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Chairman’s Welcome Speech
Dear Guests,

On behalf of the organizing committee, welcome to International Conference on
Mathematics: An Istanbul Meeting for World Mathematicians, 3-6 July 2018, Istanbul,
Turkey. First of all, we present our deepest thanks to Fatih Sultan Mehmet Vakif University
Management due to their great hospitality and understanding.

The conference aims to bring together leading academic scientists, researchers and
research scholars to exchange and share their experiences and research results about
mathematical sciences.

Besides these academic aims, we also have some social programs for introducing our
culture and Istanbul to you. We hope that you will have nice memories in Istanbul for
conference days.

We wish to all participants efficient conference and nice memories in Istanbul.

Thank you very much for your interest in International Conference on Mathematics:
An Istanbul Meeting for World Mathematicians.

Kenan YILDIRIM, Ph. D.
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On the Behavior of Solutions of Second Order Linear Autonomous Delay
Differential Equations
Ali Fuat YENICERIOGLU, Ciineyt YAZICI
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Abstract

In this paper, our aim is to establish a new result for the solutions to second order
linear delay differential equations with constant coefficients and constant delay. We used
two different real roots of the corresponding characteristic equation. So we obtained a new

result on the behavior of the solutions.
Keywords: Delay differential equation, Characteristic equation, Roots, Asymptotic behavior.

1. Introduction

In many fields of the contemporary science and technology systems with delaying links are
often met and the dynamical processes in these are described by systems of delay differential
equations [1,3,4]. The delay appears in complicated systems with logical and computing
devices, where certain time for information processing is needed. The theory of linear delay
differential equations has been developed in the fundamental monographs [1], [3-7].
Analogous results for the solutions to second order linear delay differential equations has
recently been obtained by the authors [2], [15-17] and [20]. Our work in the present paper is
essentially motivated by the results in the papers by Ch. G. Philos and I. K. Purnaras [9-14].
Let us consider initial value problem for second order delay differential equation

Y'(O)=py(+2 py(t-1)+ay(O+ 2 ayt-1) , 20, (1.1)

iel i€l

=9, -7=<t<0, (1.2)

where [ is an initial segment of natural numbers, p,q,p;.q; for i I are real constants, and

1, for i€l positive real numbers such that T, ET for i,.i, €I with i, 1, . Let’s define

T=maxT;. (T is a positive real number.) The equation of form of (1.1) is of interest in
iel

biology in explaining self-balancing of the human body and in robotics in consructing biped

robots (see [8], [18]). These are illustrations of inverted pendulum problems. A typical

example is the balancing of a stick (see [19]). As usual, a twice continuously differentiable

real-valued function y defined on the interval [-7,0) is said to be a solution of the initial

value problem (1.1) and (1.2) if y satisfies (1.1) for all >0 and (1.2) forall —7<¢<0. It
is known that (see, for example, [4]), for any given initial function ¢, there exists a unique
solution of the initial problem (1.1)-(1.2) or, more briefly, the solution of (1.1)-(1.2). Along
with the second order delay differential equation (1.1), we associate the following equation

A =p7»+7»2pie_Mi +q+Zqie_“i, (1.3)

iel iel

which will be called the characteristic equation of (1.1). Equation (1.3) is obtained from (1.1)
by looking for solutions of the form y(¢) =e” for ¢t € IR, where A is a root of the equation

(1.3). For a given solution A of the characteristic equation (1.3), we consider the (first order)

delay differential equation )
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t t

Z(8)=(p—2R)Z() + > pie "zt —T,) ~ Ry D pie " j 2(s)ds— Y qie " j z(s)ds. (1.4)

iel iel t- iel t-
With the first order delay differential equation (1.4), we associate the equation
8=p—20y+ 2 pie e =57 (1 )i +a)e (1.5)

iel iel
which is said to be the characteristic equation of (1.4). The last equation is obtained from (1.4)
by seeking solutions of the form z(f) = e°' for ¢ € IR, where & is a root of the equation (1.4).

The proofs in the following lemmas and theorems can be made in the same way as in the
article [20].
2. An Asymptotic Result

In this section, we will present an asymptotic result for the solutions of the second order delay

differential equation (1.1), which is closely related to the main result of this paper.

Theorem 2.1. Let A, be real root of the characteristic equation (1.3) and let 6,be real root

of the characteristic equation (1.5), and set

Br, = D (kP +q )T e + 20 —p—D pie T 20,

iel iel
— —(ho+80)T; -2 -5 —87; AT,
ﬂ;uoﬁo = 1+Zpie (Mg+8g)T T —80 Z(}\,Opl +q; )(]—e 0T _Sorie 0T )e 0%

iel iel
Also, define
0
L(h:9) = ¢/(0)+ (2 =P)p(0) = > pi@(—t)+ . (kop; +; )& " [ ¢ p(s)ds .

iel iel -1

0

L\ > —(A\ T, -85 —AS LA 5
R(?\.O,SO;([))Z([)(O)—(B—O(P)_szie (hg+30)T; J‘ e 3y (e Ao (P(S)_ (50 (P)]ds
7»0 iel }‘0

-1

iel 0 -s

T 0 )
_Z(}Lopi +qi)e_7‘«0‘fi Ie_60S {J‘ e_Sou [e—%uq)(u) _WJdu}ds'

Ao

(Note that, because of B, # 0, we always have 6, # 0.) Assume that
W8, = Z |Pi| |_(M+80)Ti T+ 852 ZPVoPi + Qi|

(This assumptio:qE Iguarantees that 17, 5“16; 0.) Then, for any ¢ € C([—z',()], ]R), the solution y

of (1.1)-(1.2) satisfies

i {e—(mmr o % e} _RGw5:9)

[—>0
Z

—3T; =T,

e Mt <1 . 2.1)

2.2)
urws
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3. Three Lemma

Lemma 3.1. Let A, and &, be real roots of the characteristic equations (1.3) and (1.5),
respectively, and let 1, s be defined as in Theorem 2.1. Suppose that
Zpi <0 and Z(Aopi +q;) > 0. (3.1)

L€l i€l

Then 17, 5 >0 if (1.5) has another real root less than 6,, and n, 5 <0 if (1.5) has

another real root greater than o, .

Lemma 3.2. Let Ay be real root of the characteristic equations (1.3). Assume that
T

1), (p—2p. L
—Zpi re (P +Z(’10pi+q01’i€_)‘°ri f e 1) @)

i€l iel 0
T
—(p=20—=)7; 1
leil T e (=2 Ti)T +z|ﬂopi +CIi|Tie_’1°Tij se (=220~ ) ds < 1. (3.3)
el i€l 0

Then, in the interval (p — 24 —% , 00), the characteristic equation (1.5) has a unique root

8o, this root satisfies (2.1), and the root & is less than p — 245 — l , provided that

Ti

Zplq TL+Z(AOpl+ql)T e~ toTi f ~(p-220 )d >—1. (3.4)

i€l iel 0
Lemma 3.3. Let Ay be real root of the characteristic equations (1.3). Suppose that statement
(3.1) is true. Then we have:
a) In the interval [p — 21y, ), the characteristic equation (1.5) has no roots.

b) Assume that (3.2) holds. Then: (i) § =p — 24, —% is not a root of the characteristic
equation (1.5). (ii) In the interval (p -2 —% ,D— 2/10), (1.5) has a unique root.

(iii) In the interval (—00 ,D— 249 — %) , (1.5) has a unique root.
4. The Main Result

Theorem 4.1. Let Ay and &y be real roots of the characteristic equation (1.3) and (1.5),
respectively, and let By, N3, s, L(Ao; @) and R(Ay,8o; @) be defined as in Theorem 2.1.
Suppose that statement (3.1) is true. Also, let &1 be real root of (1.5) with 6; # 6,. ( Note
that, because of B3, # 0, we have 6o # 0 and &, # 0. Moreover, Lemma 3.1. guarantees
that my, s, # 0. ) Then the solution 'y of the IVP (1.1) and (1.2) satisfies

L(Ao; R (A, 60;
€1 (Ao, 80, 813 ) < et [e"’loty(t) ——( 0; $) - e—SOt_( 070 ¢)l
ﬁlo 77/10,60

< Cz(lo, 60, 61; (,b) (41)

forallt =0, where
L(4o; R(Ay, 6y;
Cl(/l(); 60,61, ¢) = mln { _51t [e—lot¢(t) _M_e_é‘ot ( 0 0 ¢)l
'810 N26.80

—T<t<0

} ,(4.2)
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C2(Ag, 80,61, @) = —rpsatus(o {3_61t e Mt (t) — % - e_aoth}- (4.3)

We see immediately that inequalities (4.1) can equivalently be written as follows
C; (A, 8, 81; ¢)e(81—80)t < eS80t e'7‘°ty(t) _ L(; q))l _ R0, 80; ¢)
| B, Mo,80
< C,(Ag, 8y, 84; p)eB1=00)t >0,
Hence, if §; < §, then the solution y of the IVP (1.1) and (1.2) satisfies (2.2).
Also, we observe that (4.1) is equivalent to

ehot [61 (Ao, 89, 81; p)efit + Lko®) | R(kodoid) e‘W] < y(t)
ﬁﬁ. 77).0,50

0
L(Ay; ) N R(Ag, 605 @) pdot
ﬁlo T’AO'SO

< ot [Cz(ﬂo: 8o, 815 P)edrt + l forallt = 0.

