  | on [     (   )]  we get 
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where 
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So, the proof is completed. 

Theorem 8. Let       be a differentiable mapping on          (   )     with      (   ) and 

    [     (   )]  If |  |  is  -preinvex on [     (   )] for      then 
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Proof. Using Lemma 6, Hölder inequality and  -preinvexity of |  | , we have 
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Thus, the proof is completed. 

Corollary 9. Let       be a differentiable mapping on          (   )     with      (   ) and 

    [     (   )]  If |  |  is  -preinvex on [     (   )] for      then 
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Theorem 10. Let       be a differentiable mapping on          (   )     with      (   ) and 

    [     (   )]  If |  |  is  -preinvex on [     (   )] for      then 
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Proof. From Lemma 6, properties of modulus and by using Hölder inequality, we have 
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Here, 
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∫  
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Since |  |  is  -preinvex on [     (   )]  we have 
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By using ( ), ( ) and ( ), the proof is completed.    

Corollary 11. Let       be a differentiable mapping on          (   )     with      (   ) and 

    [     (   )]  If |  |  is  -preinvex on [     (   )] for      then 
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Abstract 

Topological Data Analysis (TDA) is deals with data sets from different branches of natural and 

social sciences and involves the fundamental concepts of persistent homology to study the basic 

topological properties of Rips complices based on the n point data clouds. Numerically the results of 

TDA could be represented via the fractal characteristics (like Hausdorff’s dimension of the data cloud) or 

via the set of barcodes for the Betti numbers vs the radii of the bolls surrounding each data point to form 

the corresponding Rips complex.   

The most efficient classical Giovannetti-Lloyd-Maccone algorithm (2008) involves at least n
2
 bits 

to evaluate the Betti numbers of such simplicial complex. The k-th Betti number demands the time O(n
k
) 

for its calculation, and the estimation of Betti numbers for all orders to the accuracy d takes time 

O(2
n
log(1/d)). From another side, the same Rips simplicial complex can be mapped onto an n-qubit 

quantum state via the Lloyd-Garnerone-Zanardi approach (2016), with the time cost proportional to 

O(n
5
/d) for the calculation of its persistent homological properties. 

In all existing quantum approaches the estimation of the persistent homologic properties for the 

Rips compleces is performed in a sequence of standard computational operations under the Grover 

algorithm: the simplicial complex quantum state preparation, the uniform mixture state construction, the 

phase estimation and, finally, the measurement. The second and third stages of the process are based on 

the fixed CNOT quantum logical gates.  

Here we discuss the opportunity to improve the efficiency of TDA using the concept of externally 

driven dynamical quantum gates. The gate operator is changing in time itself, and it can be converted 

from CNOT to other operators and back, depending on computational needs. In this case the sequence of 

logical operators acting on qubits during the computation can be replaced by the dynamical 

transformation just of few quantum gates. The stages of quantum state preparation and the mixed state 

construction could be optimized under our dynamical scenario.  

 

Keywords: Persistent Homology, Quantum Topological Data Analysis, Quantum Logical Gates, Controlled Qubit 

 

 

1. Introduction: Classical and quantum algorithms for topological data analysis 

Topological Data Analysis (TDA) is a fast developing area dealing with the data sets from different 

branches of natural sciences [1] and involving the fundamental concepts of persistent homology to study 
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the basic topological properties (like connectivity, number of holes and other parameters related to the 

Betti numbers of the object) of Rips complexes based on the data clouds in a certain space. Numerically 

the results of TDA could be represented via the fractal characteristics of the data clouds (like Hausdorff 

dimension) or via the set of barcodes representing the Betti numbers vs the radiae of the bolls surrounding 

each data point from the data to form the Rips complex [2].   

TDA has been found to be very efficient for the deep analysis of the data structure due to its robustness 

under the noisy perturbation of the input. The main problem of the practical TDA application comes from 

the sophisticated numerical calculations, especially in the real-time regime, challenging the capacity of 

the computational devices [3]. The possible solution may be originated in the sufficient improvement of 

the computational tools using the elements of quantum algorithms [4-5].  

Recently the quantum processor has been sufficiently applied to analyze Rips complexes. The most 

efficient classical Giovannetti-Lloyd-Maccone algorithm (2008) involves at least n
2
 bits to evaluate the 

Betti numbers of such simplicial complex [6]. The k-th Betti number demands the time O(n
k
) for its 

calculation, and the estimation of Betti numbers for all orders to the accuracy d takes time O(2
n
log(1/d)). 

From another side, the same Rips simplicial complex can be mapped onto an n-qubit quantum state via 

the Lloyd-Garnerone-Zanardi approach (2016), with the time cost proportional to O(n
5
/d) for the 

calculation of its persistent homological properties [4]. 

In all existing quantum approaches the estimation of the persistent homologic properties for the Rips 

complexes is performed in a sequence of standard computational operations under the Grover algorithm: 

the simplicial complex quantum state preparation, the uniform mixture state construction, the phase 

estimation and, finally, the measurement. The second and third stages of the process are based on the 

fixed CNOT quantum logical gates. 

 

2. Qubit driven by a dynamical quantum gate 

Here we discuss the opportunity to improve the performance of TDA using the concept of externally 

driven dynamical quantum gates. The gate operator is changing in time itself, and it can be converted 

from CNOT to other operators and back, depending on computational needs. In this case the sequence of 

logical operators acting on qubits during the computation can be replaced by the dynamical 
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transformation just of few quantum gates. The stages of quantum state preparation and the mixed state 

construction could be optimized under our dynamical scenario.  

The dynamical quantum gate driving qubit is represented by an external (for instance, optical) field u 

designed according to a feedback control algorithm in the dimensionless form. As an example, we will 

discuss here the speed gradient (SG) method [7]. The control goal targeting the qubit towards the desired 

state is defined as a scalar non-negative differentiable function. In our case the goal is tracking, i.e. the 

function is time-dependent. 

Let’s consider the single qubit preserving its evolution on the surface of the Bloch sphere 

1)()()( 222  tztytx  with the dynamical system in the form [8]: 

;

;

;

xuyz

zy

zux













                                                                 (1) 

with the dimensionless representation of the density matrix elements: 

   

     .expexp

;expexp

;

2112

2112

1122

titiiz

titiy

x













                                                (2) 

Here 12 EE   is the energy interval between two quantum levels, the Plank constant is chosen to be 

1. The inversion x defines the measured state of the qubit due to the equalities 2/)1(11 x  and 

2/)1(22 x .  

Due to the normalization constrain, the dynamical system (1) can be re-written in the spherical 

coordinates as: 

,cotcos1

;sin





u

u








                                                                 (3) 

where  sinsin;cossin;cos  zyx .  

 The goal tracking the given target variables )(),( tt GG 
 is defined as: 
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,)]([
2

1
)]([

2

1 22 ttG GG                                                (4) 

and the control u driving the system toward the minimization of the goal function (4) includes the speed 

gradient feedback [8] (for the details on SG method see also [7]): 

,cotcos)(sin)(  GG
u

G
u 







                               (5) 

with a positive constant Γ. 

Finally, after the substitution of (5) into the dynamical system (3), one can get: 

),)(,())(,(1

);)(,())(,(

GG

GG

CB

BA












                                       (6) 

with 

.cotcos),(,cotcossin),(,sin),( 222   CBA                      (7) 

Eqs (6)-(7) are robust, i.e. they drive the qubit towards the dynamical goal )(),( tt GG   from virtually 

arbitrary initial condition and under a small noisy perturbation of the system. The characteristic time to 

achieve the control goal could be evaluated as 1/Γ. 

 

3. Rips complexes on the qubit Bloch surface 

Let’s consider for the simplicity that we form a data cloud on the 2-dimensional plane. Then this set of n 

points can be mapped onto a surface of the Bloch sphere, for instance, with the stereographic projection. 

Thus, we will construct the Rips complexes based on the set of qubit spherical coordinates: },{ tkk  , 

k = 1, …, n. (We shift the second angle variable by t, because there is the rotation component with the 

constant angular velocity in the second Eq. (6).) In the Lloyd-Garnerone-Zanardi (LGZ) algorithm we 

needed n qubits for this procedure. In our approach, we use only one, but driven by a dynamical gate. It 

means that the goal function (4) is chosen to be periodical with the period T, such that: 
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.,...,1,)1(,)(;)( nkk
n

T
tk

n

T
ttt kGkG                                    (8) 

Due to the robustness of the SG algorithm, we do not need to know the initial qubit state. The data set 

will be reproduced on the Bloch surface one by one for all n points. The principal difference in our 

approach is that we involve only one qubit in the place of n, while the tool for coding the data set position 

is the dynamical control field versus the static qubit operators in the LGZ approach. 

Now the same computational procedure as in [4] could be applied to the dynamical object (8) to find out 

all Betti characteristics for the n point Rips complex. The key question here, of course, is how the new 

version of the algorithm will change the time cost. As we mentioned in Section 1, for LGZ procedure it is 

evaluated as O(n
5
/d). In our case it takes T times longer (to re-check all n points in the time sequence). 

Because for each point the error for the SG feedback is evaluated as 1/Γ, one can estimate:  /nT . 

The ratio for the error in SG is about: )/( d , where   stands for the quantum system decay 

(for the principles of evaluation for SG error see [7]). If we consider 0 , altogether it implies: 

)/(O 6 n . The choice of constant Γ depends on the physical realization of the computational qubit and 

the external field u. 

 

4. Conclusions and discussions 

The algorithm described here has pros and cons to compare with the LGZ approach. From one side, it 

does not need some algorithmic stages, like the preparation of the simplicial complex state. We do not 

need to know the initial qubit state. Our algorithm involves only one qubit, that can be extremely 

sufficient from the point of physical realization of quantum computational process. From another side, the 

algorithm is relatively longer: O(n
6
/ Γ), to compare with the LGZ time cost: O(n

5
/d). 

The open problem is to optimize the present LGZ algorithm of finding Betti numbers for the single qubit 

driven by a dynamical gate. The application of dynamical logic operators to other stages of the TDA 

process (entangled state construction, phase evaluation, measurement) could drastically decrease the time 

cost and the complexity of quantum computations. 
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Abstract 

In this study, a statistical evaluation on the magnitude-frequency distribution and fractal 
dimension of earthquakes was achieved for Van province of Turkey. Magnitude completeness of the 
catalog, recurrence times and annual probabilities of the specific magnitude values were also estimated. A 
rectangular area covered by the co-ordinates 37.6ºN and 39.6ºN in latitude and the co-ordinates 42.2ºE 
and 44.6ºE in longitude was selected as the study region. Seismic catalog was compiled from Boğazici 
University, Kandilli Observatory and Earthquake Research Institute and it is homogeneous for duration 
magnitude, Md. It covers the years between November 28, 1970 and December 30, 2018, and includes 
14.179 earthquakes with magnitude equal to and larger than 1.0. The number of earthquakes shows an 
exponential decay rate from smaller to larger sizes, and magnitude changes are between 2.0 and 3.0 on 
average. Hence, magnitude completeness was estimated as Mc=2.5 for Van earthquakes. b-value of 

magnitude-frequency distribution was computed as b=1.050.07 with the maximum likelihood method 
using Mc=2.5. This result shows that b-value of Van earthquakes is well represented by the Gutenberg-
Richter scaling law. Time variations in b-value display a strong tendency of decreasing before strong 
main shocks, and these fluctuations may be an evidence for the next occurrences. Fractal dimension Dc-

value was calculated as 1.79004  with the linear curve fitting technique and 95% confidence limit. The 
scale invariance in the cumulative statistics of correlation dimension was selected between 4.80 and 43.57 
km. This relatively large Dc-value shows that earthquake activity in and around Van province is more 
clustered in smaller regions or at larger scales. Recurrence times of the earthquakes has a value from 3 to 
7 years for magnitude ranges of 5.5-6.0, and a value from 7 to 20 years for magnitude ranges of 6.0-6.5. 
Annual probabilities of the earthquakes between 3.5 and 5.0 magnitude ranges exhibit a value between 1 
and 20, and a value lower than 1.0 for magnitude ranges of 5.0-6.5. From this point of view, it can be 
interpreted that there is a remarkable seismic hazard and risk in this region. As a final result, statistical 
assessments of different seismicity parameters show that Van province of Turkey may have a significant 
potential for the strong/large earthquake occurrences in the intermediate term and the long term. 
 
Keywords: Van, b-value, Dc-value, Recurrence Time, Annual Probability 
 
1. Introduction  
Statistical studies on the size scaling distributions of seismicity are one of the most important process in 

the evaluation of earthquake potential, and many statistical models for different earthquake occurrences in 

the world have been presented to the literature. Many authors have used different parameters for 

433



 
INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 
3-5 July 2019, Istanbul, Turkey 

 

seismicity analyses, such as magnitude-frequency b-value, fractal dimension Dc-value, annual 

probability, recurrence time, moment and energy releases (eg., Wiemer and Wyss, 2000; Awad, 2005; 

Roy et al., 2011; Öztürk, 2018). In this study, two important seismicity parameters were analyzed as well 

as the magnitude completeness of the catalog, annual probabilities and recurrence times of specific 

magnitude ranges. The first one of these parameters is known as b-value which describes the power law 

distribution of seismicity, and the second one can be given as Dc-value which means that the number of 

events larger than a specified level has a power law dependence on the size. The magnitude-frequency 

distribution, stated as b-value of Gutenberg-Richter relation (Gutenberg and Richter, 1944), is one of the 

most frequently used tool in earthquake statistic. b-value reflects the relative numbers of both small and 

large events, and it is related to the properties of the seismic and tectonic structures and stress 

distributions in region and time. Seismically active fault regions are complex natural systems and display 

a scale invariant or fractal correlation. Heterogeneity degree of seismicity in active fault system and some 

mechanical, geological or structural alterations in heterogeneity are dominant on the fractal dimension 

Dc-value. Thus, the higher order fractal dimension is very sensitive in magnitude distributions 

(Mandelbort, 1982).  

Van province of Turkey was struck many strong and large earthquakes in the near past. For this reason, 

the aim of this study is to provide some useful information for the evaluation of seismic potential in this 

part of Turkey and hence, statistical analyses of b and Dc-values, magnitude completeness, recurrence 

times and annual probabilities of the earthquakes were analyzed in detailed. 

2. Preliminaries 

The earthquake database used in this work was taken from Boğaziçi University, Kandilli Observatory and 

Earthquake Research Institute (KOERI). Earthquake catalog is homogeneous for duration magnitude, Md. 

Main tectonics were modified from Şaroğlu et al., (1992) and shown in Figure 1a. A catalog including 

14.179 events for the time interval between November 28, 1970 and December 30, 2018 was used and the 

epicenter distributions of these earthquakes with Md≥1.0 and Md≥5.0 were presented in Figure 1b.  

Magnitude-frequency distribution of earthquakes was defined by Gutenberg-Richter (1944) and gives a 

size scaling distribution of earthquakes as follow: 

bMaMN )(log10                                                                                                                                  (1) 
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where N(M) is the expected number of events with magnitudes equal to or larger than M. b-value 

describes the slope of the magnitude-frequency distribution, and a-value is related to seismic activity rate. 

b-value changes roughly between 0.3 and 2.0 for different parts of the world. Many studies suggest that b-

value is a scale invariant and related to the distribution of earthquake epicenters and fault segments. A 

reduction in b-value may result from a decrease in the pressure and an increase in shear stress (Scholz, 

1968). Many factors lead to differences of b-values: an increase in thermal gradient, fracture density, 

material heterogeneity, the number of small and large earthquakes, fault length, stress and strain 

conditions (Mogi, 1962). 

    

Figure 1. (a) Main tectonics in and around Van province. Names of the faults: MF: Malazgirt Fault, SF: 

Süphan Fault, BFZ: Balıklıgölü Fault Zone, ERF: Erciş Fault, ÇF: Çaldıran Fault, HTF: Hasan-Timur 

Fault, BF: Başkale Fault, BZTZ: Bitlis-Zagros Thrust Zone. Some significant centers were also given on 

the figure. (b) Epicenter distributions of 14.179 shallow (depth<70 km) earthquakes with Md≥1.0 between 

1970 and 2019. Stars indicate the strong and large earthquakes with Md5.0. 

It is well known that the usage of the maximum number of earthquakes is important and necessary for 

high quality and reliable results. For this reason, the identification of magnitude completeness, Mc-value, 

is a very important process. Mc-value can be defined as the minimum magnitude of complete reporting. 

In other words, this magnitude level comprises 90% of the earthquake data which can be sampled with a 

435



 
INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 
3-5 July 2019, Istanbul, Turkey 

 

power law fit (Wiemer and Wyss, 2000). A moving time window technique can be used to estimate the 

changes in Mc-value. If magnitude completeness exhibits systematically remarkable fluctuations as a 

function of time, the estimation of seismicity parameters, especially b-value, can be made wrong. Thus, 

temporal magnitude completeness analysis was achieved with a great care on the catalog.   

Fractal analyses are mostly used to describe the clustering features and size scaling properties of 

earthquake parameters, assuming that earthquake distributions are fractal. A further generalization leads 

to the correlation dimension Dc-value, not based on a covering of the regarded set but based on the 

distances between pairs of points of the set (Goltz, 1998). Analysis of correlation dimension has been 

used as a powerful tool in order to quantify the self-similarity of a geometrical object. Correlation 

dimension Dc and the correlation sum C(r) was suggested by Grassberger and Procaccia (1983) as follow: 

 rrCDc
r

log/)(loglim
0

                                                                                                                             (2) 

)1(/2)(   NNNrC rR                                                                                                                             (3) 

where C(r) is the correlation function, r is the distance between two epicenters and N is the number of 

earthquakes pairs separated by a distance R<r. If the epicenter distribution has a fractal structure, 

DcrrC ~)(  is obtained. In this equation, Dc is a fractal dimension, more strictly, correlation dimension. 

Fractal dimension may be estimated to avoid the possible unbroken fields, and these unbroken segments 

are suggested as potential seismic gaps to be broken in the future (Toksöz et al., 1979). The variations in 

fractal behaviors generally depend on the complexity or quantitative measure of heterogeneity degree of 

seismicity in the fault systems. Larger Dc-value related to lower b-value is the dominant structural 

property in the regions of increased complexity in the active fault system. Thus, it may be resulted from 

clusters and may be an indicator of stress transfer on fault planes of smaller surface area (Öncel and 

Wilson, 2002). 

3. Main Results 

In the scope of this study, a statistical assessment on the magnitude-frequency distribution and fractal 

dimension of seismicity in and around Van province of Turkey was accomplished. In addition, 

completeness magnitude of the catalog, annual probabilities and recurrence times of specific magnitude 
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sizes were evaluated to supply remarkable results for the next earthquake potential in the intermediate and 

long terms. ZMAP software, introduced by Wiemer (2001) was used for the statistical analyses. 

Magnitude histogram of earthquake catalog was shown in Figure 2a. Magnitudes of earthquakes in Van 

region change between 1.0 and 6.6, and earthquake numbers show an exponential decay rate from the 

smaller to the larger magnitudes. Many of the earthquakes are between 2.0 and 3.0 levels. The number of 

earthquakes shows a maximum at Md=2.6. Temporal analysis of magnitude completeness was carried out 

by a moving window approach with the maximum curvature method supplied by ZMAP and given in 

Figure 2b. Mc-value was estimated for samples of 150 earthquakes per window using the catalog 

including all 14.179 earthquakes with Md≥1.0. Mc-value is relatively large and changes between 2.8 and 

3.5 from 1970 to 2012, whereas it fluctuates between 2.0 and 2.5 from 2012 to 2019. Thus, an average of 

Mc=2.5 level for Van region represents the data well for all the statistical evaluations. 

   

Figure 2. (a) Magnitude histogram of earthquake distributions. (b) Temporal variation of Mc-value. Mc-

value was estimated with overlapping samples of 150 events/window. Mc indicates standard deviation. 

b-value of magnitude-frequency distribution was estimated with the maximum likelihood method since it 

yields a more robust estimation than the last square regression technique (Aki, 1965). Magnitude-

frequency relation and correlation integral curve of earthquakes were plotted in Figure 3. Considering 

Mc=2.5 level, b-value was calculated as 1.05±0.07 by using whole 14.179 earthquakes. As shown in 

Figure 3a, b-value, its standard deviation, a-value and Mc-value were given. Average b-value is proposed 

as approximately equal to 1.0 (Frohlich and Davis, 1993), and tectonic earthquakes are represented with a 

b-value between 0.5 and 1.5. Thus, magnitude-frequency distribution of earthquake catalog for Van 

region matches well with the Gutenberg-Richter scaling law having a characteristic b-value close to 1.0. 
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Figure 3. (a) Gutenberg-Richter relation and magnitude-frequency distribution of earthquakes in and 

around Van province. (b) Correlation integral curve versus distance. Red dots are the points in the scaling 

range. The slope of the blue line corresponds to the Dc-value and cyan lines represent the standard error.  

Fractal properties of earthquake epicenter distributions in Van region were analyzed by fitting a straight 

line to the curve of the correlation integral, C(R), versus the distance, R (km). Dc-value was estimated 

with 95% confidence limits by linear regression fit and given in Figure 3b. Dc-value was computed as 

1.79±0.04 for the distribution of 14.179 events and this log-log correlation function exhibits a clear linear 

range and scale invariance in the cumulative statistics between 4.80 and 43.57 km. As mentioned above, 

the fractal dimension may define the earthquake distributions since they match the fractal statistics. It is 

well known that higher Dc-values are related to active faults and these fault systems have an increasing 

complexity, and higher order correlation dimension is increasingly sensitive to the heterogeneity in 

magnitude distribution (Öncel and Wilson, 2002). This means that earthquake activity is more clustered 

in smaller areas (or at larger scales) in Van region. Thus, it can be assumed that this higher Dc-value is 

the dominant structural property in this region and may be resulted from the earthquake clusters.  

Figure 4a shows the annual probabilities for specific magnitude sizes. Annual probabilities of 

earthquake occurrences show a value between 1 and 20 for magnitude levels between 3.5 and 5.0, and a 

value of smaller than 1 for magnitude levels between 4.5 and 6.5. Recurrence times of earthquake 

occurrences for different magnitude ranges were also plotted in Figure 4b. It is observed quite smaller 

years (<1.0) for magnitudes from 3.5 to 5.0, and 1-7 years for magnitudes from 5.0 to 6.0. However, the 

values between 7 and 20 years were estimated for magnitude levels between 6.0 and 6.5, while the values 

greater than 20 years were estimated for magnitude levels larger than 6.5. There are two large earthquakes 

in the vicinity of Van region: Md = 6.6, Tabanlı-Van, October 23, 2011 and Md = 5.6, Edremit-Van, 
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November 9, 2011 earthquakes. These results of recurrence times and annual probabilities analyses 

support the existing earthquake potential in the study region. Thus, these types of assessments on the 

probabilities and recurrence times of earthquake occurrences for specific magnitude levels show that Van 

and surrounding area has an earthquake risk potential for the possibility of strong earthquake occurrence 

in the intermediate term and the long term.     

    

Figure 4. (a) Annual probability, (b) Recurrence time of specific magnitude levels for Van earthquakes.  

Variations in b-value as a function of time were plotted in Figure 5. Temporal distribution of b-

value was estimated for overlapping samples of 400 events per window. There are clear decreases in b-

value lower than 1.0 before some strong main shocks such as March 14, 2002, February 22, 2011, June 

24, 2012, February 18, 2014 and January 23, 2016 earthquakes (arrows on Figure 5). Temporal changes 

of b-value are one of the most important precursors for the future earthquake occurrences. Temporal 

variations in b-value show a tendency to decrease before large earthquake occurrences (Prasad and Singh, 

2015; Wang et al., 2016). Prasad and Singh (2015) observed a correlation between small b-value for the 

one-year time interval and the occurrence of large main shocks. They proposed that temporal changes in 

b-value can be used to forecast a major earthquake. Wang et al., (2016) stated that seismic observations 

show abnormal b-value changes before the occurrence of some main shocks. It can be pointed out that 

decreasing trend in b-value before the occurrences of some strong main shocks may result from a stress 

increase. For Van region, the systematic decreasing trend in b-value starts in 2017 and continues in 2018. 

As a remarkable result, this decrease may be significant for earthquake forecasting, and it can be 

interpreted that these fluctuations may be an indicator of the next earthquake in and around Van province 

of Turkey.          
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Figure 5. Temporal changes in b-value. Arrows show large important decreases in b-value before strong 

earthquake occurrences and b indicates standard deviation.  

4. Conclusions  
In the scope of this work, a detailed statistical assessment on the magnitude-frequency distribution, fractal 

dimension of seismicity, completeness magnitude of the catalog, annual probabilities and recurrence 

times of earthquakes for Van province of Turkey was made. A homogeneous catalog for duration 

magnitude, Md, was used and it includes 14.179 earthquakes with 1.0≤Md≤ 6.6 for shallow earthquakes 

(depth<70 km) between November 28, 1970 and December 30, 2018. Mc-value for Van and surrounding 

area was calculated as 2.5 and b-value was estimated as 1.050.07 with this completeness value. This b-

value is close to 1.0 and well represented with Gutenberg-Richter scaling law. Dc-value was calculated as 

1.790.04, relatively large, and hence, seismicity is more clustered at larger scales (or in smaller areas) in 

and around Van. This relatively large Dc-value means the dominant structural feature and may arise due 

to clusters. Temporal changes in b-value indicate a strong tendency of decreasing before strong main 

shocks, and these significant decreases may be an evidence for the future events. Analyses of probability 

and recurrence time of the earthquakes suggest that Van province of Turkey has an earthquake potential 

for the probability of strong or large earthquake occurrences in the intermediate term and long term. 
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Abstract 

The aim of this study is to achieve a detailed regional and temporal assessment on the current 
seismic activity rate changes, Z-value, for earthquake occurrences in and around Van province of Turkey. 
In this context, spatial variations of the most frequently preferred seismicity parameters such as b-value 
of frequency-magnitude distribution and return periods of strong/destructive earthquakes were also 
analyzed. As the study region, the coordinates limited at 42.2ºE and 44.6ºE in longitude and at 37.6ºN and 
39.6ºN in latitude were considered. Earthquake database was provided with the Boğazici University, 
Kandilli Observatory and Earthquake Research Institute and homogeneous for duration magnitude, Md. 
Time interval of the catalog is about 48.09-years during from November 28, 1970 and December 30, 
2018, and the catalog includes 14.179 shallow events (depth<70 km) with magnitudes greater than or 
equal to 1.0. Reasenberg’s algorithm was used to separate the dependent events from independent ones, 
and catalog was declustered to image the spatial and temporal variations of precursory seismic 
quiescence. Completeness magnitude for study region was calculated as 2.5. After declustering procedure 
and separating the earthquakes with magnitude smaller than 2.5, about 69.18% of total earthquakes was 
extracted from the catalog and thus, only 4370 earthquakes were used for seismicity rate assessment. 
Small b-values in regional scale were calculated in and around Çaldıran, Muradiye, on Başkale fault, in 
the north and northeast parts, the middle part of Van between Özalp-Edremit-Gevaş-Çatak-Gürpınar. 
Four significant anomaly regions indicating precursory quiescence were observed at the beginning of 
2019 centered at: (i) 38.96ºN-43.06ºE (in and around Erciş), (ii) 39.02ºN-43.68ºE (including Muradiye), 
(iii) 38.97ºN-43.97ºE (in the north of Çaldıran fault) and (iv) 38.39ºN-43.52ºE (between Lake Erçek-
Edremit-Gürpınar). Regional variations of return periods for magnitude level Md=5.0 show that Van 
province has a significant earthquake potential with regard to occurrences of strong earthquakes in the 
intermediate and long terms. Regions with small b-value, large Z-value and intermediate return periods 
are significant in terms of the possible earthquake potential, and anomaly regions can be considered to be 
the most likely place for a strong or large earthquake. Thus, a special attention should be given to these 
anomaly areas.   
 
Keywords: Van, Seismicity Rate Changes, Decluster, Z-value, Return Period 
 
1. Introduction  
Many statistical algorithms have been developed to perform a quantitative temporal and spatial analysis 

of earthquake occurrences in different parts of the world, and a number of beneficial seismic and tectonic 
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parameters have been used by many researchers (eg., Huang et al., 2001; Polat et al., 2008; Öztürk, 2011; 

Singh, 2016; Ormeni et al., 2017). In this scope, statistical assessments on precursors of earthquake 

occurrences are very important topic and suggest that particular region-time seismicity patterns include 

the seismic quiescence phenomenon and may be related to the seismic and tectonic process. Thus, there 

are many different techniques such as Region-Time-Length (RTL), Pattern Informatics (PI), Relative 

Intensity (RI) or ZMAP (Z-value) to measure, map and investigate the possible episodes of seismic 

quiescence. Wyss and Haberman (1988) defines the seismic quiescence phenomenon as follows: “The 

quiescence theorem suggests that some main shocks are preceded by precursory quiescence and this 

quiescence show a significant decrease in the average seismicity rate, as compared to the preceding 

declustered background rate in the same crustal depth (Wyss and Martirosyan, 1988). Decreasing in the 

earthquake activity rate may extend up to main shock time or may be separated from main shock by a 

relatively short period of increasing seismicity rate”. Thus, quiescence hypothesis postulates that the 

quiet volume overlaps the main shock source volume. 

Seismic quiescence can be recognized with a methodology introduced by Wiemer and Wyss (1994) and 

implemented in ZMAP software package (Wiemer, 2001). In this study, it is aimed to detect whether there 

is a significant quiescence in and around Van, Turkey, with Z-value approach at the beginning of 2019 

since Van province was struck many strong and large earthquakes in near the past. 

2. Preliminaries 
The data set was compiled from Boğaziçi University, Kandilli Observatory and Earthquake Research 

Institute (KOERI). It consists of 14.179 earthquakes from November 28, 1970 and December 30, 2018 

and is homogeneous for duration magnitude, Md. Active fault systems in the vicinity of Van were 

modified from Şaroğlu et al., (1992) and shown in Figure 1a.  

Some occurrences such as foreshocks, aftershocks or swarms generally masks temporal changes of 

earthquake numbers and thus, eliminating the dependent earthquakes from catalog is a very significant 

stage in the seismic quiescence assessments. In order to achieve a qualified assessment of seismicity rate 

changes and to remove the dependent events from the catalog, Reasenberg’s (1985) algorithm can be 

performed. This algorithm “declusters” or decomposes an earthquake catalog into main and secondary 

events (Arabasz and Hill, 1996). It removes all the dependent earthquakes from each cluster, and defines 
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them as a unique earthquake. Epicenters of the earthquakes for original catalog with Md≥1.0 and for 

declustered catalog with Md≥2.5 with strong/large main shocks of Md5.0 were given in Figure 1b.  

    

Figure 1. (a) Active fault systems in and around Van province. Names of the faults: DFZ: Doğubeyazıt 

Fault Zone, ÇF: Çaldıran Fault, ERF: Erciş Fault, SF: Süphan Fault, MF: Malazgirt Fault, HTF: Hasan-

Timur Fault, BFZ: Balıklıgölü Fault Zone, BF: Başkale Fault, BZTZ: Bitlis-Zagros Thrust Zone. Some 

significant centers were also shown on the figure. (b) Epicenter distributions of 14.179 shallow (depth<70 

km) earthquakes with Md≥1.0 and Md≥5.0 between 1970 and 2019 as well as declustered catalog. 

Earthquake catalog was declustered with the Reasenberg’s (1985) algorithm to perform a quantitative 

assessment of seismic quiescence. This technique removed 5510 earthquakes from catalog and 8669 

earthquakes remained. Completeness magnitude for Van and vicinity was estimated as 2.5, and the 

number of earthquakes exceeding this magnitude range is 4299. After declustering and excluding Md<2.5 

earthquakes, approximately 69.18% of the earthquake catalog was eliminated and the number of 

earthquakes for Z-test was reduced to 4370. Cumulative number of earthquakes versus time for original 

catalog, for declustered events and for declustered catalog with Md2.5 was shown in Figure 2. 

Earthquake activity does not have any significant changes between 1970 and 2000, and there is a little 

change between 2000 and 2011. But, there are important changes in seismicity, especially starting after 

2011 Van earthquake. Also, the cumulative number of declustered earthquakes with Md≥2.5 as a function 

of time has a smooth slope when compared to original catalog. It can be clearly seen that declustering 
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process removed dependent events from original catalog. After these two process, a more homogeneous, 

reliable and robust earthquake database is provided for the imaging of seismic quiescence. 

 

Figure 2. Cumulative number of earthquakes against time for original catalog with Md≥1.0 (black line), 

for declustered (blue line) catalog with Md≥1.0 and for declustered catalog with Md2.5 (red line). 

The quiescence hypothesis was firstly formulated by Wyss and Habermann (1988). Then, many statistical 

models for describing and evaluating the seismicity rate changes have been formulated, and most of them 

focus on the precursory quiescence phenomenon. The standard normal deviate Z-test is one of the best 

known among these statistical models. This evaluation of the regional and temporal changes of seismicity 

in and around Van province is based on the seismic tool ZMAP. This software package is a tool for 

analysis of seismic quiescence and artificial seismic rate changes. In order to rank the significance of 

quiescence, the standard deviate Z-test was used, generating the LTA(t) (Log Term Average) function for 

the statistical evaluation of the confidence level in units of standard deviations:  

)/()/(/)( 22
wlwlallallwlall NSNSRRZ                                                                                                  (1)  

where Rall is the average seismicity rate in whole period of catalog, Rwl is the mean activity rate in the 

considered time window, S2
all and S2

wl are the standard deviations in these time periods, and Nall and Nwl 

the number of samples. The Z-value calculated as function of the time, letting the foreground window 

slide along the time interval of the catalog, is called LTA (t).  

Gutenberg-Richter (1944) proposed an empirical relation for frequency-magnitude distribution of 

earthquake occurrences as in the following form:  
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bMaMN )(log10                                                                                                                                  (2)  

where N(M) is the expected number of earthquakes with magnitudes greater than or equal to M. b-value 

defines the slope of the frequency-magnitude distribution, and a-value is related to earthquake activity 

rate. b-value is related to geotectonic and rheological properties of the medium and many factors affect b-

value: fracture density, thermal gradient, material heterogeneity, fault length, pressure, shear stress etc. 

(Mogi, 1962). Thus, b-value is one of the most important parameters in earthquake statistic.  

3. Main Results  
Regional changes in b -value was plotted at every node of the 0.02º grid in longitude and latitude. b-value 

distribution was mapped by using a moving window approach and shown in Figure 3a. Original 

earthquake catalog with Md≥1.0 was included in the estimation of b-value with samples of 500 

events/window. As seen in Figure 3a, regional distributions in b-value are between 0.5 and 1.4. The larger 

b-values (>1.0) were observed in the north and south parts of Lake Van, in and around Erciş, in the north 

and west parts of Lake Erçek, between Çatak and Başkale, in and around Özalp and Saray, and in the 

west part of Gevaş. However, the smaller b-values (<1.0) were found along the north and northeast parts 

of Van between Çaldıran and Muradiye, on Başkale fault, in the middle part of Van between Özalp-

Edremit-Gevaş-Çatak-Gürpınar. As stated in literature, lower b-values may indicate higher stress release, 

low degree of heterogeneity, high strain due to the subduction tectonics etc. Thus, these anomaly regions 

of small b-value may be interpreted as potential earthquake zones for the next earthquake occurrences.  

Regional variations in Z-value supply the spatial image of seismic quiescence at the beginning of 2019 

and were shown in Figure 3b. Study region was divided into a spatial grid of points with 0.02º×0.02º in 

longitude and latitude. The nearest earthquakes, N, at each node were considered as 50 events. Time 

window length was taken as TW=4.5 years since the quiescence images are better visible for TW=4.5 

years. In order to obtain a continuous and dense coverage in time, earthquake distribution was binned into 

many binning spans of 28 days for each grid point. There are four regions (A, B, C and D) exhibiting 

seismic quiescence anomalies. The first quiescence anomaly was observed centered at 38.96ºN-43.06ºE 

(region A, in and around Erciş), the second one was observed centered at 39.02ºN-43.68ºE (region B, 

including Muradiye), the third one was observed centered at 38.97ºN-43.97ºE (region C, in the north of 

Çaldıran fault), and the fourth one was observed centered at 38.39ºN-43.52ºE (region D, between Lake 
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Erçek-Edremit-Gürpınar). The cumulative number curves versus time and correspondent LTA (t) 

functions for anomaly regions of Z-value were shown in Figure 4. The aim of this process is to describe 

the beginning year of seismic quiescence. To estimate these beginning times, cumulative number of 

earthquakes were plotted in a circular area including detected four regions. Z-value peaked with Zmax=4.4 

at 2014.26 for a circle of 19.38 km radius centered for region A, Zmax=3.5 at 2015.11 for a circle of 3.32 

km radius centered for region B, Zmax=4.8 at 2016.81 for a circle of 13.96 km radius centered for region C 

and Zmax=3.2 at 2013.66 for a circle of 14.57 km radius centered for region D. 

 

        

Figure 3. Regional variations at the beginning of 2019 for (a) b-value, (b) Z-value. 

The starting time was used as 1970 and the same time window lengths as TW=4.5 years was used in both 

Z-value map (Figure 3b) and in cumulative numbers curves (Figure 4). The average duration of seismic 

quiescence before the occurrence of a strong/large earthquake in the eastern part of Turkey is given as 

4.9  1.5 years for the earthquakes which occurred after 2000 (Öztürk, 2009). If one considers the fact that 

the beginning of quiescence is started in time interval between 2013.66 and 2016.81 for study region and 

the duration of quiescence before the occurrence of an earthquake is described as average 5 years for this 

area, it can be interpreted that the regions where the quiescence anomalies were observed may have an 

earthquake risk. Hence, the estimated time for the next earthquake can be expected between 2019 and 

2021. However, because the standard deviation of average seismic quiescence is 1.5 years, it can be 

interpreted that the upper limit of the next earthquake occurrence may reach to 2022.  
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Figure 4. Cumulative numbers of earthquakes from declustered catalog between 1970 and 2019 (blue 

line) for the anomaly regions observed in Figure 3b as a function of time with LTA (t) function (red line) 

for (a) region A, (b) region B, (c) region C and (d) region D. Dashed green lines show the Z-value scale 

and the beginnings of quiescence times.  

As in b-value map, regional distributions of return period for different magnitude levels were also plotted 

at every node of 0.02º grid and given in Figure 5. Original earthquake catalog with Md≥1.0 was 

considered in the imaging of recurrence time maps. As shown in Figure 5a, return periods were found to 

be smaller for magnitude size Md=5.0, changing between 5 and 25 years. The lower return periods (<10 

years) were estimated in the northeast part of Van between Çaldıran and Muradiye, between Gevaş-

Çatak-Gürpınar, and around Başkale and Süphan faults. The other regions have a return period larger than 

20 years. Figure 5b shows also return periods for magnitude level Md=6.0, and return periods for this 

magnitude level are generally higher than 60 years. The results especially for strong earthqauke 

occurrences indicate the existing earthquake potential in and around Van region in the intermediate term. 

Thus, these types of assessments can eventually contribute to forecast the impending main shocks in the 

future circumstances.     
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Figure 5. Regional variations of return periods for specific magnitude sizes: (a) Md=5.0, (b) Md=6.0. 

It is well known that Turkey, especially the Eastern Anatolian region including Van and its vicinity, is a 

seismically and tectonically very active region and so, Van province was struck with strong/destructive 

earthquakes in the past and recent years. Therefore, forecasting of the future earthquake locations in this 

area would be useful. Such an evaluation must be relied on the observation of phenomena related to b-

value, precursory quiescence and return periods. Thus, these types of applications to regional and 

temporal behaviors of earthquake occurrences may provide valuable contributions for earthquake hazard. 

4. Conclusions  
In this study, regional and temporal properties of magnitude-frequency distribution, precursory seismic 

quiescence and recurrence times of specific magnitude levels for Van, Turkey, earthquakes were 

evaluated for the beginning of 2019. b-values lower than 1.0 were observed along the north and northeast 

parts of Van between Çaldıran and Muradiye, on Başkale fault, in the middle part of Van between Özalp-

Edremit-Gevaş-Çatak-Gürpınar. Seismic quiescence anomalies at the beginning of 2019 were observed 

centered at 38.96ºN-43.06ºE (in and around Erciş), at 39.02ºN-43.68ºE (including Muradiye), at 38.97ºN-

43.97ºE (in the north of Çaldıran fault) and at 38.39ºN-43.52ºE (between Lake Erçek-Edremit-Gürpınar). 