References

[1]  R.Bellman, and K. Cooke, Differential-Difference Equations. Academic Press, New
York, (1963).

[2] G. Chen, O.V. Gaans and S. V. Lunel, Asymptotic behavior and stability of second
order neutral delay differential equations, indagationes Mathematicae 25 (2014) 405-
426.

[3] R.D. Driver, Ordinary and Delay Differential Equations, Springer-Verlag, New York,
1977.

[4] L.E. El’'sgol’ts and S.B. Norkin, Introduction to the Theory and Application of
Differential Equations with Deviating Arguments, Academic Pres, New York, London,
1973.

[5] J.K. Hale and S.M. Verduyn Lunel, Introduction to Functional Differential Equations,
Springer, Berlin, Heidelberg, New York, 1993.

[6] V. Kolmanovski and A. Myshkis, Applied Theory of Functional Differential
Equations, Kluver Academic, Dordrecht, 1992.

[7] V. Lakshmikantham, L. Wen, and B. Zhang, Theory of Differential Equations with
Unbounded Delay, Kluwer Academic Publishers, London, 1994.

[8] N. Macdonald, Biological Delay Systems: Linear Stability Theory, Cambridge
University Pres, Cambridge, New York, 1989.

[9] Ch.G. Philos and 1.K. Purnaras, Asymptotic properties, nonoscillation, and stability for
scalar first order linear autonomous neutral delay differential equations, Electronic
Journal of Differential Equations, Vol. 2004 (2004), No. 03, pp. 1-17.

[10] Ch. G. Philos and I. K. Purnaras, More on the behavior of solutions to linear
integrodifferential equations with unbounded delay, Funkcial. Ekvac. 48 (2005), 393-
414.

[11] Ch. G. Philos and I. K. Purnaras, A result on the behavior of the solutions for scalar
first order linear autonomous neutral delay differential equations, Math. Proc.
Cambridge Phil. Soc. 140 (2006), 349-358.

[12] Ch. G. Philos and I. K. Purnaras, On the behavior of the solutions for certain first order
linear autonomous functional differential equations, Rocky Mountain J. Math. 36
(2006), 1999-2019.

[13] Ch. G. Philos and I. K. Purnaras, On the behavior of the solutions to periocﬁc linear



INTERNATIONAL CONFERENCE ON MATHEMATICS
“An Istanbul Meeting for World Mathematicians”

Minisymposium on Approximation Theory & Minisymposium on Math Education

[14]

[15]

[16]

[17]

[18]

[19]
[20]

3-6 July 2018, Istanbul, Turkey
delay differential and difference equations, J. Math. Anal. Appl. 322 (2006), 847-863.

Ch. G. Philos and 1. K. Purnaras, On periodic linear neutral delay differential and
difference equations, Electron. J. Differential Equations 2006 (2006), No. 110, pp. 1-
25.

Ch.G. Philos and LK. Purnaras, Behavior of the solutions to second order linear
autonomous delay differential equations, Electronic Journal of Differential Equations,
Vol. 2007 (2007), No. 106, pp. 1-35.

Ch. G. Philos and I. K. Purnaras, An asymptotic property of the solutions to second
order linear nonautonomous delay dicerential equations, Math. Comput. Modelling 49
(2009), 1350-1358.

Ch. G. Philos and I. K. Purnaras, An asymptotic result for second order linear
nonautonomous neutral delay differential equations, Hiroshima Math. J. 40 (2010),
47-63.

C.R. Steele, Studies of the ear, Lectures in Applied Mathematics, Vol.17, American
Mathematical Society, RI, 1979, pp. 69-71.

S.A. Tobias, Machine Tool Vibrations, Blackie, London, 1965.

A.F. Yenigerioglu, A Result on the Behavior of Solutions of Second Order Delay
Differential Equations, Academic Journal of Applied Mathematical Sciences, Vol. 3,
No. 9, pp: 74-80, 2017



INTERNATIONAL CONFERENCE ON MATHEMATICS
“An Istanbul Meeting for World Mathematicians”
Minisymposium on Approximation Theory & Minisymposium on Math Education
3-6 July 2018, Istanbul, Turkey

Analysis of Engineering Elasticity Problems by Finite Elements
Based on the Strain Approach

Djamal Hamadi', Abdallah Zatar® and Toufik Maalem’
"2LARGHYDE Laboratory, Civil Engineering and Hydraulics Department, Biskra University,
B.P 145.RP. 07000,Biskra, Algeria,
*Civil Engineering Department, Batna 2 University-Algeria,
E-mail(s): djamalhamadil5@gmail.com, Abdullah.zatargch@gmail.com,
t.maalem@univ-batna2.dz

Abstract

The finite element method is the most practical tool for the analysis of structures
whatever the geometrical shape, applied loads and behavior. In addition, practice shows that
engineers prefer to model their structures with the simplest finite elements. Also, in the
numerical analysis, it is well known that according to the choice of the interpolation field,
several models of finite elements can be used and with a good displacement pattern,
convergence towards the correct value will be much faster than with a poor pattern, thus
resulting in saving of the computing time. In this paper, the procedure of the development of
finite elements based on the strain based approach (S.B.A) is described. Through some
applications and validation tests; using some membrane elements, an excellent convergence
can be obtained when the results are compared with those given by corresponding
displacement-based elements.

Keywords: Elasticity Problems, Finite Element Method, Membrane Elements, Strain Based Approach.,

1. Introduction

In the field of structural analysis, the most common approach, to finite element modelling of
structure, is to consider that the displacements at the nodal points are the main unknown
parameters of the problem [1], [2] and [3]. Earliest, numerical tests with strain based
approach were carried out by Ashwell, Sabir and Roberts [4], on simple circular arches with
different aspect ratios, the results obtained show that a better convergence can be obtained
when assumed strain based elements are used instead of assumed displacement models. The
development of elements based on the strain approach has continued and many elements were
developed for general plane elasticity problems by Sabir and al [5], [6] and [7]. The extension
of the work to the development of finite elements in polar coordinates has continued [8], [9].
After that, a new rectangular element was elaborated for the general plane elasticity by
Belarbi & Maalem [10]. An improved Sabir triangular element with drilling rotation was
developed; this triangular element, with three nodes and three degrees of freedom, presents
very good performance and may be used in various practical problems [11]. In this paper, the
procedure of the development of finite elements based on the strain based approach (S.B.A) is
described. Some applications and validation tests; using two membrane elements, are
presented. The results obtained are compared with those given by corresponding
displacement-based elements and the closed form solution.

2. Procedure of the development of finite element based on the strain approach

In the Strain based approach, we first formulate the strain field; the displacement field is than
obtained by integration. Compared to the classic formulation where deformations gre obtained
by derivation of the chosen displacement fields.



The main advantages of this approach are cited in reference [12]. To illustrate the procedure for
the development of displacement field when the strain approach is used; the simple example of a
rectangular element of plan elasticity is examined. In general, for the problems of plan elasticity, the
relations between the strains €, €y, Yxy and the displacements of translation U and V in the plane are
given as follows:
ex=Ux=(0U/OX) ; &y=V,y ; Vxy=Uy+ Vi (1)

The three above strains are equated to zero (Rigid Body Mode) and the resulting differential
equations are integrated, the following expressions are obtained for the displacements U
and V:

UR = a — a3y (2a)

VR = a t a3 X (2b)
The above equations represent the displacement fields corresponding to the rigid body mode
(RBM) relative to the element. We note that equations (2) contain three constants: a; and a,
represent the translational movements in the X and Y directions; a3 represents the rotation in
the plan. If a rectangular element is required with four nodes and each node has two DOF, the
final displacement fields must contain eight independent constants. We have used three
constants for the representation of the RBM; we have five constants that can be distributed
over the strains as follows:

e, =a, +asy
g, =ag+a,;x (3 ab,c)
ny = ag
Equations (3) can now be integrated:
2
Yy
Ug =a,x+asxy—a, —+a
S 4 5 7 2 8 (4a,b)

x 2
Vg =agy—as —2 +a,xy +ag

NX 0 |«

The final displacement functions can be obtained by summing equations (2) and (4), hence:

2

U=a,-azy+asx+asxy —a, y7+a8 Y

2 (5a,b)
2
V =a, +tazx+agy—as X?+a7xy +ag %

Firstly, the strains are independent of each other, so it will be useless to couple between the
bending and shearing actions, from which a pure bending state can be obtained. In addition to
this, the displacement functions contain quadratic terms, which allow correct bending. It is
interesting to compare certain peculiarities of this element with its equivalent based on the
displacement model, that is, the most commonly used bilinear rectangular element deriving its
name from its ability to represent linear displacements on both sides of the rectangle and the
displacement functions are given by:

U= a + aax + a3y + asxy (6a)

V= as+ agx + a;y + agxy (6b)

Since there are only two nodes on each side of the element, only linear displacements will be
possible for the interpolation of the continuity between the elements that will be guaranteed.
Thus, under loading, the bilinear element deforms while ensuring inter-element continuity
without overlapping, and the strains are given by deriving the displacement functions. Thus:

7



g, =a, +a,y

xX

g, = a, +agx (7a,b,c)

Yy = a3 +a,X +ag +agy

These strains are not independent, as long as they are linked by the constants a; and ag. It is
clear, however, that the bilinear element cannot represent an independent shear state unless a4
= ag = 0, and which will give €, and €, as constants. Hence a state of pure bending associated
with direct linear deformations and without shear strains cannot be obtained with the bilinear
element.

3. Presentation of two finite elements based on the S.B.A. for plane Elasticity Problems
3.1 Sector Element SBMS-BH [13]

This element has four nodes in addition to the central node, and two degrees of freedom per
node U and V and uses the static condensation. The displacement functions for the sector
element in polar coordinates will be (Fig.1) :

U=a;—a3 g tagrtasrd -0.5a; 0>+0.5 ag @ +0.5 a9r2 (8a)
Vo=at+ar -0.5a;s P+ ag @ +a;rf +0.5agr+0.5 a1002 (8b)
4 3
2
1
>X,U
(b)

Fig.1: Coordinate system and displacements.
(a) The sector element “SBMS-BH” . (b) The quadrilateral element “Q4SBES”

3.2. Quadrilateral membrane element Q4SBES [14]

Figure 1 (b) shows the geometry of the element “Q4SBES” (Strain Based Quadrilateral
Element) and the corresponding nodal displacements. The quadrilateral element has five
nodes, four corner nodes in addition to an internal node, verifies the local equilibrium and
uses the static condensation. Each node (i) is attributed to two degrees of freedom (d.o.f) Ui,
and Vi. Therefore, the displacement field should include ten independent constants.

The strain field can be defined as follows:

E.=a,+asy+asx

£, =ag+a,y+a,x )
Vo =—asXxR—a,yR +a; —a,Hy — a, Hx

2 r

(1 — V) (1 - V)

By integrating equations (9) and adding the rigid body mode, we obtain the final displacement
functions:

Where: H =

U=a —ay+ax+axy—a,y (R+1)/2+a,y/2+a,(x>—Hy*)/2 (10a)

V=a,+ax—ax’(R+1)/2+a,y+a,xy+ax/2+a,y>—Hx")/2 (10.b)



4 Validation Tests

4.1 SBMS-BH element

The performance of the developed sector element SBMS-BH is tested by applying it to a
thick cylinder under internal pressure. The results obtained for the radial deflections Ur are
compared to the analytical solution given by Rekatch [15]. Figure 2 gives the convergence
curve for the results obtained from elements SBMS-BH and SBS4 [8] for the radial
deflection, it convergence to the analytical results when the cylinder is divided into a small
number of elements (2x2), which illustrates the high degree of accuracy obtained from
element SBMS-BH, the error accounts is equal to 0.063 % of the exact solution. Good

performance is also given for the radial and tangential stresses ¢, and o,

0,15
g
é 0,145 Ur gace = 0.14155
S 0144 -/;—"‘7 v T - s
$—
-
§ 0,135 A
3
5 0131 —— SBMS-BH
= 0,125 - SBS4
2 = Exact
[

0,12 . , , : .

) 5 10 15 20 25 30

Number of elements
Fig.2: Convergence curve for the radial deflection U,

4.2. Q4SBES element

In this test problem, the behaviour of finite elements with a significant geometrical
irregular shape is examined. This problem was critically analysed in [16] to test the behaviour
and accuracy of elements 078 and 07Pp*, and consists of a cantilever beam having a
rectangular section (I x t x h = 10 x 1 x 2), and subjected to two nodal forces (P =1000)
forming a couple.

1.2

R,

m
]
1]
]
m
1]
1]

i
m
L

0,8

0,6

04

02 T~

CNS—

0

0 1 2 3 4 5 e 6

|- Q4sBE5S—*— Q4—Exact]

V4 (Normalised results)

Fig.3: Convergence curve for vertical displacement at the end of the Cantilever Beam

Figure 3 shows the stability, the reliability and the good performance of "Q4SBES5" element
no matter what the geometrical distortion might be, this is in part probably explained by the
nature of analytical integration carried out. These results confirm that the formulated element
Q4SBES satisfies the High Order Patch Test. 9



5. Conclusions

From the results obtained above, the following conclusions can be drawn:

- The results obtained from SBMS-BH and Q4SBES elements are shown to converge to the
theoretical solution for the problems considered.

- It should be mentioned here that the convergence is monotone for both deflections and
stresses. The inclusion of the internal node and the verification of the equilibrium equations
ameliorate the results obtained.

The efficiency and good performance of the Strain Based Approach is confirmed. For
recommendation, it is of importance to extend the existing formulated elements to non linear
analysis, dynamics behaviour and thermal effect.
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Abstract: Modeling of structures composed of plates with different geometrical shapes
becomes a very practical tool in engineering problems, whatever the type of the material used,
applied loadings, thickness and boundary conditions. The mostly used method is the finite
element; which is well known and with a good displacement field, the convergence towards
the correct solution will be much faster than with a poor one. In this paper, two finite elements
based on two different theories for the analysis of rectangular and circular plates are
formulated and examined. Good convergence to the analytical solutions has been observed
when compared to those given by the corresponding elements. According to the results
obtained, the efficiency and performance of first order shear deformation theory and the strain
based approach is demonstrated.

Keywords: Rectangular and Circular Plates, Strain Based Approach, Finite Element Method, First Order
Theory, Laminated Plates, Sector Element.

1. Introduction

Modelling engineering structures should be chosen to represent the real structure as closely
as possible with regard to materiel properties, the geometrical shape and applied loadings.
Another factor in the idealisation process is the type of the finite element used in the
numerical analysis. This, however, depends on many other parameters, such as the efficiency
of the elements and the importance of local features in the structure particularly stress
concentrations [1], [2] and [3]. Composite laminated materials are those meet the above
requirements due to their low density, high strength and excellent durability. There are
several theories for the study of the multilayer structures behaviour; among them we can cite
the classical theory of laminates plates which is the extension of Kirchhoff's theory to
composite materials. The first order theory is the extension of that of Reissner-Midlin and
recently the higher order theories. In this paper, a four-node rectangular finite element with
five degrees of freedom per node, based on the first order theory taking into account the
transverse shear effect has been formulated. This element can be used for modelling
symmetrical thick rectangular plates made of laminated composite materials. Also, the strain
based approach is one of the efficient approaches used for developing finite elements for the
numerical analysis of plates and shells in engineering structures [4], [S]. The numerical
analysis of thin circular plates with openings, a few works are carried out with different
numerical approaches, among them, modelling circular plates with quadrilaterals elements.
This technique is not good enough to fit the curve surface properly; especially for circular
plates with openings, only if the mesh size of elements are too small and increased number
mashing are used near the opening; while the sector elements will model quite good the
structures properly. In this paper, a sector finite element based on the strain approach
developed recently by Abderrahamani et al, [6] is presented. The development;element is



based on the Kirchhoff theory and is used for the numerical of thin circular plates with
opening. The results obtained are very significant for both deflections and stresses.

2. Formulation of rectangular plate element based on the first order shear deformation
theory (R4FDST)

The element (R4FDST) is a rectangular in shape with four nodes based on Lagrangian type
i.e. the variables are independent. Each node has five degrees of freedom, two degrees in the

plane (x, y) that are u,(x,y),v,(x, ) and three out of plane w;(x,y),9, (x,y),®,(x,y) (see
Figure 1)

(v, w,.e.0,) L, ¥ 9. 0.,.0.,)

(. ¥.w.0. .0, ) LI, ¥ W, 00,0, )

Fig.1: Geometry of the element R4FDST and corresponding nodal variables

The element used is based on first order theory, so the displacements in the plane and out of
plane are given by Berthelot [7].

u(x,y,z) uy(x, y)+ze, (x,)
V(xX,3,2) 1 =4V(X, )+ 29,(x, ) (1)
w(x,y,z) w,(x, )

The variables of the displacements are: u,(x,y),v,(x,y)w,(x,y),9 (x,y),¢, (x,y) and
@, , ¢, are the rotations of the normal around the (x, y) axes respectively.
The displacement vector for all coordinates points (x, y) of the plate are expressed by:

5(35,)/):2]\71(36,)’)51 (2)

i=1
Where:
o(x,y) :Isthe displacement vector.