The regions with smaller b-values and larger Z-values may be interpreted as the possible regions for the 

future strong/large earthquakes. The beginning of quiescence times in these areas starts in time interval 

between 2013.66 and 2016.81, and this result shows that the estimated time for the next earthquake can 
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be expected between 2019 and 2021. Return periods smaller than 10 years for strong earthquakes were 

estimated in the northeast part of Van between Çaldıran and Muradiye, between Gevaş-Çatak-Gürpınar, 

and around Başkale and Süphan faults. Thus, these changes can give important clues for strong or large 

earthquake occurrences in and around Van province in the intermediate and long terms. 
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Abstract 

We introduce and investigate a special class of harmonic univalent functions by using Al -

Oboudi q-differential operator. We first obtained a coefficient characterization of these functions. 

Using this coefficient estimates, distortion and covering theorems, and some properties were also 

obtained. 

 

Keywords: Al-Oboudi differential operator, Salagean differential operator, harmonic univalent function, q-calculus, starlike 

and convex functions, analytic functions 

 

1. Introduction  

Let H denote the family of continuous complex-valued harmonic functions which are harmonic in the 

open unit disk }1||and:{ = zCzzU  and let A be the subclass of H consisting of functions which 

are analytic in U. A function harmonic in U may be written as ghf += , where h and g are members of 

A. We call h the analytic part and g co-analytic part of f. A necessary and sufficient condition for f  to be 

locally univalent and sense-preserving in U is that |h′(z)|>|g′(z)| (see [2] and [7]). To this end, without loss 

of generality, we may write 

           


=



=

=+=
12

)(and)(
n

n

n

n

n

n zbzgzazzh                     (1) 

    Let SH denote the family of functions ghf +=  which are harmonic, univalent, and sense-preserving 

in U for which 01)0()0( =−= zff . One shows easily that the sense-preserving property implies that 

1|| 1 b . 

    In 1984, Clunie and Sheil-Small [2] investigated the class SH as well as its geometric subclasses and 

obtained some coefficient bounds. Since then, there have been several related papers on SH and its 
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subclasses. Also note that SH reduces to the class S of normalized analytic univalent functions in U, if the 

co-analytic part of f is identically zero. 

    We recollect here the q-difference operator that was used in geometric function theory and in several 

areas of science. We give basic definitions and properties about the q-difference operator that are used in 

this study (for details see [3], [4] and [5] ). For 10  q , we defined the q-integer qn][ by 

,...)3,2,1(,
1

1
][ =

−

−
= n

q

q
n

n

q
. 

Notice that if −→1q  then nn q →][ . The q-derivative of a function Ah  is, by definition, given as 

follows [3] 
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Thus, for the function h of the form (1), we have 
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For  Ah , Salagean q-difference operator of h, denote by )(q zhDk  is defined by 
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Therefore, if −→1q  then (1),  
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the familiar Salagean derivative [6]. For Ah  given by (1), we define Al-Oboudi q-difference operator 

of h: 
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When 1= , we get Salagean q-difference operator. Notice that if −→1q  then k

q,D  reduces to the Al-

Oboudi operator [1]. 

 For functions 
1f  and Hf 2

 of the form 
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We define the Hadamard product of 
1f  and 

2f  by 

.))((
1

,2,1

2

,2,121 


=



=

++=
n

n

nn

n

n

nn zbbzaazzff  

2. Preliminaries 

For 10,,10 0  qNk  and Uz , we let ),( k

qSH  denote by the subclass of H consisting of 

functions f  of the form (1) that satisfy the condition 
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where is )(D q, zhk

  and )(D q, zgk

  are defined by (4). We also let the subclass ),( k

qTSH  consist of 

harmonic functions ghf +=  in ),( k

qSH  so that h and g are of the form 
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 In this paper, we find necessary and sufficient coefficient conditions, distortion bounds, extreme 

points for the above defined class ),( k

qTSH . 

3. Main Results 

The first theorem we introduce a sufficient coefficient bound for harmonic functions in ),( k

qSH . 

Theorem 1. Let ghf +=  be given by (1). If 
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where 10,,10,1 01 = Nkqa  and 0 , then f is sense preserving, harmonic univalent in U, 

and ),( k

qSHf  . 

 The harmonic function 
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shows that the coefficient bound given by (7) is sharp. 

Theorem 2. Let ghf +=  be given by (6). ),( k

qTSHf   if and only if the inequality (7) holds. 

 Our next theorem is on the extreme points of ),( k

qTSH . 

Theorem 3. Let ghf +=  be given by (6). Then ),( k

qTSHf   if and only if 
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In particular, the extreme points of ),( k

qTSHf   are }{ nh  and }{ ng . 

 Finally, we give the distortion bounds for functions in ),( k

qTSH  which yields a covering result 

for this class. 

Theorem 4. Let ),( k
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Corollary 5. Let ghf +=  with h and g are of the form (6). If  ),( k
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Theorem 6. The family ),( k

qTSH  is closed under convex combination. 
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Abstract 

In general, if a system has negative real parts of all poles for its transfer function, the system 

stability is achieved. This condition does not apply to the Mathieu equation. The stability condition of the 

Mathieu equation depends on the parameters. There are some engineering systems that show Mathieu 

equation form. In this research study, a flywheel system supported by repulsive magnetic bearings both in 

the axial and radial directions is proposed to have an energy-free noncontact magnetic bearing flywheel. 

In the proposed bearing structure, repulsive magnetic bearings do not provide a stable magnetic levitation 

alone but it is possible to maintain the dynamic stability of the flywheel by controlling the rotor axially. 

The mathematical model of the flywheel repulsive magnetic bearing system can be transformed to a 

Mathieu equation form. The stiffness factors generated by repulsive bearings are similar to the stiffness 

form of Mathieu equation.  

In the research work, the stability dynamics of the repulsive magnetic bearing flywheel system is 

presented using the Mathieu equation approach. The stability diagram of the flywheel system is obtained 

using the solution of the Mathieu equation.  

 

Keywords: Stability analysis; Mathieu equation; Flywheel system, Repulsive magnetic bearing. 

 

1. Introduction  

Flywheel systems are mainly used in reaction wheels, energy storage system and spacecraft 

attitude control actuator [1 - 3]. In most conventional systems, flywheel and rotor are supported by ball 

bearings and such bearings require lubrication and generate problems due to frictions, therefore, more 

maintenance issues are faced. Magnetic bearing technology provides frictionless mechanical motion for 

rotating machine elements with a very high precision [4, 5]. This technology has two types of bearings 

such as active magnetic bearings (AMB) which needs actively feedback control and repulsive magnetic 

bearings (RMB) which do not require the feedback control. 

Active magnetic bearings have distinct advantages over conventional mechanical bearings such as 

adjustment of stiffness and damping values of the bearing but they consume energy and need feedback 

control in operation. Repulsive magnetic bearings use magnetic force generated by permanent magnets 

(PMs) for magnetic levitation [6 - 9]. From Earnshaw theorem, a stable magnetic levitation is impossible 

in a system composed solely of permanent magnets. A repulsive magnetic bearing is usually combined 

with a mechanical guidance or actively controlled electromagnets for stable levitation due to instability of 

at least one direction.  Also, this type of bearing has poor damping in the levitation directions. It is an 
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advantage that no energy is required to generate levitation force and larger rotor-stator gaps are possible 

in this type of bearings [10, 11]. 

In addition to stable levitation of the RMB systems, the proof of the possible stable dynamics is 

important. The simple permanent magnet (PM) levitation system can be modeled as a mass spring 

element in the axial direction. But in radial dynamics axial stiffness factor have to be considered. 

Mizuno’s [12] and Bassani’s works [13] are shown that the radial dynamics of the RMB is very similar to 

the Mathieu’s equation. The radial dynamics of the repulsive magnetic bearing system has to satisfying 

the condition of the stability of Mathieu equation.  

 

2. Flywheel system structure 

The proposed flywheel system structure is schematically shown as a cross section in Figure 1.  

Basically, two sets of repulsive magnetic bearings are located at the upper and lower sides of the rotor. 

The repulsive type permanent magnetic bearings are passive and limit the radial and axial displacements 

of the rotor. The proposed flywheel system has a complete symmetry inside the housing. 

The upper and lower magnetic bearings operating in the repulsion mode has a special structure 

that creates always opposite forces along the rotor axis. As seen in Figure 1, while A1 (ring PMs) and A2 

(disk PMs) pairs limit axial movements of the rotor, R1 and R2 ring permanent magnet pairs limit radial 

movements of the rotor. Actually, it is aimed to provide the levitation of the rotor in the radial axis only 

using R1 and R2 ring permanent magnet pairs.  For these bearings, a screw mechanism for the outer ring 

that move the outer permanent magnets to the center of inner permanent magnet center position is used to 

set the initial position and eliminate the misalignment issue. In the proposed design, axially magnetized 

two pairs of permanent magnets are selected for the inner and outer rings (R1 and R2). The poles of the 

permanent magnets are oriented to repel each other inside the inner and the outer rings. This type of 

structure is discussed in many different research works [14, 15]. 

 

Figure 1. Cross section view of the flywheel system. 
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In this flywheel system, the stabilization of the flywheel system in the axial direction is performed 

by using four electromagnetic actuators. On the other hand, there is no active control effect in the radial 

directions. The stabilization of the radial direction maintained by the repulsive forces of the R1 and R2 

bearings. The only criteria for the radial stability is the axial position of the rotor. Displacement sensors 

are assembled to the system for the feedback control of the actuators. Note that in the content of this study 

the feedback control design is not presented and only the radial stability is analysed using the Mathieu 

equation. 

 

3. The Mathieu Equation-Stability 

Mathieu equation is frequently written as 

 ( )cos2 0t   + + =   (1) 

The Mathieu equation is commonly used in nonlinear vibration problems. It used in stability studies of 

the periodic motions in nonlinear systems. In general, if a system has negative real parts of all poles for its 

transfer function, the system stability is achieved. This condition does not apply to the Mathieu equation. 

The stability condition of the Mathieu equation depends on the parameters. This parameter dependencies 

are shown in Figure 2 known as Strutt-Ince diagram. 

 

Figure 2. The Strutt-Ince diagram, the ε-δ plane 

In this figure the horizontal axis represents the parameter δ, and the vertical axis, the parameter ε. The ε-δ 

plane is consist of two different regions. The filled areas on the Figure represent stable regions on the 

other hand white regions are correspond to unstable solutions. The diagram is symmetric about the δ axis.  

In addition, it can be understood from the stability diagram that stability increases for the smaller values 

of the ε and larger values of the δ. The stability diagram is also symmetric about the δ axis. To solve 

Mathieu equation, the equation (1) can be considered as 
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 ( )2 cos 0, 1,2,3,4.i i i it i    + + = =   (2) 

With the transformation of the ωt = 2t1 states of the Mathieu equation can be written as; 

 1

1 1

, 1,2,3,4.
2

i i
i

d ddt
i

dt dt dt

 
 = = =   (3) 

 
22

1

2

1 1

, 1,2,3,4.
4

i i
i

d ddt
i

dt dt dt

 
 = = =   (4) 

Substituting Eq. (3) and (4) into Eq. (2) gives a Mathieu equation in the standard form which is defined in 

Eq. (1) 

 ( ) ( ) ( )
2

12
cos 2 0, 1, 2,3,4.i i i i

d
t t t i

dt
   + + = =   (5) 

Where 

 
2

2 2

4 4i i
i i

 
 

 
= = −   (6) 

The general aspect of the   and   plane is shown in Figure 3. 

 

Figure 3. The Strutt-Ince diagram, the i - i   plane 

  

4. Mathematical model of the system 

4.1. Axial dynamics of the repulsive magnetic bearing 

Consider a permanent magnet axial bearing with equal rings of mass 1m  and with opposite fields rB . The 

upper PM ring is levitated over the fixed PM ring by the axial stable force zF  at a height Gz  and it is 

moved laterally by the radial unstable force rF . The equation of motion in the axial direction for the 

levitated ring PM is given by 
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 1 0zm z F+ =   (7) 

where the axial stable force is a vibrating characteristic such as cosz zG zF F t=   and the natural 

frequency is 
1/z zK m = .  Since levitation force is vibrating, the axial displacement is cosG zz z t=  . 

For the same axial repulsive magnetic bearing, the radial equation of motion of the ring PM is given by 

 1 0r zrm r f f+ − =   (8) 

where sinzr zf F = , ( / 2)r zf K r= − . With the conversion of the sin ,    ,    cosz zG z

r
F F t

z
   = =   

and z zGK F z= .   

 
1

1
cos 0

2
z z zm r K K t r

 
+ − −  = 
 

  (9) 

            

Figure 4. Axial and radial repulsive bearing dynamics  

4.2. Radial Repulsive Magnetic Bearing  

The equation of motion in the radial direction for the levitated inner ring PM is given by 

 2 0rm r F+ =   (10) 

where the radial stable force and the natural frequency are cosr rO rF F t=   and 2/r rK m = .  Here rK  

is the radial stiffness. Similarly, the unstable axial dynamics of the inner ring PM is given by 

 2 0z rzm z f f+ − =   (11) 

where ( / 2)z rf K z= − . With the similar conversation;  

 2 ( cos ) 0
2

r
r r

K
m z K t z+ − −  =   (12) 
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4.3. Equation of motion of the flywheel system 

The structure of the flywheel system with the repulsive magnetic bearing for modelling is depicted 

schematically in xGz plane in Figure 1. Since the system is completely symmetrical, yGz plane has also 

the same structure. The rotor flywheel system is assumed to be rigid and the center of mass G is known. 

The flywheel has translational motions in x, y and z directions and has angular motions ηx and ηy around x 

and y axes, respectively. The radial dynamics of the flywheel is written as 

 
2 3 1 1 4 4 0f g x x x zx x zxm x F F f f f f+ + + − + − =   (13) 

From equation (15), the following approximation can be done 

 1 4
2 3 1 1 4 4( ) ( cos ) ( cos ) 0

2 2

z z
f g x x g z z z z g

K K
m x K K x K t K t x

 
+ + − +  + +  = 

 
  (14) 

The equation can be written in form of the Methieu equation given in equation (2) as below 

 
( ) ( )

2
11

1 4 1 42 3( )
cos 0

2 g

z z z zx x
g g z g

f f f

K K K KK K
x x t x

m m m



   
   + − ++   + − +  =
   
   

  

  (15) 

Since the system is completely symmetrical, same approximation is valid for the radial dynamics 
gy  

which Mathieu equation parameters are 2 2

1 2 =  and 1 2 =  . The angular dynamics of the flywheel-

repulsive magnetic bearing system is obtained as with same approximation 

 
2 3 1 1 4 4 1 2t y p x x m x m x p zx p x p zx p a f a fJ J F L F L f L f L f L f L f L f L − + + + − + − = −   (16) 

 
( )

( )
2

1 42 2

2 3 1 4 1 2( ) cos
2

z z p

f y p x x x m y z z p z y a f a f

K K L
J J K K L K K L t f L f L   

 +
− + + + − + +  = −  

 
  (17) 

For a homogeneous solution, we take the right side of the equation to zero and make the necessary 

arrangement, we obtain Mathieu equation form of the angular dynamic equation. 

 
( ) ( )

2
33

2 22
1 4 1 42 3( )

cos 0
2

z z p z z px x m
y y z y

f f f

K K L K K LK K L
t

J J J



  

   
   + − ++   + − +  =
   
   

  

  (18) 

Same approximation is valid for the angular dynamics x  which parameters are 2 2

3 4 =  and 3 4 =  . 

5. Repulsive magnetic bearing design and force characteristics 

Repulsive magnetic bearings produce magnetic forces that act radially and axially on the rotor. To see the 

generating magnetic stiffness of the RMB in the flywheel system, a magneto static finite element analysis 
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was performed. The total stiffness acting on the flywheel in the axial direction is given in Figure 5 (a) for 

different radial movement of the rotor. Similarly, the total stiffness in the radial direction is shown in 

Figure 5 (b) for different axial movement of the rotor. 

 

Figure 5. Repulsive magnetic bearing stiffness characteristics 

6. Homogenous solution 

The homogenous solution of the Mathieu Equation is obtained from Equation (4) to (8) using the 

differential equation solver ode45 in MATLAB software. The stability diagram of the flywheel system for 

homogenous solution is illustrated in Figure 6.  

 

Figure 6. Stability diagram for repulsive magnetic bearing flywheel system 

This diagram shows a narrow region of the The Strutt-Ince diagram given in Figure 3. Based on the 

stability chart different test points are selected to show the stability condition for the states of the flywheel 

system. Since the flywheel system is symmetric according to z axis, the stable point for system states xg and 

(a) (b) 
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yg are equal. The same condition is valid for the system states ηy and ηx. Since the stability is determined by 

the rotor axial movement zg, the stability condition of the states xg, yg, ηy, ηx should be tested for every zg 

value. Solution interval of these states can be in either stable or instable regions depending on the value of zg. 

7. Simulation results 

The simulation starts by selecting the axial movement of the flywheel mass center zg and select the 

corresponding stiffness value. Then the state space model is solved with selected initial states such as 

[xg(0) yg(0) ηy(0) ηx(0)]T. Using the stability diagram, some certain points shown in Figure 6 are selected 

depending on the mass center movement zg and time domain responses of the flywheel system states for 

these points are obtained to see the stability condition. When the axial displacement of the rotor is zg = 0 

[mm], all states are in the stability regions as seen in Figure 7. The time domain responses of the radial 

dynamics xg is illustrated in Figure 7(a). Since the flywheel system is symmetric according to z axis, 

similar conclusion is available for yg at zg = 0 [mm]. The responses of the angular dynamics at zg = 0 mm 

are given in Figure 7 (b). Since zg = 0 [mm] is at the stable region, xg, yg, ηy, ηx states have stable 

behaviour. The amplitude of these states depends only the initial values of the states. 

        

Figure 7. Simulation of the translation and angular dynamics at zg = 0 [mm] (a) Variation of xg (b) 

Variation of ηy. 

State behavior in the stability region limit point is checked for every state. Simulation results for the 

translational and angular dynamics at the stability limit points are given in Figure 8 and 9. The limit 

points are different for both dynamics and the states are stable at these limit regions. Although the states 

are stable in the limit points, the time responses increase very slowly. 

(a) (b) 
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Figure 8. Simulation of the translation and angular dynamics at zg = 0.225 [mm] (a) Variation of xg (b) 

Variation of ηy. 

           
Figure 9. Simulation of the translation and angular dynamics at zg = 0.5 [mm] (a) Variation of xg (b) 

Variation of ηy. 

 

When the axial distance exceeds the limit of stability point the system states have unstable behavior. 

Finally, time domain responses are obtained for a different unstable axial point at zg = 0.75 mm in Figure 

10. 

           
Figure 10. Simulation of the translation and angular dynamics at zg = 0.75 [mm] (a) Variation of xg (b) 

Variation of ηy. 

8. Conclusions 

In this research work, the stability dynamics of the repulsive magnetic bearing flywheel system is presented 

using the Mathieu equation approach. The stability diagram of the flywheel system is obtained using the 

(a) (b) 

(a) (b) 

(a) (b) 
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solution of the Mathieu equation. The time domain responses of the system states are depicted for different 

rotor axial displacement according to stability diagram. In the proposed bearing structure, the stability of the 

radial repulsive magnetic bearing is determined by the axial movement of the rotor.  
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Abstract. In this paper, we study the existence of entropy solution for quasillinear para-
bolic problem in bounded open subset Ω of RN , with data and u0 in L1(Ω). For this we
use the Schauder fixed-point method. The results of the problem discussed can be applied
to a variety of different fields in applied mathematics for example in elastic mechanics, image
processing and electro-rheological fluid dynamics, etc..
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1. Introduction

In this article is devoted to presenting the results of existence of solution for a quasilinear
parabolic problem with data in L1, the main difficulty facing one who is interested in such prob-
lems is that the classical theories of existence, either using variational methods or compacite
methods, are not applicable. Hence the need to use new techniques to prove the existence and
uniqueness of solutions for such problems.
In the last years, different methods have been applied to study the existence of the weak so-
lution of elliptic problems with L1 under linear boundary conditions see [4],[6], [11] and [14].
The corresponding parabolic case equations have also been studied by many authors, see for
instance [5],[8], [9] and [14].
Besides, partial differential equation (PDE) methods in image processing have proven to be
fundamental tools for image diffusion and restoration. We refer the readers to [[1],[2]] and
references therein.
The aim of this paper, we treat the existence of solution u for the following quasi-linear para-
bolic problem of the type

(1.1)





ut − div(A(u)Ou) + λ|u|p−2u = f(t, x, u) in Q = [0, T ]× Ω,
u = 0 on Σ = [0, T ]× ∂Ω,
u(0, .) = u0(.) in Ω.

In the problem (1.1). Where λ > 0 and T > 0, Ω is a bounded open spatial domain in RN (N ≥
2) with a lipschitz boundary denoted by ∂Ω, and u0 ∈ L1(Ω). The function γ(u) = λ|u|p−2u
such that γ : R → R is a continuous increasing function with γ(0) = 0 and the operator
A : R →MN (R) (or MN (R) denotes the set of N × N matrices with real coefficients), such

1 468



that satisfies the following assumption for some numbers 0 < α < β <∞:

∀s ∈ R, A(s) = (ai,j(s))i,j=1,...,N where ai,j ∈ L∞(R) ∩ C(R,R),(1.2)

∃ α > 0, such that A(s)ξ.ξ ≥ α |ξ|2 , ∀ξ ∈ RN ,∀s ∈ R,(1.3)
∃ β > 0, such that ‖ai,j‖L∞(R) ≤ β, ∀i, j ∈ {1, ...., N} .(1.4)

We will assume that f : Q × R → R is a Carathèodory function such that the following
hypotheses hold

|f(t, x, s)| ≤ c(t, x) + σ|s|,(1.5)
sf(t, x, s) ≥ 0,(1.6)

for almost every (t, x) ∈ Q, for every s ∈ R, where c is a positive function in L2(Q) and σ > 0.
In this work we are studying the existence of weak solution of the quasilinear parabolic problem
(1.1) using the truncation technique and the Schauder fixed point theory see [2],[10].
This result generalizes an analog of this work were made by N. Alaa and all [2] with an increase
of γ but given L1 and, on the other hand, to extend it to the case f(t, x, u) in L1 data.
To prove our main result, we will proceed by three steps: the first step, we approximate the
problem by the fixed point method. In the second step, we estimate on the approximate
solution.
In the last step, we study the asymptotic behaviour of the approximate solution as n go to
infinity we use the equi-integrable theorem.
The difficulty of this work lies in the fact that the variational method can not be used because
f is in L1.

2. Main results

Before tackling the main problem, we clearly state our definition of weak solution to the
quasilnear parabolic problem.

Definition 2.1. Let 1 < p ≤ N a fixed number with p > 2 − 1

N
. We call u a weak solution

of the problem (1.1) in Q, if u ∈ L2([0, T ] , H1
0 (Ω)) ∩ C([0, T ] , L1(Ω)), u(0, .) = u0 for all

ϕ ∈ C∞0 (Q) we have

(2.1)
∫

Q

− uϕtdxdt+

∫

Q

A(u)∇u∇ϕdxdt+

∫

Q

λ |u|p−2 uϕdxdt =

∫

Q

f(t, x, u)ϕdxdt,

where f(t, x, u) and γ(u) ∈ L1(Q).

The main result of this paper is the following theorem:

Theorem 2.2. Under the assumptions (1.2) − (1.6) satisfies, then for all u0 ∈ L1(Ω), there
exists a weak solution u of problem (1.1) in the sense defined in (2.1).

Now we shall prove our main result.

3. Proof of the Theorem 2.2

The proof of the theorem consists in the three steps in the first step we solve an approximate
problem, in the second step we get estimates on the approximated solutions these estimates
allow us and in the third step to go to the limit.
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3.1. First step: solving an approximated problem. For n ∈ N let us define the following
approximation of un,0 and fn, γn. Set

(3.1) fn(t, x, p) =

{
f(t, x, p) if |f(t, x, p)| ≤ n,
n sign(f(t, x, p)) if |f(t, x, p)| > n.

(3.2) γn(p) =

{
γ(p) if |γ(p)| ≤ n,
0 if |γ(p)| > n.

And (un,0)n∈N be sequences in L2(Ω) such that (un,0)→ (u0) in L1(Ω).

Remark
|fn(t, x)| ≤ n and |γn(p)| ≤ n,
so γn, fn ∈ L∞(Q) ↪→ Lp(Q), p > n ≥ 1.

We consider the sequence of approximate problems

(3.3)





(un)t − div(A(un)Oun) + γn(un) = fn(t, x, un) in Q = [0, T ]× Ω,
un = 0 on Σ = [0, T ]× ∂Ω,
un(0, .) = un,0(.) in Ω.

We show that for all n ∈ N∗ and fn(t, x, un) ∈ L2(Q), un,0 ∈ L2(Ω) there exists un ∈
L2([0, T ] , H1

0 (Ω))∩C([0, T ] , L2(Ω)) and (un)t ∈ L2([0, T ] , H−1(Ω)) verify for all v ∈ L2([0, T ] , H1
0 (Ω)),

we have

T∫

0

〈(un)t, v〉H−1(Ω),H1
0 (Ω) dt+

T∫

0

∫

Ω

A(un)∇un∇vdxdt

+

T∫

0

∫

Ω

γn(un)vdxdt =

T∫

0

∫

Ω

fn(t, x, un)vdxdt,

(3.4)

We will show the existence of a weak solution of the problem (3.3) by the classical Schauder’s
fixed point theorem. Let us show now that the nonlinear application F defined by

F : L2([0, T ] , H1
0 (Ω)) → L2([0, T ] , H1

0 (Ω))
vn 7→ F (vn) = G ◦ Fn(vn) = vn,

solution of
T∫

0

〈(vn)t, ϕ〉H−1(Ω),H1
0 (Ω) dt+

T∫

0

∫

Ω

A(vn)∇vn∇ϕdxdt

+

T∫

0

∫

Ω

γn(vn)ϕdxdt =

T∫

0

∫

Ω

fn(t, x, vn)ϕdxdt,∀ϕ ∈ L2(]0, T [, H1
0 (Ω)),

is completely continous application of L2([0, T ] , H1
0 (Ω)) in L2([0, T ] , H1

0 (Ω)).
Where the operator (Fn) is defined by

Fn : L2([0, T ] , H1
0 (Ω)) → L2([0, T ] , H−1(Ω))

vn 7→ Fn(vn) = (vn)t + div(A(vn)Ovn) = fn(t, x, vn)− γn(vn) = f̃n(vn),
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is continous and compact (natural injection), and G is the Green’s operator defined by :

G : L2([0, T ] , H−1(Ω)) → L2([0, T ] , H1
0 (Ω))

f̃n(vn) = wn 7→ G(wn) = vn,

is continous because the operator of Green is isomorphism of L2([0, T ] , H−1(Ω)) in L2([0, T ] , H1
0 (Ω)).

Therefore, the operator F = G ◦ Fn is completely continous.
The existence of a fixed point of G ◦Fn is an immediate consequence of Schauder’s fixed point
theorem.
To apply the theorem of Schauder’s, you have to choose a closed convex generally suitable a
closed ball

C =
{
v ∈ L2([0, T ] , H1

0 (Ω)) such that ‖v‖L2([0,T ],H1
0 (Ω)) ≤M

}
,

where M is a constant to be determined subsequently, is therefore,

F : L2([0, T ] , H1
0 (Ω)) → L2([0, T ] , H1

0 (Ω))
vn 7→ F (vn) = vn,

transforms the bounds of L2([0, T ] , H1
0 (Ω)) into relatively compact sets in L2([0, T ] , H1

0 (Ω)),
the set C is a closed convex of L2([0, T ] , H1

0 (Ω)) and bounded, so F is relatively compact.
We show that R(F ) = {F (vn), ∀vn ∈ L2([0, T ], H1

0 (Ω))} is bounded in L2([0, T ] , H1
0 (Ω)), as

F (vn) is solution of the variational problem.

T∫

0

〈(F (vn))t, ϕ〉H−1(Ω),H1
0 (Ω) dt+

T∫

0

∫

Ω

A(vn))∇F (vn)∇ϕdxdt

+

T∫

0

∫

Ω

γn(vn)ϕdxdt =

T∫

0

∫

Ω

fn(t, x, vn)ϕdxdt,∀ϕ ∈ L2([0, T ] , H1
0 (Ω)).

(3.5)

We choose F (vn) = ϕ in (3.5), we obtain

T∫

0

〈F (vn)t, F (vn)〉H−1(Ω),H1
0 (Ω) dt+

T∫

0

∫

Ω

A(vn)∇F (vn)∇F (vn)dxdt

+

T∫

0

∫

Ω

γn(vn)F (vn)dxdt =

T∫

0

∫

Ω

fn(t, x, vn)F (vn)dxdt.

(3.6)

By using Cauchy-Schwarz inequality in (3.6), we have

1

2
‖vn(T )‖22 −

1

2
‖vn(0)‖22 +

T∫

0

∫

Ω

A(vn) |∇F (vn)|2 dxdt ≤
∫

Q

|γn(vn)| |F (vn)| dxdt

+

∫

Q

|fn(t, x, vn)| |F (vn)| dxdt,
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by, using generalized Young’s inequality and the hypothesis (1.3), we get

α

T∫

0

∫

Ω

|∇F (vn)|2 dxdt ≤ 1

2
‖vn(0)‖22 + ‖fn(t, x, vn)‖L2(Q) ‖F (vn)‖L2([0,T ],H1

0 (Ω))

+ ‖γn(vn)‖L2(Q) ‖F (vn)‖L2(]0,T [,H1
0 (Ω))

≤ 1

2
‖vn(0)‖22 +

1

2ε
‖fn(t, x, vn)‖2L2(Q) +

ε

2
‖F (vn)‖2L2([0,T ],H1

0 (Ω))

+
1

2ε
‖γn(vn)‖2L2(Q) +

ε

2
‖F (vn)‖2L2([0,T ],H1

0 (Ω)) .

We conclude that,

(α− ε) ‖F (vn)‖2L2(]0,T [,H1
0 (Ω)) ≤

1

2
‖vn(0)‖22 +

1

2ε
‖fn(t, x, vn)‖2L2(Q)(3.7)

+
1

2ε
‖γn(vn)‖2L2(Q) .

Therefore the sequence (F (vn))n∈N is bounded in L2([0, T ] , H1
0 (Ω)). Next we show that

{(F (vn)t)n∈N , F (vn) ∈ R(F )} is bounded in L2([0, T ], H−1(Ω)). We have

T∫

0

〈F (vn)t, F (vn)〉H−1(Ω),H1
0 (Ω) dt+

T∫

0

∫

Ω

A(vn)∇F (vn)∇F (vn)dxdt

+

T∫

0

∫

Ω

γn(vn)F (vn)dxdt =

T∫

0

∫

Ω

fn(t, x, vn)F (vn)dxdt.

By using hypothesis (1.2) and (1.4), we get

‖F (vn)t‖L2([0,T ],H−1(Ω)) ‖F (vn)‖L2([0,T ],H1
0 (Ω))

≤ β ‖F (vn)‖2L2([0,T ],H1
0 (Ω)) + ‖fn(t, x, vn)‖L2(Q) ‖F (vn)‖L2([0,T ],H1

0 (Ω))

+ ‖γn(vn)‖L2(Q) ‖F (vn)‖L2([0,T ],H1
0 (Ω)) .

Eventually,

‖F (vn)t‖L2([0,T ],H−1(Ω))

≤ β ‖F (vn)‖L2([0,T ],H1
0 (Ω)) + ‖fn(t, x, vn)‖L2(Q) + ‖γn(vn)‖L2(Q) .

Therefore the sequence {(F (vn)t)n∈N , F (vn) ∈ R(F )} is bounded in L2([0, T ] , H−1(Ω)). As
(F (vn))n∈N is bounded in L2([0, T ] , H1

0 (Ω)) and the sequence (F (vn)t)n∈N is bounded in L2([0, T ] , H−1(Ω))
according to the lemma of compactness then gives thatR(F ) is relatively compact in L2([0, T ] , L2(Ω)),
which gives the compactness of F . For (3.7), we have F (C) ⊂ C, it is enough to take

M =
1

2(α− ε) ‖vn,0‖
2
2 +

1

2(α− ε)ε ‖fn(t, x, vn)‖2L2(Q) +
1

2(α− ε)ε ‖γn(vn)‖2L2(Q) .

Therefore the hypotheses of Schauder’s fixed point theorem are satisfied consequently there
exists at least one solution to the problem in the set C.
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3.2. Second step: a priori estimates. In thise step we proof the estimates of solution
(un)n∈N the problem (3.3).
For a given constant k > 0 we define the truncated function Tk : R→ R as

Tk(s) =




−k for s < −k,
s for |s| ≤ k,
k for s > k.

For a function u = u(x), x ∈ Ω, we define the truncated function Tku pointwise, i.e., for every
x ∈ Ω the value of (Tku) at x is just Tk(u(x)). Observe that

(3.8) lim
k→0

1

k
Tk(s) = sign(s) =





1 if s > 0,
0 if s = 0,
−1 if s < 0.

Let the function Φk : R→ R such that, Φk ≥ 0, Φk ∈ L∞(R) and |Φk(x)| ≤ k |x|,

Φk(x) =

x∫

0

Tk(s)ds.

(Φk it is the primitive function of Tk). We have

〈vt, Tk(v)〉 =
d

dt



∫

Ω

Φk(v)dx


 ∈ L1(Q).

What implies that
T∫

0

〈vt, Tk(v)〉 =

∫

Ω

Φk(v(T ))dx−
∫

Ω

Φk(v(0))dx,

where 〈., .〉 denotes the duality between H−1(Ω) and H1
0 (Ω).

We choose v = Tk(un) as test function in (3.4), obtaining





∫
Ω

Φk(un(T ))dx−
∫
Ω

Φk(un(0))dx+
T∫
0

∫
Ω

A(un)∇un∇Tk(un)dxdt

+
∫
Q

γn(un)Tk(un)dxdt =
∫
Q

fn(t, x, un)Tk(un)dxdt,∀Tk(un) ∈ L2([0, T ] , H1
0 (Ω)).

By using hypothesis (1.3), we obtain

T∫

0

∫

Ω

An(un)∇un∇Tk(un)dxdt =

T∫

0

∫

Ω

A(un)∇un∇unT
′
k(un)dxdt ≥ α

T∫

0

∫

Ω

|∇un|2 T
′
k(un)dxdt ≥ 0,

and by sf(t, x, s) ≥ 0, we have

T∫

0

∫

Ω

γn(un)Tk(un)dxdt ≤
∫

Ω

Φk(un(0))dx,
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on the other hand, we have γn(un) = λ|un|p−2un ≥ 0 because p > 1 then,
T∫

0

∫

Ω

A(un)∇un∇Tk(un)dxdt ≤
∫

Ω

Φk(un(0))dx,∀Tk(un) ∈ L2([0, T ] , H1
0 (Ω)).

and, ∫

Q

fn(t, x, un)Tk(un)dxdt ≤
∫

Ω

Φk(un(0))dx.

For all t ∈ [0, T ], we definite the set QT by

QT = {(t, x) ∈ Q : un > k} ∪ {(t, x) ∈ Q : un < −k} ∪ {(t, x) ∈ Q : −k ≤ un ≤ k} .
By thise definition of QT , we have




∫
QT

An(un)∇un∇unT ′k(un)dxdt =
∫

{(t,x)∈Q : |un|≤k}
A(un)∇un∇unT ′k(un)dxdt

≤
∫
Ω

Φk(un(0))dx,

so we have, ∀k ∈ R+,

(3.9)
∫

{(t,x)∈Q : |un|≤k}

|A(un)∇un∇un| dxdt ≤ k
∫

Ω

|un,0| dx.

We will now prove that, ∫

{(t,x)∈Q : |un| ≤ k}

A(un)∇un∇undxdt ≤ k ‖u0‖L1(Ω) ,

by hypothesis (1.3), we obtain

(3.10) α

∫

{(t,x)∈Q : |un| ≤ k}

|∇un|2 dxdt ≤ k ‖u0‖L1(Ω) ,

on the other hand, by (3.8), we obtain:

(3.11)
∫

{(t,x)∈Q:|un|>0}

|γn(un)| dxdt ≤ ‖u0‖L1(Ω) ,

and,

(3.12)
∫

{(t,x)∈Q:|un|>0}

|fn(t, x, un)| dxdt ≤ ‖u0‖L1(Ω) .

New we prove that (un)n∈N is bounded in C
(
[0, T ] , L1 (Ω)

)
.

T∫

0

〈(un)t , Tk (un)〉H−1(Ω),H1
0 (Ω) dt ≤

∫

QT

γn(un)Tk(un)dxdt+

∫

QT

fn(t, x, un)Tk(un)dxdt,

we have also, for every t in [0, T ]
∫

Ω

Φk(un(t))dx−
∫

Ω

Φk(un(0))dx ≤ k

∫

{(t,x)∈Q:|un|>k}

|γn(un)| dxdt+ k

∫

{(t,x)∈Q:|un|>k}

|fn(t, x, un)| dxdt,
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we now that Φk(s) ≥ |s| − 1 we deduce that, for every t in [0, T ],
∫

Ω

|un(t)| dx ≤
∫

Ω

1dx+ k

∫

{(t,x)∈Q:|un|>k}

|γn(un)| dxdt+ k

∫

{(t,x)∈Q:|un|>k}

|fn(t, x, un)| dxdt+ k ‖un,0‖L1(Ω)

≤ meas(Ω) + C ‖u0‖L1(Ω) ,

which proves that un is bounded in L2
(
[0, T ] , H1

0 (Ω)
)
and in C

(
[0, T ] , L1 (Ω)

)
, on the other

hand, we get ∫

Ω

Φk(un(T ))dx+ α

∫

QT

|∇Tk (un)|2 dxdt ≤
∫

Ω

Φk(un(0))dx,

∫
Ω

Φk(un(T )) ≥ 0 and for all s ≥ 0, |Φk(s)| ≤ k |s|, we have

(3.13) α

∫

QT

|∇Tk (un)|2 dxdt ≤ k ‖u0‖L1(Ω) .

That Tk (un) is bounded in L2
(
[0, T ] , H1

0 (Ω)
)
for every k > 0.

Now we prove that div (A(vn)∇un) is bounded in L2
(
[0, T ] , H−1 (Ω)

)
. By using hypothesis

(1.4) and Cauchy-Schwarz inequality, we get

|〈−div (A(un)∇un, Tk (un)〉| =

∣∣∣∣∣∣∣

∫

QT

A(un)∇un∇Tk (un) dxdt

∣∣∣∣∣∣∣
≤ β ‖∇un‖L2(Q) ‖∇Tk (un)‖L2(Q)

≤ C.

Since

‖−div (A(un)∇un)‖2L2([0,T ],H−1(Ω)) =

T∫

0

‖−div (A(un)∇un)‖2H−1(Ω) dt

=

T∫

0

sup
‖Tk(un)‖

L2([0,T ],H1
0(Ω))≤1

|〈−div (A(un)∇un) , Tk (un)〉|

≤ C.

We know that div (A(un)∇un) is bounded in L2
(
[0, T ] , H−1 (Ω)

)
.

Finally, denoting (un)t = fn(t, x, un) + div (A(un)∇un) − γn(un) we observe that fn +
div (A(un)∇un) + γn(un) is bounded in L2

(
[0, T ] , H−1 (Ω)

)
+ L1(Q) and by (3.10), (un)n∈N

is bounded in L2
(
[0, T ] , H1

0 (Ω)
)
.

3.3. Third step: passage to the limit. We show that (un)n∈N the solution approache the
problem (3.4) converges to the solution of the original problem (2.1). By the estimate (3.11)
and (3.12), we see that (γn(un))n∈N is bounded in L1(Q) and (fn(t, x, un))n∈N is bounded in
L1(Q). The sequence (un)n∈N is bounded in L2([0, T ] , H1

0 (Ω)) and also the sequence ((un)t)n∈N
is bounded in L2([0, T ] , H−1(Ω)) + L1(Q). Therefore, using Aubin-type compactness lemma
[16], that (un)n∈N is relatively compact in L2([0, T ] , L2(Ω)), thus we can deduce

un → u in L2([0, T ] , L2(Ω)),
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on the other hand (un)n∈N is bounded in L2([0, T ] , H1
0 (Ω)) then, we can extracts a subsequence,

still denoted by (un)n∈N such that:

un → u weakly in L2([0, T ] , H1
0 (Ω)),

and
∇un → ∇u weakly in (L2([0, T ] , L2(Ω)))N,

and ((un)t)n∈N is bounded in L2([0, T ] , H−1(Ω)) and in L1(Q) we can extract a subsequence,
still denoted by ((un)t)n∈N such that

(un)t → ut weakly in L2([0, T ] , H−1(Ω)),

and either un,0 a sequence of L2(Ω) such that

‖un,0‖L1(Ω) ≤ ‖u0‖L1(Ω) ,

and

(3.14) un,0 −→ u0 strongly in L1(Ω).