N.(x,y) :Tsthe element shape functions.

{6.}  :Isthe nodal vector displacement

The potential energy of plate deformation is given by:

_1 T
U_E{a e’ dv 3)

The total potential energy of plate deformation subjected to transverse loading distributed
across its surface is given by:

n=U+w
The equilibrium configuration is defined by the minimization of the total potential energy
which means the cancellation of its first variation, namely:

Al=0oU-6W =0
12



This allows obtaining the following equilibrium equation:

(k] {q}=1F°} (4)
Where the element stiffness matrix:
k=, {8,) 1418} +{8,} [B1{8,} + {5} [8]{B,} )
+{8,} [DI{B,}+{B.} [1]{B.} )ax
[K{q}=1{F} (6)

With [K] is the global stiffness matrix, {F} is the global force vector and {q} is the vector of
global displacements of the plate nodes.

3. Formulation of sector plate bending element based on the strain approach and
Kirchhoff theory (SBSPK)

The developed element presented here is called SBSPK and has four nodes and three
degrees of freedom per node (3 d.o.f./node).

@ —ar—a0—a, o —as e — as e — a, o — gy — gy T — S —
—102 3 45 T A5 T s 7% 87 97, 105 A1
r
Q12 (7a)
r? r20 62 63 0
Br=a,tayr +as—+agrf +a;—+ag5+ a1~ +an; (7b)
r? r
Bg=a3+a6?+a7 +a89+a9r9+a10 +a11 . +0L122 (7¢)

Fig 2. Geometry of the sector element SBSPK
Where:
r; . Internal radius; r, : External radius; R: The radius of curvature of the central
circumferential line of the element.
The element stiffness matrix [k®] of SBSPK element can be obtained by the well known
expressions of the finite element method.

[k] = [417(J%, [ (BYT[DIIB] r dr dO)[A]™* = [A]" [ko][A] (®)
For an isotropic material, the constitutive relationships between stress and strain for the
Kirchhoff theory are given by:

Mr d11 d12 0 kr
Mg |=|di, dy, 0 ||ke )
M,¢ 0 0 dizllkyg 13



With: M,, Mg, M, : The bending moments
[D]: Matrix contains the values of d;; which are defined by:
Eh3 vEh3 (1-7v)

diy =dyp = m ydi2 =m ydz3 = d11T
With:

E: Young modulus, h: Plate thickness and v: Poisson’s ration.

4. Validations

4.1 Validation of R4FDST element

This application consists in studying a square laminated plate simply supported on its four
edges and subjected to uniformly distributed load (q = 1 N / m”. The plate is composed with
three layers with the following geometrical and mechanical properties:

e, =e, =eyand a/h=20, the orientation of fibers are (0/90/0)
Young's module: E,, =25 Mpa, E,, =1Mpa.
Shear modulus: G, = G;; =0.2 Mpa ,G,, = 0.5Mpa

Table 1 : The maximum deflection of laminated plate (0/90/0) simply supported

Mesh Maximum deflection Error (%)
2x2 0.2480 67.2520
4x4 0.5270 30.4106
6x6 0.6516 13.9574
8x8 0.7088 6.4043
10x 10 0.7381 2.5353
12x12 0.7548 0.3301
Analytical solution [8] 0.7573

4.2 Validation of SBSPK element:
The ring plate shown in Fig.3 is subjected to a uniformly distributed load P =1N.mm along
the inner diameter. The geometrical and mechanical properties are taken as:

h=0,2 mm, R=40 mm, r =20 mm, E = 2x105, v=0,3.

P P
7 17,
) -
> a=pR -
r=aR -
R AN
W I /

Fig.3: Clamped ring plate under uniformly distributed load along the inner circle

The analytical solution of the lateral displacement W is given by Geminard and Giet [9].
2

PR
W = = BL(L + 2K,)(1 = a?) + 4K, loga + 2a* loga]

. _p2 1+({-v)logp
Where: K>=p Py
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Table 2 The lateral displacement W, for the clamped ring plate under uniformly
distributed load along the inner circle

Mesh Wmax
(SBSPK)
1x1 0.03183
2x2 0.09322
3x3 0.2028
4x4 0.3791
4x5 0.4492
Analytical solution[9] 0.4391

5. Conclusion

We examined the performance of the developed element R4FDST based on the first order
shear deformation through a comparative study on the maximum deflection. The comparative
study shows the good behavior of the element, even only one test is presented above. The
results of the numerical analysis with the R4FDST element are very acceptable compared to
the analytical solution. The new strain-based element “SBSPK” is proposed for the analysis
of circular thin plate bending problems. Several numerical examples were studied to evaluate
the performance of the present element and only one test is presented here. It has been shown
that with only small numbers of elements, good results can be obtained compared to the
analytical solution. Both elements are very suitable for modeling several civil engineering
applications.
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We intoduce a bivariate operators of (p,q)-Balazs-Szabados operators and obtain
the degree of approximation for these operators in terms of the partial moduli of
continuity, the complete modulus of continuity and the Lipschitz class functions. Also, we
construct the generalized Boolean sum (GBS) operators of bivariate (p,q)-Balazs-
Szabados operators in terms of the mixed modulus of smoothness and theLipschitz class
of Bogel continuous functions
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1. Introduction
Mursaleen et al. applied (p,q)-calculus in approximation theory and introduced Bernstein
operators based on (p,q)-integers. Hence the studies in approximation theory have been

extended from g-calculus to (p,q)-calculus. We recall some notation of (p,q)- calculus.

Let 0<g<p<l. For each nonnegative integer n, (p,q)-integer of n and (p,q)- factorial of n are

defined by

_P"—4q
P > —q
]y ql= {[Tl]p,q [n— 1]p,iz,... [2]5,4[1]5,q, i; n =n];263 =

and for integers n, k satisfying n>k>0, (p,q)-binomial coefficients are defined by

[Tl] __ [n]p,q!

k p.q [Tl - k]p,q! [k]p,q!-

If we take p=1, they reduce to g-analogues. Further, we have
n—k—1) k(k—-1)

n
(n—k)(
(@x+bygi= Y p = q = g akpkanhyk
P P4

(ax + by)} , = (ax + by)(pax + qby)(p*ax + q*by) ... (p" tax + q"~'by).
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(p,q)-analogue of Balazs-Szabados operators is defined by Yildiz Ozkan and Ispir as follows

n
1 k] (-k)(n-k-1) k(k=1)
(prq) . p— p:q k
T, = E )
o (fix) 1+ ax)p, k_Of <qk‘1bn> P4 [k]p,q (@n)

The rate of convergence of (p,q)-Balazs-Szabados operators was obtained by using the
Lipschitz class functions and the Peetre's K-functional functions, and the degree of asymptotic
approximation was given by means of Voronovskaja type theorem.Also, Comparisons
associated the convergence of Baldzs-Szabados, ¢-Baldzs-Szabados and (p,q)-Baldzs-

Szabados operators to certain functions we given by illustration.

2. Construction of Operators

We introduce a bivariate operators of (p,q)-Baldzs-Szabados operators

41,92, Klpiq:  Ulp,,
Téf}lzl P2.d2) (f; X, y) = ZZ;O ;Z() Un, k (x; P1, Q1)5n2,m (y; P2, CIZ) f (qlkp—11(;; ’ qzjzlz;;i)'

Here f is a real valued function on [0, ) X [0,), for0 < q; <p; <1,0<q, <p, <1,

n,n, €N, x,y € [0,0) X [0,00) , an, = [m]5220, by, = [m]50 , o, = [n5]527) and

dp, = [nZ]Ili;qZ such that 0 < 8; < %and 0<pB, < % And also

(ny-k)(ni—k-1)  k(k—1)

n k
p I (ann)

ni
(1+ anlx)pl,q1

Vn k(X D1, q1): =

and

(mp—j)(np—j-1)
2

Jjg-1 N, j
q 2 i CnyY
: [] ]P1VQ1( "2 )

nz
(1+Cn2y)p2'QZ

D2

Sk (Vi P2, q2): =

These operators are tensorial product of T,Efl‘ql) and Tn(fz‘qZ).
Let I =[0,7r] for >0, I? =1 x I and C(I?) be the space of all real valued continuous

functions on 12 with the norm ||f|| = sup{|f(x,y)|: (x,y) € I*}.