We will show that

(3.15) γn(un)→ γ(u) strongly in L1(Q),

we have,

‖γn(un)‖L1(Q) =

∫

Q

|γn (un)| dxdt

≤
∫

{(t,x)∈Q:|un|>0}

|γn (un)| dxdt

≤ ‖u0‖L1(Ω) .

Then,

sup

∫

Q

γn (un) dxdt < +∞,

knowing that,

0 ≤
∫

Q

|γn(un)| dxdt, because p > 1,

for each (t, x) ∈ Q, we pose
lim

n→+∞
inf γn(un) = γ(u),

by the Fateau’s lemma, we have γ(u) in L1(Q).
As that

un → u weakly in L2([0, T ] , L2(Ω)),

on the other hand, we have

∇un → ∇u in (L2([0, T ] , L2(Ω)))N,
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we note that

∫

{(t,x)∈Q:|γn(un)|≤n}

|γn(un)− γ(u)| dxdt

≤
∫

Q

|γn(un)− γ(u)| dxdt→ 0 when n→ +∞.

So,

γn(un)→ γ(u) when n→ +∞ on {(t, x) ∈ Q : |γn(un)| ≤ n} .

For every n ∈ N, we have

meas({(x, t) ∈ Q : |γn(un)| > n}) ≤ 1

n

∫

Q

|γn(un)| dxdt

≤ 1

n
‖γn(un)‖L1(Q)

≤ c

n
→ 0 when n→ +∞,

thus {(t, x) ∈ Q : |γn(un)| > n} is the zero measurement set where (γn(un))n∈N may not con-
verge to (γ(u)), which shows that

γn(un)→ γ(u) almost everywhere in Q.

For proof (3.15) we show that the sequence (γn(un))n∈N is equi-integrable.
Let δ > 0 and A be a measurable subset belonging to [0, T ]× Ω, we define the following sets,

Bδ = {(t, x) ∈ Q : |un| ≤ δ},(3.16)
Fδ = {(t, x) ∈ Q : |un| > δ},(3.17)

∫

A

|γn(un)| dxdt =

∫

A∩Bδ

|γn(un)| dxdt+

∫

A∩Fδ

|γn(un)| dxdt

≤
∫

A∩Bδ

|γn(un)| dxdt+ ‖u0‖L1(Ω)

→ 0 when meas(A)→ 0.

Using the generalized Hölder’s inequality and Poincaré inequality, we get
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∫

A

|γn(un)| dxdt ≤



∫

A

|λ|2 dxdt




1
2



∫

Bδ

|un|(p−1)2 dxdt




1
2

+

∫

A

|γn(un)| dxdt

≤
(
|λ|2meas(A)

) 1
2



∫

Bδ

|∇un|2 dxdt




(p−1) 1
2

+

∫

A

|γn(un)| dxdt

≤
(
|λ|2meas(A)

) 1
2

(
k

α

(
‖u0‖L1(Ω)

))(p−1) 1
2

+

∫

A

|γn(un)| dxdt

→ 0 when meas(A)→ 0.

Which shows that (γn(un))n∈N is equi-integrable. By using Vitali’s theorem, we obtain:

(3.18) γn(un)→ γ(u) strongly in L1(Q).

Now we prove that
fn(t, x, un)→ f(t, x, u) strongly in L1(Q),

we have,

‖fn(t, x, un)‖L1(Q) =

∫

Q

|fn(t, x, un)| dxdt

≤
∫

{(t,x)∈Q:|un|>0}

|fn(t, x, un)| dxdt

≤ ‖u0‖L1(Ω) ,

then,

sup

∫

Q

fn(t, x, un)dxdt < +∞.

By (1.6) knowing that, 0 ≤ fn(t, x, un) for each (t, x) ∈ Q, we pose

lim
n→+∞

inf fn(t, x, un) = f(t, x, u),

by the Fateau’s lemma, we have f(t, x, u) in L1(Q). As that

un → u weakly in L2([0, T ] , L2(Ω)),
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on the other hand, we have

∇un → ∇u in (L2([0, T ] , L2(Ω)))N,

we note that,
∫

{(t,x)∈Q:|fn(t,x,un)|≤n}

|fn(t, x, un)− f(t, x, u)| dxdt

≤
∫

Q

|fn(t, x, un)− f(t, x, u)| dxdt→ 0 when n→ +∞.

So,

fn(t, x, un)→ f(t, x, u) when n→ +∞ on {(t, x) ∈ Q : |f(t, x, u)| ≤ n} .

For every n ∈ N, we have

meas({(x, t) ∈ Q : |fn(t, x, un)| > n}) ≤ 1

n

∫

Q

|fn(t, x, un)| dxdt

≤ 1

n
‖fn(t, x, un)‖L1(Q)

≤ c

n
→ 0 when n→ +∞,

thus {(t, x) ∈ Q : |fn(t, x, un)| > n} is the zero measurement set where (fn(t, x, un))n∈N may
not converge to (f(t, x, u)), which shows that

fn(t, x, un)→ f(t, x, u) almost everywhere in Q.

For proof (3.15) we show that the sequence (fn(t, x, un))n∈N is equi-integrable.
By the definitions of the sets (3.16) and (3.17), we get

∫

A

|fn(t, x, un)| dxdt =

∫

A∩Bδ

|fn(t, x, un)| dxdt+

∫

A∩Fδ

|fn(t, x, un)| dxdt

≤
∫

A∩Bδ

|fn(t, x, un)| dxdt+ ‖u0‖L1(Ω)

→ 0 when meas(A)→ 0.

Let δ > 0 be large enough. Using the generalized Hölder’s inequality and Poincaré inequality,
we have

∫

A

|fn(t, x, un)| dxdt =

∫

A∩Bδ

|fn(t, x, un)| dxdt+

∫

A∩Fδ

|fn(t, x, un)| dxdt,
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therefore

∫

A

|fn(t, x, un)| dxdt ≤
∫

A∩Bδ

(c(x, t) + σ |un|) dxdt+

∫

A∩Fδ

|fn(t, x, un)| dxdt

≤
∫

A

c(x, t)dxdt+ σ

∫

Q

|∇Tδ(un)| dxdt

+

∫

A∩Fδ

|fn(t, x, un)| dxdt

≤
∫

A

c(x, t)dxdt+ σ (meas(A))
1
2



∫

QT

|∇Tδ(un)|2 dxdt




1
2

+

∫

A∩Fδ

|fn(t, x, un)| dxdt

≤ K1 + C1

(
k

α
‖u0‖L1(Ω)

) 1
2

+

∫

A∩Fδ

1

|un|
|unfn(t, x, un)| dxdt

≤ K2 +

∫

A∩Fδ

1

δ
|unfn(t, x, un)| dxdt

≤ K2 +
1

δ



∫

A∩Fδ

|un|2 dxdt




1
2


∫

A∩Fδ

|fn(t, x, un)|2 dxdt




1
2

→ 0 when meas(A)→ 0.

Which shows that (fn(t, x, un))n∈N is equi-integrable. By using Vitali’s theorem, we get

(3.19) fn(t, x, un)→ f(t, x, u) strongly in L1(Q).

Since un ∈ C([0, T ] , L2(Ω)), in order to see that u ∈ C([0, T ] , L1(Ω)), we only have to prove
that

un → u in C([0, T ] , L1(Ω)).
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To do this fix τ ∈ [0, T ]. Choosing Tk(un−um)1{[0,τ [} as test function in the weak formulation
of un and −Tk(un − um)1{[0,τ [} in that of um with τ ≤ T , we get

∫

Ω

Φk(un(τ)− um(τ))dx−
∫

Ω

Φk(un(0)− um(0))dx

+

τ∫

0

∫

Ω

A(un − um)∇(un − um)∇Tk(un − um)dxdt

+

τ∫

0

∫

Ω

λ
[
|un|p−2 un − |um|p−2 um

]
Tk(un − um)dxdt

=

τ∫

0

∫

Ω

(fn(t, x, un)− fn(t, x, um))Tk(un − um)dxdt,

where Φk is the primitive of Tk such that Φk(0) = 0,

∫

Ω

Φk(un(τ)− um(τ))dx ≤
τ∫

0

∫

Ω

λ
∣∣∣|un|p−2 un − |um|p−2 um

∣∣∣ dxdt

+k

τ∫

0

∫

Ω

|fn(t, x, un)− fn(t, x, um)| dxdt

+k

∫

Ω

|un,0 − um,0| dx.

Next, we divide this inequality by k and the Monotone convergence theorem and let k go to 0,
to obtain

∫

Ω

|un(τ)− um(τ)| dx ≤
τ∫

0

∫

Ω

λ
∣∣∣|un|p−2 un − |um|p−2 um

∣∣∣ dxdt

+

τ∫

0

∫

Ω

|fn(t, x, un)− fn(t, x, um)| dxdt

+

∫

Ω

|un,0 − um,0| dx.
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Hence,

sup
τ∈[0,T ]

∫

Ω

|un(τ)− um(τ)| dx ≤
τ∫

0

∫

Ω

λ
∣∣∣|un|p−2 un − |um|p−2 um

∣∣∣ dxdt

+

τ∫

0

∫

Ω

|fn(t, x, un)− fn(t, x, um)| dxdt

+

∫

Ω

|un,0 − um,0| dx.

Thus, it follows from (3.14), (3.19) and (3.18), that sequence (un) is a Cauchy sequence in
C
(
[0, T ] , L1 (Ω)

)
then un → u in C([0, T ] , L1(Ω)). Finally,

(3.20) u ∈ C([0, T ] , L1(Ω)).

4. Conclusion

We conclude by the main purpose from our work. In this article we demonstrated the
existence of entropy solution for quasi-linear parabolic problem with L1 data, we also proved
that the problem admits a weak solution according to Schauder fixed point theorem. For
unbounded nonlinearities satisfying suitable conditions, we established equi-integrablity and
we derived a compactness results to be able to pass to the limit to get the desired result.

References

[1] Amal Aarab, Noureddine Alaa, Hamza Khalfi; Generic reaction-diffusion model with application to image
restoration and enhancement. Electronic Journal of Differential Equations, Vol. 2018 (2018), No. 125,
pp. 1-12.

[2] Noureddine Alaa, Mohammed Aitoussous, Walid Bouari, Djemaia Bensikaddour; Image restoration using
a reaction-diffusion process. Electronic Journal of Differential Equations 2014 (2014), no. 197, 1-12.

[3] N. Alaa Solutions faibles d’équations paraboliques quasi-linéaires avec données ini- tiales mesures, Ann.
Math. Blaise Pascal 3(2) (1996), 1-15.

[4] P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J.L. Vazquez. An L1 theory of existence
and uniqueness of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 22 (1995), 241-273.

[5] D. Blanchardand F. Murat; Renormalised solutions of nonlinear parabolic problems with L1 data, Exis-
tence and uniqueness, Proc. Roy. Soc. Edinburgh Sect. A 127 (1997), 1137-1152.

[6] L. Boccardo, T. Gallouët; Nonlinear elliptic and parabolic equations involving measure data, J. Funct.
Anal. 87 (1989), no. 1, 149-169.

[7] H. Brezis; Analyse fonctionnelle. Théorie et applications. Masson, 1993.
[8] A. Dall’Aglio, L. Orsina; Nonlinear parabolic equations with natural growth conditions and L1 data,

Nonlinear Anal., 27, (1996), 59-73.
[9] A. Dall’Aglio, Approximated solutions of equations with L1 data. Application to the H-convergence of

quasi-linear parabolic equations, Ann. Mat. Pura Appl. 170 (1996), 207-240.
[10] T. Gallouët; Equations elliptiques semilineaires avec, pour le non lineaire, une condition de signe et une

dépendance sous quadratique par rapport au gradient., Annales de la faculté des sciences de Toulouse 5e

serie, tome 9, n◦2(1988), p161-169.
[11] T. Gallouët and J-M.Morel; Resolution of a semilinear equation in L1, 1983.
[12] J.-L. Lions; Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod et Gauthier-

Villars, 1969.
[13] P.L. Lions and F. Murat, Solutions renormalisées d’équations elliptiques non linéaires.
[14] A. Prignet; Problémes elliptiques et paraboliques dans un cadre non variationnel. UMPA-ENS Lyon 46

allée d’italie, 69364 Lyon Cedex 07. France.

15 482



[15] A. Porretta; Existence results for nonlinear parabolic equations via strong convergence of trauncations,
Ann. Mat. Pura ed Applicata, 177, (1999), 143-172.

[16] J. Simon;Compact sets in Lp(0, T; B), Ann. Mat. Pura Appl, 146, (1987), 65-96.

16 483



 

INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 

3-5 July 2019, Istanbul, Turkey 

 

The Relation Between Chebyshev Polynomials and Jacobsthal and Jacobsthal Lucas Sequences 

 

Sukran UYGUN 

1 Mathematics, Gaziantep University, Turkey 

E-mail:  suygun@gantep.edu.tr 

 

Abstract 

The main purpose of this paper is to establish some new properties of Jacobsthal, Jacobsthal Lucas 

sequences in terms of Chebyshev polynomials. Moreever, some connections among Jacobsthal, 

Jacobsthal Lucas sequences are revealed by using the power of some special matrices. And also the 

properties of Jacobsthal, Jacobsthal Lucas numbers are obtained by using the identities of Chebyshev 

polynomials 

Keywords: Chebhshev polynomials Jacobsthal and Jacobsthal Lucas Sequences.  

 

1. Introduction  

For any integers, a, b, p; q are integers, Horadam sequence was defined by Horadam in 

1965, denoted by  , by the following recursive relation 

 

 
 

where .  For special choices of a; b, p; q special integer sequences are obtained as 

, classic Fibonacci sequence 

 

, classic Lucas sequence 

 

, generalized Fibonacci sequence 

 

, classic Jacobsthal sequence 

 

, generalized Jacobsthal sequence 

 

, classic Jacobsthal Lucas sequence 

 

, classic Pell sequence 

 

, classic Pell Lucas sequence 

 

, first kind Chebyshev polynomials 

 

, second kind Chebyshev polynomials 
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 The humankind encountered special integer sequences with Fibonacci in 1202. The importance of 

Fibonacci sequence was not understood in that century. But now, for rich applications of special 

sequences, there are many studies on it. For example, the Golden Ratio, the ratio of two consecutive 

Fibonacci numbers is used in Physics, Art, Architecture, Engineering. We can also encounter Golden 

Ratio so many areas in nature. One of these special integer sequences is Horadam sequence. It is very 

important since we can obtain almost all of other special integer sequences by using Horadam sequence. 

Horadam sequence was studied by Horadam, Carlitz, Riordan and other some mathematicians since 1960. 

Horadam intended to write the first paper which contains the properties of Horadam sequences in [1,2]. In 

1969, the relations between Chebyshev fuctions and Horadam sequences were investigated in [3]. In [6], 

Udrea found relations with Horadam sequence and Chebyshev polynomials. In [7], Mansour found a 

formula for the generating functions of powers of Horadam sequence. Horzum and Koçer studied the 

properties of Horadam polynomial sequences in [8]. The authors established identities involving sums of 

products of binomial coe¢ cients and coe¢ cients that satisfy the general second order linear recurrence in 

[9]. In [10], the authors obtained Horadam numbers with positive and negative indices by usind 

determinants of some special tridiagonal matrices. In [11], the authors established formulas for odd and 

even sums of generalized Fibonacci numbers by matrix methods. In [12], some properties of the 

generalized Fibonacci sequence were obained by matrix methods. 

 One of important special integer sequences is Jacobsthal sequence because of its application in 

computer science. In [4,13,14,15], you can find some properties and generalizations of Jacobsthal 

sequence. 

 

2. Preliminaries 

Definition 1 For any  integers, the Jacobsthal  , the Jacobsthal Lucas  and 

generalized Jacobsthal   sequences are defined by 

 

 

          

         
 

respectively. 

 

Definition 2 For any  integers, the first kind    and second kind   Chebyshev 

polynomials are defined by the following recurrence relation 

 

 
 

 
 

respectively. 
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The Binet formula for the Horadam sequence is given by 

 

 

where X = b-   , Y = b-  ;  being the roots of the associated characteristic equation of the 

Horadam sequence  . From the definition of Horadam sequence we obtain the quadratic 

characteristic equation for   as  , with roots  and  defined by 

 

 

 
The summation, diference and product of the roots are given as 

 

 
 

The Binet formula for the Jacobsthal, Jacobsthal Lucas and generalized Jacobsthal sequences are given by 

respectively 

 

 
 

 
 

 
 

where X = b+a  , Y =b - 2a. 

We define  for the Horadam sequence  . 

Similarly, for the first kind Chebyshev polynomials  , and for the second kind 

Chebyshev polynomials . We know that 

 
 

3. Main Results 

Proposition 3 Jacobsthal, Jacobsthal Lucas, generalized Jacobsthal numbers are obtained by using 

Chebyshev polynomials as 
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Proof. The roots of characteristic equation for Horadam sequence are   are demonstrated 

by 

 

 
 

where . By De Moivre formula it is written that 

n

n 2

n

n 2

q (cos n i sinn )

q (cos n i sinn ).

  

  

 

 

 

 

We know that for , Jacobsthal and Jacobsthal Lucas  numbers are obtained by Horadam 

sequence. Then 
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By using the well- known property of Chebyshev polynomials as   it is 

easily seen that 
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Corollary 4: Jacobsthal, Jacobsthal Lucas, generalized Jacobsthal numbers can also be demonstrated by 

using Chebyshev polynomials as 

 

 
 

 
 

 
 

Proof. 
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Theorem 5 Generalized Jacobsthal numbers are denoted by using the first kind Chebyshev polynomials 

as 

 

 
where  . 

 

Proof. It is easily seen that  . By using this equality and the third part of 

the proof of Proposition 3, it is obtained that 

 
 

 

         
    

 

 
 

 

 

n / 2
2

n

n / 2
2

22

2 22 2

n / 2
2

n / 2
2

n / 2
2

2

2i
J X Y cos n i( X Y )sinn

2i ( X Y )cos n i( X Y )sinn
X Y i X Y

3 X Y i X Y X Y i X Y

2i 2 E ( X Y )cos n i( X Y )sinn

3 2 E 2 E

2i 2 E
cos cos n sin sinn

3

2i 2 E
cos( n )

3

2i

 
 

 

 

   

 

     

 
      

 
       

  
  

 

 

 



n / 2

n

2 E
T ( )

3 n


 

 

 

Theorem 6: The following relation between generalized Jacobsthal numbers and Jacobsthal numbers is 

satisfied 
2 n

n n r s n r n s r sJ J J J E( 2i ) j j .      

Proof. By using Theorem 5, it is written that 
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By substracting the equalities, 
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For the other side of the equality, it is obtained that 

 

 
The equality of the results is proved the theorem. 

The applications of the theorem for the Jacobsthal sequence is 

 

 

 

 

The applications of the theorem for the Jacobsthal Lucas sequence 

 

 

 
 

Lemma 7:  It is well-known that if  ,  then 

 

 
 

being the roots of the associated characteristic equation of the matrix A  

 

 
 

Corollary 8:  If   is a 2x2 square matrix is chosen whose trace is a + d = 1 and determinant 

is det(A) = -2, then 

 

 
 

 

Proof. We know that the quadratic characteristic equation for the Jacobsthal sequence is  

 with roots  = 2 and  = -1. If  a 2x2 square matrix is chosen whose trace is a+d = 1 

and determinant is det(A) = -2, then we will get  
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Theorem 9 If    is a 2x2 square matrix whose trace a+d = 1 and determinant det(A) = -2, 

then another relation with Jacobsthal sequence and Chebyshev polynomials is established by using the 

matrix of A as 

 

 

 
 

Proof. We know that 

 

 
 

By  Corollary 8 , we get 

 

 

 
 

By using the property between Chebyshev polynomials . it is obtained that 
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Example 10:  Let  , then 

 

 

 

By the equality of the determinant of matrices, we get 

 

 
 

 

Example 11:  Let  , then       

 

 

By the equality of the determinant of matrices, we get  

 
n 1 2

n 2 n 1 n2 j j j .


     

 

Example 12:  Let 
1 1

A
2 0

 
  
 

, then 

n

n 2 n

n n 1

n n 1

2 j j1 1 1 1 1 0
j j

2 j j2 0 2 0 0 1







      
                 

 

By the equality of the determinant of matrices, we get the same result with the previous example. 

 

Theorem 13 By using the properties of Chebyshev polynomials in [16], we get some properties of 

Jacobsthal and Jacobsthal Lucas sequences as 

 

a)  

b)  

c)  

 

d)  

 

e)  

f)  

g)  

 

Proof. 

 a) Let .  By using this property ,    

it is obtained that 
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b) Similarly 

 

 
 

 
 

r 1 n r
n 1

2 22 2
n 1 n 2r 1 r n r 1j j ( 2 ) j ( 2 ) j .

 
 

         

 

 

c) 

 

 
 

 
 

 

 
 

 
 

d) By using this property ( = and the equality of the results we prove the statement. 
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(  

 

and 

 

 
 

 
 

e) 

 

 
 

 
 

 
 

f) 

 
 

 
 

 
 

g) 
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4. Conclusion 

In this paper we find some properties of Jacobsthal and Jacobsthal Lucas sequences by using the 

properties of Chebyshev polynomials. And some relationships between Jacobsthal and Jacobsthal Lucas 

sequences and Chebyshev polynomials are obtained. 
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Abstract 

In this study, we define some tridigional matrices with elements depending on a polynomial. By 

using the determinant of these matrices, the elements of p(x)-Jacobsthal and p(x)-Jacobsthal Lucas 

polynomial sequences with even or odd indices are generated. Then we construct the inverse matrices of 

these tridigional matrices. So, some properties of p(x)-Jacobsthal and p(x)-Jacobsthal Lucas polynomial 

sequences are proved by a new way. We also investigate eigenvalues of these matrices. 

Keywords: p(x)-Jacobsthal sequence, p(x)-Jacobsthal Lucas sequence, Eigenvalues. 

 

1. Introduction  

In this study, we define some tridigional matrices with elements depending on a polynomial. By 

using the determinant of these matrices, the elements of p(x)-Jacobsthal and p(x)-Jacobsthal Lucas 

polynomial sequences with even or odd indices are generated. Then we construct the inverse matrices of 

these tridigional matrices. So, some properties of p(x)-Jacobsthal and p(x)-Jacobsthal Lucas polynomial 

sequences are proved by a new way. We also investigate eigenvalues of these matrices. 

Special integer sequences are encountered in different branches of science, art, nature, the 

structure of our body. So it is a popular topic in applied mathematics. One of the special integer 

sequences are the Jacobsthal sequence. By changing the initial conditions but preserving the recurrence 

relation the Jacobsthal Lucas sequence is obtained. The recurrence relations for Jacobsthal and Jacobsthal 

Lucas sequences are n n 1 n 2j j 2 j   ; 
0 1j 0, j 1  and n n 1 n 2c c 2c   ; 

0 1c 2, c 1  for n 2 ; 

respectively in [1]. There are some generalizations of these integer sequences. For example, a 

generalization for Jacosthal and Jacobsthal Lucas sequences is given by  

 

n n 1 n 2 0 1

n n 1 n 2 0 1

j ( s,t ) j ( s,t ) 2 j ( s,t ) , j ( s,t ) 0, j ( s,t ) 1

c ( s,t ) c ( s,t ) 2c ( s,t ) , c ( s,t ) 2, c ( s,t ) s

 

 

   

   
 

 

for n 2 in [2]. In this paper, a new generalization of Jacobsthal and Jacobsthal Lucas sequences by using 

polynomials as called p(x)-Jacobsthal polynomial p.nJ ( x )and p(x)-Jacobsthal Lucas polynomial p.nC ( x )  

are used [3]. There is a long tradition of using matrices and determinants to study special integer 

sequences. For example Cahill et. al. [6] found some types of the tridiagonal matrices whose determinants 

are equal to Fibonacci numbers. There are many known connections between determinants of tridiagonal 

matrices and the Fibonacci and Lucas numbers. The authors constructed the symmetric tridiagonal family 

of matrices whose determinants form any linear subsequence of the Fibonacci and numbers Lucas 

numbers in [7]. Feng, [8] found some Fibonacci identities via determinant of tridiagonal matrix. Seibert 

et. al [9] gave new results about factorization of Fibonacci and Lucas numbers. J. J´ına, P. Trojovsk´ used 

the determinants of some tridiagonal matrices with Fibonacci numbers in [10]. Falcon, in [11] used 
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determinants of some tridiagonal generating matrices to obtain results about k-Fibonacci numbers. In 

[12], the authors studied on certain matrices whose entries are Pell, Pell-Lucas, k-Pell and k-Pell-Lucas 

quaternions. In [13], Catarino constructed certain matrices with h(x)-Fibonacci polynomials. In [14], the 

authors studied on generalized Jacobsthal and Jacobsthal-Lucas polynomials by using certain matrices. 

 

 

2. Preliminaries 

Definition 1 Assume that p(x) is a polynomial with real coefficeients and n 2  any integer. The p(x)-

Jacobsthal polynomial p.n n{ J ( x )}  sequences are described by using the following recurrence relation  

p ,n p ,n 1 p ,n 2j ( x ) j ( x ) 2 j ( x ) ,                   (1)

     

with initial conditions are p ,0 p ,1j ( x ) 0, j ( x ) 1  ;and the p(x)-Jacobsthal Lucas polynomial p.n n{ C ( x )}   

sequences are described by using the following recurrence relation 

p ,n p ,n 1 p ,n 2c ( x ) c ( x ) 2c ( x ) ,                   (2) 

with initial conditions are p ,0 p ,1c ( x ) 2, c ( x ) p( x )   Some of the first p(x)-Jacobsthal polynomial 

sequences and p(x)-Jacobsthal Lucas polynomial sequences are given in the following tables 

 

2

3

4 2

5 3

6 4 2

7 5 3

n p( x ) Jacobsthal polynomials

1 1

2 p( x )

3 p ( x ) 2

4 p ( x ) 4 p( x )

5 p ( x ) 6 p ( x ) 4

6 p ( x ) 8 p ( x ) 12 p( x )

7 p ( x ) 10 p ( x ) 24 p ( x ) 8

8 p ( x ) 12 p ( x ) 40 p ( x ) 32 p( x )







 

 

  

  

 

 

2

3

4 2

5 3

6 4 2

7 5 3

8 6 4 2

n p( x ) Jacobsthal Lucas polynomials

1 p( x )

2 p ( x ) 4

3 p ( x ) 6 p( x )

4 p ( x ) 8 p ( x ) 8

5 p ( x ) 10 p ( x ) 20 p( x )

6 p ( x ) 12 p ( x ) 36 p ( x ) 16

7 p ( x ) 14 p ( x ) 56 p ( x ) 56 p( x )

8 p ( x ) 16 p ( x ) 80 p ( x ) 148 p ( x ) 32
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Special integer sequences are obtained with special numerical choices for p(x)-Jacobsthal 

polynomial and p(x)-Jacobsthal Lucas polynomial sequences. For example, if p(x) = 1; then we get 

classic Jacobsthal and Jacobsthal Lucas sequences. If p(x) = k; then we get classic k-Jacobsthal and k-

Jacobsthal Lucas sequences. 

Let us consider a tridigional matrix as 

 

n

a b

c d e

c d e

A

c d e

c d

 
 
 
 
 

  
 
 
 
 
 

 

Then 

detA1 = a 

detA2 = d detA1 - bc 

detA3 = d detA2 - ce detA1. 

 

By continuing this prodecure, it is computed that 

 

detAn = d detAn-1 - ce detAn-2       (3) 

 

The inverse of a matrix A can be obtained by the formula 
T

1 ( cof ( A ))
A

det A

   where T( cof ( A))  is the 

transpose of the cofactor matrix A or adjugate matrix of A [4]. Let T a nonsingular tridigional matrix as 

1 1

1 2 2

2 3 3

n 2 n 1 n 1

n 1 n

a b

c a b

c a b

T

c a b

c a

  



 
 
 
 
 

  
 
 
 
 
 

 

Usmani [5] gave a formula for the inverse of this matrix T-1 = (ti,j) as 
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1i j( 1) b ...b if i ji j 1 i 1 j 1
nti, j 1i j( 1) c ...b if i jj i 1 j 1 i 1
n

 


 


    


    


     (4)

  

where i
 verify the recurrence relation a b ci i i 1 i 1 i 1 i 2       for i=2,…,n with the initial 

conditions 1, a0 1 1   . Observe that det(T )n   

i verify the recurrence relation a b ci i i 1 i i i 2     for i=n-1,…,1 with the initial conditions 

1, a .n 1 n n     

If the tridigional matrix is given in the following form 

n

a b

c a b

c a b

A

c a b

c a

 
 
 
 
 

  
 
 
 
 
 

 

then the eigenvalues of this matrix are 

r
a 2 bc cos( ), r 1,2,...,n.r

n 1


   


            (5) 

3. Main Results 

3.1 Some properties of p(x)-Jacobsthal polynomials by tridiagonal matrices Aj,n(p) 

 

Theorem 2 Assume that j ,nA ( p ) is a nxn tridiagonal matrix defined as 

j ,n

p( x ) 2

1 p( x ) 2

1
A ( p )

2

1 p( x )

 
 


 
 

  
 
 
 

 

     (6) 

Then the determinant of j ,nA ( p )  

j ,n p ,n 1det( A ( p )) J ( x ).       (7) 
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Proof. The proof is made by mathematical induction method applied on n. For n = 1, we have 

j ,1 p ,2det( A ( p )) J ( x ) p( x ).   Assume that j ,n 1 p ,ndet( A ( p )) J ( x ),  and j ,n p ,n 1det( A ( p )) J ( x ) for  n 

> 2. Then 

 

j ,n 1 j ,n j ,n 1

p,n 1 p,n p,n 2

det( A ( p )) p( x )det( A ( p )) 2( 1)det( A ( p ))

p( x )J ( x ) 2J ( x ) J ( x ).

 

 

  

  
 

 

p(x)-Jacobsthal polynomials are also obtained by using the following tridiagonal matrix with complex 

entries. Assume that j ,nA ( p ) is a nxn matrix defined as 

j ,n

p( x ) 2i

i p( x ) 2i

i
A ( p )

2i

i p( x )

 
 
 
 

  
 
 
 
 

 

 

Then it is easily seen that the determinant of j ,nA ( p ) is also (n+1)th p(x)-Jacobsthal polynomial. 

j ,n p ,n 1det( A ( p )) J ( x ).  

For the inverse of j ,nA ( p ) ; by using (4), it is obtained that 

i i i

i p ,i 1 j p ,( n j 2 )

a p( x ), b 2, c 1,

1
J , J

p( x )
   

   

 
 

Therefore the inverse of j ,nA ( p )  

i j j i

p ,i p ,n j 1

p ,n 11

j ,n ( i , j )

p , j p ,n i 1

p ,n 1

1
( 1) 2 J ( x )J ( x ) , if i j

J ( x )
( A ( p ))

1
J ( x )J ( x ) , if i j

J ( x )

 

 



 




 


 




 

The elements of the cofactor matrix are given as 

 

p,i p ,n j 1

j ,n ( i , j ) i j i j

p , j p ,n i 1

J ( x )J ( x ), if i j
cof ( A ( p ))

( 1) 2 J ( x )J ( x ), if i j

 

 

 


 

 

 

 

It is well-known that 
n 1

j ,n j ,n j ,ncof ( A ( p )) adj( A ( p )) ( A ( p ))


  . So n 1

j ,n p ,n 1cof ( A ( p )) J ( x )

 .  By 

using cofactor matrix, we get some properties of p(x)-Jacobsthal polynomials. 
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For n = 2; we get 

p ,1 p ,2 p ,1 p ,1

j ,2

p ,1 p ,1 p ,2 p ,1

2 2

p ,1 p ,2 p ,3

J ( x )J ( x ) J ( x )J ( x )
cof ( A ( p ))

2J ( x )J ( x ) J ( x )J ( x )

2J ( x ) J ( x ) J ( x )




 

 

For n = 3; we get 

 

p ,1 p ,3 p ,1 p ,2 p ,1 p ,1

j ,3 p ,1 p ,2 p ,2 p ,2 p ,1 p ,2

p ,1 p ,1 p ,1 p ,2 p ,1 p ,3

2 2 2

p ,2 p ,3 p ,1 p ,4

p ,3 p ,1

J ( x )J ( x ) J ( x )J ( x ) J ( x )J ( x )

cof ( A ( p )) 2J ( x )J ( x ) J ( x )J ( x ) J ( x )J ( x )

4J ( x )J ( x ) 2J ( x )J ( x ) J ( x )J ( x )

J ( x )( J ( x ) 2J ( x )) J ( x )

J ( x ) 2J ( x )

p( x )

 



 


2

2 2

p ,3 p ,1 p ,4

2 2

p ,3 p ,1 p ,4

( J ( x ) 2J ( x )) J ( x )

J ( x ) 4J ( x ) p( x )J ( x )

 
  

 

 

 

 

For n = 4; we get 

 

p ,4 p ,3 p ,2

2

p ,3 p ,2 p ,3 p ,2 p ,2

2j ,4

p ,2 p ,2 p ,2 p ,3 p ,3

p ,2 p ,3 p ,4

4 2 3 2 2

p ,2 p ,4 p ,2 p ,3 p ,4 p ,2 p ,3 p ,4

J ( x ) J ( x ) J ( x ) 1

2J ( x ) J ( x )J ( x ) J ( x ) J ( x )
cof ( A ( p ))

4J ( x ) 2J ( x ) J ( x )J ( x ) J ( x )

8 4J ( x ) 2J ( x ) J ( x )

2 J ( x )J ( x ) 8J ( x )J ( x )J ( x ) J ( x )J ( x )J






 

  2 2 2

p ,2 p ,3

3 4 3

p ,2 p ,3 p ,4 p ,3 p ,5

( x ) 8J ( x )J ( x )

4J ( x )J ( x )J ( x ) 4J ( x ) J ( x )



  

 

 

Generalizing the results, it is obtained that 
2 2

p ,n 1 p ,n p ,2n 1J ( x ) 2J ( x ) J ( x )    for even integer n and 

2 2

p ,n 1 p ,n 1 p ,2nJ ( x ) 4J ( x ) p( x )J ( x )    for odd integer n . 

Eigenvalues of the matrices j ,nA ( p )construct the spectra of the j ,nA ( p ) . By using the property 

(5), the sequence of the spectra of j ,nA ( p )  for n = 1,2,3,4,5 is 
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r

r

r

r

n 1 p( x )

n 2 p( x ) 2i, p( x ) 2i

n 3 p( x ) 2i, p( x ), p( x ) 2i

n 5 p( x ) 6i, p( x ) 2i, p( x ), p( x ) 6i, p( x ) 2i









  

    

    

      

 

 

The sequence of the spectra of the matrices j ,n j ,nA ( p ) A (1) for n = 2,3,4,5,6  is computed by 

using Matlab Programme as 

 

 

 

2

3

4

5

1  1.414213562373095i;  1  1.414213562373095i    

1  2i;  1;  1  2i

1  2.288245611270738i;  1  2.288245611270738i

;  1  0.874032048897642i;  1 –  0.874032048897642i

1  2.449

s

48974278317

s

s
7

s





 
  
 



 

 

 





6

i;  1  2.449489742783177i;  1

;  1  1.414213562373095i;  1  1.414213562373095i

1  2.548324784527070i;  1 –  2.548324784527070i;  1  0.629384245425896i

;  1  0.629384245425896i;  1  1.763495467579 6
s

8

 


 


 

 







9i;  1 –  1.763495467579869i

 
 
 

 

 

Evidently, the product of eigenvalues is the determinant of the matrix and the sum of eigenvalues 

is the trace of the matrix. Therefore 
n

i j ,n i j ,n p ,n 1
i 1

tr( A ( p )) np( x ), det( A ( p )) J ( x )  


      

and by using (5) this equality is satisfied. 

 
n

p,n 1
j 1

j
J ( x ) ( p( x ) 2 2i cos( ))

n 1






 


 

 

3.2 Some properties of even p(x)-Jacobsthal polynomials by tridiagonal matrices j ,nE ( p )  

Assume that j ,nE ( p )  is a nxn tridiagonal matrix defined as 

2

2

j ,n

2

p( x ) 0

2 p ( x ) 4 2

2 p ( x ) 4
E ( p )

2

2 p ( x ) 4
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Then the determinant of j ,nE ( p ) is computed by (3) as 

j ,n p ,2ndet( E ( p )) J ( x ).  

For the inverse of j ,nE ( p ) the values are computed as 

 
2

1 i

1 1

i i

i p ,2i j p ,2( n j 2 )

a p( x ), a p ( x ) 4, i 2

b 0, c 2,

b c 2, i 1

1
J , J , j 1

p( x )
   

   

 

 

  

 

Therefore the inverse of j ,nE ( p )  

 

1 i j j i

j ,n ( i , j ) p ,2i 2 p ,2( n j 1 )

p ,2n

i j

p ,2 j 2 p ,2( n i 1 )

p ,2n

0, if i 1

1
( E ( p )) ( 1) 2 J ( x )J ( x ) , if i j

p( x )J ( x )

1
2 J ( x )J ( x ) , if i j

p( x )J ( x )

  

  



  







  





 

 

If all entries of the matrix are real and nonnegative, then the matrix is called positive. All eigenvalues are 

real if the matrix positive and tridiagonal [4]. Therefore all eigenvalues of j ,nE ( p ) are real if p( x ) 0 . If 

we choose p(x) = 1; then the sequence of the spectra of the matrix j ,nE ( p ) for n = 2, 3, 4, 5, 6 is given in 

the following result with the help of Matlab programme 

 

 

 

 

2

3

4

5

6

s

s

s 1; 2.171572875253810; 5 ; 7.828427124746191

1; 1.763932022500209; 3.763932022500209; 6.236067977499790
s

; 8.236067977499776

s 1; 1:53589838486224

1 ;5    

1;

6; 2:999999999999994; 5;

 3;  7

 







 
  
 

  7; 8:464101615137750

 

Evidently 
n

2

i j ,n i j ,n p ,2n
i 1

tr( E ( p )) ( n 1)( p ( x ) 4 ) p( x ), det( E ( p )) J ( x ). 


         

If we take care of the spectra, one of the eigenvalues is p(x) = 1 for all positive integer n.  And the 

minimum eigenvalue of spectra converges to p(x) = 1; the maximum eigenvalue of spectra converges to 
2p ( x ) 8 . 
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3.3 Some properties of odd p(x)-Jacobsthal polynomials by tridiagonal matrices j ,nO ( p )  

Assume that j ,nO ( p )  is a nxn tridiagonal matrix defined as 

2

2

2

j ,n

2

p ( x ) 2 2

2 p ( x ) 4 2

2 p ( x ) 4
O ( p )

2

2 p ( x ) 4

 
 

 
 

  
 
 
 

  

. 

Then the determinant of j ,nO ( p ) is given by (3) as 

j ,n p ,2n 1det( O ( p )) J ( x ).  

For the inverse of j ,nO ( p ) the values are computed as 

 
2 2

1 i

i i

i p ,2i 1

j p ,2( n j 2 )

a p ( x ) 2, a p ( x ) 4, i 2

b c 2, i 1

J , i 1

1
J , j 1

p( x )







 

    

  

 

 

 

Therefore the inverse of j ,nO ( p )  

 

i j j i

p ,2i 1 p ,2( n j 1 )

p ,2n 11

j ,n ( i , j )

i j i j

p ,2 j 1 p ,2( n i 1 )

p ,2n 1

1
( 1) 2 J ( x )J ( x ) , if i j

p( x )J ( x )
( O ( p ))

1
( 1) 2 J ( x )J ( x ) , if i j

p( x )J ( x )

 

  



 

  




 


 
 



 

Matrices j ,nO ( p )are symmetric so the eigenvalues are real. The sequence of the spectra of the 

matrices j ,nO ( p ) for n = 2, 3, 4, 5, 6 is given in the following result with the help of Matlab programme 
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2

3

4

5

s 1.76393202250021; 6.236067977499790

s 1.396124528390323; 4.109916264174743; 7.493959207434934g

s 1.241229516856366; 3; 5.694592710667723; 8.064177772475910g

1.162028105542011; 2.380557064218860;

 

s









6

 4.430740646906859

; 6.661660052007548; 8.365014131324726

1.116232730295792; 2.005957007315595; 3.581580451829856
s

; 5.482146721021292; 7.272258986924621; 8.541824102612837

 
 
 

 
  
 

 

Evidently 
n

2 2

i j ,n i j ,n p ,2n 1
i 1

tr( O ( p )) ( n 1)( p ( x ) 4 ) ( p ( x ) 2 ), det( O ( p )) J ( x ).  


         _ 

If we take care of the spectra, minimum eigenvalue converges to p(x) = 1. The maximum eigenvalue of 

spectra converges to 2p ( x ) 8 .  

 

Theorem 3 If i is an eigenvalue of the matrix j ,nO ( p ) , then i 2 p( x ) 1    is an eigenvalue of 

j ,nO ( p 1) . 