In order to obtain the uniform convergence of bivariate operators T,&f};gl’pz’qﬁ(f JX, V), we
choose the sequences (P1,n 1), ((h,n 1), (Pz,nz) and (qz,nz) satisfying qq ., 425, € (0,1) and
Pin, € (G1n,, 1], P2, € (G2,n,, 1] such that

. . n .
limy, o Piny = lim (P1p,)"" = lim Gin, =0, 7 M
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lim (qun,)" =1,0<1; <1, )

n,—

. . n .

llmn2—>oo pZ,nZ = lim (pZ,nz) ‘= lim qZ,nZ = Or (3)
Nny—0 ny—o0

lim (qan,)"™ = 1,,0 <1, <1, (4)

Nny—0

Theoreml. Let be the sequences (P1,n 1), (CILn 1), (Pz,nz) and (qz‘nz) satisfying the conditions

(1-4). Then the bivariate operators T,Ef}l'zl‘pz’%)( f;x,v) converges uniformly to f on I2, for all

fec(?.

For f € C(I?), the complete modulus of continuity for the bivariate case is defined as
w(f; 81,62) = sup{lf(t,s) — fO,V|: |t — x| <61, |s —y| < 85},

where §; > 0,8, > 0 and (¢,s), (x,y) € I?. Itis clear that,

,lim o(f;8,,8,) = 0.

Theorem2. Let be the sequences (P15, ), (q1n,)> (P2n,) and (ga,n, ) satisfying the conditions
(1-4) and f € C(I?), then for all (x,y) € I?, it holds the following inequality

Trfizfzhrpz'%)(f; x,y) — f(x, y)| <4w (f; 8, (%), 6, (J’)),

where &, (x) and &8,,,(y) are as in Theorem 1.

The partial moduli of continuity with respect to x and y are given by

w1(f;8) = sup{|f(x1,y) = f(x2, )|y € L |x1 — x| < 63}

and

w2 (f;8) = sup{lf(x,y1) = f(x,y2)]:x € L |y1 = y,| < 6.

It is clear that they satisfy the properties of the usual modulus of continuity.
Theorem3. Let be the sequences (pl’n 1), (fh,n 1), (Pz,nz) and (qz,nz) satisfying the conditions
(1-4) and f € C(I?), then for all (x,y) € I, it holds the following inequality

TEL P21 (£ 3,) = (6, 9)| < 2{wr (£ 60, (0) + 0, (£:6,,00)}
where 8, (x) and &8,,,(y) are as in Theorem 1.
The Lipschitz class Lip,,(f; a,, a,) for bivariate case is defined by f € Lipy (f; aq, a3)
if and only if |f(t,s) — f(x,y)| < M|t — x|%t|s — y|%, for all f € C(I?), where 0 <
a,a, <1, (t,5),(x,y) € I? are arbitrary.

18
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Theorem4. Let be the sequences (P1,n 1), (CILn 1), (Pz,nz) and (‘h,nz) satisfying the conditions
(1-4) and Lipy (f; a4, a;) then for all (x,y) € I?, it holds the following inequality

Trgizczh,pz,qz)(f; x,y) — f(x, y)| <M (6n1 (x))al (5n2 (x))az,

where 8, (x) and &,,, (y) are as in Theorem 1.
Bogel defined Bogel-continuous and Bogel-bounded functions.
Let X and Y be compact subset of R. A function f: X XY — R is called Bogel-continuous

function at (xy,y) € X X Y if

lim A X0, Vo; X, ¥] =0,
(Xy)(toy0) (x,y)f[ o0 Yo Y]

where A, ) f[%0, Yo; X, y] denotes the mixed diference defined by

Ay flx0, ¥ 0,71 = fOo¥) = f(x,70) — f(x0,¥) + f (X0, Yo)-
Let 4 be a subset of R?. The function f: 4 — R is Bogel-bounded function on 4 if there exists
M>0 such that |A(x,y) flxo, Vo; X, y]| < M, for every (t,s), (x,y) € A. If 4 is a compact subset
of R?2, then each Bogel-continuous function is a Bogel-bounded function.
Let denote by Cp,(A), the space of all real valued Bogel-continuous functions defined on 4
with the norm |||l = sup{|Acc, fIt, s; %, ¥1|: (x,¥), (t,s) € A}. And also, we denote with
C(A) and B(A) the space of all real valued continuous and bounded functions on A,
respectively. C(A) and B(A) are Banach spaces with the norm |[f]| = sup{|f(x,y)|: (x,y) €
A}. Tt is known that C(A) < C,(A).
3. GBS Operators
We define generalized Boolean sum (GBS) operators of bivariate (p,q)-Balédzs-Szabados

operators as follows:
Bina (£t 5% 0,y) = Toli ™ (F(6,) + f(x,8) = £(£,5);%,9),
for all (¢t,s),(x,y) € I? and f € C(I?).
The mixed modulus of smoothness of f € C(I?) is defined as
Omixea(fi 61, 62) = sup{|A ) flt, 55 %,¥]|: 1t = x| < 83, 1s — y| < 65},
for all (¢,s),(x,y) € I? and §; > 0,65, > 0.
TheoremS. Let be the sequences (P1,n 1), (CILn 1), (Pz,nz) and (CIZ,nz) satisfying the conditions

(1-4) and C,, (1%, )then for all (x,y) € I?, it holds the following inequality 19
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B£f$;31rp2rQZ)(f; X, }/) - f(x' y)| <4 Wmixed (f, 6n1 (X), 677_2 (y)),

where 8, (x) and 8,,,(y) are as in Theorem 1.

The Lipschitz class for B-continuous functions is denoted by B — Lipy (f; a4, a,), and it is
defined by f € Lipy (f; a1, ay) ifand only if |[f(t,s) — f(x, y)| < M|t — x|%t|s — y|?2,
forall f € C(I%), where 0 < a;,a, < 1, (t,s), (x,y) € I? are arbitrary.

Theorem6. Let be the sequences (P11, ), (q1n,)> (P2n,) and (ga,n, ) satisfying the conditions
(1-4) and f € B — Lipy (f; ay, ay) then for all (x,y) € I?, it holds the following inequality

BT(111?‘11.IZ1.192'612)(f; X, y) - f(x’ y)| <M (5711 (x))al (Snz (x))az,

where 6, (x) and &8,,,(y) are as in Theorem 1.
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Approximation by Kantorovich Type q-Balazs-Szabados Operators
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Abstract

We introduce Kantorovich type q-Balazs-Szabados operators called g-BSK
operators. We give weighted statistical approximation theorem and the rate of
convergence of the gq-BSK operators with the help of the weighted modulus of
smoothness. Moreover, we investigate the local approximation results. Further, we give
some comparisons associated the convergence of q-BSK operators.

Keywords: Balazs-Szabadosoperators, g-calculus, rate of convergence, Peetre’s K-functional

1. Introduction

Bernstein type rational functions was defined by Balazs. He gave an estimate for the order of
its convergence and proved an asymptotic approximation theorem and a convergence theorem
concerning the derivative of these operators. Baldzs and Szabados modified these operators.
They obtained best possible estimate under more restrictive conditions, in which both the
weight and the order of convergence would be better than Balazs operators.

For any non-negative integer r, the g-integer of the number r is defined by

L +1
1= if q

T if q=1,

where ¢ is a fixed positive real number. The g-factorial is defined by

(140204 ] if T=12,.
[ﬂ“_{ Y1 e,

For integers n, » with 0 < r < n, the g-binomial coeficients are defined by

[r]q =

[n] _ [n],! .
rlg  [rlgln—r],!

The definite g-integral is defined by

21
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and

2 F©)dgt = [ F©dgt — [ F(Ddgt,
for0<gqg<1.

The g-analogue of Baldzs -Szabados operators is defined by O. Dogru. He investigated
Korovkin type statistical approximation properties of these operators for the functions of one
and two variables.

We consider g-Balazs-Szabados-Kantorovich operators

[j+1lq

n
b Z - JU=D T
i ?=(}(1 + q*apx) j=0 []]q " [lj%f !

where f:[0,0) - R is a nondecreasing and continuous function, x € R, = [0, ), a,, =
[n]g_l, b, = [n]g forq € (0,1], 0<pB < % and n € N. The operators R,, are lineer and

positive.
2. Main Results

The concept of the statistical convergence was introduced by Fast . We recall some definitions
about the statistical convergence. The density of a set K € N is defined by

6{k <n:k € K}.
The natural density, &, of a set K € N is defined by

limy o0 = [{k < 7k € K},
provided the limits exist.