 

Proof. i  is an eigenvalue of j ,nO ( p ) , so 

j ,n i

2

i

2

i

O ( p ) I

( p 1) 2 ( 2 p 1) 2

2 2

2

2

2 ( p 1) 2 ( 2 p 1)







 

    

    

 

We substitute p for p(x). 

 

 

3.4 Some properties of p(x)-Jacobsthal Lucas polynomials by tridiagonal matrices 
c,nA ( p )  

Assume that 
c,nA ( p ) is a nxn tridiagonal matrix defined as 
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c ,n

p( x ) 4

1 p( x ) 2

1
A ( p )

2

1 p( x )

 
 


 
 

  
 
 
 

 

 

Then the determinant of 
c,nA ( p )  

c ,n p ,ndet( A ( p )) C ( x ).  

p(x)-Jacobsthal Lucas polynomials are also obtained by using the following symmetric matrix with 

complex entries. Assume that 
c,nA ( p ) is a nxn tridiagonal matrix defined as 

 

c ,n

p( x ) 4i

i p( x ) 2i

i
A ( p )

2i

i p( x )

 
 
 
 

  
 
 
 
 

 

 

Then it is easily seen that the determinant of 
c,nA ( p ) is also n.th p(x)-Jacobsthal Lucas polynomial. 

c ,n p ,ndet( A ( p )) C ( x ).  

The sequence of the spectra of the matrices 
c,n c,nA ( p ) A (1) for n = 2,3,4,5,6  is computed by 

using Matlab Programme as 

 

 

 

2

3

4

5

s

s 1.449489742783179; 1; 3.449489742783181

1.613125929752755;  0.082392200292394
s

; 2.082392200292394; 3.613125929752755

1.689994047855828; 0.662507751109815; 1
s

; 2.6625

1

0

; 3

77

  

51109814; 3.





 




 
 



6

689994047855830

1.732050807568877;  1; 0.267949192431123
s

; 1.732050807568878; 3; 3.732050807568875

 
 
 

 
  
 

 

 

Evidently, 
n

i c ,n i c ,n p ,n
i 1

tr( A ( p )) np( x ), det( A ( p )) C ( x ) 
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For the inverse of j ,nA ( p ) ; by using (4), it is obtained that  

 

i

1 i

i

0 i p ,i

j p ,( n j 2 )

a p( x ), i 1

b 4, b 2, i 2

c 1, i 1

1, C , i 2

J j 1

 

  

 

  

  

  

 

 

Therefore the inverse of 
c,nA ( p )  is the following matrix 

i j j i 1

p ,i 1 p ,n j 1

p ,n

1 j j

p ,n j 1

p ,n

1

c ,n ( i , j ) p ,n

p ,n

p ,n i 1

p ,n

p , j 1 p ,n i 1

p ,n

1
( 1) 2 C ( x )J ( x ) , if i j

C ( x )

1
( 1) 2 J ( x ) , if i 1, j 2

C ( x )

1
( A ( p )) J ( x ) , if i j 1

C ( x )

1
J ( x ) , if j 1, i 2

C ( x )

1
C ( x )J ( x ) , if i j

C ( x )

  

  



 



 

  






   




  



 









 

The elements of the cofactor matrix are given as 

 
i j i j 1

p , j 1 p ,n i 1

1 i i

p ,n i 1

c ,n ( i , j ) p ,n

p ,n j 1

p ,i 1 p ,n j 1

( 1) 2 C ( x )J ( x ), if i j

( 1) 2 J ( x ), if j 1, i 2

cof ( A ( p )) J ( x ), if i j 1

J ( x ), if i 1, j 2

C ( x )J ( x ), if i j

  

  



 

 

  

 

  


  


 



 

 

For i = j = 1; we must take care of 0 1  when constructing the matrix. By using cofactor matrix, we get 

some properties of p(x)-Jacobsthal and p(x)-Jacobsthal Lucas polynomials. 

 

For n = 2; we get 
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p,2 p ,1

c,2

p ,1 p ,1 p ,1

2 2 2

p,1 p ,2 p ,1 p ,1 p ,2 p ,1 p ,2

J ( x ) J ( x )
cof ( A ( p ))

4J ( x ) C ( x )J ( x )

C ( x )J ( x )J ( x ) 4J ( x ) J ( x ) 4J ( x ) C ( x ).




   

 

For n = 3; we get 

 

p ,3 p ,2 p ,1

c ,3 p ,2 p ,1 p ,2 p ,1 p ,1

p ,1 p ,1 p ,1 p ,2 p ,1

2 2

p ,3 p ,1 p ,1 p ,2 p ,3 p ,1 p ,1 p ,2

2

p ,1 p ,1 p ,2 p ,2

J ( x ) J ( x ) J ( x )

cof ( A ( p )) 4J ( x ) C ( x )J ( x ) C ( x )J ( x )

8J ( x ) 2C ( x )J ( x ) C ( x )J ( x )

2J ( x )C ( x )J ( x ) C ( x )J ( x )C ( x )J ( x )J ( x )

8C ( x )J ( x )J ( x ) 4C

 



 

 

 

2

p ,1 p ,2

2

p ,3 p ,1 p ,2 p ,3 p ,1 p ,2

2

p ,1 p ,2 p ,2 p ,2

2 2

p ,3 p ,2 p ,3 p ,2 p ,3

( x )J ( x )J ( x )

2J ( x )C ( x ) C ( x )J ( x )C ( x )J ( x )

8C ( x )J ( x ) 4C ( x )J ( x )

p ( x ) 2J ( x ) C ( x )J ( x ) 8 4C ( x ) C ( x )

 

 

    

 

For n = 4; we get 

 

p ,4 p ,3 p ,2 p ,1

p ,3 p ,1 p ,3 p ,1 p ,2 p ,1 p ,1

c ,4

p ,2 p ,1 p ,2 p ,2 p ,2 p ,2 p ,1

p ,1 p ,1 p ,2 p ,1 p ,3 p ,1

2

p ,2

J ( x ) J ( x ) J ( x ) J ( x )

4J ( x ) C ( x )J ( x ) C ( x )J ( x ) C ( x )J ( x )
cof ( A ( p ))

8J ( x ) 2C ( x )J ( x ) C ( x )J ( x ) C ( x )J ( x )

16 4C ( x )J ( x ) 2C ( x )J ( x ) C ( x )J ( x )

4C (






 

 2 4 2

p ,3 p ,3 p ,4 p ,2 p ,3

3 3 2

p ,2 p ,4 p ,3 p ,3 p ,2 p ,3 p ,4

2

p ,2 p ,3 p ,3 p ,2 p ,3 p ,3 p ,4

4 2 3

12 10 8

x )J ( x ) 2 p C ( x )J ( x ) 8 p C ( x )J ( x )

2 p C ( x )J ( x ) 8 p C ( x )J ( x ) pC ( x )J ( x )J ( x )

4 pC ( x )C ( x )J ( x ) pC ( x )C ( x )J ( x )J ( x )

( p  + 8p  + 8)

= p + 24p + 216p  +

 

  

 



6 4 2 896p  + 1728p  + 1536p  + 512.

 

 

 

3.5 Some properties of even p(x)-Jacobsthal Lucas polynomials by tridiagonal matrices 
c,nE ( p )  

Assume that 
c,nE ( p ) is a nxn tridiagonal matrix defined as 
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2

2

2

c,n

2

p ( x ) 4 4

2 p ( x ) 4 2

2 p ( x ) 4
E ( p )

2

2 p ( x ) 4

 
 

 
 

  
 
 
 

  

 

Then the determinant of 
c,nE ( p )is computed by (3) as 

c ,n p ,2ndet( E ( p )) C ( x ).  

For the inverse of 
c,nE ( p )the values are computed as 

 
2

i

1 1

i i

0 i p ,2i

j p ,2( n j 2 )

a p ( x ) 4, i 1

b 4, c 2,

b c 2, i 1

1, C , i 1

1
J , j 1

p( x )

 

  

  

 

  

  

 

 

 

 

The sequence of the spectra of the matrix j ,nE ( p ) for n = 2, 3, 4, 5, 6 is given in the following result with 

the help of Matlab programme 

 

 

2

3

4

5

s

s 1.535898384862244; 5; 8.464101615137755

1.304481869954852; 3.469266270539637
s

; 6.530733729460359; 8.695518130045146

1.195773934819386; 2.648858990830108; 2.648

5 

85

;5

89

    

90830108
s

; 5.00





 
  
 



6

0000000000002; 7.351141009169893; 8.804226065180611

1.136296694843728; 2.171572875253808; 3.964723819589911
s

; 6.035276180410079; 7.828427124746194; 8.863703305156262

 
 
 

 
  
 

 

Evidently 
n

2

i c ,n i c ,n p ,2n
i 1

tr( E ( p )) n( p ( x ) 4 ), det( E ( p )) C ( x ). 


       

Theorem 4 If i is an eigenvalue of the matrix 
c,nO ( p ) , then i 2 p( x ) 1    is an eigenvalue of 

c,nO ( p 1) . 
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3.6 Some properties of odd p(x)-Jacobsthal Lucas polynomials by tridiagonal matrices 
c,nO ( p )  

Assume that 
c,nO ( p )  is a nxn tridiagonal matrix defined as 

2

2

c,n

2

p( x ) p( x )

2 p ( x ) 4 2

2 p ( x ) 4
O ( p )

2

2 p ( x ) 4

 
 


 
 

  
 
 
 

 

 

Then the determinant of 
c,nO ( p ) is given by (3) as 

c ,n p ,2n 1det( O ( p )) C ( x ).  

For the inverse of j ,nO ( p ) the values are computed as 

 
2

1 i

1 1

i i

0 i p ,2i 1

j p ,2( n j 2 )

a p( x ), a p ( x ) 4, i 2

b 2, c p( x ),

b c 2, i 2

1, C , i 1

1
J , j 1

p( x )

 





 

   

  

  

  

 

 

 

The sequence of the spectra of the matrices 
c,nO ( p ) for n = 2, 3, 4, 5, 6 is given in the following result 

with the help of Matlab programme 

 

 

 

2

3

4

5

s 0.550510257216821; 5.449489742783178

s 0.454392291525188; 3.376939054880550; 7.168668653594259

0.427137177276751; 2.432687766807676;
s

5.234519519401236; 7.905655536514336

0.418527169600049
s

 



 
  
 



6

; 1.942058836757595; 3.98664701329108

; 6.375568580727081; 8.277198399624194

0.415676628845785; 1.659356259675156; 3.190740313743504;
s

5.158619116030256; 7.087162176915573; 8.488445504789716

 
 
 

 
  
 

 

Evidently 
n

2

i j ,n i c ,n p ,2n 1
i 1

tr( O ( p )) ( n 1)( p ( x ) 4 ) p( x ), det( O ( p )) C ( x ).  


         

The maximum eigenvalue of spectra converges to 2p ( x ) 8 .  
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4. Conclusion 

In this study we define six different tridigional matrices whose determinants are p(x)-Jacobsthal, 

even, odd Jacobsthal, Jacobsthal Lucas polynomials. By using the  finding inverse matrices property of 

tridigional matrices, we obtain some property of these sequences. 
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Abstract 

The papers considers new theoretical methods of the Rician data analysis in comparison with 
the traditional filtration techniques at solving the signal’s analysis and noise suppression tasks. These 
so-called two-parameter methods provide the joint calculation of both the required signal value and 
the noise dispersion value. The joint computing of the Rice distribution’s parameters allows efficient 
reconstruction of the informative component of the signal against the noise background. One of the 
main advantages of the proposed approach consists in the absence of restrictions connected with any 
a priori suppositions inherent to the traditional techniques of data analysis based on the so-called 
one-parameter approximation implying that the noise parameter of the signal to be investigated is 
known a priori. The developed two-parameter approach to data analysis is efficiently applicable to a 
wide spectrum of scientific and applied tasks, in which the signal to be analyzed is described by the 
Rice statistical model.  

  
 
Keywords: Rice distribution, Probability density, Likelihood function, Two-parameter analysis; Signal-to-noise ratio .  
 
 
1. Introduction  

At the random signals’ processing, in particular, at handling the problem of noise suppression, recently an 

approach is being widely developed based on the statistical methods such the method of moments, the 

maximum likelihood method, etc. Obviously, at applying such an approach the peculiarities of the 

statistical distribution of the data being analyzed have a substantial significance for the possibility of the 

task solution. The Rice distribution describes a wide range of information processing problems when the 

output signal is composed as a sum of the required initial signal and a random noise generated by many 

independent normally-distributed summands of zero mean value. The variable to be measured and 

analyzed is an amplitude, or an envelope of the resulting signal which is known to obey to the Rice 

distribution, [1].  

The so-called two-parameter approach to the Rician signals’ analysis consists in solving the task of joint 

determination of both parameters of the Rice distribution. In contrast to the traditional one-parameter 

approximation this approach is free of limitations that are inherent to the one-parametric approximation 
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based upon the supposition that one of the task statistical parameters – the noise dispersion – is known a 

priori [2, 3]. That’s why the technique of the two-parametric task solution that have become a subject of  

the present paper ensures much more correct estimation of the required values. 

2. Preliminaries 

A significant interest to solving a task of joint estimation of both parameters of the Rice distribution has 

appeared in 60-th years of the 20th century because of the understanding that in conditions of Rice 

distribution only the knowledge of both Rician parameters allows efficient reconstructing the initial 

required signal against the noise background.  In paper [2] there was first formulated the significance of 

solving the two-parameter task applicably to radar signals’ analysis. However this task is connected with 

finding the solution of a system of two essentially nonlinear equations what is conjugated with 

considerable difficulties of both the theoretical and the computational character. Partly due to this reason 

in [2] the mathematical consideration of the task is limited by the determination of the lower bounds for 

the standard deviation of these parameters’ estimations on the basis of the Cramer-Rao inequality.   

Later the simplified methods of the Rician data analysis have been elaborated in the conditions of the so-

called one-parameter approximation consisting in estimating only one of the two unknown parameters – 

the signal value, in supposition that the second parameter – the noise dispersion – is known a priori. 

The fundamental papers considering the problem within the one-parameter approximation are the papers 

[3] and [4], in which the required signal parameter is being estimated on the basis of the method of 

moments and the maximum likelihood techniques, respectively.  

However in practice the condition when the Gaussian noise dispersion is known a priori  never takes 

place and so is a severe restriction of the one-parameter approach what in accepted by practically all the 

authors working in this area. 

Therefore the theoretical problem of joint estimation of both Rician parameters without any a priori 

conditions has remained unsolved for a few decades, since the 60-th years of the 20th century.  

In [5-7] the authors of the present paper first develop an accurate theory of Rician signals statistical 

processing: new mathematical methods have elaborated and strictly substantiated for the so-called two-

515



 
INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 
3-5 July 2019, Istanbul, Turkey 

 
parameter approach to Rician data analysis. This approach implies solving the task of Rician data analysis 

be means of joint signal and noise estimation.  

The present paper provides a study of the two-parameters statistical methods’ efficiency in comparison 

with the traditional techniques.   

3. Comparative analysis of the two-parameter approach to Rician data processing and the 

traditional techniques  

In the tasks of the Rician signal analysis the value to be measured is an amplitude 2 2
Re Imx x x= +  of the 

complex variable with the real Rex  and the imaginary Imx  components characterized by their mean value 

ν  and distorted by the normally distributed Gaussian noise with the dispersion 2σ . These conditions 

characterize many tasks of processing the signals of various physical nature. The amplitude 

2 2
Re Imx x x= +   obeys to the Rice distribution with the probability density function:  

 
( )

2 2
2

02 2 2, exp ,
2

x x xP x Iν νν σ
σ σ σ

 +  = ⋅ − ⋅   
  

 (1) 

where ( )I zα  is the modified Bessel function of the first type of the order α .  The task to be solved 

consists in determining the unknown parameters ν  and 2σ  on the basis of data measured in the samples. 

In virtue of the specific peculiarities of the Rice statistical distribution the Rician data analysis demands a 

development of the particular methods and the corresponding mathematical apparatus. 

As it is known at processing the Gaussian data an efficient and traditional filtration tool is the data 

averaging. However, as it has been noticed above, in contrast to the case of the Gaussian distribution an 

average value of the Rician signal x  does not coincide to the requires useful signal’s value ν . This is 

illustrated in Fig.1 where the average Rician signal’s value x  that is depicted by a curved line while the 

useful signal’s value  ν  depends is depicted by a straight line going from the coordinates’ origin.  The 

average Rician signal’s value x  as a function of the Rician parameters v  and σ  is expressed by the 

following formula: 

 ( )2 2
1/2/ 2 / 2x Lσ π ν σ= ⋅ ⋅ −  (2) 
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In (2) 1/2 ( )L z  is a Laguerre polynomial.  
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Fig. 1. An illustration of the noncoincidence of the Rician signal’s average value x  and the Rician 

parameter ν , shown in dependency on the signal-to-noise ratio /SNR ν σ=  
 

The plots in Fig.1 correspond to the fixed values of parameter σ : 1σ = , so the values at the abscissa axis 

correspond to the signal-to-noise ratio /SNR ν σ= .  

Thereby if one applies the traditional filtration methods by averaging to the Rician data then in a range of 

small values of signal-to-noise ratio just the smoothing of the true values of the signal takes place.  

 
4. Theoretical aspects and numerical testing results  

 
The particular theoretical methods having been developed within the two-parameter analysis of the Rician 

signal in [5-7] differ in underlying statistical principles they are based upon. These methods include the 

method of moments based on the measured data for the random value’s 1-st and 2-nd moments, 

designated as MM12; the method of moments based on measurements of the 2-nd and the 4-th moments, 

designated as MM12; the two-parametric maximum likelihood method, designated as ML. Each of these 

methods is based on solving the corresponding equations’ system for the sought for parameters ν  and σ , 

[7]. The system of equation for method MM12 looks as follows:  

 

2

2
2 2 2 2

4
0 12 2 2 2

2 2 2

/ 2 1 ,
2 4 2 4

2 .

e I I x

x

ν
σ ν ν ν νσ π

σ σ σ σ

σ ν

−       
⋅ ⋅ + + =       

       


+ =

  (3) 

Method MM24 is rather an original and simple in its realization with equations’ system for method 

ММ24 as: 

,x ν

1σ =

/SNR ν σ=
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2 2 2

4 4 2 2 4

2

8 8

x

x

σ ν

σ σ ν ν

 = ⋅ +


= ⋅ + ⋅ ⋅ +
 (4) 

For ML method we have the following system of equations: 

 
( ) ( )

( )

2 2
1 0

1

2 2 2

1 / / /

/ 2.

n

i i i
i

x I x I x
n

x

ν ν σ ν σ

σ ν
=

 = ⋅ ⋅ ⋅

 = −

∑
  (5) 

The existence and the uniqueness of the systems (3)-(5) solutions have been strictly proved. An important 

theoretical result consists in the fact that for each above mentioned two-parameter method the 

corresponding system of two nonlinear equations for two variables ν  and σ  can be reduced to one 

equation for just one variable. This allows an essential decreasing of the computational resources needed 

for the task solving, cutting them down to the level requires just at one-parameter approximation.  

In Fig.2 there are provided some results of computer simulation of the task of the Rician signal’s two-

parametric analysis by means of three above mentioned methods.  

 

  
n=16 n=64 

 
Fig.2. The graphs of the calculated values of the informative signal’s component ν  reconstructed 

against the noise background. 
 

In Fig. 2 the plots are presented that characterize the precisions of calculations of parameter ν  by 

methods MM12, MM24 and ML. The obtained data were averaged by 510  measurements. The numerical 
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experiments were conducted for various values of the sample length n : n =16, 64. The deviations of the 

curved lines from the straight line in  Fig.2. characterize the precision of the methods being compared. 

The results of the numerical experiments illustrate the following expected conclusions: the precision of 

the calculated sought-for parameters noticeably decrease with the increase of the signal-to-noise ratio and 

with enlarging the sample length n .  

 
5. Conclusion 

New two-parameter statistical signal processing methods have been investigated for the Rice distribution. 

The two-parameter task by each of the methods: MM12, MM24, ML, has been mathematically reduced to 

solving just one equation for one unknown variable, what essentially decreases the necessary calculating 

resources. The comparison of the elaborated two-parameter approach with the traditional ones have 

proved a high efficiency of the new technique. The numerical results confirm the possibility of solving 

the problem of the Rician signals’ analysis by the developed methods ensuring a high precision in a wide 

range of the signal-to-noise ratio’s values.  
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The paper presents a new approach to solving the tasks in optics and photonics that is based 

upon analysis and processing of the optical signal’s amplitude as a random value obeying the Rice 
statistical distribution. Recently a new concept of the so-called two-parameter analysis has been 
developed and mathematically substantiated for Rician signals providing an accurate joint estimation 
of both the signal and the noise values without any a-priory assumptions concerning the process. One 
of the proposed applications of such an approach concerns the tasks of measuring the optical 
properties of a medium, such as an electro-optical coefficient on the basis of analyzing the statistical 
characteristics of the modulated reflected optical wave. Another perspective application of the 
developed technique concerns the phase shift measuring at quasi-harmonic signals’ interferometry in 
optical metrology.   

 
 

Keyword(s): Rice distribution, signal processing, quasiharmonic signal, phase shift, electro-optical coefficient, two-parameter 
analysis.  
.  
 
 
1. Introduction  

The statistical processing of Rician signals has recently become a subject of increasing scientific interest 

because of a wide circle of tasks which are adequately described by the Rice statistical model, [1].  In 

particular, these tasks include the high precision measurements in optics and photonics which are in the 

use in optical metrology, at distance measurements, in ranging systems, at determining the object’s 

geometrical parameters, at non-destructive control and in many other applied tasks, [2-4].  

The accurate measuring of two signals’ phase difference is known to be one of the most important 

problems in such fields as radio-physics, optics, radiolocation, radio-navigation. This problem has been 

investigated for a long time and many various methods for its solving have been elaborated. The 

traditional methods of measuring the phase difference include the phase compensation technique, the 

transformation of the time interval into the voltage, the digital technique of accounting the number of 

pulses [2], the phase measuring method accompanied by the frequency transform, the correlation methods 

[2, 3], the Fourier transformation technique with the further extraction of the phase component [2, 3].   
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A number of existing phase measuring methods a-priori use a harmonic signal model, i.e. imply the 

constant amplitude’s value, what does not correspond to the real circumstances. In practice we normally 

have the so-called quasi-harmonic signal that is characterized by the random variations of the signal’s 

amplitude due to the Gaussian noise. Such a random character of a signal’s amplitude value is a serious 

obstacle for the accurate phase measuring [4]. The original method of the signals’ phase difference 

measuring that is considered in the present paper differs in principle from the methods of the prior art as it 

is based entirely upon measuring and processing the amplitude values only. 

As for the problem of measuring the optical properties of a medium, such as the electro-optical (EO) 

coefficient, the traditional approach to calculating the EO coefficient value is based on the light reflection 

modulation. This modulation is caused by the variation of the refraction index under the influence of 

alternating electric field due to EO effect [6]. Traditionally a linear regression technique is being used for 

processing the results of such a modulation. Such an approach implies the evaluation of the combined 

effect of both the EO qualities of a medium and the inevitable Gaussian noise, which may significantly 

decrease the accuracy of EO coefficient estimation. 

A principal distinguish of the approach proposed in the present paper consists in the increase the accuracy 

of measurements due to the possibility to evaluate the signal’s noise dispersion value and thus to 

compensate the inevitable Gaussian noise influence.  

2. Preliminaries 

The amplitude, or the envelope of a signal being formed from the initially determined component under 

the inevitable influence of Gaussian noise obeys the Rice statistical distribution, first formulated by S. 

Rice in 1944 as an extension of the classical Rayleigh distribution. So, the Rician distribution describes 

the amplitude of the random variable, formed by summing an initially determined complex signal and the 

Gaussian noise distorting this signal.  

The Rice statistical model is known to adequately describe a wide range of the signal processing 

problems in the tasks when the output signal is composed as a sum of the sough-for initial signal and a 

random noise generated by many independent normally-distributed summands, what always takes place at 

the optical signal propagation in a medium.  

Let A  be a determined value that characterizes the physical process to be considered. This value is 
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inevitably distorted by the Gaussian noise created by a great number of independent noise components, 

while the measured and analyzed value is the amplitude, or the envelope of the resulting signal.  The 

Gaussian noise distorting the initial determined signal is characterized by a zero mean value and a 

dispersion 2σ . The signal’s amplitude 2 2
Re Imx x x= +   obeys the Rice statistical distribution, while the 

real Rex and imaginary Imx  parts of the complex signal with amplitude x  are random Gaussian values 

with mathematical expectations Rex  and Imx , satisfying the condition 2 2 2
Re Imx x A+ = , and dispersion 

2σ . The values Aν =  and σ  are the Rice distribution’s parameters for random variable x . Obviously, 

the value of x  belongs to the subset of the not-negative real numbers: (0, )x∈ ∞ . The ratio of the Rician 

parameters /SNR ν σ=  characterises the signal-to-noise ratio.  

So, the Rician random variable x  represents the amplitude of the signal with the Gaussian real and 

imaginary parts.  The Rician probability density function is given by the following formula:  

                                              ( )
2 2

2
02 2 2, exp ,

2
x x xP x Iν νν σ
σ σ σ

 +  = ⋅ − ⋅   
  

          (1) 

where 0I  is the modified Bessel function of the first kind of order zero. Here and below we’ll use the 

following denotations: ( )I zα   is the modified Bessel function of the first kind (or the Infeld function) of 

the order α ; ix  is the signal’s value measured as the i -th element of a sample; n  is the quantity of 

elements in a sample, called also a sample’s length.  

The final purpose of the Rician data processing is evidently the evaluation of value A   that characterizes 

the process under the study and coincides with parameter ν  of the Rice distribution.  

 
3. Application of Rician data analysis as a tool of EO coefficient calculation  

 
The situation when the resulting signal’s envelope is formed by the initially determined component under 

the inevitable Gaussian noise influence is rather common and takes place in many tasks, in particular, at 

the optical signal propagation in a medium, at implementation of measurements in optics and photonics. 

The Rice distribution is known to describe a wide range of the signal processing problems in the tasks 

when the output signal is composed as a sum of the sough-for initial informative signal and a random 
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noise. The recently developed theoretical methods of the Rician data analysis by means of the Rician 

parameters computing [6, 7] provide possibility to decompose the Rician signal into its informative and 

noise components and thereby ensure an efficient reconstruction of the useful signal against the noise 

background.    

The proposed application of the developed technique of Rician signals’ analysis to solving the tasks in 

optics allows rather an accurate estimation of the medium’s parameters, such as electro-optical (EO) 

coefficient estimation.  The proposed method for measuring EO coefficient is based on the analysis of the 

reflected optical signal as a Rician random value: indeed, the inevitable presence of speckle-noise in the 

reflected light wave causes the stochastic character of the process. The efficient EO coefficient has been 

shown to be a random value that obeys to the Rice distribution what proves the applicability of the 

method of Rician signals’ analysis to the task of the EO coefficient estimation.    

As for the traditional approach to the EO coefficient evaluation, it demands conducting a series of 

experimental measuring the refractive coefficient while the electric field applied to EO sample is being 

modulated [5]. The stochastic data to be analyzed in the task is formed by the amplitude of the light wave, 

reflected from the EO medium, while the reflection coefficient is being periodically modulated under the 

influence of the controlling electric field in virtue of EO effect. Then the EO coefficient was calculated by 

means of the application of the least squares method using the straight-line regression for the value of the 

reflection coefficient variation for each pair of the magnitudes of the modulating periodic electric field 

and the corresponding refractive coefficient.  

Obviously, the reflected optical signal is a sum of the fixed component being determined by the EO 

coefficient of the medium, and a noise component being formed by the Gaussian speckle noise. So, the 

reflected optical signal is distorted if compared with the controlling voltage because of the influence of a 

Gaussian noise. As it has been indicated above, the developed techniques of the Rician signals analysis 

allow joint calculating of both the informative and the noise components by means of measuring the 

resultant reflected signal. 

The electro-optical effect is known to cause the change of the reflection coefficient of EO material 

characterized by the normal reflection coefficient: ρ = (n − 1)2/(n + 1)2, where n  is the refractive index 

for ordinary polarized beam or for non-ordinary polarized beam, depending upon the polarization of the 
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incident beam respectively to the crystal’s optical axis. The variation of the medium’s reflection 

coefficient caused by the EO effect is expressed by the following formula:  

3

4( 1)
( 1)inc

I nn n
I n n
δ ρδρ δ δ∂ −

= = =
∂ +

      (1)  

In (1) Iinc is the intensity of the incident light, δI – the change of the reflected light intensity, 

3
0

1
2 efn n k Eδ =   – the change of the refractive index due to the EO effect, kef – an efficient EO coefficient, 

0n  - the refractive index of the medium in the absence of the electric field.  

Solving the task of two-parameter analysis of the Rician signal by the so-called ММ24 method is based 

on the known formulas for the 2-nd and the 4-th initial moments for the random Rician value R , [6]: 

2 2 2

4 4 2 2 4

2

8 8

R A

R A A

σ

σ σ

= +

= + +
     (2) 

Considering formulas (2) as a system of two equations for two unknown variables A  and 2σ , one can 

calculate the sought-for values A  and 2σ  on the basis of data for the second 2R  and the fourth 4R   

moments of value R , having been computed from the sampled measurements.  

The principle thing in the proposed technique is that the sought–for EO coefficient measured in an 

experiment is a Rician value and its real (undistorted) magnitude can be reconstructed against the noise 

background by the Rician analysis technique, while a traditional approach implies the evaluation of the 

combined effect of both the EO qualities of a medium and the inevitable Gaussian noise, which may 

significantly decrease the accuracy of EO coefficient estimation by the traditional method.  

Fig. 1 presents a typical histogram of the efficient EO coefficients of a crystallized quartz sample: on the 

left there are presented the both the EO coefficient values and the standard deviation value σ 

characterizing the Gaussian speckle noise; on the right there are provided the results of the EO coefficient 

calculation by the linear regression technique, based upon evaluating the inclination of the averaged 

straight line displaying the dependence of the change in the refractive coefficient on the electric field 

magnitude. 

An advantage of the proposed Rician analysis application for the EO coefficient measurement, important 

from the view point of its practical realization, consists in the following: for calculating the EO 

coefficient by this technique it is sufficient to conduct the measurements of the reflection at any only one 
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value of the electric field, without the necessity to modulate this value, what significantly simplifies the 

experimental setup and decreases the number of measurements. 

 

 
 
Fig. 1. Results of estimation of the efficient EO coefficient and its standard deviation by means of 

Rician parameters computing (on the left) and by traditional method (on the right).  
 

4. Rician signals’ amplitude analysis as a tool for the phase shift measuring 

Another perspective application of the developed technique concerns the phase shift measuring at 

quasi-harmonic signals’ interferometry in optical metrology.  

The statement of the problem being considered here as a specific application of the Rician data two-

parameter analysis is as follows: two initially sine-shaped optical signals of the same frequency propagate 

through the different channels thus accumulating the phase shift to be measured. In practice the 

propagation of the harmonic signal in a medium is inevitably accompanied by the noise influence what 

results in the random variations of the signal’s amplitude. Therefore, instead of a sine-shaped signal one 

has to consider just the quasi-harmonic, or quasi-sinusoidal signal. According to the above the amplitude 

of such a signal is a random value that satisfies to the Rice statistical distribution.  

The time dependence of any quasi-harmonic signal ( )S t  can be presented as a complex value as:  

( ) ( ) ( )( ) ( ) ( )exp expS t R t i t t s t i tω ϕ ω = ⋅ + = ⋅        (3) 

where ω  is the frequency, ( )R t   is the signal’s amplitude, or envelope that randomly varies in time t   

due to the inevitable Gaussian noise influence, and ( )tϕ  is the phase shift that also changes randomly in 
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time due to the so-called amplitude-phase modulation. For measuring the signals’ phase values we’ll 

analyze the “slow” signal’s component ( ) ( ) ( )exps t R t i tϕ= ⋅    .  

The essence of the proposed phase shift measuring technique by means of the Rician data analysis 

consists in the following. Let us consider two quasi-harmonic signals propagating in different channels. 

These signals’ phase difference is a characteristic of the object or the process to be studied. We can 

present these signals as the following vectors: ( ) ( )1 1 1 2 2 2, , ,R R R Rϕ ϕ
 

, as illustrated in Fig.2.   

The quasi-harmonic signals’ amplitudes 1R  and 2R  obey the Rice distribution with parameters ( )2
1,A σ   

and ( )2
2 ,A σ , correspondingly, where 1A  and 2A  are the initial, undistorted signals’ amplitudes, 2σ  is the 

Gaussian noise dispersion.  

The noised signals to be measured can be put down as follows: 1 1 1R A r= +
  

 , 2 2 2R A r= +
  

, where vectors 

1A


 and 2A


  denote the two initial, undistorted signals, 1 2,r r
 

  - the noise vectors, each of them being 

characteristic for a corresponding channel of the signal propagation. Let us introduce the third vector that 

is equal to the sum of the two signals being analyzed: 3 3 3R A r= +
  

 . In Fig. 2 the noised signals 

( )1,2,3iR i =


 are shown by the dashed lines while the initial, undistorted signals 1 2,A A
 

 and their sum 3A


 

are shown by solid lines. 

 
 Fig. 2.  The vector representation of signals being analyzed at calculating the phase shift value ϕ∆   
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The phase difference ϕ∆  between the two signals is equal to an angle between the corresponding vectors. 

Vectors 1 2,R R
 

 and 3R


 form a triangle and the phase difference between the two signals can be 

determined based on the geometrical consideration of this triangle, namely - by calculating the triangle 

sides’ values, i.e. the signals amplitudes’ values. The noise distorts each vector independently and the 

amplitudes measured in each moment of time would provide a false, distorted value for the sought for 

phase shift. Obviously, the sought for phase difference ϕ∆  could be correctly found only from the 

triangle formed by the initial, undistorted amplitudes: 1 2 3, , .A A A   

As it has been shown above the signals’ amplitudes obey to the Rice distribution with the Rician 

parameters ( )2, , 1, 2iA iσ = . As for the third signal 3 3 3R A r= +
  

, its amplitude obeys the Rice distribution 

as well due to the stable character of the Rice statistical distribution [7]. The parameters of the Rice 

distribution for amplitude of the sum signal are: ( )2
3, 2A σ . The so-called two parameter methods 

elaborated for Rician signals’ analysis, [6, 7] allow an accurate estimating of both the signal 

( , 1, 2,3iA i = )  and the noise ( 2σ ) parameters based upon the sampled measurements.  

By calculating the initial, undistorted values of the three signals’ amplitudes , 1, 2,3iA i =  we are able to 

“freeze” the picture as a noise-free one and thus calculate the needed phase difference value just on the 

basis of geometrical considerations by the formula: 
2 2 2
3 1 2

1 2

arccos
2

A A A
A A

ϕ
 − −

∆ =  
 

      (4) 

The proposed technique of the signals’ phase shift measuring differs in principle from other methods as it 

is based entirely upon measuring and processing the amplitude values only.   

 
5. Conclusion 

The paper is devoted to the consideration of a new approach to solving the tasks of high precision 

measurements in optics and photonics. The approach is based upon analysis of the optical signal’s 

amplitude value within the Rice statistical model. The proposed technique’s applications having been 

demonstrated in the paper, relate the optical metrology problems. In particular, concerning the task of 

the optical medium’s EO coefficient estimation it has been shown that the Rician data analysis 
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provides an efficient reconstruction of the useful signal component against the speckle noise background, 

thus ensuring the more correct evaluation of the EO coefficient than provided by the traditional linear 

regression technique, based upon measuring the total, noise-contaminated reflected signal. Besides, the 

application of the two-parameter technique significantly simplifies the experimental setup and decreases 

the required number of measurements.   

Another example of the application of the proposed approach relates to the problem of accurate 

measuring the phase shift between two quasi-harmonic signals. An important peculiarity of the proposed 

technique for solving this task consists in the fact that the phase data are obtained as a result of the 

amplitude measurements only what significantly decreases the demands to the measuring equipment. The 

amplitudes of the three signals to be analyzed are shown to obey the Rice statistical distribution.  
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Abstract: Partial Least Squares Structural Equation Modeling (PLS-SEM) is a multivariate 

analysis technique for modeling the relations in several fields of knowledge including 

dimensions of poverty. The purpose of this article is to operationalize living conditions, social 

inclusion, education, expenditures as poverty dimensions with a view to understanding the links 

between them. The data is derived from Living Standards Measurement Survey (LSMS) 2012. 

The results show that education has a positive impact on expenditures and social inclusion. 

Relationships in structural models between latent dimensions are significant. Measurement 

models indicate allowed values for internal consistency, reliability, validity. Our findings support 

as instruction for PLS-SEM implementation in multidimensional poverty analysis. 
Keywords: partial least squares structural equation modeling, LSMS, latent dimension, measurement 

models. 
 

1. Introduction 

Nowadays it is necessary to study the phenomenon of poverty, well-being and the factors that 

cause them as the most important goal of development policies. Researchers studying the causes 

of poverty are mindful of the fact that the concept of poverty above all is a complex and 

multidimensional concept, has different meanings, multiple causes that cannot easily be 

distinguished [1], [2] . Poverty is a complex concept that we need to understand the ties between 

its dimensions. Partial least squares structural equation modeling (PLS-SEM) is a widely used 

method to analyze interaction between dimensions or constructs. In his study of Nepal, Wagle  

2008 [3] explores the relationship between latent poverty dimensions which in this case are 

considered well-being, capability, social inclusion, and set of observed indicators for each 

dimension. By PLS-SEM it is shown how these dimensions are interconnected with each other 

so that the results obtained can be used by policy makers. 

 

 

2. Materials and Methods 

Structural equation modeling (SEM) is a multivariate analysis technique for operationalizing 

latent variables, and describes the relationship between latent variables (dimensions) and its 

indicators. SEM includes two models: the measurement model or external model and structural 

model or inner model. Among the different approaches to estimating the model parameters in 

SEM are the covariance-based model and the variance-based model or partial least square (PLS) 

path model for which there has been a growing interest in recent decades [4]. The PLS-SEM 

ability is that it does not make assumptions about the distribution of data, it is used when 
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distributions are highly skewed used for metric data, nominal, ordinal data [5], is used in small 

samples and finally builds more complex models with many latent variables, indicators. 

 

In this study, data is derived from Living Standards Measurement Survey 2012 (LSMS 2012) 

which includes 2000 households. Partial Least Squares Structural Equation Modeling has been 

used through the SmartPLS3 program. So, in our study we have used the multidimensional 

approach of poverty it is necessary to quickly determine the dimensions to be taken into account 

and their corresponding variables. For the dimensions we have taken in the study we are based 

on available data, expert knowledge and, on the review of the literature on multidimensional 

poverty, where the latter includes Multidimensional Poverty Index [6].  

 

2.1 The variables selected in the study are: 

Educational Level, ED 

The father's educational level is ordinal variable, the values it receives are from 1 to 5 (four-year-

old school, four-year high school, high school, some high school, university), Ed1 

The mother's educational level is ordinal variable, the values it takes are from 1 to 5 (four-year-

old school, primary school, high school, some high school, university), Ed2 

 

 Expenditures Household, EX 

 

Family expenses are taken into account. 

 

Social Inclusion, SI 

Cinema is the ordinal variable, the values it receives are from 1 to 5 (never, 1 to 6 times, more 

than 6 times, every month, every week), SI1 

Live is the ordinal variable, the values it receives are from 1 to 5 (never, 1 to 6 times, more than 

6 times, every month, every week), SI2 

Cultural Sites is the ordinal variable, the values it receives are from 1 to 5 (never, 1 to 6 times, 

more than 6 times, every month, every week), SI3. 

 

Living Condition, LC 

The condition of dwelling type is variable ordinal, the values it receives are from 1 to 3 

(inappropriate for living, suitable for living, very good condition), LC1 

Outside apparence of building is the ordinal variable, the values that are taken are from 1 to 3 

(plastered, partially plastered, not plastered), LC2 

 

2.2 Conceptual Model 

The proposed model for our work includes four latent dimensions which include: ED, EX, SI, 

LC. Below are represented casual relationships between dimensions. 
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            Figure 1. Conceptual Model 

 

      3. Main Results 

3.1 Assessment of Measurement Model 

Our reflective dimension is used in our model. Reflective measurement models are evaluated 

based on the internal consistency reliability that includes the composite reliability statistic. The 

composite reliability values (CR) should be between 0.7 and 0.9 because values above this limit 

are problematic due to excessive indicators [4], [7]. Validity, that includes the convergent 

validity indicator, and, discriminant validity [5]. To estimate convergent validity, we should 

consider the indicator load and the average variance extracted (AVE), each having at least the 

value of 0.7 and, 0.5 respectively [5]. To study discriminant validity, consider the Fornell and 

Larcker’s  criterion [8].      

 

Table 1. Reflective measurement model 

 

Dimensions and indicators Loadings CR AVE 

Educational level  0.868 0.767 

Father educational level 0.893   

Mother educational level 0.857   

Expenditures 1 1 1 

Social Inclusion  0.881 0.713 

Cinema 0.875   

Live 0.886   

Cultural sites 0.776   

Living condition  0.918 0.849 

Condition of dwelling type 0.907   

Outside apparence of building 0.935   
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By the results reflected in Table 1, it is shown that all dimensions of this study are within the 

permissible parameters for Loading, CR, AVE. To evaluate discriminant validity we have used 

the Forner and Larcker’s criterion that requires the condition to be met: 

which requires all the square root of AVE to be higher than their inter-correlations dimensions. 

The values that are placed in the diagonal of table 2 indicate the AVE square root, and the other 

values inter-correlations between dimensions. 

 

Table 2.  Forner and Larcker criterion 

 

Dimensions Expenditure Living 

Condition 

Educational 

level 

Social 

Inclusion 

 Expenditure 1    

Living Condition 0.098 0.921   

Educational level 0.156 0.578 0.876  

Social Inclusion 0.185 0.180 0.238 0.844 

 

It is noted that all values outside the diagonal are smaller than those in the main diagonal, 

therefore Forner and Larcker criteria are met. 

 

3.2 Assessment of structural model 

Assessment of structural model includes the significance of the structural relations, the 

coefficient of determination R2. Table 3 shows the path coefficients, p-value, t-statistics, 

significance level for all paths. The analysis shows that the educational level has a significantly 

positively correlated impact on expenditures, also has a significant positive impact on social 

inclusion. Household expenditures have a positive impact on social inclusion. Educational level 

has a positive impact on living condition. Ultimately, all path coefficients are significant. 

 

 

Table 3. Path Coefficients of the Structural Model 

 

Path Path Coefficient t-statistics p-value 

ED→EX 0.156 12.378 0.000 

ED→ SI 0.214 10.859 0.000 

EX→ SI 0.152 12.734 0.000 

ED→ LC 0.578 32.187 0.000 
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For R2 values, it is difficult to set a lower limit of its values because it depends on the complexity 

of the model and field of study [5]. Based on the study of Falk and Miller (1992) [9] it is 

considered as a criterion that the value of R2 should not be less than 0.1. 

 

    

Table 4. Coefficient of determination for dimension, R2 

 
Dimension R

2 

Expenditure 0.03 

Living Condition 0.33 

Social Inclusion 0.09 

 

Another size that is used for structural model estimation is effect size f2. The latter shows the 

effect of removing a dimension in the value of R2. As a rule, the values of f2 0.02, 0.14, 0.35 are 

respectively considered small, medium and large [10]. Table 5 shows the effect size values for 

each dimensional connection. The level of education has a substantial effect on living condition 

and a small size effect on expenditure and social inclusion. 

 

 

Table 5. Effect size 

 
Dimension Expenditure Living 

Condition 

Level 

Education 

Social 

Inclusion 

Expenditure    0.024 

Living Condition     

Level Education 0.025 0.501  0.049 

Social Inclusion     

 

 

4. Conclusions 

Using PLS-SEM helps in analyzing the dimensions of poverty by understanding how these 

dimensions are related to one another. From the results of the model, we draw conclusions about 

the impact that have dimensions with each other that serve to improve social policies. 

Specifically, our study confirmed the positive impact of education on social inclusion, 

expenditures and living conditions. In further studies it is thought that the model will expand and 

with other latent dimensions. 
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Abstract 

The spousal relation is one of the leading problems in today’s conditions. Due to the certain economic, 

social and cultural reasons, the couple divorces after a short time of period and prefers to lives single with 

their children, parents or alone. In order to determine the major effects which cause the divorce and 

understand the spousal relations, a very comprehensive survey has been conducting in Turkey in every 

five-year. This survey is called Turkey Family Structure Research (TAYA) 2016 and executed by the 

Ministry of Family and Social Policies. In this study, by a special permission from Turkish Statistical 

Institute, we detect the descriptive features of this survey, by analyzing certain questions in details such as 

which type of demographic properties are generally seen in couples? How do they choose their couples? 

Is the consanguineous marriage still common? How do they meet with their spouses? In our analyses, we 

aim to define these sociological properties via statistical analyses and find the common features in spousal 

relations at a first glance. 
 

Keywords: Spousal relations in Turkey, Statistical Analyses, Extracting Common Features  
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1. Introduction  

Family is the first type of the community that begins along with the human life. The structure of the 

family highly depends on the social, economic and cultural developments that occur in the community. 

Accordingly, marriage is the base organization for starting a family and it is a legal union of spouses to 

establish a life partnership. The ending of a marriage based on one statutory reason except death is called 

as divorce. The reasons for divorce are investigated from different aspects by sociology and psychology 

sciences. The sociological studies consider age, gender, socioeconomic status, social structure and the age 

of marriage of the individuals as probable reasons while psychology evaluates the situation in terms of the 

communications of the individuals during the marriage process and the personal characteristic of the 

individuals (TBNA, 2014). In order to have knowledge about the situation of spousal relations, Turkish 

family structure and reasons for divorce in Turkey, the study executed by the Ministry of Family and 

Social Policies can be investigated. The study is called as TBNA (2014) and presents the concept about 

spousal relation and a detailed research on reasons for divorce in Turkey from sociological and 

psychological aspects. The study also presents evaluations according to the survey and offers 

recommendations for the problems. Another extensive study about marriage, relationship with the spouse 

and divorce is TAYA (2013). The study is implemented also by the Ministry of Family and Social 

Policies. Indeed, the study is about research on family structure in Turkey and has titles for marriage 

including relations with spouse and divorce. Yet another resource for the studies about spousal relation, 

divorce and related topics in Turkey is academic literature. There are various researches from different 

aspects about the marriage, divorce, relation with the spouse and violence against women which are 

related topics. Hereby, the main aim of this study is to desribe the major property of spousal relations in 

the Turkish family structure using the data updated for 2016 in order to better understand all these listed 
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sociological consequences. So, as the first step we obtain the percentages for the answers. Then, we 

construct tables integrating the questions related with marriage and lastly, we statistically test the 

significance of the results. In the following part, we describe the data and in the Results part, we present 

the associated outcomes. Finally, in the Conclusion part, we summarize the findings and discuss the 

future work. 

2. Data Description 

Accordingly, as stated previously, the ministry of family and social policies of Turkey makes a survey on 

the Turkish family structure. The study is called the Research on Family Structure and repeated every five 

years. Previous surveys were carried out in 2006 and 2011. The current report for this study is published 

in 2013 and it includes the analyses of the data from the surveys in 2006 and 2011. Demographic 

characteristics such as gender, age, education, marital status, type of family, number of children, 

socioeconomic status and religious belief are used as independent variables in the current report. On the 

other hand, dependent variables in this report are listed under three titles (TAYA, 2013). These dependent 

variables are:  

 Attitudes towards marriage: Marital status, age at first marriage, how did s/he got married?, 

marriage solemnization, how many times did s/he get married?, what kind of ceremonies?, bride 

price, which social circle did s/he get married from?  

 Relations with the spouse: Ideals about marriage, ideal marriage age. 

 Relations with the spouse: Level of relationship with the spouse, three problems experienced with 

the spouse, reactions given to problem. 

The study in which data are obtained executed with a protocol between the Ministry of Family and 

Turkish Statistical Institute in 2016. Based on this protocol, the survey covers 17239 households and 

35475 individuals over 15 years old are interviewed in these households. Hereby, in this study, we 

represent certain descriptive statistics from this survey whose results are presented in the next section. 

Most of our selected variables in our anlyses have ordinal scale.  

2. Results 

In the survey, there are 35475 individuals over 15 years of age. 15774 of them are men while 19701 are 

women. The average age by gender and related descriptive statistics are represented in Table 1. The 

statistical analyses show that there is no significant difference between the average age of men and 

women (t=1.137, p>0.05, df=35473).  

Table 1: Age by gender. 

Gender Number Percentage Mean Standard  Deviation 

Male 15774 44.5 % 43.11 17.448 

Female 19701 55.5 % 42.90 17.472 

On the other hand, the percentages of marital status by gender for 2016 are shown in Table 2. The 

percentages of never married men and women are 25% and 19%, respectively. In total, the percentage for 
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married with civil ceremony people is 68%, the percentage for never married people is 21%, the 

percentage for divorced people is 3% and the percentage for widowed people is 7%. Herein, the chi-

square test is performed to see whether there is an association between marital status and gender. 

According to the test result ( 2 =1116.262, p<0.05, df=6), it is found that there is a significant 

association between marital status and gender. Furthermore, the Cramer’s V measure which shows the 

strength of the association for nominal variables that have more than two categories is also calculated and 

the value of the measure (0.177) indicates a weak association between the marital status and gender. 

 

Table 2: 15+ marital status by gender (%). 

Marital Status Male Female Total 

Never married 24.7 18.6 21.3 

Divorced 2.0 3.5 2.9 

Widowed 2.1 10.1 6.6 

Married, civil ceremony 70.1 66.3 68 

Married, religious ceremony 0.6 0.7 0.6 

Separated 0.4 0.6 0.5 

Shacked 0.1 0.1 0.1 

In Table 3, frequencies for the number of marriages are shown. Among the respondents married at least 

one, 94% of them get married once, 5% of them get married for the second time and about 1% of them 

get married more than two times. 

Table 3: Frequency of the number of marriages. 

Number of Marriage Frequency Percent Valid Percent 

1 26333 74.2 94.4 

2 1457 4.1 5.2 

3 82 0.2 0.3 

4 22 0.1 0.1 

5 7 0.0 0.0 

6 1 0.0 0.0 

10 1 0.0 0.0 

On the other side, the mean of the age at first marriage for men is 24 while it is 20 for women as shown in 

Table 4. Moreover, we observe that there is a significant difference between the age of men and women 

for the age at first marriage (t=71.707, p<0.05, df=25353.910). 

Table 4: Age at first marriage by gender. 

Gender Mean Standard Deviation Minimum Maximum 

Male 24.03 4.405 12 71 

Female 20.23 4.337 12 60 
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To see how individuals get married, it is asked “how did you marry your spouse?” with multiple choice 

options. Table 5 shows percentages by gender. In total, majority of the answers are under two choices: 

The percentage of people who said “my decision, with the approval of my family” is 29% and the 

percentage of people who said “arranged marriage, my decision” is 48%. Later, the chi-square test is used 

to see whether there is an association between decision of marriage and gender. According to the test 

result ( 2 =310.020, p<0.05, df=6), we see that there is a significant association between decision of 

marriage and gender. Whereas, the Cramer’s V measure (0.105) shows a weak association between the 

decision of marriage and gender. 

 

Table 5: Decision of marriage by gender (%). 

Decision Male Female Total 

Arranged marriage with the decision of my family, without taking my opinion 8.8 15.1 12.4 

Arranged marriage, my decision 48.9 47.8 48.3 

My own decision, without my family’s consent 2.5 2.6 2.5 

My decision, with the approval of my family 32.9 26.9 29.4 

Eloping / being eloped 6.7 7.3 7.0 

Bride exchange 0.2 0.3 0.3 

Other 0.0 0.0 0.0 

Additonally, in Table 6, the percentages for the question “how was the form of solemnization” by gender 

are represented. 97% of the married men and women have both civil and religious ceremonies. In order to 

see that whether there is an association between form of solemnization and gender, the chi-square test is 

performed. According to the test result ( 2 =23.354, p<0.05, df=2), it is found that there is a significant 

association between form of solemnization and gender. As the Cramer’s V measure (0.029) is quite small, 

it can be interpreted that the association between form of solemnization and gender is very weak. 
 

Table 6: Consanguineous marriage (%). 

Answer Male Female Total 

Yes 21.4 22.4 21.9 

No 78.6 77.6 78.1 

Then, the next question of interest is about the degree of kinship for those people who has a 

consanguineous marriage. The percentages are listed in Table 7 based on the degree types of the kinship. 

In the table, the degree of kinship is considered under two categories, namely, relative from the father’s 

side and relative from the mother’s side. By mergingthe paternal and maternal relatives, it is seen that the 

degree of kinship from the father’s side (58.8%) has a higher frequency from the degree of kinship from 

the mother’s side (41.1%). 

 

Table 7: Degree of kinship between spouses (%). 

Degree of Kinship Percent 

Son / daughter of paternal uncle 15.6 

Son / daughter of paternal aunt 10.4 

Son / daughter of maternal uncle 10.6 

Son / daughter of maternal aunt 11.4 

Other relative from the father’s side 32.8 
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Other relative from the mother’s side 19.1 

Other 0.1 

On the oher hand, Table 8 shows the percentages for different ways of meeting with the spouse by 

gender. The most common way to meet their spouses is family and relative network for men and women 

with percentages 47% and 50%, respectively. After testing via the chi-square test, it is found that there is 

a significant association between way of meeting the spouse and gender ( 2 =37.990, p<0.05, df=6). 

Also by 0.037 Cramer’s V measure, it can be stated that the strength of the association is quite weak.  
 

Table 8: Way of meeting the spouse by gender (%). 

Way of Meeting Male Female Total 

Family / relative network 46.8 50.2 48.8 

Neighbor network 30.3 28.8 29.5 

School / course network 4.0 3.7 3.9 

Work network 7.7 6.5 7.0 

Friends network (outside school and work) 10.4 10.1 10.2 

Internet 0.4 0.3 0.3 

Other 0.3 0.3 0.3 

The opinion about the consanguineous marriage was also asked. Table 9 shows percentages for the 

answers by gender. In total, for the 14% of the respondents this type of marriage is proper while for the 

86% of the them this type of marriage is not proper. According to the Chi-Square test ( 2 =7.231, 

p<0.05, df=1) , there is a significant gender effect for the opinion about the consanguineous marriage. The 

association between the opinion about the consanguineous marriage and gender is very weak as the 

Cramer’s V measure is quite small (0.014). 

 

Table 9: Idea for consanguineous marriage by gender (%). 

Idea Male Female Total 

Proper 14.5 13.5 13.9 

Not proper 85.5 86.5 86.1 

Then, if the individuals thought that consanguineous marriage was proper, they are asked “what is the 

reason for this type of marriage?” and given multiple choices. Table 10 shows percentages for different 

answers by gender. The most frequent answer is “know and protect of family origins” with 49% 

percentage. From the ch-square test, it is seen that there is a significant association between the reasons 

for consanguineous marriage and gender ( 2 =41.660, p<0.05, df=5) and the reason for this type of 

marriage changes by gender. The strength of the association is weak (Cramer’s V measure=0.092). 
 

Table 10: Reason for consanguineous marriage by gender (%) 

Reason Male Female Total 

Non-division of assets 2.1 1.5 1.8 

Know/protection of family origins 48.7 49.5 49.1 

Better understanding of relative children 20.7 26.5 23.8 

More respect for family elders in consanguineous marriages 10.3 9.1 9.7 

Protection of traditions and customs 14.6 10.9 12.6 

Other 3.6 2.3 2.9 
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Furthermore, Table 11 shows the percentages for different ways of meeting with the spouse by gender. 

The most common way to meet their spouses is family and relative network for men and women with 

percentages 47% and 50%, respectively, and other choices are presented in the table.  After testing via the 

chi-square test, it is found that there is a significant association between way of meeting the spouse and 

gender ( 2 =37.990, p<0.05, df=6) and due to the small Cramer’s V measure (0.037), it can be stated that 

the strength of the association is quite weak.  

 

Table 11: Way of meeting the spouse by gender (%). 

Way of Meeting Male Female Total 

Family / relative network 46.8 50.2 48.8 

Neighbor network 30.3 28.8 29.5 

School / course network 4.0 3.7 3.9 

Work network 7.7 6.5 7.0 

Friends network (outside school and work) 10.4 10.1 10.2 

Internet 0.4 0.3 0.3 

Other 0.3 0.3 0.3 

When the social qualities for the future spouse are investigated, the percentages in Tables 12 and 13 are 

obtained. Hereby, regarding the tabulated values, it is seen that for women the most important feature is 

having a job with 92% percentage. The other important qualities for women are “similarity of family 

structures” with 88% percentage, “not being married before” with 84% percentage, “being religious” with 

83% percentage and “good education” with 76% percentage. On the other hand, from the answers of men 

(Table 13), “not being married before” is highly important with 86% (the sum of important and very 

important options) percentage. “Similarity of family structures”, and “being religious” are the other two 

most important qualities for men with percentages 84% and 76%. 

 

Table 12: Social qualities sought in a future spouse for women (%). 

Social Qualities Not at All 

Important 

Not 

Important 

Moderately 

Important 

Important Very Important 

Good education 0.8 11.2 12.1 58.7 17.1 

High income 1.9 26.8 25.4 40.7 5.2 

Has a job 0.2 3.0 4.7 68.8 23.3 

Works shorter hours 1.4 15.4 18.2 57.7 7.4 

Not being married before 1.3 9.8 4.9 63.7 20.3 

Similarity of family structures 0.5 5.6 6.0 72.5 15.3 

Being religious 1.1 7.0 9.0 65.6 17.3 

From the same religious sect 2.2 14.8 6.9 63.9 12.2 

From the same hometown 7.7 42.7 8.6 36.7 4.4 

From the same social circle 3.4 25.6 12.3 53.5 5.2 

From the same ethnic origin 3.6 24.2 10.3 55.9 6.0 

Has similar political view 6.1 33.6 11.0 44.5 4.8 

Thereby, in order to see whether there is an association between gender and importance level of social 

qualities sought in a future spouse from the results of Table 11 and 12, we compute the chi-square test for 

each social quality and gender. The results are represented in Table13 with 4 degrees of freedom. The 

tabulated values show that an association occurs between gender and each social quality sought in a 
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future spouse. The importance level of each social quality sought in a future spouse differs with respect to 

gender of the respondent. 

Table 13: Comparison of social qualities sought in a future spouse with respect to the gender. 

Social Qualities 2 statistic p-value 

Good education 366.054 .000* 

High income 2235.548 .000* 

Has a job 7627.942 .000* 

Works shorter hours 872.816 .000* 

Not being married before 154.276 .000* 

Similarity of family structures 180.735 .000* 

Being religious 316.318 .000* 

From the same religious sect 562.916 .000* 

From the same hometown 307.389 .000* 

From the same social circle 216.546 .000* 

From the same ethnic origin 393.104 .000* 

Has similar political view 678.634 .000* 

Then, to detect the association between social qualities sought in a future response, we calculate the 

Kendall’s Tau-B measure. This measure is a nonparametric measure of correlation for ordinal variables. 

The computed associations are represented in Table 14. From the outcomes, it is observed that there are 

significant associations between all social qualities sought in a future response at 0.01 significance level 

except the association between “from the same hometown” and “good education”.  As it is seen in the 

Table 14, three highest associations are between “from the same ethnic origin” and “from the same social 

circle” (0.527), “from the same hometown” and “from the same social circle” (0.508), “being religious” 

and “from the same religious sect” (0.490). According to these associations, it can be said that having 

same religious opinion and similar life style are associated characteristics for people and their idea about 

potential spouses. 

Table 14: Association between social qualities sought in a future spouse. 

 Good 

educa- 
tion 

High 

income 

Has a 

job 

Works 

shorter 
hours 

Not 

being 
married 

before 

Similarity 

of family 
structures 

Being 

religious 

From the 

same 
religious 

sect 

From the 

same 
hometown 

From 

the 
same 

social 

circle 

From 

the 
same 

ethnic 

origin 

Has 

similar 
political 

view 

Good 
education 

1.000 .283* .351* .240* .127* .185* .078* .049* -.002 .086* .044* .067* 

High 

income 
.283* 1.000 .364* .286* .046* .096* .074* .118* .178* .149* .136* .162* 

Has a job .351* .364* 1.000 .334* .101* .200* .096* .112* .027* .095* .083* .092* 

Works 
shorter 

hours 

.240* .286* .334* 1.000 .089* .145* .064* .079* .067* .107* .081* .117* 

Not being 

married 
before 

.127* .046* .101* .089* 1.000 .308* .344* .246* .069* .102* .150* .057* 
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Similarity 

of family 
structures 

.185* .096* .200* .145* .308* 1.000 .331* .279* .093* .227* .208* .129* 

Being 

religious 
.078* .074* .096* .064* .344* .331* 1.000 .490* .175* .194* .278* .137* 

From the 
same 

religious 
sect 

.049* .118* .112* .079* .246* .279* .490* 1.000 .314* .306* .429* .235* 

From the 

same 

hometown 

-.002 .178* .027* .067* .069* .093* .175* .314* 1.000 .508* .447* .357* 

From the 
same social 

circle 

.086* .149* .095* .107* .102* .227* .194* .306* .508* 1.000 .527* .365* 

From the 
same ethnic 

origin 

.044* .136* .083* .081* .150* .208* .278* .429* .447* .527* 1.000 .366* 

Has similar 
political 

view 

.067* .162* .092* .117* .057* .129* .137* .235* .357* .365* .366* 1.000 

Moreover, Table 15 and Table 16 indicare the percentage of acceptability of some statements about 

marriage and social quality of spouse for men and women.  In this part, the individuals evaluate their 

agreements for each statement and results are obtained as in Table 15 and Table 16. From the findings it 

is seen that the men are disagreeing for “live together without getting married” with 89% percentages (the 

sum of strongly disagree and disagree) and “having child out of wedlock” with 94% percentages. The 

men are also disagreeing for “marriage with a person from the internet” with 77% percentage.  

 

Table 15: Acceptability of some statements about marriage for men (%). 

Acceptability of Some Statements Strongly 

Disagree 

Disagree Slightly Agree Agree Strongly 

Agree 

Live together without getting married 43.9 45.4 3.0 5.9 1.8 

Marriage of men with a woman of different 

religions and nationalities 

17.6 34.6 10.1 35.5 2.3 

Marriage of woman with a men of different 

religions and nationalities 

20.6 39.9 8.7 29.0 1.8 

Having child out of wedlock 44.8 48.5 1.6 3.8 1.2 

Marriage with a person from the internet 28.2 49.2 10.6 11.0 0.9 

Marriage with a person from different religious sect 12.1 32.0 14.4 38.9 2.5 

On the other side, according to Table 16, the women are disagreeing for “live together without getting 

married” with 93% percentages (the sum of strongly disagree and disagree) and “having child out of 

wedlock” with 95% percentages. The women are also disagreeing for “marriage with a person from the 

internet” with 84% percentage. 

Table 17 and Table 18 present the acceptability of some statements about marriage for men and women, 

respectively. In order to see whether there is an association between gender and acceptability of given 

statements, the chi-square test is performed for each statement and gender. The results are represented in 

Table 17 with 4 degrees of freedom. The Chi-Square tests are significant for all of the statements, it 
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means there is an association between gender and each statements about marriage. The acceptability level 

of each statement about marriage differs with respect to gender of the respondent. 
 

Table 16: Acceptability of some statements about marriage for women (%). 

Acceptability of Some Statements Strongly 

Disagree 

Disagree Slightly  

Agree 

Agree Strongly 

Agree 

Live together without getting married 48.5 43.6 2.4 4.0 1.5 

Marriage of men with a woman of different 

religions and nationalities 

23.4 40.2 9.6 25.3 1.6 

Marriage of woman with a men of different 

religions and nationalities 

25.3 44.0 8.5 20.7 1.4 

Having child out of wedlock 49.2 45.9 1.4 2.4 1.1 

Marriage with a person from the internet 33.6 50.3 8.0 7.3 0.9 

Marriage with a person from different religious sect 17.3 38.6 14.2 28.1 1.7 

 

Table 17: Comparison of acceptability of some statements about marriage with respect to gender. 

Acceptability of Some Statements  2 statistic p-value 

Live together without getting married 135.046 .000* 

Marriage of men with a woman of different religions and nationalities 547.129 .000* 

Marriage of woman with a men of different religions and nationalities 379.611 .000* 

Having child out of wedlock 104.646 .000* 

Marriage with a person from the internet 289.609 .000* 

Marriage with a person from different religious sect 601.677 .000* 

In order to see the association between acceptability level of statements about marriage, the Kendall’s 

Tau-B measure is calculated. The significant associations between acceptability level of statements about 

marriage and the strength of the significant associations are represented in Table 18. As seen in the 

tabulated values, there are significant associations between all statements about marriage at 0.01 

significance level and the three highest associations are related with the religious opinion (0.821 and 

0.466) and the life style related with marriage and having children. 

 Table 18: Association between agreement level of statements about marriage. 

 Live 

together 

without 

getting 

married 

Marriage of men 

with a woman of 

different religions 

and nationalities 

Marriage of woman 

with a men of 

different religions 

and nationalities 

Having 

child out 

of 

wedlock 

Marriage 

with a 

person from 

the internet 

Marriage with 

a person from 

different 

religious sect 

Live together 

without getting 

married 

1.000 .342* .400* .713* .404* .222* 

Marriage of men 

with a woman of 

different religions 

and nationalities 

.342* 1.000 .821* .297* .298* .466* 
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Marriage of woman 

with a men of 

different religions 

and nationalities 

.400* .821* 1.000 .366* .327* .443* 

Having child out of 

wedlock 
.713* .297* .366* 1.000 .459* .212* 

Marriage with a 

person from the 

internet 

.404* .298* .327* .459* 1.000 .298* 

Marriage with a 

person from 

different religious 

sect 

.222* .466* .443* .212* .298* 1.000 

Additionally, in order to understand about the qualities sought in a future spouse, individuals were asked 

“which personal qualities below are important for you in a future spouse and how important are they?” 

In order to test association between gender and importance of personal qualities with two levels, the 

frequencies of first two and last three importance level are summed to have two answers as “not 

important” and “important” and then, the chi-square test is performed again for each personal quality and 

gender. The results are represented in Table 19. From the tabluted values, it is shown that there is no 

significant association between gender and personal qualities sought in a future spouse listed as taking 

care of herself/himself, fidelity to partner, being reliable/not lying, giving importance to partner’s 

feelings, being thrifty, patience/tolerance and behaving properly in society. Moreover, almost all of the 

personal qualities are considered as important with very high frequencies (about 99%) except being 

beautiful/handsome for both gender. Being beautiful/handsome is found as not important by males with 

32% and females with 38%. 

Table 19: Comparison of personal qualities sought in a future spouse with two levels by gender 

 Male (%) Female (%)  

2 statistic 

 

 

p-value 

 Not 

Important 

 

Important 

 

Not 

Important 

 

Important 

 

In love 12.9 87.1 14.6 85.4 21.620 .000* 

Beautiful / Handsome 32.4 67.6 38.3 61.7 132.193 .000* 

Taking care of 

herself/himself (paying 

attention to his/her personal 

hygiene) 

 

2.1 

 

97.9 

 

2.1 

 

97.9 

 

.088 

 

.767 

Fidelity to partner 0.7 99.3 0.7 99.3 .002 .961 

544



 

INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 

3-5 July 2019, Istanbul, Turkey 

 
Enjoying the spend time 

with family 

1.2 98.8 0.9 99.1 7.970 .005* 

Being reliable / not lying 0.6 99.4 0.5 99.5 .002 .966 

Giving importance to 

his/her partner’s feelings 

 

0.6 

 

99.4 

 

0.6 

 

99.4 

 

.000 

 

.992 

Being thrifty 1.2 98.8 1.2 98.8 .209 .647 

Generosity 1.9 98.1 1.1 98.9 39.850 .000* 

Patience and tolerance 0.4 99.6 0.5 99.5 1.178 .278 

Protecting the partner 

against his/her own family 

 

1.1 

 

98.9 

 

0.6 

 

 

99.4 

 

22.499 

 

.000* 

Behaving properly in 

society 

0.5 99.5 0.5 99.5 .864 .353 

Finally, in order to see the association between personal qualities sought in a future response, the 

Kendall’s Tau-B is calculated. The significant associations between personal qualities sought in a future 

spouse and the strength of the significant associations are presented in Table 20. As seen in the table, 

there are significant associations between all personal qualities sought in a future response and gender at 

0.01 significance level and three highest associations are between “fidelity to partner” and “being reliable 

/ not lying” (0.798), “giving importance to his/her partner’s feelings” and “being reliable / not lying” 

(0.794), “protecting the partner against his/her own family” and “behaving properly in society” (0.745).  

Table 20: Association between personal qualities sought in a future spouse. 
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In love 1.000 .270* 0296

* 

.254* .236* .234* .253* .191* .189* .220* .221* .233* 

Beautiful / 

Handsome 

.270* 1.000 .145* .061* .073* .049* .067* .070* .076* .061* .058* .058* 
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Taking care of 

herself/himself 

.296* .145* 1.000 .596* .558* .550* .548* .444* .433* .519* .487* .517* 

Fidelity to partner .254* .061* .596* 1.000 .699* .798* .718* .528* .480* .671* .592* .653* 

Enjoying the spend 

time with family 

.236* .073* .558* .699* 1.000 .708* .735* .582* .565* .654* .611* .629* 

Being reliable / not 

lying 

.234* .049* .550* .798* .708* 1.000 .794* .567* .522* .727* .639* .704* 

Giving importance 

to his/her partner’s 

feelings 

.253* .067* .548* .718* .735* .794* 1.000 .632* .609* .740* .675* .716* 

Being thrifty .191* .070* .444* .528* .582* .567* .632* 1.000 .717* .664* .581* .590* 

Generosity .189* .076* .433* .480* .565* .522* .609* .717* 1.000 .659* .595* .577* 

Patience and 

tolerance 

.220* .061* .519* .671* .654* .727* .740* .664* .659* 1.000 .717* .753* 

Protecting the 

partner against 

his/her own family 

.221* .058* .487* .592* .611* .639* .675* .581* .595* .717* 1.000 .745* 

Behaving properly 

in society 

.233* .058* .517* .653* .629* .704* .716* .590* .577* .753* .745* 1.000 

 

4. Conclusion 

From the survey analyses, we have obtained certain interesting results. The summary of the results can be 

listed as below:  

 As most of the variables are in nominal or ordinal scale we have obtained frequency distributions, 

checked the statistical significance of their answers in gender and correlations. 

 We have seen that majority of Turkish people has single marriage and prefers both civil and 

religious ceremonies.  

 The consanguineous marriage is not very common and still has around 22% with mainly relatives 

of father side.  

 The spouse is chosen from family and neighborhood networks and taking into account similarities 

in family structures (both gender), not married before (for men) and having job and being 

religious (for women).  

 Both gender say that taking care of herself/himself (paying attention to his/her personal hygiene), 

enjoying the spend time with family and being thrifty are the most important characters for the 

selection of spouses, and beauty as well as love are the least important features for both gender. 

As the extension of this study, we aim to compare the counts performing statistical testing procedures 

also considering other categorical variables such as educational status, socioeconomic status and 
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territories. Also, we aim to continue with the modeling of this dataset (Hosmer et al., 2013; O’Connell, 

2006) and investigate the effects of these preferences on divorce occurrence in Turkey.  
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Abstract 

All teachers encounter children with different abilities. It is a constant challenge and teachers do their 

best to identify the poor performers and understand the reasons for their poor performance.This study 

arises out of research in a school where the majority of students, aged between seven and nine, had 

experienced substantial difficulty in problem-solving in mathematics. The study was designed to 

discover why such a large body of students had so many difficulties in solving what, to their peers 

elsewhere, might be seen as simple arithmetic problems well within their capabilities. The study was 

designed with guessing games to discover the extent of the students’ difficulties and the reasons for 

them. 27 students were studied over a a period of many months. Each was interviewed face-to-face. 

All interviews were videotaped and the recordings were studied and analysed and relevant data 

extracted. 

The guessing game was found to be particularly illuminating as regards a child’s ability to understand 

part-whole relation. The child was asked to guess what could be the possible combinations of 

numbers within boxes. In this game, through the different guesses that the child freely makes, the 

researcher can find out how different numbers relate in their conception of number.   

The findings disclosed a number of problems in both procedural and conceptual knowledge, the 

details of which, it was felt, could help the teachers understand the symptoms of the poor 

performance and the reasons for it so that they could then design a suitable remedial programme. 

 

Keywords: problem-solving, part-whole relation, guessing game, procedural knowledge, conceptual knowledge 

 

1. Introduction  

One of the most problematic areas of the mathematics curriculum involves solving word problems. 

Many students experience considerable difficulty with simple word problems. Previous studies in 

mathematics education emphasize the effectiveness of instruction, focused on teaching strategies, to 

overcome the students’ difficulties (Jordan, Kaplan, Olah & Locuniak, 2006; Henjes, 2007).  

Carpenter and Moser (1982) stated that children need to have certain prerequisite conceptual 

knowledge, such as part-whole relationship, in order to understand and solve simple word problems. 

Riley, Greeno and Heller (1983) also found that, ‘improvement in performance results mainly from 
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improved understanding of certain conceptual relationships.” (p.154). My research method was to 

reveal the conceptual knowledge and procedural knowledge of the children, these being the main 

areas of their mathematical ability (e.g. Kilpatrick, Swaffords and Findell, 2001; Rittle- Johnson and 

Star, 2007; Bottage, Rueda, LaRoque; Serlin Kwon, 2007). I did this using carefully chosen problems 

based, to an extent, on Neuman’s work (1987) –guessing game, but with significant differences to 

probe into the children’s abilities in each problem type in greater depth. Neuman (1987) used her 

number problems to ascertain children’s conceptions of numbers and, I used similar problems to 

examine children’s difficulties in mathematics. 

My study was to examine what those difficulties were and why they had them – then it would better 

help the teachers establish how to address those difficulties. In other words, the better we understand 

the symptoms of poor performance in detail the better we are able to prescribe remedial action. The 

teachers can then plan their future teaching with a particular eye on the areas where the weaknesses 

may appear and hence be addressed. 

 

2. Preliminaries 

The guessing game was the most powerful problem devised by Neuman.The guessing game was 

found to be particularly illuminating as regards a child’s ability to understand part-whole relation. 9 

coins were separated into 2 groups unknown to the child and put into two boxes. The child was 

asked to guess what could be the possible combinations of numbers of the buttons within 2 boxes. 

Although children may guess any number of combinations the goal is for the child to see whether 

the child can attend to the one hidden invariable: the whole, namely the number of coins distributed 

between the two boxes (e.g., 9), yet at the same time, to the parts which can vary with the certain 

inter- dependence relation between them, so that together they made 9. In this game, through the 

different guesses that the child freely makes, the researcher can find out how different numbers 

relate in their conception of number. This is how I see the beauty of the guessing game. 

In my study, I did not set out list and test all the fundamental skills which students require in order 

to study mathematics, rather, I observed closely my students’ performance in attempting to solve 

the carefully-chosen problems I presented to them. In this way I was able to identify problems that 
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were specific to each child and which seemed to be common to the vast majority of them. Thus, I 

do not pretend to have revealed all the fundamental issues that my students might have faced but, 

what I do say, is that my study focused on some of fundamental problems inhibiting the learning of 

mathematics. I focused on the extent to which my students displayed difficulties in procedural and 

conceptual knowledge. Fundamental to the learning of mathematics is having a wide range of 

procedures available to a child, as is the ability to use those procedures well. As important, is the 

ability to choose the appropriate procedure in the circumstances. I also consider it to be of 

fundamental importance that students have conceptual knowledge – in particular as regards an 

understanding of the part-whole relationship – both in theory (at school) and in practice (in the 

students’ day-to-day lives). 

My study concentrates on the personal think-aloud interviews with 27 students to find out how 

difficulties arise when the children solve simple mathematics word problems. By adopting this 

approach, it was possible to explore whether they lacked conceptual or procedural knowledge, or 

both and whether they did not know enough procedures or how to operate those procedures. In short, 

the purpose of my study is to get to the bottom of their problems on the basis that there is no point in 

prescribing a remedy until you know what you are treating. Although I do consider implications, I do 

not put these forward as solutions nor an intervention plan - that, I felt is best left to their teachers. 

Research question: 

To explore the difficulties encountered by students, the study was designed to address the following 

question: 

How did the students discern the possible parts in a given number in guessing game combination 

problem? 

 

3. Main Results 

Different ways of handling the guessing games by students were noticed. Some children just guessed 

– on some occasions, guessing correctly. Others didn’t guess at all but used other methods to try and 

solve the problem. In general, the strategies can be split into the six categories below.  
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Commutative pairs  

This indicates whether the student’s answer suggests a possibility of their knowledge of the principle 

of commutativity (e.g., if 4+5 is one answer then 5+4 should also be there).  

Unique matching number  

Some students did not understand the uniqueness in the combination of numbers. They tried with the 

same number as one part several times with different numbers as the second part (such as 4, 4 and 4, 

3). This indicates whether a child was able to understand that it should be a unique answer for the 

second part.  

Number facts  

These are basic subtraction and addition facts that children should have learnt to recall immediately 

without having to work the problems out. In short, they should know them off by heart. In the context 

of the guessing game, this relates to a student’s knowing, automatically, for example, that a certain 

combination would produce a certain total (for example 6+3 = 9). Among the different combination, 

the half-half combination (such as, 3, 3 for the total 6 and 4, 4 for the total 8) seemed to be most easy 

to recall.  

Graphical representation/Assisting ways  

This relates to the child’s use of graphics or objects (in one form or another) to help. It might be, for 

example, drawing circles or lines. The way that they used their graphics was most instructive.  

a. Most students would draw circles or lines and according to their guessed parts, then use counting 

to see if, when combined, these two sets equaled the hidden total number. 

b. The other way was to draw the total number of coins and try to group them into two parts in 

different ways.  

‘Pure’ guess 

a. By observing carefully a student’s demeanor, way of speaking and the speed with which they made 

their ‘guesses’ I felt able to reach a conclusion as to their thought processes. For example. Some of 

them stared at the box and tried to imagine how many button were inside.  
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b. Sometimes, a child gave me a ‘guess’ that was wildly inaccurate suggests that no real thought had 

gone into it. For example, when the total number of coins divided between the two boxes was 9, if a 

student’s guess was Box 1 had 6 and Box 2 had 19 without any apparent attempt to estimate or 

calculate, then I saw this as a ‘pure’ guess. Some did not add up the total number which was equal to 

the original number of coins that I have given at the beginning, they just give any random number. 

Some students even seemed to have no idea at all how to find out the numbers of the two boxes. They 

just randomly guessed any number, it seemed.  

Systematic variation 

By ‘systematic variation’ I do not refer to my changing the numbers of coins to be used in the 

guessing game problem. I am talking about the way in which some children, themselves, used the 

strategy of varying combinations of numbers in a systematic way by, for example starting with a 

correct combination then reducing one from the first addend and adding one to the second addend. 

This could be seen in certain combinations (4, 5; 5, 4; 6, 3; 7, 2 and 8, 1). 

 

4. Conclusion 

It might be thought that the scenario posed by the guessing game would be quite unfamiliar to 

students and would, therefore, cause them difficulties. That proved to be true but, in unfamiliar 

situations a teacher is able to see how students’ think and solve problems. It was discovered that few 

students used mathematical concepts as number sentences to help to find the answer, instead, they 

use concepts which were more native to them. 

As the guessing game problem is posed in an open way, it stimulates students’ thinking and 

encourages the children to try and make sense of what is an open situation and turn it into 

mathematical knowledge and translate that into an appropriate number sentence. It also makes them 

think what would be the best procedure for solving the problem. It allows the teacher to see what 

kind of part-whole relationship the students thought of. The teacher can see how student construct the 

part-whole relationship through the guessing process. From the process, the teacher can discover if 

the student can think from certain pairs of correct combinations to other combinations. For other 

students, the different combinations might be well linked together. Some know how to adjust the 
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parts without changing the whole. I noted that some could guess one pair of combinations only, 

believing this to be the only answer for two boxes. Some could guess one pair of combinations and 

then decrease one part and increase another part to make the same whole. Or, if they got a wrong pair 

of combinations, some students would know how to adjust and make another correct pair of 

combinations. From all these different approaches, I could gain insight into how students think of the 

partwhole relationship.  

The guessing game is undoubtedly most useful for promoting an understanding of important concepts 

such as part-whole. It encourages the children to make the connections necessary to enhance their 

conceptual and procedural knowledge. This, in my view, encourages a child to think more widely 

than when they are faced with a closed question. 
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Abstract 

In this work, we define parafree metabelian nilpotent Lie algebras. Moreover using 

direct limit of free Lie algebras, we prove that under some conditions a parafree 

metabelian nilpotent Lie algebra is isomorphic to a free metabelian nilpotent Lie algebra.  

 

Keywords: Parafree, Metabelian, Nilpotent, Directed system. 

 

1.Introduction 

 Baumslag has introduced the notion of parafree groups and has got some important results 

about parafree groups [1,2,3,4]. Baumslag has taken his results [5,6] on one relator groups. 