A sequence x = xj, is called statistically convergent to a number L if

O{k: |x — x| = &}
for every € > 0 and it is denoted as st — limx;, = L.
The weighted space is defined by

B, (R)) = {f: f is real valued on R, such that |f (x)| < M;po(x) for all x € R,},
where po(x) = 1 + x?2 is weight function and Mg is a constant depend on the function f. We
also denote by

Cy,(R}) = {f € B, (R,): f is continuous on R, }
The weighted subspace of B, (R,). B, (R,).and C, (R.) are Banach spaces with the norm

1fl,, = sup L&

x€R+ pO (x) -
Theoreml. Let g = (q,,) be a sequence satisfying the following conditions

st — limg,, = 1 and st — lim(q,)" =¢,(0 < c < 1). 99
If f'is nondecreasing function in C, (R.), then it holds
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st = lim||[R,(f5q,.) — fllp, = 0.
The weighted modulus of smoothness for the functions f € B, (R.) is defined as
|f (x + h) = f(x)]
sup >
xeR,,0<hss 1+ (x+h)

‘Q‘Po (f , 6) =
for all § > 0.1t is clear that
Jim, Q,,(f;6) = 0.
Theorem2. Let g = (g,,) be a sequence satisfying the following conditions

st —limq,, = 1 and st — lim(q,)" =¢,(0 < c < 1).
For all nondecreasing functions fin B, (R,), we have

IR (f5 @ny %) = (O] < 2y Ry (k3 (0); G )R, (5 1 (D),

where xeR,,8 > 0,n € N,k () =1+ (x + [t —x|)? for teR, and w,(x) = (R,((t -
5 1/2
)% qn %)) .

Let Cg(R,) be the space of all real valued continuous bounded functions define on R,. The
norm on the space Cz(R,) is the supremum norm ||f]| = sup{|f(x)|:x € R,}. The usual
modulus of continuity is defined by

w(f;6Y2) = sup{lf(x + h) — f(X)|:x € Ry, 0 < |h| < §Y/2},
The second order modulus of continuity is defined by

w,(f;6%%) = sup{lf(x + 2h) — 2f (x + K)f (x)|: x € R,, 0 < || < §/2}.
Peetre’s K-funtional is defined by
Ka(F38) = it (If = gll + 8llg" I}
where

W?={geCz(Ry):g,9" €Cp(R)}
There exist a positive constant C > 0 such that

K,(f;6) < Ca)(f;é‘l/z),S > 0.
Theorem3. Let g = (q,,) be a sequence satisfying the following conditions
st —limq, = 1and st —lim(q,)" =¢,(0<c< 1)
and the function fin Cg(R,). Then for all n € N, there exist a positive constant C > 0 such
that

IR (f3 @, ) = FGO < Ca (£3V8,(0)) 0(f; et (),
Where 6,00 = Ry((t = 0% 4 ) + (Ra((t—0iqnx)). and @) = [Ry((t -
X); qn, ¥)|-

Let E any subset of R, and a € (0,1]. The Lipschitz function class Lip,, f(f ; E, @) denotes
the space of functions f'in Cz (R, ).satisfying the condition

IF(£) = F(x)| < Mf|t — x|, teE and x € R,, 23
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where M is a constant depend on f'and E denotes the closure of E in R,.
Theoremd. Let g = (g,,) be a sequence satisfying the following conditions

st —limq, = 1and st —lim(q,)" =¢,(0<c < 1)
and the function f'in Cz(R )N Lipy, f(f ; E,a) for a € (0,1] and E be any bounded subset of

R,. Then for each x € R, we have

IR (f; @y ) = F O] < Me{(a ()" + 2(d(x, D)),
where u,(x) = (Rn((t - %)% qn, x))l/Z,Mf is a constant depend on f and d(x,E) is the
distance between the point x and the set E, thatis d(x, E) = inf{|t — x|:t € E}.
3. An Hlustrative Example

In case of B = 0.5, for f(x) = x (xTH) (xTH), the convergence of the operators R,,(f; q, x) to

f (x) can be illustrated for increasing values of ¢ and n. It is clear that, for increasing values of

q and n, the degree of approximation become better (see in maple program as graphical.).

katy e —
i
0 Sy
Mx
a0
laty T ———
/ /
j
/ |
0 ety
x
o 24

S— W = S0,
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Complete Rewriting Systems of Some Types of Amalgamated Free Product of Groups

Esra KIRMIZI CETINALP', Eylem GUZEL KARPUZ ',

'Department of Mathematics, Karamanoglu Mehmetbey University, Turkey
E-mail(s): esrakirmizi@kmu.edu.tr, eylem.guzel@kmu.edu.tr

In this work, by considering rewriting system procedure, we obtained complete
rewriting systems of some types of amalgamated free product of groups. This complete
rewriting system is important in respect to find normal forms of elements of given algebraic
structure and thus have a solvable word problem. With the help of these complete rewriting
systems, we attained normal form of elements of each group structures.

Keywords: Rewriting System, Normal Form, Amalgamated Free Product.

1. Introduction and Preliminaries

Presentations arise in various areas of mathematics such as knot theory, topology and
geometry. Another motivation for studying presentations is the advent of softwares for
symbolic computations like GAP. Providing algorithms to compute presentations of given
monoids is a great help for the developers of these softwares. So, in this work, we consider

monoid presentations of amalgamated free products W,,W,and W,

n+l

and find complete

rewriting systems for these monoid presentations. Thus, by these complete rewriting systems
we characterize the structure of elements of these groups. Therefore, we obtain solvability of
the word problem. To catch up our aim let us give briefly some preliminaries that will be

needed in this paper.

Let X be a set and let X be the free monoid consisting of all words obtained by the
elements of X. A string rewriting system, or simply a rewriting system, on X is a subset

Rc X x X" and an element (u,v) € Ralso can be written as # — vis called a rule of R. In
general, for a given rewriting system R we write x — yfor x,ye X~ if x=uvw, y =uv,w
and (v,,v,) € R.Also we write x = y if x=y or x —>x, = x,..—>y for some finite chain

of reductions and —" is the reflexive, symmetric, and transitive closure of — . Furthermore an

element x e X is called irreducible with respect to R if there is no possible rewriting (or
reduction) x — y otherwise x is called reducible. The rewriting system R is called

e Noetherian if there is no infinite chain of rewritings x = x, = x,...— for any word
26

xeX
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e Confluent if whenever x — y,and x — y,thereisa ze X such that y, > zand y, > z.

e Complete if R is both Noetherian and confluent.

Critical pair of a rewriting system R is a pair of overlapping rules such that one of the forms
i) (nr5.8).(ryr.t) € Rwith r, #1 or i) (rryr.5).(r.1) €R

is satisfied. Also a critical pair is resolved in R if there is a word zsuch that s7, =" zand

rnt —" z in the first case or s & zand rtr, = z in the second. A Noetherian rewriting system
is complete if and only if every critical pair is resolved. We also note that if a rewriting
system is complete then it has a solvable word problem (Adian and Durnev,2000). We finally
note that the reader is referred to (Book and Otto,1993) and (Sims,1994) for a detailed survey
on (complete) rewriting systems and (Cetinalp et al.,2019) and (Karpuz, 2010) for compute of

complete rewriting system of some structures .

The free amalgamated products on which the aim of this paper will be presented is given
as follows:
Wy =< Wy, W, w3 wh =W =, = (wwy)” = (ww,)” = (ww,)* =1> @
W, =<w,, W, wy, w; w, =i =w; =w; =(wyw)” =(wyw,)” = (W)’
=(ww,)" =(ww,)” = (w,w,)’ =1> (2)

=<w,(0<i<n);w =1(0<i<n),(ww,) =1(0<i=j<n)> 3)

1

/4

n+l

2. Complete Rewriting System for Amalgamated Free Products W,, W, and W,

n+l

In this section, we obtain complete rewriting systems for monoid presentations of

amalgamated free products W,,W,and W ,, given in (1), (2) and (3). Firstly, let us consider
the monoid presentation of amalgamated free product W, given in (1) and use the ordering

1 1 1
W, >W,>W >Ww >w, >Ww, among generators.

Theorem 2.1: A complete rewriting system for the monoid presentation of amalgamated free

product W, consists of the following rules:

Dw, > 2)wi =1L 3wl =1, Hww, > ww,,  Sww, >w,w,, o7
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6)ww, = w,w, 7)w(;1 —>W,, 8)wl_l —> W, 9)wz_l —>W,.

Proof: This rewriting system is Noetherian since there is no infinite chain of rewritings of
overlapping words for the Ilexicographic order induced by the order on

wy' >w, >w, >w, >w, >w,. It remains to show that the confluent property holds. To do

that we have the following overlapping words and corresponding critical pairs, respectively.