Because of the close relationship between groups and Lie algebras, one would expect that 

parafree Lie algebras enjoy properties that are analogous to those of parafree groups. We have 

taken this opportunity to obtain some results about parafree Lie algebras. Parafree Lie 

algebras firstly arise in the works of Baur [7,8], Knus and Stammbach [9]. They have 

obtained basic in the structure of parafree Lie algebras. We carry the formal arguments used 

in [2] over to parafree Lie algebras. More exactly we prove that under some conditions a 

parafree metabelian nilpotent Lie algebra is isomorphic to a free metabelian nilpotent Lie 

algebra. 

 

2. Preliminaries  

Let L be a Lie algebra over a field k of characteristic zero. The lower central series of L 

    ( )    ( )     ( )    

is defined inductively by 

  ( )  ,   -,      ( )  ,  ( )  -,  n≥1. 

If n is the smallest integer satisfying   ( )= {0}, then L is called nilpotent of class n.  

The second term   ( ) is called the derived subalgebra of L and it is denoted by   . The 

derived subalgebra of    is denoted by    . L is called metabelian, if      = {0}. 
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Definition 2.1. A Lie algebra L is called residually nilpotent if  

⋂   ( )  * + 
   . 

We associate the lower central series of L with its lower central sequence: 

 
  ( )

⁄     ( )
⁄   . We say that two Lie algebras L and H have the same lower central 

sequence if     ( )
⁄   

  ( )⁄  for every n    

Definition 2.2. The Lie algebra L is called parafree over a set X if, 

i) L is residually nilpotent, and 

ii)  L has the same lower central sequence as a free Lie algebra generated by the set 

X. 

The cardinality of X is called the rank of L. 

One of the crucial definition in this work is that the direct limit of Lie algebras. 

Definition 2.3. Let  be a partially ordered set. Then  is a directed set if for any 

elements i,j I, there exists an element k I such that i k ve j k. 

Definition 2.4. Let  be a directed set, and let  be a collection of Lie algebras 

indexed by I and  be a homomorphism for all  i,j I such that i j with the 

following properties: 

i)  is the identity of , and 

ii)   for all i,j,k I such that i j k. 

Then the pair   is called a directed system over I. 

Definition 2.5. Let  be a directed system over I. The direct limit  is 

a Lie algebra L such that it is unique up to isomorphism and  satisfies the following universal 

mapping property: 

i) For all i,j I and j there are mappings   such that . 556



 

INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 

3-5 July 2019, Istanbul, Turkey 

 

ii) If there is a Lie algebra C together with maps such that  , 

for each i j  then there exists a unique Lie algebra homomorphism    such 

that  

We give an alternative definition of direct limit: 

Let  be a directed system. The direct limit of this system is defined as the 

disjoint union of the  is modülo a certain equivalence relation . Denote the set of 

equivalence classes by  . 

Here, if ,  if there is some k I such that . Clearly  

is an equivalence relation. We will write  for the equivalence class for an element . 

The set of equivalence classes is a Lie algebra with the operation defined by 

[  ̅  ̅ ]  [   (  )    (  )
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ] 

This Lie algebra has the same mapping property as does the direct limit. Hence  

               (1). 

The proof of (1) is the same as in the group case (see [10]). A routine exercise 

involving universal mapping properties shows that the direct limit of a Lie algebra if it exists, 

is unique up to isomorphism.  

By the following theorem, one can investigate the direct limit of free Lie algebras and 

see that direct limit of free Lie algebras is parafree.  

Theorem 2.1. Let  be the free Lie algebra generated by free generators  and  for 

   . Then P=⋃        is  parafree. 

Indeed, let I be a directed set and  be the free Lie algebra generated by free generators  

and  for    . Consider the homomorphism  from  into  where  

Then 557
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is a directed system. Let P be the direct limit of this system. Now we consider the equivalence 

relation "∼′′on ⋃      , which is defined in the definition of the direct limit. A short 

calculation shows that the set of the equivalence classes 
⋃      ∼⁄  is equal to ⋃        

Therefore by (1), we obtain 

       ⋃      . 

Hence P may be viewed as the union of its subalgebras   . So  P=⋃      . The parafreeness 

of P and the details of the proof can be found in [12]. 

3. Main Results 

Definition 3.1 Let L be a Lie algebra over a field k of characteristic zero. A Lie algebra 

 
      ( )

⁄   is called metabelian nilpotent of class n. 

Theorem 3.1. A quotient algebra of a parafree Lie algebra is parafree.  

Proof. The proof can be found in [11]. 

Corollary 3.1. Let P be a parafree Lie algebra. Then the algebra        ( )
⁄  is parafree.  

Therefore one can call this algebra as parafree metabelian nilpotent of class n Lie algebra. 

Theorem 3.2. Let F be a free Lie algebra freely generated by the set . Then there exists a 

parafree Lie algebra P of rank two with the  following properties: 

i) P is the union of Lie algebras of rank two. 

ii)  
      ( )

⁄   
      ( )

⁄ ,  

iii) P is not free. 

iv) Every finitely generated quotient algebra of P can be generated by two elements.  

To prove the Theorem 3.2, we need the following lemma. 
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Lemma 3.1. Let   be the free metabelian Lie algebra freely generated by   and   over a field 

k of characteristic zero. If      then   can be generated by the set *     +  if and only if 

     for some      

Proof. The proof can be found in [11]. 

Proof of Theorem 3.2:  

i) It is clear by Theorem 2.1. 

ii)  Let I be a directed set and for         be the free Lie algebra freely generated by    and 

  . Consider the homomorphism defined by 

           

                            

                

where            (  ) and     It is well known that if , then 

 is a proper subalgebra of  We choose 

 if  and  if  

Therefore         
. For        and , we have  

   (  )=  +  ,       (  ) 

       (  )     (     ),      (  ) 

   (  )+   (  )=  +  +  +  
 =  +  ,   ,   

    (  )  

By choosing   +  
 =0, we have            . Hence  and for all ,  

. This provides us  

 

is a directed system. Let P be the direct limit of this system. Therefore by  the Theorem 2.1, P 

is parafree and  =⋃      . Now  for      and     , we define a homomorphism 

      
     (  )     

     (  )  559
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such that the homomorphism     is the restriction of the homomorphism     to   
   

  (  )   For      ,         
     (  ) and             , then the system 

{(  
     (  ))   

 {   }   
} 

becomes a directed system. Now we want to show that 

      ( )  ⋃ (  
     (  )) 

   . 

By the definition we have  

⋃ (  
     (  ) 

   )   { ̅   ⋃ (  
     (  )) 

   }. 

Hence  

    (  
     (  ))  ⋃ (  

     (  )) 
   . 

On the other hand there exists     such that  

[ ̅   ̅ ]  [   (  )    (  )]⏟            
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

   (  )

 (  
     (  )), 

where        and      . Therefore  

   
 

(  
     (  ))   ⋃ (  

     (  ))
 

   

 

and so by (1) 

      ( )  ⋃   
     (  )

 

   
  

Now let   be the free Lie algebra freely generated by   and  . Consider the homomorphism 

defined by 

                ( )⁄  

                    ( ) 

                    ( )  

It is clear that              By the universal property of the direct limit, there is a unique 

homomorphism 

             ( )⁄  

with          . Now we compute the kernel of .  Let         so     , therefore there 

exists     such that       Consider the map 560
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         ,   ( )   . 

Since     =   , then 

   ( )   (  ( ))=  ( )= ̅. 

Hence x  Ker     So for x  Ker   there exists     such that   Ker     Therefore  

Ker   ⋃            

On the other hand since Ker    *       ( )   ̅+ , then   ( )        ( ). 

Therefore  for each    , we have Ker      
     (  ). It is well known that verbal ideals 

are invariant under homomorphisms so   ( )    
     (  )  Then 

Ker      
     (  )  

Hence 

Ker   ⋃           ⋃ (  
     (  ))   =      ( ) 

By the isomorphism theorems, we get 

 
      ( )⁄   

      ( )⁄ . 

iii) By (i), it is clear that the rank of    is two. Furthermore since   ⋃    , then it is not 

finitely generated. But there is no a free Lie algebra which has a finite rank and is not finitely 

generated. Therefore   is not free. 

iv) Let     be the free Lie algebra freely generated by *     +  for     and let   =⋃       . 

Let us suppose that the Lie algebra P is generated by set  *         +. If I is an ideal of P 

generated by *         +, then   ⁄  =⋃ (
    

 ⁄ ) 
   . Since the quotient algebra    ⁄  is 

freely generated, for some      we have    ⁄  
    

 ⁄ .  

Now consider the homomorphism     ⁄  
    

 ⁄  defined by        ,        . 
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The homomorphism   is an isomorphism, Therefore we have   ⁄  
    

 ⁄  . Since the free 

Lie algebra    is freely generated by the set *     + then the algebra    ⁄  is generated by 

*         + . Therefore    ⁄  is generated by two elements. 
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Abstract 

In this paper we translate in terms of coding theory constraints that are used in designing DNA 
codes for use in DNA computing. We focus in particular on additive self-dual F4-codes and we present 
some results for constructed DNA codes satisfying the Hamming distance constraint, the reverse-
complement constraint and the GC-content constraint. 
 

Keywords: DNA code, additive self-dual code 
 
 
1. Introduction  

  Coding theory has several applications in Genetics and Bioengineering. Every DNA molecule 

consists of two complementary strands which are sequences of four different nucleotide bases: adenine 

(A), cytosine (C), guanine (G) and thymine (T). The problem of designing DNA codes (sets of words of 

fixed length n over the alphabet {A, C, G, T} that satisfy certain combinatorial constraints has 

applications for reliably storing and retrieving information in synthetic DNA strands. 

  In current work the constraints used in designing DNA codes are translated in terms of coding 

theory. Using a method developed in our previous work we construct DNA codes satisfying a Hamming 

distance constraint, reverse-complement constraint and a GC-content constraint. This method is based on 

usage of the representation form of a generator matrices of special class additive self-dual F4-codes. 

  The paper is organized as follows: in Section 2 some basic notions for DNA codes and additive 

F4-codes are presented. Also, the constraints on DNA codes are translated into the terms of additive F4-

codes. In Section 3 the constructive method is presented and the obtained results are given. In the 

conclusion, the results of the work are summarized. 

 

                                                           
*
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2. Preliminaries 

The terms in this section are mostly taken from [1, 4]. 

A DNA code of length n is a set of codewords (x1, …., xn) with xi ∈  {A, C, G, T} (representing the 

four nucleotides in DNA). We use a hat to denote the Watson-Crick complement of a nucleotide, so Â = 

T, and Ĉ = G (and vice versa). 

The Hamming distance H(x, y) between two codewords x and y is the number of coordinates in 

which x and y differ. The reverse of a codeword y = (y1, …., yn) is denoted by yR = (yn, …, y1), and the 

reverse-complement of y = (y1, …., yn)  is denoted by yRC = (ŷn, …, ŷ1). 

  In this paper we shall identify codes over {A, C, G, T} with codes over other four-letter alphabet. 

In our case this is the Galois field F4 = {0, 1, w, w2}, with w2 + w + 1 = 0. The four symbols in {A, C, G, 

T} are identified with the four elements in F4 in the orders given above, so that ŷ = y + 1, for y∈  F4. 

Let nF4  be the n-dimensional vector space over F4. The Hamming weight of a vector x ∈
nF4 , 

written wt(x), is the number of nonzero entries of x, and Hamming distance d(x,0) = wt(x). A linear [n, k] 

F4-code C is a k-dimensional linear subspace of nF4 . Any k × n matrix G (with entries in F4) whose rows 

are a basis of the code C is a generator matrix of C. A minimum weight (or minimum distance) of a linear 

code is the smallest weight among all nonzero codewords. A linear [n, k, d] F4-code C is an [n, k] F4-code 

with minimum distance d. A weight enumerator of a code C is the polynomial ∑
=

=

n

i

i

i zAzC
0

)( , where Ai is 

the number of codewords of weight i. 

An additive (n, 2k) F4-code of length n is an additive subgroup of nF4  with 2k codewords. The 

definitions for Hamming weight, generator matrix, minimum weight, and weight enumerator are the same 

as the definitions about linear codes. By (n, 2k, d) we denote an additive F4-code of length n with 2k 

codewords that has minimum weight d. About additive codes over F4, there is an inner product arising 

from the trace map. The trace map Tr : F4 → F2 is given by Tr(x) = x + x2. We can define the trace inner 

product of two vectors x = (x1, …., xn) and y = (y1, …., yn) in nF4  as: 

).(
1

2∑
=

=∗

n

i

ii yxTryx       (1) 
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 If C is an additive code, its dual code with respect to (1) is the code C┴ = {x ∈  nF4  | x*c = 0 for all 

c ∈  C}. If C is an (n, 2k) code, then C is an (n, 22n-k) code. The code C is self-orthogonal if C is a subset 

of C┴, and self-dual if C = C┴. In particular, if C is self-dual, then C is an (n, 2n) code. 

In our work we will the following map: 0 → A, 1 → T, 2 → C, and 3 → G. In this case the 

Watson-Crick complement (the transpositions A ↔ T and C ↔ G) is presented as ŷ = y + 1, for y∈  F4. 

About DNA codes we consider the following constraints: 

• Hamming distance constraint: the Hamming distance constraint for a DNA code C is that H(x,y) ≥ 

d for all x, y ∈  C with x ≠ y, for some prescribed minimum distance d. This constraint will be enforced in 

all of the codes we consider, in addition to some combination of the constraints described below. 

• Reverse constraint: the reverse constraint is that H(xR
, y) ≥ d for all x, y ∈  C, including x = y. It is 

useful as an intermediate step in constructing codes with the reverse-complement constraint. A natural 

idea is to start with a code that is fixed by the reverse permutation R, which exchanges column i and 

column n – i + 1, for   1 ≤ i ≤ n. 

• Reverse-complement constraint: this constraint is that H(xRC
, y) ≥ d for all x, y ∈  C, including x = 

y. To construct codes satisfying the reverse-complement constraint, it can be useful to begin with codes 

over F4 that contain the all-one codeword j. Note that xRC
 = xR

 + j, so an additive code containing j that is 

fixed by the permutation x →  x
R
 is also fixed by the map x → x

RC. 

• GC-content constraint: this constraint is that each codeword x ∈  C has the same GC-weight (the 

number of entries that are G or C). Starting from a linear code, the question is how to compute the GC-

weight enumerator (finding the complete weight enumerator may in itself take a long time). Below a 

simple way to compute the number of codewords with fixed GC-weight of a special class of additive self-

dual codes over F4 is described. 

 

3. Main Results 

 In the current work we consider DNA codes with fixed GC-content that satisfy given Hamming 

distance constraint and reverse-complement constraint. By ),,(,
4 udnA RCGC   we denote the maximum size 

of a DNA code of length n with constant GC-content u that satisfies the Hamming distance constraint and 

the reverse-complement constraint for a given d. 
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  A graph code is an additive self-dual F4-code with generator matrix G = Г + wI where I is the 

identity matrix and Г is the adjacency matrix of a simple undirected graph, which must be symmetric with 

0's along the diagonal.  

  Example: 

















=

















=Γ

w

w

w

G

11

11

11

,

011

101

110

 

  It is proved [5] that for any self-dual quantum code, there is an equivalent graph code. This means 

that there is a one-to-one correspondence between the set of simple undirected graphs and the set of 

additive self-dual codes over F4. 

 A matrix B of the form 























=
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n
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  is called a circulant matrix. The vector (b0, b1, ….., bn-1) is called generator vector for the matrix 

B. An additive code with circulant generator matrix is called circulant code. 

  An additive circulant graph (ACG) code is a code corresponding to graph with circulant 

adjacency matrix. Circulant graphs must be regular, i.e., all vertices must have the same number of 

neighbours. It is easy to see that such matrix has the following property: bi = bn-i , for all i = 1, …, n-1, 

and b0 = w. Then, the entries in the generator matrix of ACG code depend on the coordinates 

 
),.....,,( 2/21 nbbb only.  

  The graph codes are proper to construct DNA codes with fixed GC-content u that satisfy 

Hamming distance constraint for given d. If we know already that the minimum distance of the code is at 

least d, then H(x,y) ≥ d (for any two codewords x and y), and the Hamming distance constraint is satisfied. 

Other good property is that the generator matrix G of the code has just one position in any row (and 
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column) that is neither 0 nor 1. It is easy to see that any codeword that is a sum of u rows has GC-weight 

u. Then, the corresponding DNA code with H(x,y) ≥ d and fixed GC-content u consists of all codewords 

that are linear combinations of u rows of the generator matrix G. 

  The generator matrix G of an ACG code has another special property (useful about the RC-

constraint). The i
th row is a reverse of the (n – i + 1)th row, for any 1 ≤ i ≤ n/2. Let R be a reverse 

permutation (a permutation that exchanges column i and column n – i + 1 of the code, for 1 ≤ i ≤ n). Then 

any codeword that is a linear combination of even number of pairwise reversed rows of G is fixed by R. 

Also, any ACG code contains all-w or all-w2 codeword (that is the linear combination of all rows of G). 

Therefore, by a multiplication of all columns of G by w
2 or w (respectively) we can get a code that 

contains all-one codeword. 

 According to these properties, in our work we use the following: 

 Theorem 1 [6]: Any ACG code of length n with minimum distance d consists of  DNA codes of 

length n with H(x,y) ≥ d, fixed GC-content u = n / 2, and 2/),,(,
4 


















−







=

k

u

u

n
udnA

RCGC  (where k = u / 

2), except for n ≡ 2 (mod 4), where  2/),,(,
4 








=

u

n
udnA

RCGC  

   Based on the results about additive self-dual F4-codes obtained in [3] we construct many DNA 

codes. Also, by shortening and lengthening (see [2] for these methods) we construct additive self-dual F4-

codes with other lengths. All bounds for DNA codes of length n ≥ 36 are new [4, 6]. In Table 1 we 

summarize the obtained results. The main problem was to check experimentally these results. In some 

cases the number of codewords was too large for the primitive data types in the programming languages 

and we used JAVA language and the class BigInteger (used for mathematical operation which involves 

very big integer calculations that are outside the limit of all available primitive data types) in order to 

check them. 

 

4. Conclusion 

In this work we have presented some connections between DNA codes and additive F4-codes. We 

use a special class of additive self-dual F4-codes and we use a constructive method on DNA codes based 
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on the form of generator matrices of the codes in this special class. By this construction we improve the 

lower bounds on DNA codes that satisfy some necessary constraints. 

Table 1. New bounds for ),,(,
4 udnA

RCGC  for 55 ≤ n ≤ 100 

n D ),,(,
4 udnA

RCGC
 n d ),,(,

4 udnA
RCGC

 

55 14 1,912 x 1015 71 18 1,106 x 1020 
56 15 3,824 x 1015 79 19 2,687 x 1022 
57 15 7,517 x 1015 82 19 2,124 x 1023 
58 16 3,007 x 1016 83 20 4,197 x 1023 
62 16 2,327 x 1017 87 20 6,562 x 1024 
63 16 4,581 x 1017 88 20 1,312 x 1025 
67 17 7,113 x 1018 89 21 2,595 x 1025 
70 18 1,122 x 1020 95 20 1,608 x 1027 
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We prove a lower bound for the blow-up rate of smooth solution of the 3D Navier-Stokes equations in the 
H^{5/2}-norm, both on the whole space and in the periodic case. This result gives a positive answer to a 
question left open by James et al (2012, J. Math. Phys.). and Mccormick et al (2016, J. Math. Analysis). 
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A Strong lower bound on the blow-up of solutions to the 3D Navier-Stokes equations in  Ḣ5/2   
Blow-up solutions for the 3D Navier-Stokes equations  
Abdelhafid Younsi 
Department of Mathematics and Computer Science, University of Djelfa , Algeria. 
younsihafid@gmail.com 
[2010] 35Q30, 35B44 
Blow-up rate; Strong lower bound; Navier-Stokes equations 
Under the assumption that  T∗   is the first time of blow up of smooth solutions of the 3D Navier-Stokes 
equations in the Sobolev space  Ḣ5/2  , we prove a strong lower bound for the blow-up rate of the type 
cT∗ − t−1

 , in  Ḣ5/2  . Moreover, we give an explicit estimate of the value of the constant  c . This 
result completes the works of James et al (2012, J. Math. Phys.) and Mccormick et al (2016, J. Math. 
Analysis). We extend this result to general nonlinear ordinary differential equations. 
 

1.Introduction 
We consider, in this paper, the 3D incompressible Navier-Stokes equations 

∂u
∂t

+ u.∇u = −∇p + △u, inΩ × 0,∞

div u = 0, inΩ × 0,T andux, 0 = u0, inΩ,
  #   

 
 where  u = ux, t  is the velocity vector field,  p  is the pressure. The domain  Ω   may have periodic 
boundary conditions or  Ω = ℝ3  . 

For small data  ‖∇u0‖L2 ≤ c  the global existence of strong solutions for the 3D Navier-Stokes equations 
it is well known, see Constantin and Foias [2]. But for the 3D Navier-Stokes equations with large data, 
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we don't have a result of global existence. Under the assumption that the solution of the three-dimensional 
Navier-Stokes equations becomes irregular at finite time  T∗   Leray 1934 [5] proved that there exists a 
constant  c > 0  such that  

‖∇u. ,t‖Ḣ1 ℝ3
4 ≥ c

T∗ − t
.   #   

 
 In 2010, Benameur [1] showed in the whole space  

‖u. ,t‖Ḣs ℝ3 ≥ cs
‖u. ,t‖

L2 ℝ3

3−2s
3

T∗ − t
s
3

with s > 5
2

.   #   

 
 The result above was improved by Robinson, Sadowski, and Silva in [7] to  

‖u. ,t‖ ḢsΩ ≥ cs
‖u0‖L2Ω

5−2s
5

T∗ − t
2s
3

  #   

 

 with  Ω = 0,13
  or  ℝ3  . In the homogeneous Sobolev space  Ḣ5/2T3    of real valued periodic 

functions, Cortissoz, Montero, & Pinilla 2014 [3] proved lower bounds on the blow up with logarithmic 
corrections, 

‖u. ,t‖Ḣ5/2
T

3 ≥ c
T∗ − t|lgT∗ − t|

.   #   

 
 Recently, McCormick et al (2016) [6] proved the blow up estimate   

lim
t→T∗

T∗ − t‖u. ,t‖Ḣ5/2 ≥ c.   #   

 
 The estimates of the blow up rate in different spaces see [1, 3, 4, 6, 7]. The interesting question left open 
is the strong blow up estimate  

T∗ − t‖u. ,t‖Ḣ5/2 ≥ c,   #   
 

 in both the whole space and the periodic case. Motivated by the previous works, the goal of this paper is 

to establish a strong lower bound   ref: 7   for the blow-up rate in  Ḣ
5/2T3    of a possible blow-up 

solution to the 3D Navier-Stokes equations. Based on a contradictory argument,we prove that is possible 
to obtain a rate of blow up of the type  ref: 7   in  Ḣ5/2   space for  t ≤ T∗  . 

2. Preliminaries 

Let  Q = 0,2π3
 , we write  ℤ3 = ℤ3/0,0,0  , let  ḢsQ   be the subspace of the Sobolev space  Hs   

consisting of divergence-free, zero-average, periodic real functions,  
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ḢsQ = u = ∑
ξ∈ℤ̇3

ûξe−iξ.x : ûξ = û−ξ ,∑
ξ

|ξ|2s|ûξ |2 < ∞ andξ.ûξ = 0   #   

 
 and equip  ḢsQ  with the norm  

‖u‖ Ḣs
2 = ‖u‖ḢsQ

2 = ∑
ξ

|ξ|2s|ûξ |
2.   #   

 

 On the whole space the corresponding definition of the  Ḣ
sℝ3    norm is  

‖u‖Ḣs ℝ3
2 := ∫

ℝ3
|ξ|2s|ûξ|2dξ < ∞,   #   

 
 where 

Fuξ = ûξ = ∫
ℝ3

e−2iπx.ξuxdx   #   

 

   is the Fourier transform of  u , for more details see [7]. We prove our estimate in the periodic case, but 
it also holds in the full space. Throughout the paper,  ci  ,  i ∈ ℕ   , denotes a positive constant. 
 

3.Main result 
 In the proof we shall use the following lemma 
 Lemma Let  u  be a smooth solution of the 3D Navier-Stokes equations  ref: 1   with a maximal time 

interval of existence  0,T∗  ,  T∗ < ∞ . Then  u  satisfies 

T∗ − t
1
2 ≤ c1‖u. ,t‖Ḣ5/2T∗ − t   #   

 
 for all  t ≤ T∗.   
 . Our main result is the following 
 Theorem Suppose that  u  is a classical solution of the 3D Navier-Stokes equations  ref: 1   with a 

maximal time interval of existence  0,T∗  ,  T∗ < ∞ . For all  τ  in  0,T∗   , if  t ∈ τ,T∗    then  

‖u. ,t‖ Ḣ5/2T∗ − t ≥ Cτ   #   
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                                           Abstract 

 

   We construct some special spaces to obtain numerical solution of the third order 

fractional differential equation. We obtain very useful reproducing kernel functions in 

these spaces. These functions will be very helpful for researchers to investigate the 

nonlinear third order fractional differential equations. 
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1. Introduction 

Fractional differential equations have taken considerable importance recently in the 

literature. These equations have many implementations in the areas of finance, applied 

sciences, seismology engineering, physics and biology [1-3]. Fractional differential equations 

can be solved separately depending on the time and space variables. There are some 

techniques for approximate solutions of fractional differential equations due to space and 

time variables [4, 5]. These techniques are the radial basis function, Chebyshew Tau 

method, thin plate splines method, variational iteration method, finite difference schemes 

method and Daftardar-Gejii-Jafaris method [6-10]. In recent years, many works have been 

constructed on modeling of fractional differential equations [11-15]. In this paper, we will 

study the initial-boundary value problems of the third-order fractional differential 

equations defined by Caputo derivative. 
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2 

 

  

 

                          
𝜕3𝜂(𝑡,𝑥)

𝜕𝑡2
+
𝜕𝛼𝜂(𝑡,𝛼)

𝜕𝑡𝛼
+ 𝜂(𝑡, 𝑥) = 𝜆

𝜕2𝜂(𝑡,𝑥)

𝜕𝛼2
+ 𝑓(𝑡, 𝑥) 

                                        

                          0 < 𝑥 < 𝐿, 0 < 𝑡 < 𝑇, 0 < 𝛼 ≤ 1, 
                                                                                                                                           (1) 

                          𝜂(0, 𝑥) = 𝑔1(𝑥), 𝜂𝑡(0, 𝑥) = 𝑔2(𝑥), 𝜂(0, 𝑥) = 𝑔3(𝑥), 0 ≤ 𝑡 ≤ 𝑇 

                                        

                          𝜂(𝑡, 𝑋𝐿) = 𝑟1(𝑡), 𝜂(𝑡, 𝑋𝑅) = 𝑟2(𝑡),    𝑋𝐿 < 𝑥 < 𝑋𝑅 

 

Where 𝜆 is known constant coefficient, 𝑔1, 𝑔2, 𝑔3, 𝑟1 and 𝑟2 are known functions and 𝜂 
is the unknown function. 

 

Definition 1. The definition of Gamma function is presented as: 

 

 

Γ(𝑧) = ∫𝑒−𝑡
𝑡

0

𝑡𝑧−1𝑑𝑡, 

  

for all z ∈ C. 

 

Definition 2. The Caputo fractional derivative 𝐷𝑡
𝛼𝜂(𝑡, 𝑥) of order 𝛼  with 

respect to time is given as: 

     

                                 
𝜕𝛼𝜂(𝑡,𝑥)

𝜕𝑡𝛼
= 𝐷𝑡

𝛼𝜂(𝑡, 𝑥) 

 

                                               =
1

Γ(𝑛−𝛼)
∫

1

(𝑡−𝑝)𝛼−𝑛+1
𝑡

0

𝜕𝛼𝜂(𝑝,𝑥)

𝜕𝑝𝛼
𝑑𝑝, (𝑛 − 1 < 𝛼 < 𝑛) 

               

and for 𝛼 = 𝑛 ∈ 𝑁  defined as:  

 

                                                        𝐷𝑡
𝛼𝜂(𝑡, 𝑥)=

𝜕𝛼𝜂(𝑡,𝑥)

𝜕𝑡𝛼
=

𝜕𝑛𝜂(𝑡,𝑥)

𝜕𝑡𝑛
 

 

        Definition 3. By using Gamma function, we have  

 𝐷𝑡
𝛼𝜂(𝑡, 𝑥) =

Γ(𝛽 + 1)

Γ(𝛽 − 𝛼 + 1)
𝑡𝛽−𝛼. 
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2.Reproducing Kernel Functions 

 

We define the reproducing kernel Hilbert space 𝐻2
4[0,1]  as: 

 

𝐻2
4[0,1] = {

ℎ(𝑧),  ℎ′(𝑧),  ℎ′′(𝑧),  ℎ′′′(𝑧) 𝑎𝑟𝑒 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒𝑙𝑦 𝑐𝑜𝑛𝑡𝑖𝑛𝑖𝑜𝑢𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠

ℎ(4)(𝑧) ∈ 𝐿2[0,1], 𝑧 ∈ [0,1], ℎ(𝑧) = ℎ′(𝑧) = ℎ′′(𝑧) = 0
} 

 

For any functions ℎ(𝑧), 𝑠(𝑧) ∈ 𝐻2
4[0,1], we have 

 

                            〈ℎ, 𝑠〉𝐻24 =  ∑ ℎ(𝑖)(0)𝑠(𝑖)3
𝑖=0 (0) + ∫  ℎ(𝑚)

1

0
𝑠(𝑚)(𝑧)𝑑𝑧, 

and 

 

                        ‖ℎ‖𝐻24=√〈ℎ, ℎ〉𝐻24
  

 

Lets find the reproducing kernel function 𝐴𝑚(𝑧) 
  

                        〈𝑠, 𝐴𝑚〉𝐻24
=∑ 𝐴𝑚

(𝑖)3
𝑖=0 (0)𝑠(𝑖)(0) + ∫ 𝐴𝑚

(4)1

0
(𝑧)𝑠(4)(𝑧)𝑑𝑧 

                                         

                                       =𝐴𝑚(0)𝑠(0)+𝐴𝑚
′ (0)𝑠′(0)+𝐴𝑚

′′ (0)𝑠′′(0)+𝐴𝑚
′′′(0)𝑠′′′(0) 

                                          

                                         +∫ 𝐴𝑚
(4)1

0
(𝑧)𝑠(4)(𝑧)𝑑𝑧 

 

We will apply integrations by parts and obtain 

 

                        〈𝑠, 𝐴𝑚〉𝐻24
= 𝐴𝑚(0)𝑠(0)+𝐴𝑚

′ (0)𝑠′(0)+𝐴𝑚
′′ (0)𝑠′′(0)+𝐴𝑚

′′′(0)𝑠′′′(0) 

  

                                          +𝐴𝑚
(4)(1)𝑠(3)(1) − 𝐴𝑚

(4)(0)𝑠(3)(0) − 𝐴𝑚
(5)(1)𝑠′′(1) + 𝐴𝑚

(5)(0)𝑠′′(0) 
 

                                          + 𝐴𝑚
(6)(1)𝑠′(1) − 𝐴𝑚

(6)(0)𝑠′(0) − 𝐴𝑚
(7)(1)𝑠(1) + 𝐴𝑚

(7)(0)𝑠(0)  
 

                                          +∫ 𝐴𝑚
(8)1

0
(𝑧)𝑠(𝑧)𝑑𝑧 = 𝑠(𝑚)       

 

Since  𝑠(0) = 𝑠′(0) = 𝑠′′(0) = 0 ,  we get 

 

                         〈𝑠, 𝐴𝑚〉𝐻24
=𝐴𝑚

′′′(0)𝑠′′′(0) + 𝐴𝑚
(4)(1)𝑠(3)(1) − 𝐴𝑚

(4)(0)𝑠(3)(0) − 𝐴𝑚
(5)(1)𝑠′′(1) 

 

                                         +𝐴𝑚
(6)(1)𝑠′(1) − 𝐴𝑚

(7)(1)𝑠(1) + ∫ 𝐴𝑚
(8)1

0
(𝑧)𝑠(𝑧)𝑑𝑧 
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If we have  

                       1. 𝐴𝑚
′′′(0) − 𝐴𝑚

(4)(0) =0,             

 

                       2. 𝐴𝑚
(4)(1)=1, 

 

 

                       3. 𝐴𝑚
(5)(1) = 0, 

 

                       4. 𝐴𝑚
(6)(1) = 0, 

 

                       5. 𝐴𝑚
(7)(1) = 0, 

 

then we will find 

 

                         〈𝑠, 𝐴𝑚〉𝐻24
=∫ 𝐴𝑚

(8)1

0
(𝑧)𝑠(𝑧)𝑑𝑧 

 

By reproducing feature we know 

 

                         〈𝑠, 𝐴𝑚〉𝐻24
= 𝑠(𝑚). 

 

Therefore, we get 

 

                         ∫  𝐴𝑚
(8)1

0
(𝑧)𝑠(𝑧)𝑑𝑧 = 𝑠(𝑚). 

 

Thus, we reach 

                   

                         𝐴𝑚
(8)(𝑧) =𝛿(𝑚 − 𝑧). 

 

When 𝑚 ≠ 𝑧,  we get 

 

                         𝐴𝑚
(8)(𝑧) = 0. 

 

Then, we obtain the reproducing kernel function 𝐴𝑚(𝑧) as 

 

                        𝐴𝑚(𝑧) = {
∑ 𝑎𝑘(𝑚)𝑧

𝑘−1  ,8
𝑘=1        𝑧 ≤ 𝑚,

∑ 𝑏𝑘(𝑚)𝑧
𝑘−1  ,8

𝑘=1        𝑧 > 𝑚.
     

 

The reproducing kernel function should satisfy the conditions. Therefore, we have 

 

                         6. 𝐴𝑚(0) = 0, 
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                        7. 𝐴𝑚
′ (0) = 0, 

                        8. 𝐴𝑚
′′ (0) = 0. 

 

We have 16 unknown coefficients and 8 equations .We need 8 more equations to obtain these 

coefficients. If we use the properties of Dirac-Delta function we will find 

 

                       9. 𝐴𝑚+(𝑚) = 𝐴𝑚−(𝑚) ,          
 

                     10. 𝐴𝑚+
′ (𝑚) = 𝐴𝑚−

′ (𝑚) ,     

 

                     11. 𝐴𝑚+
′′ (𝑚) = 𝐴𝑚−

′′ (𝑚) ,     
 

                     12. 𝐴𝑚+
′′′ (𝑚) = 𝐴𝑚−

′′′ (𝑚) ,   

 

                     13.  𝐴
𝑚+
(4) (𝑚) = 𝐴𝑚−

(4) (𝑚)  ,    

 

                     14.  𝐴
𝑚+
(5) (𝑚) = 𝐴𝑚−

(5) (𝑚) ,    

           

                     15.  𝐴
𝑚+
(6) (𝑚) = 𝐴𝑚−

(6) (𝑚) ,        

We have  

 

                      𝐴𝑚
(8)(𝑧) =𝛿(𝑚 − 𝑧).            

 

If we take integral from both sides, we will find  

 

                     16.  𝐴
𝑚+
(7) (𝑚) − 𝐴𝑚−

(7) (𝑚) = 1 .    

 

Lets find these unknown coefficients. We have 

 

                        𝐴𝑚(𝑧) = {
𝑎1 + 𝑎2𝑧 + 𝑎3𝑧

2 + 𝑎4𝑧
3 + 𝑎5𝑧

4 + 𝑎6𝑧
5 + 𝑎7𝑧

6 + 𝑎8𝑧
7     𝑧 ≤ 𝑚

  𝑏1 + 𝑏2𝑧 + 𝑏3𝑧
2 + 𝑏4𝑧

3 + 𝑏5𝑧
4 + 𝑏6𝑧

5 + 𝑏7𝑧
6 + 𝑏8𝑧

7      𝑧 > 𝑚  
               

 

                         𝐴𝑚
′ (𝑧) = {

𝑎2 + 2𝑎3𝑧 + 3𝑎4𝑧
2 + 4𝑎5𝑧

3 + 5𝑎6𝑧
4 + 6𝑎7𝑧

5 + 7𝑎8𝑧
6     𝑧 < 𝑚

  𝑏2 + 2𝑏3𝑧 + 3𝑏4𝑧
2 + 4𝑏5𝑧

3 + 5𝑏6𝑧
4 + 6𝑏7𝑧

5 + 7𝑏8𝑧
6     𝑧 > 𝑚  

       

 

                         𝐴𝑚
′′ (𝑧) = {

2𝑎3 + 6𝑎4𝑧 + 12𝑎5𝑧
2 + 20𝑎6𝑧

3 + 30𝑎7𝑧
4 + 42𝑎8𝑧

5    𝑧 < 𝑚

 2 𝑏3 + 6𝑏4𝑧 + 12𝑏5𝑧
2 + 20𝑏6𝑧

3 + 30𝑏7𝑧
4 + 42𝑏8𝑧

5    𝑧 > 𝑚  
          

 

                         𝐴𝑚
′′′(𝑧) = {

6𝑎4 + 24𝑎5𝑧 + 60𝑎6𝑧
2 + 120𝑎7𝑧

3 + 210𝑎8𝑧
4    𝑧 < 𝑚

 6 𝑏4 + 24𝑏5𝑧 + 60𝑏6𝑧
2 + 120𝑏7𝑧

3 + 210𝑏8𝑧
4    𝑧 > 𝑚  
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                        𝐴𝑚
(4)(𝑧) = {

24𝑎5 + 120𝑎6𝑧 + 360𝑎7𝑧
2 + 840𝑎8𝑧

3    𝑧 < 𝑚

 24𝑏5 + 120𝑏6𝑧 + 360𝑏7𝑧
2 + 840𝑏8𝑧

3    𝑧 > 𝑚  
 

 

                        𝐴𝑚
(5)(𝑧) = {

120𝑎6 + 720𝑎7𝑧 + 2520𝑎8𝑧
2    𝑧 < 𝑚

 120𝑏6 + 720𝑏7𝑧 + 2520𝑏8𝑧
2   𝑧 > 𝑚  

 

 

                        𝐴𝑚
(6)(𝑧) = {

720𝑎7 + 5040𝑎8𝑧   𝑧 < 𝑚
 720𝑏7 + 5040𝑏8𝑧   𝑧 > 𝑚  

 

 

                        𝐴𝑚
(7)(𝑧) = {

5040𝑎8   𝑧 < 𝑚
 5040𝑏8   𝑧 > 𝑚  

 

 

Then, we get 

 

1. 𝑎1 + 5040𝑎8 = 0 

2. 𝑎2 − 720𝑎7 = 0 

3. 2𝑎3 + 120𝑎6 = 0 

4. 6𝑎4 − 24𝑎5 = 0 

5. 24𝑏5 + 120𝑏6 + 360𝑏7 + 840𝑏8 = 0 

6. 120𝑏6 + 720𝑏7 + 2520𝑏8 = 0 

7. 720𝑏7 + 5040𝑏8 = 0 

8. 5040𝑏8 = 0 

9. 𝑏1 + 𝑏2𝑚 + 𝑏3𝑚
2 + 𝑏4𝑚

3 + 𝑏5𝑚
4 + 𝑏6𝑚

5 + 𝑏7𝑚
6 + 𝑏8𝑚

7 = 𝑎1 + 𝑎2𝑚 +
𝑎3𝑚

2 + 𝑎4𝑚
3 + 𝑎5𝑚

4 + 𝑎6𝑚
5 + 𝑎7𝑚

6 + 𝑎8𝑚
7 

10. 𝑏2 + 2𝑏3𝑚 + 3𝑏4𝑚
2 + 4𝑏5𝑚

3 + 5𝑏6𝑚
4 + 6𝑏7𝑚

5 + 7𝑏8𝑚
6 = 𝑎 + 2𝑎3𝑚+

3𝑎4𝑚
2 + 4𝑎5𝑚

3 + 5𝑎6𝑚
4 + 6𝑎7𝑚

5 + 7𝑎8𝑚
6 

11. 2𝑏3 + 6𝑏4𝑚+ 12𝑏5𝑚
2 + 20𝑏6𝑚

3 + 30𝑏7𝑚
4 + 42𝑏8𝑚

5 = 2𝑏𝑎 + 6𝑎4𝑚 +
12𝑎5𝑚

2 + 20𝑎6𝑚
3 + 30𝑎7𝑚

4 + 42𝑎8𝑚
5 

12. 6𝑏4 + 24𝑏5𝑚 + 60𝑏6𝑚
2 + 120𝑏7𝑚

3 + 210𝑏8𝑚
4 = 6𝑎4 + 24𝑎5𝑚+ 60𝑎6𝑚

2 +
120𝑎7𝑚

3 + 210𝑎8𝑚
4 

13. 24𝑏5 + 120𝑏6𝑚 + 360𝑏7𝑚
2 + 840𝑏8𝑚

3 = 24𝑎5 + 120𝑎6𝑚 + 360𝑎7𝑚
2 +

840𝑎8𝑚
3 

14. 120𝑏6 + 720𝑏7𝑚 + 2520𝑏8𝑚
2 = 120𝑎6 + 720𝑎7𝑚 + 2520𝑎8𝑚

2 

15. 720𝑏7 + 5040𝑏8𝑚 = 720𝑎7 + 5040𝑎8𝑚 

16. 5040𝑏8 − 5040𝑎8 = 1 
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Thus, we find 

 

                     𝑎1 = 1                                                𝑏1 = 1 −
𝑚7

5040
 

                     𝑎2 = 𝑚                                               𝑏2 = 𝑚 +
𝑚6

720
 

                     𝑎3 =
𝑚2

4
                                              𝑏3 =

𝑚2

4
−

𝑚5

240
 

                      𝑎4 =
𝑚3

36
                                             𝑏4 =

𝑚3

36
+

𝑚4

144
 

                      𝑎5 =
𝑚3

144
                                            𝑏5 = 0 

                      𝑎6 =
−𝑚2

240
                                           𝑏6 = 0  

                     

                      𝑎7 =
𝑚

720
                                             𝑏7 = 0 

 

                      𝑎8 =
−1

5040
                                           𝑏8 = 0 

 

    Therefore, our reproducing kernel function is obtained as: 

 

 

𝐴𝑚(𝑧) =

{
 
 

 
 1 +𝑚𝑧 +

𝑚2𝑧2

4
+
𝑚3𝑧3

36
+
𝑚3𝑧4

144
−
𝑚2𝑧5

240
+
𝑚𝑧6

720
−

𝑧7

5040
,        𝑧 ≤ 𝑚,

1 + 𝑚𝑧 +
𝑚2𝑧2

4
+
𝑚3𝑧3

36
+
𝑚4𝑧3

144
−
𝑚5𝑧2

240
+
𝑚6𝑧

720
−

𝑚7

5040
,             𝑧 > 𝑚.