1Nl w (W, W), 14w} w (W, wyww,), 1N5: ww, (wy, wywyw,),
202w (w,w), 206 W wy (wy, ww,wy), 3M3: w; (wy,w,),

402 wuf (wwyw,w,), 406 woww, (Www,, wow, ), SA3: wyns (mywwy, W),
6M3: ww; (waww,,w,), TAT: wy (wow,' w,'wy), 8M8: wiZ (ww ', wi'w),

9M9: wy® (wyws ', ws ' wy).
All these above critical pairs are resolved by reduction steps. We show one of them as
4N6:woww, (Ww,w,, Wyw,w,)

follows: WWyW, = WW, W, —> W,W, W,

WoW W, —){
WoW, W, —> W, WyW, —> W, W W,

After all these above processes, since rewriting system is Noetherian and confluent it is
complete. Hence the result.

Now let us consider the monoid presentation of amalgamated free product W, given in
(2) and use the ordering w;,' >w, >w,' >w, >w;' >w, >w,' >w, among generators.

Theorem 2.2: A complete rewriting system for the monoid presentation of amalgamated free

product W, consists of the following rules:

DHw, =1, 2 W - 3 W > 4y - S W, W W
6) Wyw, —> Wy, T)Wowy —> wiwy,  8)ww, =>w,w,  Nwow, > wow,  10)w,wy, —> wyw,,
IDwy > wy,  12)w —>w, 1B3yw,' >w,, 1w >w,.

Proof: This rewriting system is Noetherian since there is no infinite chain of rewritings of

overlapping words for the Ilexicographic order induced by the order on

w,' >wy >wi' >w >wu)' >w, >wi' >w,. It remains to show that the confluent property
28
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holds. To do that we have the following overlapping words and corresponding critical pairs,

respectively.

1A1: W) (W, W), 1N5: w w, (W, wyww, ), 1M6: W w, (Wy, wyw,w, ),
1T W) wy (wy, wyw,w,), 202w (w,w), 218 wiw, (wy, ww,w,),
2091w wy (wy, wwaw,), 3M3: w; (wy,w,), 3010w wy (wy, wywyw,),
4nd: w (wy,w,), 502 wowl (www,w,),  SN8: woww, (Www,, wow,w,),

. . 2 . 2
S5A9: wowwy (wpwowy, wow,wy), 6N 3 wow, (Wmaww,,w,),  TNd:r wowy (Wywyw;,w,),
. ) 2
6N 10: wow,w; (W,wywy, wow,w,), 8M2: ww, (w,ww,,w,), 9N 4w,y W Wy,
. 2 o oy 2 -1 -1 .2 -1 . -1
10M4: wow, (wywyws,w,), 1111 w™ (wyw, . wy, W), 12M12: w7 (ww, . w W),
. -2 -1 -1 . —2 —1 —1
1313w, (w,w, ,w, w,), 1414 wy™ (wyw; ,wy wy).
All these above critical pairs are resolved by reduction steps. Hence rewriting system is
. 2
TOad: wowy (wywywy, wy),
confluent. We show one of them as follows: WaW W = W2 W —> W
2 37073 370 0
wow; —>
Wo
Since rewriting system is Noetherian and confluent it is complete. Hence the result.

Finally, let us consider the monoid presentation of amalgamated free product W

n+l

given in (3) and use the ordering w;,' >w, >w' >...>w ' >w among generators.

Theorem 2.3: A complete rewriting system for the monoid presentation of amalgamated free

products W, consists of the following rules:
Dw; >1(0<i<n), 2ww, >ww, (i<j,0<i,j<n), 3w —>w (0<i<n),

Proof: This rewriting system is Noetherian since there is no infinite chain of rewritings of

overlapping words for the Ilexicographic order induced by the order on
wy' >w, >w ' >..>w'>w . It remains to show that the confluent property holds. To do
that we have the following overlapping words and corresponding critical pairs, respectively.

1Nl w' (w,w) (0<i<n), 1N2: ww (w.www) (i<j,0<i,j<n),

201 ww, (www,w) (i<j,0<ij<n), 2M2: www, (WwWw  www h(i<j<k)
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3m3: w? (ww L w'w) (0<i<n).
All these above critical pairs are resolved by reduction steps. We show one of them as
202 www, (www,www,) (i< j<k)

follows: W WW, =W WW, = W W W,

ww W, —>
WWW, = WWW, —>WW W,

Thus rewriting system is confluent. Since rewriting system is Noetherian and confluent it is

complete. Hence the result.

By considering Theorems 2.1, 2.2 and 2.3, we can give following result.

Corollary 2.4: Let C(u),C(u) and C(u") be normal forms of words u eW,, u eW,

andu’ eW

" 1» respectively. Then, C(u) = wiwiwy, C(u)=wiw;w'w, and
Cu")y=wiwii. . wewiwy, where i, €{0,1},0< p<n.
By considering Corollary 2.4, we can give another result.

Theorem 2.5: The word problem for amalgamated free products W,,W, and W, ,, is solvable.

n+l
We note that if we apply some operations on relators given the presentations in (1), (2) and

(3), we the obtain some known important group types, namely elliptic Weyl groups of types

A™MY", A"V and n-extended affine Weyl group of type 4,, respectively.
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Abstract

In this paper various types of fixed point theorems such as Banach, Krasnoselskii, Leray-
Schauder and Krasnoselskii-Schaefer will be used in order to study the existence of the
weighted pseudo almost periodic solutions of a class of Volterra equation

x(t)=f (t,x(t),x(t — T(t))) + f k (t,5)g(s,x(s))ds.
t

Keywords: Weighted pseudo almost periodic, fixed point theorems, Volterra- equation.

1. Introduction

The existence of periodic solutions is one of the most interesting and important topics in the
qualitative theory of differential equations. Many authors have made important contributions
to this theory. In [5], the authors studied the existence of periodic solution to the following

equation

x(t) = f(t,x(®),x(t—h)) + fwc(t, $)g(s,x(s),x(s — h))ds
t

Where f,g:R X R> > R and c: R X R > Rare continuous functions, and the delay h is a

positive constant.

As we all know, if we consider the effects of the environmental factors, almost periodicity is
sometimes more realistic and more general than periodicity. The almost periodic functions are
closely connected with differential equations, dynamical systems etc. They are the natural
generalization of continuous periodic functions. Besides, several newconcepts were

introduced as generalizations of almost periodicity, such as pseudo almost pegiodicity (see
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[4]), weighted pseudo almost periodicity (see [2, 3]). In particular, the properties of weighted
pseudo almost periodic functions are more complicated and changeable than the almost
periodic functions and the pseudo almost periodic functions because of the influence of the
weight.Many problems in applied science are treated using differential and integral equations.
Motivated by the discussion above, in this paper, we shall study the existence, uniqueness of

the weighted pseudo almost periodic solutions to the following integral equation

r(t) = _f|f_.r‘w.r.‘——.m;\»/ K(t.s)gls. x(s))ds

Where f:R, XR* >R, g:R, X R - Rare weighted pseudo almost periodic functions
and 7: Ry = R,is weighted pseudo almost periodic function. More precisely by Banach,
Krasnoselskii, Krasnoselskii-Schaefer and Leray-Schauder we study the existence of
weighted pseudo almost periodic solutions to the above integral equation.It should be

mentioned that the main results of this paper include Theorems 2,4,7.
2.Preliminaries
Throughout this paper, we make the following assumptions

(H1) There exist positive constant 0 < L},szr, L3, Lz, LZ, < 1 such that for all x1,%5,Y1,Y2 € R

andt, s € R,
|g(t, x)—g(t, y)| < Lglt-s|+Lg|x; — ¥y,
|f(t;x1 ;xZ) _f(trybyZ)l < L}‘lt - Sl + L%lxl _3’1| + |x2 _y2|

(H2) There exist a > 1 such that K(t,s) < e*9) and for every e > 0 very small and
y €ER

f I[K(t+vy,s+vy)—K(t,s)|ds < e.
t

2,73 Ly
(H3)Ls+Ly <1 - -

32
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(H4) 7;(.) is nonnegative continuously diffrentiable functions, such that inf(1-7;;(t))>

0,7~ =sup(1(t) ) € BC(R,R, ) and p:R - (0,0) , p € Uy, is continuous and assume

E)S(:)S )< oo, sup(t ;(tT(JTrj;f ))< oo for each SER and sup(p(t))< oo.

4. Existence of solutions
Let S = {x € PAP(R,R,p), ||x|lcc < M}.
4.1 .Banach'sFixed point

Theorem.4.1.Suppose that assumptions (H1)-(H5) hold. Then the equation

(4.1) z(t) = fl(t.xz(t).z(t .-:f;‘—/ Kit.s)gls . x(s))ds

has a unique weighted pseudo almost periodic solution x*(.) in S.
4.2. Krasnoselskii'sFixed point theorem

Theorem.4.2. LetD be a closed convex nonempty subset of a Banach space (S,||. ||). Suppose that A
and B map into S such that

e Ax+ By € D(Vx,y € D).
e Ais compact and continuous.
e Bisa contraction mapping.