 

 

 

Now, we are ready to give the second reproducing kernel Hilbert space  𝐻2
3[0,1] as: 

 

 

 

𝐻2
3[0,1] = {

ℎ(𝑧), ℎ′(𝑧), ℎ′′(𝑧), 𝑎𝑟𝑒 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒𝑙𝑦 𝑐𝑜𝑛𝑡𝑖𝑛𝑖𝑜𝑢𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠

ℎ(3)(𝑧) ∈ 𝐿2[0,1], 𝑧 ∈ [0,1], ℎ(𝑧) = ℎ′(𝑧) = 0
} 

 

 

For any functions ℎ(𝑧), 𝑠(𝑧) ∈ 𝐻2
3[0,1] 

 

                            〈ℎ, 𝑠〉𝐻23 =  ∑ ℎ(𝑖)𝑠(𝑖)2
𝑖=0 + ∫  ℎ(𝑚)

1

0
𝑠(𝑚)(𝑧)𝑑𝑧 

and 
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                        ‖ℎ‖𝐻23=√〈ℎ, ℎ〉𝐻23
  

 

Lets find the reproducing kernel function 𝐴𝑚(𝑧) 
  

                        〈𝑠, 𝐴𝑚〉𝐻23
=∑ 𝐴𝑚

(𝑖)2
𝑖=0 (0)𝑠(𝑖)(0) + ∫ 𝐴𝑚

(3)1

0
(𝑧)𝑠(3)(𝑧)𝑑𝑧 

                                         

                                       =𝐴𝑚(0)𝑠(0)+𝐴𝑚
′ (0)𝑠′(0)+𝐴𝑚

′′ (0)𝑠′′(0) +∫ 𝐴𝑚
(3)1

0
(𝑧)𝑠(3)(𝑧)𝑑𝑧 

 

We will apply integrations by parts 

 

                        〈𝑠, 𝐴𝑚〉𝐻23
= 𝐴𝑚(0)𝑠(0)+𝐴𝑚

′ (0)𝑠′(0)+𝐴𝑚
′′ (0)𝑠′′(0)+𝐴𝑚

′′′(1)𝑠(′′)(1) 

  

                                          −𝐴𝑚
′′′(0)𝑠′′(0) − 𝐴𝑚

(4)(1)𝑠′(1) + 𝐴𝑚
(4)(0)𝑠′(0)+ 𝐴𝑚

(5)(1)𝑠(1) 
 

                                          −𝐴𝑚
(5)(0)𝑠(0) -∫ 𝐴𝑚

(6)1

0
(𝑧)𝑠(𝑧)𝑑𝑧 = 𝑠(𝑚)  

 

Since  𝑠(0) = 𝑠′(0) = 0 ,   we obtain 

 

                         〈𝑠, 𝐴𝑚〉𝐻23
=𝐴𝑚

′′′(0)𝑠′′′(0) + 𝐴𝑚
(4)(1)𝑠′′′(1) − 𝐴𝑚

(4)(0)𝑠′′′(0) − 𝐴𝑚
(5)(1)𝑠′′(1) 

 

                                         +𝐴𝑚
(6)(1)𝑠′(1) − 𝐴𝑚

(7)(1)𝑠(1) + ∫ 𝐴𝑚
(8)1

0
(𝑧)𝑠(𝑧)𝑑𝑧 

 

If we have  

                       1. 𝐴𝑚
′′ (0) − 𝐴𝑚

′′′(0) =0             

 

                       2. 𝐴𝑚
′′′(1)=0 

                

                       3. 𝐴𝑚
(4)(1) = 0 

 

                       4. 𝐴𝑚
(5)(1) = 0, 

 

then we will find 

 

                         〈𝑠, 𝐴𝑚〉𝐻23
=∫ 𝐴𝑚

(6)1

0
(𝑧)𝑠(𝑧)𝑑𝑧 

 

By reproducing feature we know 

 

                         〈𝑠, 𝐴𝑚〉𝐻23
= 𝑠(𝑚) 
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Therefore, we get 

 

                         ∫  𝐴𝑚
(6)1

0
(𝑧)𝑠(𝑧)𝑑𝑧 = 𝑠(𝑚) 

 

Thus, we reach 

                   

                         𝐴𝑚
(6)(𝑧) =𝛿(𝑚 − 𝑧) 

 

When 𝑚 ≠ 𝑧 we get 

 

                         𝐴𝑚
(6)(𝑧) = 0 

 

Then we obtain the reproducing kernel function 𝐴𝑚(𝑧) as 

 

                        𝐴𝑚(𝑧) = {
∑ 𝑎𝑘(𝑚)𝑧

𝑘−1  6
𝑘=1        𝑧 ≤ 𝑚,

∑ 𝑏𝑘(𝑚)𝑧
𝑘−1  6

𝑘=1        𝑧 > 𝑚.
     

 

The reproducing kernel function should satisfy the conditions. Therefore we have 

 

                        5. 𝐴𝑚(0) = 0 

 

                        6. 𝐴𝑚
′ (0) = 0 

 

We have 12 unknown coefficients and 6 equations .We need 6 more equations to obtain these 

coefficients. If we use the properties of Dirac-Delta function we will find 

 

                     7. 𝐴𝑚+(𝑚) = 𝐴𝑚−(𝑚)           
 

                     8. 𝐴𝑚+
′ (𝑚) = 𝐴𝑚−

′ (𝑚)      
 

                     9. 𝐴𝑚+
′′ (𝑚) = 𝐴𝑚−

′′ (𝑚)      
 

                     10. 𝐴𝑚+
′′′ (𝑚) = 𝐴𝑚−

′′′ (𝑚)          

 

                     11.  𝐴
𝑚+
(4) (𝑚) = 𝐴𝑚−

(4) (𝑚).       

           

 We have  

 

                      𝐴𝑚
(6)(𝑧) =−𝛿(𝑚 − 𝑧)            

 

If we take integral from both sides, we will find  
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                   12.  𝐴
𝑚+
(5) (𝑚) − 𝐴𝑚−

(5) (𝑚) = −1     

 

Lets find these unknown coefficients. We have  

 

                        𝐴𝑚(𝑧) = {
𝑎1 + 𝑎2𝑧 + 𝑎3𝑧

2 + 𝑎4𝑧
3 + 𝑎5𝑧

4 + 𝑎6𝑧
5     𝑧 ≤ 𝑚

  𝑏1 + 𝑏2𝑧 + 𝑏3𝑧
2 + 𝑏4𝑧

3 + 𝑏5𝑧
4 + 𝑏6𝑧

5      𝑧 > 𝑚  
               

 

                         𝐴𝑚
′ (𝑧) = {

𝑎2 + 2𝑎3𝑧 + 3𝑎4𝑧
2 + 4𝑎5𝑧

3 + 5𝑎6𝑧
4    𝑧 ≤ 𝑚

  𝑏2 + 2𝑏3𝑧 + 3𝑏4𝑧
2 + 4𝑏5𝑧

3 + 5𝑏6𝑧
4     𝑧 > 𝑚  

       

 

                         𝐴𝑚
′′ (𝑧) = {

2𝑎3 + 6𝑎4𝑧 + 12𝑎5𝑧
2 + 20𝑎6𝑧

3    𝑧 ≤ 𝑚

 2 𝑏3 + 6𝑏4𝑧 + 12𝑏5𝑧
2 + 20𝑏6𝑧

3    𝑧 > 𝑚  
          

 

                         𝐴𝑚
′′′(𝑧) = {

6𝑎4 + 24𝑎5𝑧 + 60𝑎6𝑧
2   𝑧 ≤ 𝑚

 6 𝑏4 + 24𝑏5𝑧 + 60𝑏6𝑧
2   𝑧 > 𝑚  

 

 

                         𝐴𝑚
(4)(𝑧) = {

24𝑎5 + 120𝑎6𝑧   𝑧 ≤ 𝑚
 24𝑏5 + 120𝑏6𝑧    𝑧 > 𝑚  

 

 

 

                        𝐴𝑚
(5)(𝑧) = {

120𝑎6    𝑧 ≤ 𝑚
 120𝑏6   𝑧 > 𝑚  

 

Then, we can write 

 

1. 𝑎1 − 120𝑎6 = 0 

2. 𝑎2 + 24𝑎5 = 0 

3. 2𝑎3−6𝑎4 = 0 

4. 6𝑏4 + 24𝑏5 + 60𝑏6 = 0 

5. 24𝑏5 + 120𝑏6 = 0 

6. 120𝑏6 = 0 

7. 𝑏1 + 𝑏2𝑚 + 𝑏3𝑚
2 + 𝑏4𝑚

3 + 𝑏5𝑚
4+ 𝑏6𝑚

5 = 𝑎1 + 𝑎2𝑚 + 𝑎3𝑚
2 + 𝑎4𝑚

3 +
𝑎5𝑚

4 + 𝑎6𝑚
5 

8. 𝑏2 + 2𝑏3𝑚 + 3𝑏4𝑚
2 + 4𝑏5𝑚

3 + 5𝑏6𝑚
4 = 𝑎 + 2𝑎3𝑚 + 3𝑎4𝑚

2+ 4𝑎5𝑚
3 +

5𝑎6𝑚
4 

9. 2𝑏3 + 6𝑏4𝑚+ 12𝑏5𝑚
2 + 20𝑏6𝑚

3 = 2𝑏𝑎 + 6𝑎4𝑚 + 12𝑎5𝑚
2 + 20𝑎6𝑚

3 

10. 6𝑏4 + 24𝑏5𝑚 + 60𝑏6𝑚
2 = 6𝑎4 + 24𝑎5𝑚 + 60𝑎6𝑚

2 

11. 24𝑏5 + 120𝑏6𝑚 = 24𝑎5 + 120𝑎6𝑚 
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12. 120𝑏6 − 120𝑎6 = −1 

 

Thus, we get coefficients as: 

                          𝑎1 = 1                                                𝑏1 = 1 +
𝑚5

120
 

                          𝑎2 = 𝑚                                              𝑏2 = 𝑚 −
𝑚4

24
 

                          𝑎3 =
𝑚2

4
                                              𝑏3 =

𝑚2

4
+
𝑚3

12
 

                          𝑎4 =
𝑚2

12
                                              𝑏4 = 0 

                          𝑎5 =
−𝑚

24
                                             𝑏5 = 0 

                          𝑎6 =
1

120
                                             𝑏6 = 0 

 

Therefore our second reproducing kernel function is obtained as: 

                     

 

 

𝐴𝑚(𝑧) =

{
 

 1 + 𝑚𝑧 +
𝑚2𝑧2

4
+
𝑚3𝑧2

12
+
𝑚4𝑧

24
+
𝑧5

120
,        𝑧 ≤ 𝑚,

1 + 𝑚𝑧 +
𝑚2𝑧2

4
+
𝑚2𝑧3

12
+
𝑚𝑧4

24
−
𝑧5

120
,         𝑧 > 𝑚.

         

 

We can solve the following problems in the 𝐻2
4[0,1]. 

 

 

𝜕3𝜂(𝑡, 𝑥)

𝜕𝑡3
+
𝜕
1
2𝜂(𝑡, 𝛼)

𝜕𝑡
1
2

+ 𝜂(𝑡, 𝑥) =
𝜕2𝜂(𝑡, 𝑥)

𝜕𝑥2
+ 𝑒𝑥(6 + 6

𝑡
5
2

Γ (
7
2
)
) 

 

0 < 𝑥,   0 < 𝑡 < 1, 0 < 𝛼 ≤ 1, 
 

                       

                          𝜂(0, 𝑥) = 𝜂𝑡(0, 𝑥) = 𝜂𝑡𝑡(0, 𝑥) = 0, 0 ≤ 𝑡.

 

      

and 
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𝜕3𝜂(𝑡, 𝑥)

𝜕𝑡3
+
𝜕
1
2𝜂(𝑡, 𝛼)

𝜕𝑡
1
2

= 3
𝜕2𝜂(𝑡, 𝑥)

𝜕𝑥2
𝜂(𝑡, 𝑥) + 6(𝑥 − 𝑥2)(𝑡6 +

𝑡
5
2

Γ(
7
2

+ 1), 

 

                  0 < 𝑥, 0 < 𝑡 < 1, 0 < 𝛼 ≤ 1, 
 

                  𝜂(0, 𝑥) = 𝜂𝑡(0, 𝑥) = 𝜂𝑡𝑡(0, 𝑥) = 0, 0 ≤ 𝑡. 
 

                  𝜂(𝑡, 0) = 𝜂(𝑡, 1) = 0, 0 ≤ 𝑥 ≤ 1. 
 

 

 

 

4. Conclusion 

In this paper, we constructed some important special Hilbert Spaces. We obtained very 

useful reproducing kernel functions to investigate nonlinear third order fractional 

differential equation. 
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Abstract

We define  a  p-adic  distribution  called  the  second  order  q-Haar  distribution  which  is  closely
related to the well-known q-Haar distribution. We will give some  basic functional equations involving
the  integrals  against  the  second  order  q-Haar  distribution  in  analogy  with  the  functional  equations
obtained from the classical q-Haar distribution. 

Keywords: p-adic distribution, p-adic integration, q-Haar distribution

1. Introduction 

In  recent  years,  q-Volkenborn  integral  has  been  extensively  used  especially  to  give  p-adic  integral

representations  and recurrence  relations  of some important  families  of polynomials  and numbers.  These

include Bernoulli, Apostol-Bernoulli, Euler, Frobenius-Euler and Stirling polynomials/numbers and their q-

analogues.  The  reader  is  referred  to  [3,4,5,6,7]  and  references  therein  for  different  applications  of  p-

integration regarding the families of these numbers. For the special case q=-1, the corresponding q-integral is

also called as  the fermionic  p-adic  integral  and is  used to  construct  generating  functions  for Euler  and

Genochhi type numbers [8]. Also taking the limit as q → 1, we recover the the Volkenborne integral. The

reader is referred to [9] and also to [1,2,10]). 

q-Volkenborne integral can easily be defined by replacing the Haar distribution on the ring of p-adic integers

in the classical  Volkenborne integral  by the  q-Haar distribution introduced by T. Kim  in [1,2] (See  2.

Preliminaries for  details).  As  the  classical  Volkenborne  integral  gives  expressions  for  Bernoulli

numbers/polynomials,  the  q-Volkenborne  integral  provides  a  generalization  of  such  expressions  by

introducing  a  parameter  q.  It  is  also  common  to  use  the  q-Volkenborne  integral  of  some  appropriate

functions to define new classes of numbers/polynomials similar to Bernoulli numbers/polynomials.  

Here we will define another  p-adic distribution, namely the second order  q-Haar distribution.  We derive

some important functional equations related to integrals with respect to this new distribution. Through these

functional equations, we will see that this new p-adic distribution has close relations to Kim's q-Volkenborn

integral. 
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2. Preliminaries

Let Zp denote the ring of p-adic integers and Qp denote its quotient field. We denote the completion of a fixed
algebraic closure of Qp by Cp normalized as |p|= 1/p.

The Haar distribution on Zp is defined as

µHaar(a+(pN)) = 1/pN ∈ Cp

on the compact open subsets of Zp of the form a+(pN) and extended to all compact open subsets additively.
Then the Volkenborn integral of a strictly differentiable function f : Zp→ Zp is defined as

∫

Zp

f (t)dt := lim
N→∞

pN−1

∑
a=0

f (a)µHaar(a+(pN)) = lim
N→∞

pN−1

∑
a=0

f (a)
pN .

A similar integral, namely the q-Volkenborn integral has been defined by T. Kim by replacing the Haar
distribution a+(pN) 7→ 1/pN by the q-Haar distribution

µq(a+(pN)) =
(1−q)qa

1−qpN (1)

where q ∈ Cp with |q− 1|p < p−1/(p−1). Note that the condition on |q− 1|p is required for the equality
elogq = logeq = q. Explicitly the q-Volkenborn integral is defined as

∫

Zp

f (t)dµq := lim
N→∞

q−1
qpN −1

pN−1

∑
a=0

f (a)qa.

The term (qx− 1)/(q− 1) is commonly called as a q-integer and denoted by [x]q. Then the q-Volkenborn
integral can be written as

∫

Zp

f (t)dµq = lim
N→∞

1
[pN ]q

pN−1

∑
a=0

f (a)qa.

Note that in various applications q may be also taken as an indeterminate or a complex number. But here we
will always consider q ∈ Cp. The reader is referred to [1, 3, 4] for further results on q-Haar distribution and
q-Volkenborn integral.

3. Main Results

Here we will provide another p-adic distribution, namely the second order q-Haar distribution denoted by µq,2

and also give a basic equation similar to Kim’s equation (See Equation (3) below).
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Definition. Let q ∈Cp such that q 6= 1. We define µq,2 on the compact open subsets of Zp of the form a+(pN),
0≤ a≤ pN−1 as

µq,2(a+(pN)) =
qa

[pN ]q

(
(a− pN)qpN −a

qpN −1

)
(2)

Proof. Equality trivially holds for k = 1. So let k ≥ 2. Then we have

k−1

∑
b=0

bxb = x
k−1

∑
b=1

bxb−1 = x
d
dx

(
k−1

∑
b=0

xb

)
= x

d
dx

(
xk−1
x−1

)
=

kxk

x−1
− x(xk−1)

(x−1)2

as desired.

Theorem 1. Let µq,2 be given as in (2) with |q− 1|p < p−1/(p−1). Then µq,2 extends to a p-adic distribution
on Zp.

Proof. It is enough to show that µq,2 satisfies the following condition (Section II.3 of [11]);

p−1

∑
b=0

µq,2(a+bpN +(pN+1)) = µq,2(a+(pN)).

Now the sum on the left hand side is equal to

p−1

∑
b=0

qa+bpN

[pN+1]q

(
(a+bpN− pN+1)qpN+1−a

qpN+1−1

)

=
aqa

[pN+1]q

p−1

∑
b=0

(
qpN
)b

+
pN qa

[pN+1]q

p−1

∑
b=0

b
(

qpN
)b
− qa

[pN+1]q

pN+1qpN+1

qpN+1−1

p−1

∑
b=0

(
qpN
)b

Then we have

p−1

∑
b=0

b
(

qpN
)b

=
pqpN+1

qpN −1
− qpN

(qpN+1−1)
(qpN −1)2

.

So summing up the finite geometric series above we obtain

p−1

∑
b=0

µq,2(a+bpN +(pN+1)) =

aqa

[pN ]q
+

pN+1 qa+pN+1

[pN+1]q(qpN −1)
− pN qa+pN

(qpN+1−1)
[pN+1]q(qpN −1)2

+
pN+1qa+pN+1

(1−qpN+1
)[pN ]q
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The second and fourth terms cancel out each other since

[pN+1]q(qpN −1) =
(qpN+1−1)(qpN −1)

q−1
=−[pN ]q(1−qpN+1

).

Also the third term equals to

pN qa+pN
(q−1)

(qpN −1)2
=

pN qa+pN

[pN ]q(qpN −1)
.

Hence we obtain

p−1

∑
b=0

µq,2(a+bpN +(pN+1)) =
qa

[pN ]q

(
(a− pN)qpN −a

qpN −1

)
= µq,2(a+(pN)).

Since µq,2 is a p-adic distribution the following definition makes sense.

Definition. Let f be a uniformly differentiable function on Zp. We define the q-integral of f with respect to
µq,2 denoted by Iq,2 as

Iq,2( f ) =
∫

Zp

f (x)dµq,2(x) = lim
N→∞

pN−1

∑
a=0

f (a)µq,2(a+(pN)).

Now we we will drive an important functional equation for Iq,2. This equation will be analogue of the one
provided by Kim (See Theorem 1 in [2]). But first we recall and set the following notation. Let f be a
uniformly differentiable function on Zp. We put fn(x) = f (x+ n) for any integer n. Below µq denotes the
q-Haar distribution, and let

Iq( f ) =
∫

Zp

f (x)dµq(x).

Recall that for n≥ 1, Kim’s basic functional equation related to µq is

qnIq( fn) = Iq( f )+
q−1
logq

n−1

∑
j=0

q j f ′( j)+(q−1)
n−1

∑
j=0

q j f ( j). (3)
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Theorem 2. For any positive integer n, we have

qnIq,2( fn) = Iq,2( f )−
n

∑
j=1

q jIq( f j)−
q−1

(logq)2

n−1

∑
j=0

q j f ′( j) (4)

Proof. First we show the equality for n = 1. So we have

qIq,2( f1) = q
∫

Zp

f (x+1)dµq,2(x) = lim
N→∞

1
[pN ]q

pN−1

∑
a=0

f (a+1)qa+1

(
(a− pN)qpN −a

qpN −1

)

= lim
N→∞

1
[pN ]q

pN

∑
a=1

f (a)qa

(
(a−1− pN)qpN −a+1

qpN −1

)

= lim
N→∞

1
[pN ]q

SN + lim
N→∞

1
[pN ]q

LN (5)

where we set

SN :=
pN−1

∑
a=0

f (a)qa

(
a−1− pNqpN

qpN −1

)

LN :=

[
f (pN)qpN

(
pN−1− pNqpN

qpN −1

)
− f (0)

(
−1− pNqpN

qpN −1

)]

to simplify the notation. Now by definition, we have that

lim
N→∞

1
[pN ]q

SN = Iq,2( f )− Iq( f ). (6)

For the term LN we have that
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LN = f (pN)qpN

(
pN−1− pNqpN

qpN −1

)
− f (0)

(
−1− pNqpN

qpN −1

)

= f (pN)qpN
(

pN

1−qpN −1
)
− f (0)

(
pNqpN

1−qpN −1

)

=




f (pN)− f (0)

(1/q)pN −1
pN


−

(
f (pN)qpN − f (0)

)

Multiplying by 1/[pN ]q we obtain

1
[pN ]q

LN = (q−1)




f (pN)− f (0)
qpN −1

1

(1/q)pN −1
pN

− f (pN)qpN − f (0)
qpN −1


 .

Then by passing to limit and utilizing the definition of derivative we obtain

lim
N→∞

1
[pN ]q

LN = (q−1)
[

f ′(0)
logq

(−1)
logq

− f ′(0)+ f (0) logq
logq

]

=−(q−1) f (0)− q−1
logq

f ′(0)− q−1
(logq)2 f ′(0). (7)

We plug the expressions (6) and (7) in (5), and then use (3) for n = 1 to obtain

qIq,2( f1) = Iq,2( f )− Iq( f )− (q−1) f (0)− q−1
logq

f ′(0)− q−1
(logq)2 f ′(0)

= Iq,2( f )−qIq( f1)−
q−1

(logq)2 f ′(0)

as desired. This proves the identity (4) for n = 1. Applying it successively, we easily obtain the functional
equation (4) for any n≥ 1.
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4. Conclusion

A new p-adic distribution µq,2 has been introduced and a related equation involving the p-adic integrals with
respect to µq,2 is proven. Equation 4 given in Theorem 2 is similar to T. Kim’s equation relying on q-Haar
dsitribution. Equation 4 may be used to prove new idenditites involving special numbers (e.g. Bernoulli
numbers) in number theory.
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Abstract  

In this paper, numerical and analytical methods were proposed to study the steady two-

dimensional and viscous flow of the laminar boundary layer over a flat plate under the effect of 

a transverse magnetic field in the presence of an adverse pressure gradient. The main purpose 

of this study is to show the influence of the magnetic field on the boundary layer flow. The 

investigated problem was handled analytically using the decomposition method. Furthermore, 

a numerical study was performed using the fourth order Runge Kutta method featuring shooting 

technique. Analytical and numerical results obtained for the temperature profile are in excellent 

agreement.   

Introduction    

The invention of the electromagnetic pump in 1918 by Hartmann [1], fuelled a lot of interest in 

the field of magnetohydrodynamic (MHD) flow. This field of study has become essential for 

many industries; it was originally applied to astrophysical and geophysical problems, where it 

is still very important. But more recently, it has been applied to the problem of fusion power, 

where the application is the creation and containment of hot plasmas by electromagnetic forces, 

since material walls would be otherwise destroyed. Astrophysical problems include solar 

structure, especially in the outer layers, the solar wind bathing the earth and other planets, and 

interstellar magnetic fields. The primary geophysical problem is planetary magnetism, 

produced by currents deep in the planet, a problem that has not been solved to any degree of 

satisfaction. It seems that the first work investigating the flow over a flat plate using the Rung 

Kutta numerical methods was done by Howarth [2]. Later, numerical methods to investigate the 

two- dimensional motion of a viscous incompressible fluid impulsively started past a flat plate 

were employed by D.B. Ingham [3]. Kumari.  M, Nath [4] considered the effect of the magnetic 

field on the stagnation point flow and heat transfer on a linearly stretching sheet. The effect of 

a uniform transverse magnetic field over a stretching surface with heat transfer was studied by 

Chakrabati A, Gupta [5]. Another study of the momentum and the heat transfer of a 

hydromagnetic fluid past a stretching sheet was carried out by Liu IC [6]. On his part, Sakiadis 

[7] introduced the concept of boundary layer flow over a stretching surface. Recently, Mahsud, 

Y [8], Xenos [9] and Shahmohamad [10] investigated different problems of boundary layer 

flow.   
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Governing equation:  

Once the system of partial differential equations, governing the dynamic, thermal and 

concentration field of the MHD boundary layer flow is translated into a system of ordinary 

equations and after some simplifications, we end up with a given equation of 

magnetohydrodynamic Falkner-Skan (equation 5). The followed approach is as continuation:  

Introducing the similarity variable  and the dimensionless stream line function , 

gives:  

                       

                                                     (1)  

The parameter   characterizes the number of Hartmann.  

                             (2) 

                          (3)        

       Where ,  is the Schmidt number.                      
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Abstract

Thermal insulation of cryogenic gas storage tanks is of great importance. It is governed by the

control of heat transfer mechanisms and requires a specific analysis, because to isolate this category of

tanks we have a large number of insulating materials. However, technical constraints of required

performance prevent for the application of some materials. In addition to the thermophysical

characteristics, other criteria must also be considered to choose the suitable insulation, namely the

implementation, the lifetime, the reliability and the cost of achieved insulation. This article is based on a

mathematical method for optimizing the thickness of cylindrical tanks with elliptical bottom intended for

cryogenic fluid storage. The considered insulation is a uniformly applied outer layer whose thickness

varies according to the boundary conditions of the external and internal tank surfaces. Radial heat

transfer, based on heat conduction equation, is taken into consideration. An expression of the optimal

insulation thickness derived from the total cost function and depending on the geometrical parameters of

the container is presented.

Keyword(s): Cryogenics, Insulation, Mathematical method.

Nomenclature

D Tank diameter [m]

ei, Xi Insulation thickness [m]

L Length of the cylinder [m]

n' Mass unit cost of stored fluid [€/kg]

Q Thermal flux [W]

1Q Cylinder side thermal flux [W]
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2Q Lateral side thermal flux [W]

Ri Internal radius [m]

Re External radius [m]

SF Tank bottom surface [m2]

SL Tank side surface [m2]

S Thermal surface of reference [m2]

Text External temperature [K]

Tliq Liquefaction temperature [K]

Vcyl Cylinder volume [m3]

x Reduced thickness

xopt Dimensionless thickness

Xopt Optimal thickness [m]

i Insulator thermal conductivity [W/(m·K)]

Téq Equivalent thermal gradient [K]

Hv Enthalpy of vaporization [kJ/kg]

1. Introduction

In designing and manufacturing cryogenic tanks for transport and storage of liquid nitrogen, oxygen, and

argon, special attention is given to improving their technical characteristics and, in particular, to reducing

the specific loss of the liquid caused by evaporation. However, this often contradicts the technical and

economic considerations. A technical and economic model of optimization was constructed [1] which

takes into account both the manufacturing and service conditions of the tanks. Two compulsory

requirements must be fulfilled in this case: Comparison of the tanks with insulation of various types

should be carried out for the same holding capacity of the tanks to avoid the effect of the scale factors;

optimum thickness must be determined for each type of insulation. The optimality criterion was

represented by the corrected expenses consisting of the sum of net cost of the product and the proportion

of capital investment taken into account by the norm factor. The results and execution of many full scale
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fire engulfment tests on LPG tanks, protected with thin sublimation and The results and execution of

many full scale fire engulfment tests on LPG tanks, protected with thin sublimation and intumescent

coatings, mineral wool with steel jackets, vermiculite coatings and water spray systems, are presented [2].

Additional furnace tests with coated steel plates have been carried out to optimize the necessary coating

thickness. Similarly, an overview of the test conditions for the recognition based on technical rules and

BAM requirements for fire protection systems of LPG tanks are shown and explained.

In order to evaluate the thermal performance of the MLI fabricated in the horizontal cryostats of

superconducting magnets, it is important to investigate the contact pressure in the MLI [7]. At first, a

single thin film wound around the horizontal cylinder was analyzed to evaluate the contact pressure acting

on the cylinder. The analysis has been extended to the multiply wound film around horizontal cylinder, in

order to investigate the distribution of contact pressure between adjacent layers. By using experimental

data obtained with a flat panel calorimeter, the results of this analysis have been applied to evaluate the

thermal performance of MLI around a horizontal cylinder.

In this article we first propose to formulate heat losses for a cylindrical tank. Then, using a simple

mathematical procedure, an analytical expression giving the optimal thickness of insulation will be

achieved. It will be assumed that insulation is of one layer only. The insulation cost and thermophysical

properties are known, so is the nature of the stored fluid. The thickness and the thermal resistance of the

studied tank are neglected.

2. Preliminaries

2.1 Method of calculation of tank heat losses

The sphere and hollow cylinder are the two geometric shapes used in the chemical industry for their

storage capacities. To determine the radial heat flux through a cylindrical tank of elliptical bottoms, it is

assumed that the container is homogeneous and the temperatures of the inner (Tliq) and outer (Text)

surfaces are kept constant.

Conduction heat transfer is supposed unidirectional and stationary. The heat flux, evaluated at mid-

thickness of the insulation, can be written:

The heat flux through the cylindrical surface of length L:

Teq is the equivalent thermal gradient given by Buhler [8], as:
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Tank thickness is negligible and the layer of insulation adheres perfectly to the wall. Eq. (2) can easily be

written in the form:

Heat conduction flux through the side faces of the container:

with,

Whence:

Finally:

3. Main Results

3.1 Determination of optimum thickness

We seek to determine the optimal insulation thickness of a sized tank. We will establish an analytical

expression of the optimal thickness, based on mathematical approximations, according to geometric,

thermal and economic parameters. Only insulation thermal resistance is taken into account, Xi and i are

respectively thickness and conductivity of insulator. The non-wetted walls are assumed to be dry and the

previous thermal gradient (Teq) is adopted.

The thermal flux is expressed through an average surface evaluated at insulator mid-thickness, Conte

[9]:
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Geometrical parameters of the cylindrical reservoir considered (Fig. 1) are expressed by the mathematical

equations and approximations below [9].

Dimensionless configuration factor:

Dimensionless reduced thickness:

Tank volume:

Tank surface:

Insulation volume:

External surface of insulation:

Thermal surface of reference:
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Fig. 1. Main geometrical characteristics of the tank.

The total cost of the installation (CT) is based on geometrical approximations of the container and

depends on three necessary costs.

Insulation cost:

Cost of shell:

Operating energy cost:

And, the energy cost per unit length of insulation:

Equation in which N is the coating lifetime and n’ the unit cost of 1 kg of the stored fluid.

The total cost is expressed as:

Vtk

Sin

Stk
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Hence, equations (17), (18) and (19) become:

Finally, the equation of the total cost:

In order to obtain an analytical expression giving the optimal insulation thickness, the interpolation of the

type below is defined with an approximation precision of 10–3.

n being a parameter that depends on the configuration factor (), xo is estimated for Cen/L  0 and x

estimated for Cen/L . The derivative of the total cost must be zero:

Where,

The coefficient n is calculated as:

If Xi << D, terms in x3 and x4 are negligible.
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and,

Replacing xo and x by their respective values in equation (26), one obtains for  = 3:

4. Conclusion

The problem of optimal design has been formulated taking into account the total cost

(Shell + insulation + exploitation) presented as a function of insulation thickness (Eq. 31). Obviously, this

is a limited simplification especially for vacuum multilayer insulation systems (MLI) using super-

insulators. In such systems the cost of isolation is a function of many parameters and requires a more

complex optimization [10]. Nevertheless, the obtained formulation with the adopted technical-economic

criterion remains applicable for the insulation of tanks containing cryogenic fluids whose liquefaction

temperature does not exceed 100 K.

To minimize heat leaks into storage tanks and transfer lines, high-performance materials are needed to

provide high levels of thermal isolation. Complete knowledge of thermal insulation is a key part of

enabling the development of efficient, low-maintenance cryogenic systems. The choice of insulation often

depends on the tank size, in fact, for big containers it is possible to admit less efficient insulators, on the

other hand, smaller is the tank, good must be the thermal characteristics. The complexity due to heat

transfer processes and physico-mechanical constraints imposes a large number of laboratory and

workshop tests before launching a product on the market.
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Abstract. In this work, we study solutions of an evolution problem with a
fractional power of the laplacien in the principal part and algebraic degree in
nonlinear part,such equation butt in naturally in continuum mechanics area.Our
results includ existence, uniqueness of solutions problem with fractional term.
These problems arise in a variety of engineering analysis and design situations .
Introduction:
The nonlinear di¤usion equation represent the most important phenomena

occurring in the world. Manipulation of nonlinear phenomena is of great im-
portance in applied mathematics, physics, and issues related to engineering.The
nonlinear di¤usion equation was known to Forsy [1] and had been discussed
by Bateman in connection with various viscous �ows [2]. J.M.Burgers consid-
ered this equation as a model of turbulence [3 - 4], for example of nonlinear
equation with frational term is fractional burgers equation . Burgers equa-
tions involving in their linear parts fractional powers �� = �(�)�=2 of the
laplacien, 0 � � � 2, have been investigated in connection with certain models
of hydrodynamical phenomena; see shlesinger and al [5] , Funaki [6] and Biler
[7] . Funaki and Woyczynski studied existence[8], uniqueness, regularity and
asymptotic behavior of solutions to the multidimensional fractal Burgers-type
equation

@u (t; x)

@t
= v��u (t; x)� arur (t; x)

where x 2 Rd; d � 1; � 2 [0; 2]; r � 1; and a 2 Rd:For � � 3=2 and
d = 1 they prove existence of a unique regular weak solution for initial conditions
in H1(R):
A large variety of physically motivated (linear) fractal di¤erential equation

can be found in Shlesinger et al [9], including applications to hydrodynam-
ics, statistical mechanics, physiology and molecular biology. Fractal relaxation
models are described in Saichev and Woyczynski [10] . Models of several other
hydrodynamical phenomena (including hereditary and viscoelastic behavior and
propagation of nonlinear acoustic waves in a tunnel with an array of Helmholtz
resonators) employing the Burgers equation involving the fractional Laplacian
have also been developed (Sugimoto and Kakutani [11], Sugimoto ([12][13]).

1
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In this work, we study solutions of an evolution problem governed by equa-
tions of fractional term.
Here we consider the nonlinear equation with fractional term:

@u (x; t)

@t
+ u (x; t)

@u (x; t)

@x
+D�

xu (x; t) + d (x)u (x; t) = f (x; t) (1)

where u(x; t) is the unknown function and f, d are functions satisfying given
condition of regularity .
where x 2 I � R; t � 0;u : I � R+ ! R:
we will study the existence of the solution of the problem (1).
Using a priori elementary estimates, we prove results for problem (1).This

will show the role of dissipative operator -D�
x and, in particular, its strength

compared to the nonlinearity uux.
We look for weak solutions of (1) supplemented with the initial condition

u(x; 0) = u0(x) in V2 such that

V2 = L
1(]0; T [ ;L2(I)) \ L2(]0; T [ ;H1(I))

satisfying the identityZ
u(x; t)�(x; t)dx�

Z t

0

Z
u(x; t)�t(x; t)dxdt+

Z t

0

Z
D

�
2
x u(x; t)D

�
2
x �(x; t)dxdt

�
Z t

0

Z
1

2
u2(x; t)�x(x; t)dxdt+

Z t

0

Z
d(x)u(x; t)�(x; t)dxdt

=

Z
u0(x)�(x; 0)dx+

Z t

0

Z
f(x; t)dxdt (1:1)

for t 2 ]0; T [ and �(x; t) 2 H1(I � ]0; T [)

Let 3
2 � � � 2; T � 0; and u0(x) 2 H

1(I):Then problem (1) has an unique
weak solution u 2 V2:Moreover , u satis�es the following regularity proptrties:

u 2 L1(]0; T [ ;H1(I)) \ L2(]0; T [ ;H1+�
2 (I))

and
ut 2 L1(]0; T [ ;L2(I)) \ L2(]0; T [ ;H

�
2 (I))

2
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Proof: suppose u is a weak solution of (1) ;Multiplying (1) by un(x; t), after
applying the de�nition of the di¤usion operator D� we arrive at

d

dt

Z
un(x; t)un(x; t)dx+

Z
(D

�
2
x un)(x; t)(D

�
2
x un)(x; t)dx+

Z
un(x; t)(un)x(x; t)un(x; t)dx

+

Z
d(x)un(x; t)un(x; t)dx =

Z
f(x; t)un(x; t)dx

which implies

d

dt

Z
u2n(x; t)dx+

Z
(D

�
2
x un)

2(x; t)dx+

Z
(un)x(x; t)u

2
n(x; t)dx+

Z
d(x)u2n(x; t)dx

=

Z
f(x; t)un(x; t)dx (1:2)

one has

d

dt

Z
u2n(x; t)dx =

d

dt
jun(t)j22 (1:3)

Z
(D

�
2
x un)

2(x; t)dx =
���D �

2
x un

���2
2

(1:4)Z
(un)

2(x; t)(un)x(x; t)dx = (
1

3
u3n(x; t) jI= cst � C1 junj2 (1:5)

Z
d(x)u2n(x; t)dx � min d(x)

Z
u2n(x; t)dx � min d(x) jun(t)j

2
2 (1:6)

Z
f(x; t)un(x; t)dx � jf j2 junj2 (1:7)

then is holds that

d

dt
junj22 +

���D �
2
x un

���2
2
+min d(x) jun(t)j22 � (jf j2 + C1) junj2 (1:8)

Similarly, di¤erentiating (1) with respect to x and multiplying by (un)x we
obtain

3
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d

dt

Z
un(x; t)(un)x(x; t)dx+

Z
(D

�
2
x un)(x; t)(un)x(x; t)dx+

Z
1

2
(u2n)x(x; t)(un)x(x; t)dx

+

Z
d(x)(un)(x; t)(un)x(x; t)dx =

Z
f(x; t)(un)x(x; t)dx

which implies

1

2

d

dt

Z �
u2n)x(x; t)

�
dx +

Z
(D

�
2
x un(x; t))(un)x(x; t)+

Z
1

2
(u2n)x(x; t)(un)x(x; t)dx

+

Z
d(x)

1

2

�
u2n)x(x; t)

�
dx =

Z
f(x; t)(un)x(x; t)dx (1:9)

d
dt

R
un(x; t)(un)x(x; t)dx =

1
2
d
dt

R �
u2n)x(x; t)

�
dx

j(un)xj33 � kunk
3
1;3 � C kunk

7
2+�

1+�
2
junj

3� 7
2+�

2 � kunk21+�
2
+ C junjm

because

�
Z
1

2
(u2n)x(x; t)(un)x(x; t)dx =

Z
un(x; t)(un)x(x; t)(un)xx(x; t)dx

=
1

2

Z
un(x; t)((un)

2
x)x(x; t)dx = �

1

2

Z
(ux)

3
x(x; t)dx

Z
d(x)(un)(x; t)(un)x(x; t)dx =

1

2

Z
d(x)(u2n)x(x; t)dx � sup(d(x))

�
1

2
u2n

�
I

= C

Z
f(x; t)(un)x(x; t)dx � jf j2 j(un)xj2

it holds that

d

dt
j(un)xj22 + 2

���D1+�
2

x un

���2
2
� j(un)xj33 + (2 jf j2 + C) junj2 (1:10)

Note that the assumption � > 3=2 has been used in the interpolation of the
W 1:3 norm of u by the norms of its fractional derivatives to have 7=(2 + �) <
2. Indeed, this follows from Henry rivatives like in,e.g., Triebel (1983, 1992).
Combining this with (1),(1.2) and(1.3) we get

4
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d

dt
kunk21 + kunk

2
1+�

2
� C(jf j2 junj2 + junj

2
2 + junj

m
+ C1) (1:11)

and by (1:8) implies

d

dt
junj22 � (jf j2 + C1 + C2) junj2 =) jun(t)j2 �M + j(un)0j2 ; 8t 2 [0; T ]

hence we obtain

kunk21 +
Z t

0

kun(t)k21+�
2
ds � C = C(T; f; k(un)0k1):(1:12)

To get the estimate for the time derivative of the solution, let us di¤erentiate
(1) with respect to t and multiply by ut.

d

dt

Z
un(x; t)(un)t(x; t)dx+

Z
(D

�
2
x un)(x; t)(un)t(x; t)dx+

Z
1

2
(u2n)x(x; t)(un)t(x; t)dx

+

Z
d(x)(un)(x; t)(un)t(x; t)dx =

Z
f(x; t)(un)t(x; t)dx

1

2

d

dt

Z
(
�
u2n)(x; t)

�
t
dx +

1

2

Z
(D

�
2
x (u

2
n)t(x; t)dx+

Z
1

2
(u2n)x(x; t)(un)t(x; t)dx

+
1

2

Z
d(x)(u2n)t(x; t)dx =

Z
f(x; t)(un)t(x; t)dx

such as Z
d(x)(u2n)t(x; t)dx � C1 j(un)tj

2
2

and Z
f(x; t)(un)t(x; t)dx � jf j2 j(un)tj2

1

2

Z
j(un)xj (un)2t � C k(un)tk

1
�
�
2
j(un)tj

2� 1
�

2 j(un)xj2 �
1

2
k(un)tk21+�

2
+C j(un)tj22

since

�
Z
(un(un)x)t(un)t = �

Z
(un)x(un)

2
t �

1

2

Z
un((un)

2
t )x = �

1

2

Z
(un)x(un)

2
t

5
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it holds that

1

2

d

dt
j(un)tj22+

1

2

���D �
2
x (un)t

���2
2
� 1

2
k(un)tk21+�

2
+C j(un)tj22+jf j2 j(un)tj2+C1 j(un)tj

2
2 (1:13)

A classical Gronwall inequality gives

j(un)tj22 +
Z T

0

k(un)t(s)k2�
2
ds � C(T ) (1:14)

It holds,from (1:12) and (1:14);that a solution un is bounded.Then it is
su¢ cient in order to apply approximation Galerkin�s procedure. Hence we
can extract a subsequence which converge to a limit u in L1(]0; T [ ;H1(I) \
L2(]0; T [ ;H1+�

2 (I)): To �nish, it remains to know if u is a solution of problem
?
Since injection of H1(I) into L2(I) is compact, we can apply Ascoli theorem

and conclude a strongly convergence of (un)n2N to u in L2(]0; T [ ;L2(I):
In order to conclude, it is enough to prove that (un)2 converges strongly to

u2 in L1(]0; T [ ;L2(I)):remark that

(un)2 � u2L1(]0;T [;L2(I)) � kun � ukL1(]0;T [;L4(I)) (kunkL1(]0;T [;L4(I))+kukL1(]0;T [;L4(I)))
It is enough to prove that un�u converges strongly in L1(]0; T [ ;L4(I)):this

last result holds by Gagliardo-Nirenberg�s inequality(7� 8)

kun � ukL1(]0;T [;L4(I)) � C kun � uk
1� 1

4

L2(]0;T [;L4(I)) kr(un � u)k
1
4

L2(]0;T [;L4(I))

� C kun � uk
1� 1

4

L2(]0;T [;L4(I))

and to prove that D�un converges strongly to D�u in L1(]0; T [ ;L2(I)):

In the same way, we remark that

kD�un �D�ukL1(]0;T [;L2(I))

�
@2un@x2

� @
2u

@x2


L1(]0;T [;H1+�

2 (I))

(

@2un@x2


L1(]0;T [;H1+�

2 (I))

+

@2u@x2

L1(]0;T [;H1+�

2 (I))

)

and since the term @2=@x2 is linear, approch problem converges weakly to a
limit point, then the existence holds.
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Abstract 

In electrical machine design, the direct problem is to find the design specifications by using given input. 

In the inverse problems we try to find the shape of the machine that produce the itemize performance 

from a given output by taking into account constrained variables. From the mathematical standpoint, the 

inverse problems are further artful than direct problems for several reasons. By using inverse problem, we 

have to carry out a preset optimal design. An outline of the machine design as well as PMSM simulation 

results is presented. An approach for using inverse problem in electrical machine design is presented and 

overview of optimal machine design via inverse problems is given.   
 

Keywords: PMSM, inverse problem, Monte Carlo approach, design parameters. 
 

1. Introduction  

Brushless DC motors (BLDC) in use in the low and medium power range show increased efficiency with 

smaller size and higher speed compared to conventional motor. Thus, permanent magnet electric 

machines (PMSM) are used more and more in several industrial activities. The development of this type 

of machine is linked to the growth of permanent magnets, nano-composite materials for energy-

efficient electric motors and advances in the field of modern electronics [1-3]. However, the problem of 

the optimal use of electrical energy would require an optimal design of the machine and is suitable in 

cases of high speed and high accuracy. So the problem of optimization plays a very important role in the 

production and conversion of electrical energy. Currently, engineers and researchers are continuously 

developing methods using mathematical approaches [4] to improve engine efficiency while reducing 

power losses, energy costs and increased efficiency [2]. 

 Numerous conception algorithms are proposed in the literature including direct and stochastic search 

algorithms for both single and multi-objective design optimization cases on a permanent-magnet-

synchronous-motor (PMSM). The obtained results show the effectiveness of the recent artificial 

algorithm especially when more design candidates are considered. 

This paper is based on the choice and determination of the design parameters of the machine using the 

inverse problem approach. This methodology is effective, but the solutions provided can not perfectly 

meet the specifications due to some simplifying assumptions of the models used. The reverse-problem 
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approach makes it possible to solve design problems in a more reasonable manner and to propose 

appropriate solutions to imposed conditions. 

2. Preliminaries 

2.1  Overview on inverse problems 

In science, an inverse problem is a situation in which we try to determine the causes of a phenomenon 

based on the experimental observations of its effects. The resolution of the inverse problem generally 

involves an initial stage of modeling the phenomenon, called the direct problem, which describes how 

the parameters of the model translate into effects observable experimentally.  

The most general way of describing an information state is to define a probability density on the space 
parameters. Thus, the results of measurements of observable parameters (data), prior information on 
the model, parameters and information on physical correlations between observable parameters and 
model parameters can all be described using probability. The general inverse problem can then be 
defined as a problem of "combinations" of all this information. In all usual cases, the results obtained 
with this method are reduced to those obtained by more conventional approaches [5]. 
  
The scientific procedure for the study of a physical system S can be divided into three stages: 

i)  System configuration: choice of the model parameters to be used to describe a system, 
whose values characterize the system completely. So defining a parameterization means 
defining a set of experimental procedures that allow us to measure a set of physical 
quantities that characterize the system. 

ii)  Direct modeling: determine the physical state u (physical laws) generated by an 
environment from knowledge of its parameters and constrains. The physical laws allowing us, 
for given values of the model parameters, to predict the results of measurements on certain 
observable parameters 

iii) Inverse modeling: Determine some physical parameters x ∈ U from measurements y ∈ V 
related to the physical state u. Using the actual results of some observable parameters 
measurements to derive the actual values from the model parameters. 
 

Strong feedback exists between the three stages. Whereas the first two stages are mainly inductive 
(rules of thought that are difficult to explain), the third stage is deductive (application of the 
mathematical theory of logic). 
In most cases, the description of a system is given in the form of a set of mathematical equations 

(differential equations, integral equations ...), containing some parameters. The analysis of the physical 

process given by these equations can be separated into three types of distinct problems (Direct;   

Reconstruction and Identification). 
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I. The basic principle for determining the inverse problem begins with the study and 

observation of the behavior of the physical system where identification is considered as the 

key of the inverse theory with a clear definition of the basic variables on the system and a 

purpose of using data that are easily observable to infer some geometric parameters that are 

not directly observable. So, we look for mathematical equations that accurately describe the 

values of the parameters of the physical system. A general approach to identification seeks, 

therefore, to define an objective function that would reach these limits (lower and upper) on 

the components of the vector X given by an assumed configuration [6-7].  

 

2.2 .  Motor electric circuit:  

The motor geometry and rotor configuration having high energy magnets of the 16 poles and 24 slots 

studied machine is shown in Figure 1. 

 

 

 

 

Figure 1: Interior-rotor Brushless dc motors. 

The determination of parameters equivalent electric circuit such as the magnetic flux density in the air 

gap is obtained by analysis and simulation of a magnetic circuit. Using Norton equivalent circuit [8] of 

the motor, the value of reluctance can be calculated by using law as shown beneath : 

𝑅𝑔 =
𝑔′

𝜇0𝐴𝑔
 

Where Ag is the cross-sectional area per pole of the air gap, Lg, is  the air gap length and g’ is represented 

by relation as:   

        𝑔′ = 𝐾𝑐𝐿𝑔  . 
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Here Kc design the Carter’s coefficient whit analytical expressions are given by: 

𝐾𝑐 =  1 −
2𝑊𝑠𝑙𝑜𝑡

𝜋𝜏𝑠
 𝑡𝑎𝑛−1  

𝑊𝑠𝑙𝑜𝑡

2𝑔′
 −  

𝑔′

𝑊𝑠𝑙𝑜𝑡
𝑙𝑛  1 +

1

4
 
𝑊𝑠𝑙𝑜𝑡

𝑔′
 

2

   

 −1

 

The air gap Ag is the area, through which the flux passes is given by [9]: 

𝐴𝑔 =  𝜃𝑝  𝑅𝑠𝑖 −
𝐿𝑔

2
  . 𝐿     

 

The equation of magneto-motive force across the air gap is done by: 

𝐹𝑚 =
 𝜙𝑟 − 𝜙𝑔 

𝑃𝑚
= 𝜙𝑔𝑅𝑔𝜙𝑔 =

𝜙𝑟

 1 + 𝑃𝑚𝑅𝑔 
 

With Pm is the magnet permeance and is given by:  

𝑃𝑚 = 𝑃𝑚0 + 𝑃𝑟1 = 𝑃𝑚0 1 + 𝑃𝑟1  

where  φr is given by : 

                                                                                φr = Br Am                             

with Br is the remanant magnetization . 

The ratio of magnet pole area ( Am)  to air gap area (Ag ) or flux concentration factor is done by [10]:  

𝐶∅ =
𝐴𝑚

𝐴𝑔
   

Thus, the air gap flux density is done by : 

𝐵𝑔 =
𝐶∅

 1 + 𝑃𝑚𝑅𝑔 
=  𝜇0𝐻𝑔  

and the corresponding magnet flux density is determined by : 

𝐵𝑚  = 𝜇0𝜇𝑟𝑚 . 𝐻𝑚 + 𝐵𝑟 = −𝜇0𝜇𝑟𝑚 .
𝐻𝑔 . 𝐿𝑔

𝐿𝑚
+ 𝐵𝑟 = −  

𝜇𝑟𝑚 . 𝐿𝑔

𝐿𝑚
. 𝐵𝑔 + 𝐵𝑟  

Where μ0 and μrec represent,respectivelly,  the permeability of the free space and the relative recoil 

permeability of the magnet. 
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Rearranging the above equations, it gives that the length of magnet thickness as, 

𝐿𝑚 ≈
𝐵𝑔 . 𝐿𝑔 .𝜇𝑟

𝐵𝑟 − 𝐵𝑔
      

In the programming  phase, we must first define the objective function and the constraints in the form of 
equations and variables which represent the parameters of the motor to be optimized.  

The geometrical design parameters of the machine are optimized by changing the variables until the 
desired parameters are obtained. 
The vectors of variables  X= [Lm , Wslot , Lg , Am , Ag ,  CФ ,  Rg , Pmo  , Bg] varies between minimum and 
maximum values. The obtained optimum design parameters must satisfies the objective function that 
match to desired magnetic flux density in the air-gap. However, the inverse problem can be presented as 
follows: 

𝑀𝑖𝑛 (𝐹 𝑋 ) =  
𝐵𝑔𝑚𝑎𝑥

𝐵𝑔
𝑐

− 1 

2

 

 
 

Where  𝐵𝑔
𝑐  is the computed flux density and 𝐵𝑔𝑚𝑎𝑥   is the desired flux density at the  i

th
 point on a path of 

the air gap BLDC  motor respectively. 

  

2.3. Optimization by using the Sequential quadratic programming (SQP) :  

Sequential quadratic programming (SQP) is an iterative approach method for the optimization of 

nonlinear constraints problems. The conceptual method is used on mathematical problems for which 

the objective function and the constraints are differentiable twice in a continuous way [11]. The SQP 

method solves the optimization of a series of sub-problems and allows assuming directly the Newton's 

method for the optimization under stress. In various steps, this estimate is constructed from the hessian 

function of the Lagrangian function by means of a quasi-Newton updating method. Nevertheless, the 

common SQP method consists of minimizing or maximizing the following objective function 

encountered in several areas of engineering, science and management defined by: 

 Minimize f(x) 

Subject to  

hi (x) = 0   i =1,2,….me 

hi (x)  0   i = me + 1 ; …… 

where   f  is 𝑅𝑛 → 𝑅,     and         : 𝑅𝑛 → 𝑅𝑚 . 
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With f is linear of quadratic objective function, h is the constraint function and x is the vector with length 
n. Here the objective function f is substituted by the Lagrangian quadratic approximation function, such 
as: 
 
  
𝐿 𝑥, 𝜆 = 𝑓 𝑥 +  𝜆𝑖 . 𝑖 𝑥 

𝑚
𝑖=1    

 
By expressing the constraints bound in the form of inequality constraints, the precedent equation will be 
simplified which leads to a linearization of the nonlinear constraints in quadratic programming sub-
problem. 
 

𝑀𝑖𝑛
1

2
𝑑𝑇𝐻𝑘𝑑 + ∇𝑓 𝑥𝑘 

𝑇𝑑               𝑑 ∈ 𝑅𝑛  

∇𝑖 𝑥𝑘 
𝑇𝑑 + 𝑖 𝑥𝑘 = 0,    𝑖 = 1, … , 𝑚𝑒  

 

∇𝑖 𝑥𝑘 
𝑇𝑑 + 𝑖 𝑥𝑘 ≤ 0,    𝑖 = 𝑚𝑒 + 1, … , 𝑚 

3. Main Results 

For a given torque, magnetic and electric loading,and the machine length the overall machine rotor 

diameter can be determined as follows [8]. 

𝑇 =
𝜋

2
. 𝐵𝑔 . ∆𝐼. 𝐿. (2𝑅𝑠𝑖)

2    

Where B is called magnetic loading ; ΔI is called electrical loading ; L is motor length and R is rotor 

radius. 

Therefore, the radius of the machine rotor is then, 

 

𝑅 =  
𝑇

2𝜋 𝐵 ∆𝐼 𝐿
 

We note that a small increase in the thickness of the magnet with a small decrease in air gap had a good 

and clear effect in increasing the flux density inside the motor and thus an increase in torque and also 

an increase in motor efficiency.  

From the last equation, the value of the primary full load torque was T = 39.32 N · m and after 

optimization is became 46.47 N · m with Rsi = 0.043 m and ΔI= 50 kAmps /m . 
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Figure. 2: Initial and optimized air gap magnetic flux 

4. Conclusion 

We have presented in this paper a suitable method of an optimal and suitable design for motor type 

BLDC in order to increase the air gap magnetic flux density and therefore the motor efficiency by using 

an inverse problem. The optimized approach used in this paper is based on the minimum constrained 

for nonlinear programming by using ‘fmincon’ function of Matlab. The obtained results based on finite 

element shows that the objective of this work is  achieved, the density of the flux in the air gap is 

improved and therefore the torque and the motor efficiency have been enhanced. Finally, the 

formulation of the problem must be well defined by using efficiently the local algorithm proposed by 

Matlab’s ‘Fmincon’ function.  
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Abstract 

In this paper, we investigate a suborbital graph for the normalizer of       in         , where N 

will be of the form       , p is a prime and p > 3. Then we give edge and circuit conditions on graphs 

arising from the non-transitive action of the normalizer. 

 

Keywords: Fuchsian groups, imprimitive action, suborbital graphs 

 

1. Introduction  

The modular group acts transitively on    and in a paper of Jones, Singerman, Wicks, the suborbital 

graphs were studied and the most basic one turn out to be the well-known Farey graph [5]. Suborbital 

graphs of the normalizer        were studied by same idea. All circuits in the suborbital graph were 

found when N is a square-free positive integer [6] and when N satisfies the condition of transitive action 

[7]. Then, non-transitive cases have been examined to reach the general statement [4]. In this study, we 

continue to examine the combinatorial properties of the normalizer. 

2. Preliminaries 

     = {g ∈ Γ : c ≡ 0 (mod N)} is a well known congruence subgroup of the classical modular group Γ. 

The normalizer turns to be a very important group in the study of moonshine and for this reason has been 

studied by many authors [3]. It consists exactly of the matrices  
     

      
 ;                 

where          and h is the largest divisor of 24 for which       with understandings that the 

determinant e of the matrix is positive, and that     means that      and           (r is called an exact 

divisor of s). 

3. Main Results 

In this study, we take          , where p is a prime and    . Since                               , 

then     for         
     

  . Hence e must be 1 or   . As a corollary,  we get two types of the 

element of              as follows 
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  ,             ve        

      

        ,              

Lemma 3.1. Let N have the prime power decomposition as       
     

  . Then          acts 

transitively 

on    if and only if              for          

Corollary 3.2.             is not transitive on   . 

Therefore, we will find a maximal subset of      on which             acts transitively. 

Lemma 3.3. Let     . Then the orbit  
 
 
  of     with         under       is the set 

   ∈                                . Furthermore, the number of orbits  
 
 
  with      

under       is just          where      is Euler’s totient function which is the number of positive 

integers less than or equal to N that are coprime to N. 

Hence, we can give following tables by above lemma: 

1 p    3 3p 3   9 9p 9   

2 2p 2   6 6p 6   18 18p 18   

4 4p 4   12 12p 12   36 36p 36   

Table 1. Divisors of N/h^2 

 

1 p-1   2 2p-2 2 1 p-1 1 

1 p-1 1 2 2p-2 2 1 p-1 1 

1 p-1 1 2 2p-2 2 1 p-1 1 

Table 2. Number of Orbits 

Theorem 3.4. The set              
 
    

 
   

 
 
   

 
 
   

 
  

   
 
  

   
 
     

 
      

 
     

 
 

      
 

       
 

      is a maximal orbit of             on   . 

Proof. Let us consider the orbit  
 
 
  under the action of the elements of            :   
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i. If  d-odd, c-even and      , then    
 
 
   

     
         

   
 
 
  

ii. If          , then    
 
 
   

    
         

   
 
 
  

iii. If  b-even and      , then    
 
 
   

     
           

   
 
  

  

iv. If  b-odd, d-even and      , then    
 
 
   

       
            

   
 

    
  

v. If  b-odd, c-odd and      , then    
 
 
   

       
             

   
 

     
  

vi. If  d-odd, c-odd and      , then    
 
 
   

      
        

   
 
    

vii. If  d-odd, c-even and      , b-odd, then    
 
 
   

       
         

   
 

     

viii. If         , then    
 
 
   

      

         
   

 
     

ix. If  b-even, c-odd and      , then    
 
 
   

       
          

   
 

      

x. If  b-odd, c-even and      , then    
 
 
   

         
             

   
 

        

xi. If  b-odd, c-odd and      , then    
 
 
   

         
              

   
 

         

Lemma 3.5.    ,  Let       be a transitive permutation group.       is primitive if and only if   , the 

stabilizer of  ∈  , is a maximal subgroup of  , for each  ∈  . 

From the above lemma we see that whenever, for some  ,       , then   admits some   -invariant 

equivalence relation other than the trivial cases. Because of the transitivity, every element of   has the 

form      for some  ∈  . Thus one of the non-trivial   -invariant equivalence relation on   is given as 

follows: 

           if and only if   ∈    

The number of blocks (equivalence classes) is the index       and the block containing   is just the orbit 

    . We can apply these ideas to the case where   is the            ,   is           ,    is the 

stabilizer of   in           , that is                
    
  

  , and        . Clearly, the 

relation                                produce an imprimitive action as desired. 

Theorem 3.6. There are only two blocks which are     and    . These are as following: 
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     . 

Proof. Since                      , we have that            =              . The result is 

obvious. 

      In    , Sims introduced the idea of the suborbital graphs of a permutation group   acting on a set  , 

these are graphs with vertex-set  , on which    induces automorphisms. We summarize Sims’theory as 

follows: Let       be transitive permutation group. Then   acts on     by                    for 

 ∈   and    ∈  . The orbits of this action are called suborbitals of  . The orbit containing       is 

denoted by O     . From O      we can form a suborbital graph of         its vertices are the 

elements of  , and there is a directed edge from   to   if      ∈ O     . A directed edge from   to   is 

denoted by        If      ∈ O     , then we will say that there exists an edge       in        

and represent them as hyperbolic geodesics in the upper half plane       ∈              If    , 

the corresponding suborbital graph       , called the trivial suborbital graph, is self-paired:  it consists 

of a loop based at each vertex  ∈    By a circuit of length   (or a closed edge path), we mean a 

sequence               such that       for    , where    . If     or   then the 

circuit is called a triangle or rectangle. 

      In this study,   and   will be the normalizer of        in          and the extended rational 

        , respectively. Since rational numbers are well ordered, we also used the notations  
 
   or 

 
 
   according to the order of vertices. 

                acts transitively on           , every suborbital O     contains a pair          for 

     ∈           . As              permutes the blocks transitively, all subgraphs corresponding to 

blocks are isomorphic. Therefore we will only consider the subgraph           of           whose 

vertices form the block [ ]. 

Theorem 3.7. (Edge condition)  Let     and     be in the block [ ]. Then there is an edge           

in           if and only if  

(i)            , then               ,               ,           

(ii)            , then                ,                ,            

(iii)          , then                                  ,          ,  

(Plus and minus sign correspond to         and        , respectively). 
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       Assume first that     
 
       is an edge in          . It means that there exists some   in the 

normalizer              such that   sends the pair          to the pair          , that is      

    and            .  

             If        , taking into account that    
  

      
  and            .      

 

     
 

 

 
 gives that     and        .  

        
      

          
 

 

 
  gives that              ,              , Furthermore, we get 

        , from the equation 

 
  

      
  

  
      

       

                 
  
     

              If       , taking into account that    
    

     
 , suppose that  -odd by the 

equation          .      
 

    
 

 

 
  gives that     and       .  

        
        

          
       

            
 

 
  gives that               ,               . 

Furthermore, we get           from the equation 

 
   
     

  
  
      

         

                
   
    

   

             If      , taking into account that    
    

     
 , suppose that      by the equation 

         .      
 

    
 

  

   
 

 

 
  gives that      and      .  

        
        

          
        

 

            
 

 
   gives that                ,                . 

Furthermore, we get          from the equation 

 
    

     
  

  
      

     

       
  

  
      

             

                  
  
     

     For the opposite direction, we assume that         and              ,              , 

         . In this case, there exist    ∈   such that         and         . If we put 

these equivalences in         , we obtain        . So the element    
  
  

  is clearly in  . 

For minus sign and another conditions, similar calculations are done.        
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     It is known that a graph which contains no circuit is called a forest. In introduction part, we also 

mentioned that the trivial suborbital graphs are self-paired ones. In this section, we will be mainly 

interested in the remaining non-trivial suborbital graphs. 

Theorem 3.8.  Let           contains a triangle if and only if                      . 

Proof. We suppose that there is a triangle such as 
 

 
 

 

 
 

 

 
 

 

 
 in          .Since   permutes the 

vertices transitively, we may suppose that the triangle has the form 
 

 
 

  

     
  

     
 

 
. Furthermore, 

without loss of generality, suppose  
  

     
  

    .   From Theorem 3.7.(i), we have that                  

and      from the first edge. Hence, we get the second vertex as  
 

  
.  Applying to Theorem 3.7 to third 

edge, we have two possibilities of the  configuration as follows: 
 

 
 

 

   
  

   
 

 
  or  

 

 
 

 

   
  

    
 

 
 . 

               From the second edge        
     , that is       . By Theorem 3.7, we have that 

                    , then                      .  From the third edge,          

            , then                        . These equivalences gives a contradiction taking 

into account that                    and that         . 

              From the second edge         
                     .              

               
    

    
 

 
, we obtain that                      . If the inequalities   

  

     
  

      

hold then we conclude that                       . 

     For the opposite direction, we assume that                       . Using Theorem 3.7, it is 

clear that   
 

 
 

 

   
    

    
 

 
  is a triangle in          .  

4. Conclusion 

Theorem 3.9.  The prime divisors   of           , for any  ∈  , are of the form          . 

Proof. Let   be any integer and   a prime divisor of          . Then, without any difficulty, it can 

be easily seen that the normalizer           , like            , has the elliptic element   

 
               
          

  of order 3. By [1], we obtain          . 
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Abstract

A measure free approach to stochastic processes has been developed for a long time. Various

order theoretic settings for stochastic processes is given. In this talk, we introduced the

concepts of conditional expectations and p-martingales on lattice-normed vector lattices.

Here we formulate and prove p-theoretic analogue of the Hopf ergodic theorem in a measure

free context.
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1. Introduction and Preliminaries

Let X be a vector space, E be a vector lattice, and p : X → E+ be a vector norm (i.e.

p(x) = 0 ⇔ x = 0, p(λx) = |λ|p(x) for all λ ∈ R, x ∈ X, and p(x + y) ≤ p(x) + p(y) for

all x, y ∈ X), then the triple (X, p, E) is called a lattice-normed space, as LNS. We say that

elements x and y of an LNS X are p-disjoint if their lattice norms are disjoint, and shown by

x⊥py. The lattice norm p in an LNS (X, p, E) is said to be decomposable if, for all x ∈ X and

e1, e2 ∈ E+, from p(x) = e1 + e2 it follows that there exist x1, x2 ∈ X such that x = x1 + x2

and p(xk) = ek for k = 1, 2.

We abbreviate the convergence p(xα − x)
o−→ 0 as xα

p−→ x and say in this case that xα

p-converges to x.

If, in addition, X is a vector lattice and the vector norm p is monotone (i.e. |x| ≤ |y| ⇒
p(x) ≤ p(y)), then the triple (X, p, E) is called a lattice-normed vector lattice, as LNVL. In

an LNVL (X, p,E), p-disjointness implies disjointness. Indeed, let x⊥py. Then p(|x| ∧ |y|) ≤
p(x) ∧ p(y) = 0 and hence x⊥y. We shall make difference between two notions of bands in

an LNVL X = (X, p,E). More precisely, a subset B of X is called a band if it is a band in

the vector lattice X in the usual sense. A subset B of X is a p-band if

B = M⊥p = {x ∈ X : (∀m ∈ M) x⊥pm}
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for some M ⊆ X. In general, there are many bands which are not p-bands. To see this,

consider the normed lattice (R2, ∥ · ∥, R). It has four bands, but only two of them are p-

bands. It is easy to see that any p-band is an order ideal.

Note that let X be a normed lattice with a norm ∥·∥. Then X is the LNL (X, ∥·∥, R).

Moreover, let X be a vector lattice. Then X is the LNVL (X, |·|, X). If X = (X, ∥·∥) be

a normed lattice. Consider the closed unit ball BX′ of the dual Banach lattice X ′. Let

E = ℓ∞(BX′) be the vector lattice of all bounded real-valued functions on BX′ . Define an

E-valued norm p on X by

p(x)[f ] := |f |(|x|) (f ∈ BX′)

for any x ∈ X. The Hahn-Banach theorem ensures that p(x) = 0 iff x = 0. All other

properties of lattice norm are obvious for p. Thus (X, p, E) is an LNVL. For the more

terminology, the authors refer to reader to [1].

2. Conditional Expectation on Riesz Spaces

In the classical setting, let (Ω, Σ, µ) is a probability space.

Definition 1. An increasing sequence of σ-algebras is called a filtration.

Definition 2. A Σ-measurable function E[f |Σ], defined for a random variable f ∈ L1(Ω, Σ, µ)

and a sub-σ-algebra Σ is called a conditional expectation if
∫

A

E[f |Σ]dµ =

∫

A

fdµ, ∀A ∈ Σ

Since E is a positive order continuous linear functional on L1(Ω, Σ, µ), it follows that

T , defined by T (f) = E(f)1 for each f ∈ L1(Ω, Σ, µ) (where 1 denotes the constant 1

function), defines an order continuous operator on L1(Ω, Σ, µ). This prompts the definition

for expectation operators on a Riesz spaces with weak order unit.

A pair (Xn, Bn), where (Xn) ⊆ L1(Ω, Σ, µ) and (Bn) is a filtration with Xn Bn-measurable

for each n ∈ N is called a martingale if

E(Xn|Bn) = Xn,∀n ∈ N.

Researchers generalized the above definitions and develop further martingale theory in

the abstract Riesz space setting. The conditional expectations in the classical setting are the

only positive contractive projections on L1(Ω, Σ, µ) and thus it is natural in the new setting

to replace conditional expectations with positive contractive projections.

Definition 3. Let T be a positive order continuous projection on a Riesz space E with weak

order unit such that the range, R(T ), is a Dedekind complete Riesz subspace of E. If T maps

weak order units to weak order units in E, then we call T an RS-conditional expectation
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3. Conditional Expectation on LNVL

In this section, we give the generalization of a conditional expectation on LNVL. Before

the conditional expectation definition, we need to give some definitions also.

Definition 4. Let (X, p,E) be an LNVL. A vector e ∈ X is called a p-order unit if, for any

x ∈ X+, we have p(x − x ∧ ne)
o−→ 0.

Definition 5. Let (X, p, E) and (Y, q, F ) be two LNVLs. A linear operator T : X → Y is

called p-continuous if xα
p−→ 0 in (X, E) implies Txα

p−→ 0 in (Y, F ).

The following result, Theorem 1, motivate Definition 6 for conditional expectation opera-

tors on LNVL.

Theorem 1. Let (X,p,E) be a LNVL with a p-unit and T be a positive p-continuous and

projection on X. T maps p-units to p-order units is equivalent to the existence of a p-unit e

in E for which Te = e.

Definition 6. Let (X, p,E) be a LNVL and T be a p-continuous dominated by positive

projection on LNVL with p-order unit such that the range, R(T ), is a Dedekind complete

Riesz subspace of E. Then T is called conditional expectation on LNVL.

Theorem 2. Let T be a conditional expectation on a p-complete LNVL (X, p, E), with p-unit

and let P be the band projection of X onto the band B, in X generated by 0 ≤ g ∈ R(T ).

Then TP = PT .

4. Conclusion

The classical paper of Garsia [4] gives a version of the Hopf Ergodic Theorem which

was generalized to Riesz spaces in [5]. Our aim is to generalize Hopf Ergodic Theorem to

LNVL. Therefore it is way to generalize Maximal Ergodic Theorem of Wiener, Kakutani and

Yoshida. It might help us to prove Birkhoff Ergodic Theorem for LNVLs.
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Abstract

The notion of unbounded order convergence in vector lattices is a generalization of al-

most everywhere convergence. Last years, the unbounded order convergence in Banach

lattices was deeply investigated by many mathematicians. In this proceeding, we define

pseudonorm convergence on an Archimedean vector lattice X. Moreover also we define un-

bounded pseudonorm convergence and give boundedness condition on them. Moreover con-

nection between order convergence and pseudonorm convergence is studied.
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1. Introduction and Preliminaries

Let X be a vector lattice. We say that a net (xα) in X order converges to x ∈ X if there

exists a net (yα) such that yβ ↓ 0 and there exists α0 such that |xα − x| ≤ yα for all α ≥ α0.

In this case, we write xα
o−→ x. A net (xα) in X unbounded order convergent to x ∈ X if

|xα−x|∧u
o−→ 0 for all x ∈ X+. In this case, we say that (xα) uo-converges to x, and, we write

xα
uo−→ x, see [?, ?, ?, ?, ?, ?, ?] and the references therein. For unexplained terminology, we

refer to arbitrary vector lattice book as [?, ?]. In this note, we assume that all vector lattices

are Archimedean.

The notion of unbounded order convergence in vector lattices is a generalization of almost

everywhere convergence on Lp(Ω) where (Ω, Σ, µ) is a σ-measure space and 1 ≤ p ≤ ∞. Also

the spaces c0 and ℓp, 1 ≤ p ≤ ∞ are well-known examples in functional analysis. In these

spaces, uo-convergence is coordinatewise convergence, see [?].

A linear topology on a vector lattice X is said to be locally solid if zero has a neighborhood

basis consisting of solid sets. A non-negative function ρ : X → R is said to be a pseudonorm

on X if ρ(x + y) ≤ ρ(x) + ρ(y) and limθ→0 ρ(θx) = 0 for all x, y ∈ X. A pseudonorm ρ is

said to be a Riesz pseudonorm if |x| ≤ |y| implies ρ(x) ≤ ρ(y) for x, y ∈ X.
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Let X be a vector lattice. It follows from classical definitions that every seminorm on X

is a pseudonorm. If ρ is a Riesz seminorm on X then ρ is a Riesz pseudonorm. If f is a

functional on X then ρf (x) = |f(x)| is a seminorm on X. If the functional f : X → R is

order bounded then ρf (x) = |f(|x|)| is a Riesz seminorm on X.

2. Pseudonorm Convergence on Vector Lattices

We assume that reader is familiar with some elementary topological notions.

Definition 1. A net xα in X pseudonorm converges to some x, denoted by xα
ρ−→ x, if

ρ(xα − x) −→ 0.

The set Uρ = {x ∈ X : ρ(x) ≤ 1} is the closed unit ball with respect to ρ. It is pseudonorm

closed.

Lemma 1. Suppose that X is a vector lattice and ρ is a Riesz pseudonorm on X. Let xα

and yβ be two nets in X such that xα
ρ−→ x and yβ

ρ−→ y. Then xα ∧ yβ
ρ−→ x∧ y. In particular,

if xα
ρ−→ x then x+

α

ρ−→ x+.

Proof. The topology on X generated by the Riesz pseudonorm ρ is a locally solid topology.

It follows from [?, Theorem 2.17] that the lattice operations (x, y) 7→ x ∧ y and x 7→ x+ are

uniformly continuous. �

Corollary 1. Suppose that X is a vector lattice and ρ is a Riesz norm on X. If B is a band

in X then B is closed with respect to the locally solid topology induced by ρ.

Proof. By Lemma ??, lattice operations on X are continuous with respect to the locally

solid topology induced by ρ. Let xα be a net in B such that xα
ρ−→ x for some x ∈ X. For

every y ∈ B⊥ we have |xα| ∧ |y| ρ−→ |x| ∧ |y|. Since |xα| ∧ |y| = 0 for all α, it follows that

|x| ∧ |y| = 0. Hence, x ∈ B. �

Remark that if ρ is a Riesz pseudonorm then we have x ∈ Uρ if and only if |x| ∈ Uρ.

Further, because lattice operations are continuous with respect to the locally solid topology

induced by the Riesz pseudonorm ρ, the generating cone X+ of the vector lattice X is not

closed in general.

3. Boundedness on Pseudonorm

For the following definition we need first of all the notion of pseudonorm bounded set

definition is the following:

Definition 2. A nonempty subset B ⊆ X is said to be pseudonorm bounded if the set ρ(B)

is bounded.
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If ρ is a Riesz pseudonorm on X and B ⊆ X is order bounded then B is pseudonorm

bounded. In this case, i.e., when ρ is a Riesz pseudonorm, a set B is pseudonorm bounded

if and only if the set |B| = {|b| : b ∈ B} ⊆ X+ is pseudonorm bounded.

Definition 3. A pseudonorm ρ on a vector lattice X is said to be a bounded pseudonorm,

if every pseudonorm bounded set is order bounded in X.

Suppose that X is an AM -space with a strong norm unit. Let f ∈ X ′, the topological dual

of X, and ρf (x) = |f(x)|. If B ⊆ X is pseudonorm bounded with respect to ρf then it is

norm bounded in X. Hence, B is order bounded. It follows that ρf is a bounded pseudonorm.

The following result is motivated from [?, Theorem 2.1]. It provides an analytical technique

to derive a Riesz pseudonorm from a Riesz seminorm. The resulting Riesz pseudonorm is

known to have topological relationships with the initial Riesz seminorm.

Lemma 2. Let u ∈ X+ be arbitrary. If ρ is a Riesz seminorm on the vector lattice X then

ρu(x)ρ(|x| ∧ u) is a Riesz pseudonorm on X.

Proof. It is clear that ρu(x) ≥ 0 for all x ∈ X and that ρu(0) = 0. Because ρ is a Riesz

seminorm, it follows from |x + y| ≤ |x| + |y| for x, y ∈ X that ρu(x + y) ≤ ρu(x) + ρu(y). Let

λn be a sequence of real numbers such that λn −→ 0. It follows from

ρu(λnx) = ρ(|λnx| ∧ u) = |λn|ρ(x)

that ρu(λnx) −→ 0 for all x ∈ X. Hence, ρu is a Riesz pseudonorm on X. �

Proposition 1. Suppose that X is a vector lattice and ρ is a Riesz seminorm on X. Let

u ∈ X+ be arbitrary, and put ρu(x) = ρ(|x| ∧ u) for x ∈ X.

(i) If ρu is such that Uρu is order bounded in X then Uρ is order bounded in X.

(ii) If ρu is a bounded pseudonorm then ρ is bounded seminorm.

Proof. (i) Let x ∈ Uρ so that ρ(x) ≤ 1 holds. Because ρ is a Riesz seminorm, ρ(|x|) = ρ(x) ≤ 1

holds. It follows that ρ(|x| ∧ u) ≤ ρ(|x|) ≤ 1. Hence, Uρ ⊆ Uρu for all u ∈ X+. Because the

set Uρu ⊆ X is order bounded, the set Uρ is order bounded.

(ii). Let A be a nonempty subset of X which is pseudonorm bounded with respect to the

Riesz seminorm ρ. Because the set ρ(A) is bounded, the set ρu(A) is also bounded. As ρu is

a bounded pseudonorm, the set A is order bounded. Hence, ρ is a bounded seminorm.

�

4. Connection between order convergence and pseudonorm convergence

The following lemma shows us that under monotonicity pseudonorm convergence implies

order convergence.
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Lemma 3. Suppose that X is a vector lattice, and, ρ is a Riesz pseudonorm on X such

that the generating cone X+ is closed with respect to locally solid topology induced by ρ. Any

monotone and pseudonorm convergent net in X order converges to its pseudonorm limit in

X.

Proof. Let xα be a net such that xα ↑ and xα
ρ−→ x. The generating cone X+ of X is closed

with respect to the locally solid topology on X induced by ρ. Fix an arbitrary index α.

Then xβ − xα ∈ X+ whenever β ≥ α. By taking limit of xβ − xα over β we conclude that

x − xα ∈ X+, and hence, x ≥ xα for any α. Since α is arbitrary, x is an upper bound of xα.

If y ≥ xα for all α then y − xα
ρ−→ y − x ∈ X+. Hence, y ≥ x. Hence, xα ↑ x. �

5. Conclusion

Our aim is to continue to study on pseudonorm continuous and compact operators defined

on pseudonorm vector lattices.
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