Then there exists y € D such that Ay + By = y.

Theorem.4.3. Assume that (H1)-(H4) holds. Then there exist a weighted pseudo almost periodic
solution of equation (4.1) in S.
4.3.Leray-Schauder Alternative Theorem
Theorem.4.4.Let D be a closed convex of a Banach space X such that 0 € D. Let F: D - D
be a completely continuous map. Then the set {x € D:x = aF(x),0 < a < 1} is unbounded
or the map F has a fixed point in D.
Theorem.4.5. Suppose that (H1)-(H4) holds and if the operator T: PAP(R, R, 0) —
PAP(R, R, 0)is completely continuous. Then the equation (4.1) has a fixed weighted pseudo
almost periodic solution.
4.4.Krasnoselskii-Schaefer Fixed point Theorem

Theorem.4.6. Let (S,||. ||) be a Banach space. Suppose B:S = Sis a contractjg)n map, and

A :§ = § is continuous and maps bounded sets into compact sets. Then either
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e x=0B (%) + 8Ax has a solutionin S for § = 1, or

e The set of all such solution0 < § < 1, is unbounded.
Theorem.4.7.Assume that (H1)-(H4) holds. Then (4.1) has a weighted pseudo almost
periodic solution.

6. Application

Let
x'(t) = —ax(t) — q(t, x(£)) + ax'(t) + r(b).
Then

x(t) = ax(t) + p(t) + [ e"4E"I[q(s,x(s))-aax(s)]ds

Here f(t,x(t),x(t-7(t))) = ax(t) + p(t), g(t,x(t))=q(s,x(s))-aax(s). The function q and p are
weighted pseudo almost periodic and satisfy the following conditions: there exist

0<L,L', L?<1 such that |p(t) — p(s)| < L|t — s], |q(s,x(s))-q(t,x(t))|< L|t-s|+L?[x(s)-x(t)| and

aa+L?

a>1, in addition O<a < 1, such that L? + aa < 1 and <1

Clearly all the conditions of Theorem (4.1) are satisfied, then the equation (5.1) has a unique

weighted pseudo almost periodic solution.
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Abstract

The sets of fractional difference sequences have been studied in the literature
recently. In this work, some identities or estimates for the operator norms and the
measures of noncompactness of some operators on difference sets of sequences of
fractional orders are established. Some classes of compact operators on those spaces are
characterized. This study gives general and comprehensive results.

Keywords: measure of noncompactness, fractional difference sequence spaces, compact operators

1. Introduction

Fractional difference sets of sequences have been shown up in literature like fractional derivatives and
fractional integrals. The gamma function which can be written by the improper integral is used to
construct the fractional difference operators. One of the main goal of this study is to consider
fractional operators and fractional sets of sequences co(A@), c(A®) and €., (A®) in addition to

determine the operator norms, find the § duals and characterize corresponding matrix transformations.

The gamma function of a real number x (except zero and the negative integers) is
defined by an improper integral:

r'(x) = fooo e tt*1d¢.

It is known that for any natural number n, I'(n + 1) = n! and I'(n + 1) = nI'(n) holds for
any real number n € {0, —1,—2,...}. The fractional difference operator for a fraction & have
been defined in [23] as

a 0 - (a+1)
AP (p) =X 20 (1 o P (1.1)

It is assumed that the series defined in (1.1) is convergent for p € w.

The inverse of fractional difference matrix

—1\nk r(@+1)
= (n=k)!T (@—n+k+1) (0<k<n)

0 (k > n)

(@ _
AnC;c -

is given by 36
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n+k+1)

0 (k > n).

_1\n—k r(-a+1)
Agl_ka)= ( 1) (=IO (—a— (OSkSTl)

For some values of &, we have
1 1 5
AY2py = py =2 Pr—1 = 5 P2 —1_6Pk T
_ 1 3 5 35
A™Y2py = py + 7 Pr-1F 5Pk—2 t o P-3 T 15 Pk-at- -
A*3py = Pk—‘Pk 1—‘Pk 2——Pk 3~ - a2 Pk-4—
81 243

Remark 1.1 The following results hold:

a) A@AB) = p@+B),
b) A@AEDp) = p,.

Proof. Since the proofs of Part (a) can similarly be obtained, we only prove Part (b).

o — 77 o a(oz+1) a(a+1)(a+2) a(a+1)(a+2)(a+3)
A®@QEDpy =A@ {Pk * Pr-1@ + P2 t P37 — t Pr-a

31
a(a+1)}

4!
a(a—1)
2!

a(a-1)(a=-2) . a?(a-1) a?(a+1)
pk‘3{_ 3! TR TR

+a? + +

a(a+1)(a+2)
b

= Pkt Pr-1{—a+a}+ py- 2{

a(a-1)(a=2)(a-3) a?(a-1)(a=2) n a?(a+1)(a-1) az(a+1)(a+2)} 4o

pk‘4{ 4! - 31 2121 - 31
= Pk

We refer to [23] for more properties of the fractional difference operators.

2. Sets of Sequences

Consider now the fractional difference sequence spaces c,(A®) = {p € w:limA@ (p,) =0 },
c(A®) = {p € w:1limA@ (py)exists} and £, (A®) = {p € w:supy|A@ (p;)| < o}

Those spaces can be considered as the matrix domains of the triangle A@® in the classical sequence
spaces ¢y, ¢, . The set Ay is a BK space with ||.||r = |IT(.)|| whenever (4,]|.]]) is a BK space. By
this fact, defined fractional difference sequence spaces are complete, linear BK—spaces with the

_ w i L@+ '

3. Operator Norms

37
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Let us now establish identities and inequalities of operator norms for fractional sequence
spaces. We refer to [1-7, 14-20] for the needed notion, notations and definitions for this study.

Theorem 3.1 Let A = co(A@) or A = £, (4®).

eletu =cy,C Y. If A € (Ar, 1) then, putting

_ Al — o ik r(-a+1)
Al ag,0) = St‘lp”Anlll = S%p Yk |Zj=k (=1 G-IIT(—a—j+k+1) i’

we have [|Ls |l = [|All (3,00-

e If A € (Ag,€1). Then we have

_ 0 i—k r(-a+1)
”A”(AT,I) - f]lég (Zk |ZnEN Zj=k (_1)1 (—k)\T(—d—j+k+1) anjl) < ”LA” < 4||A||(AT:1)

Nfinite

Theorem 3.2 The operator norm of the set c(A@®) is given.

o Let A € (c(A@), 1), where p is any of the spaces cy, ¢ or £,,. Then we have

— _ — © _q\j-k r-a+1) ]
1Eall = 141 o a@) ) = 500 (i [E52e (D™ Gy @] + 11l

where y,, = lim,, Y74, W,ka")forn =0,1,..

s Let A € (c(A@), 4,), then, putting,

. _ w  _av\j—k [(—d@+1) '

Nfinite

we have [|All @) 1) < ILall < 4141l a2y

4. Conclusions

We establish necessary and sufficient conditions for a matrix operator to be a compact operator
from fractional difference sequence spaces into u, where u € {cy, ¢, £, €1} This is achieved applying
the results about Hausdorff measure of noncompactness.

Theorem 4.1 The identities or estimates for L, when A € (A(A@®), ), where u € {4, co,c,£;} and
A € {£4,Co, c} can be read from the following table:

The following Theorem gives necessary and sufficient conditions for an operator from our fractional
sets to classical sets of sequences to be compact.

Theorem 4.2 The identities or estimates for L, when A € (A(A®), u), where i € {£o,, co, ¢, €1} and
A € {£, co, c} can be read from the following table: 38
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Abstract

In this study, we introduce a bivariate Cholodowsky variant of Bernstein Schurer operators
based on (p, q) —integers. We examine certain approximation properties of defined bivariate
operator. We give some of our results without proofs.

Keywords: (p, q) —integers, Voronovskaja type theorem, rate of convergence

1. Introduction

Approximation theory is fast becoming a key instrument not only in classical approximation
theory but also in other fields of mathematics such as differential equations, orthogonal
polynomials and geometric design. Since Korovkin’s famous theorem was first published in
1950, the issue of approximation by linear positive operators has become increasingly
important area as part of approximation theory.

Let us recall some definitions and notations regarding the concept of (p, q) —calculus. The
(p, q) —integer of the number n is defined by

[n]pq: = pp:?l , n=123.., 0<q<p<Ll

Further, the (p,q) —binomial expansions are given as

-k k
(ax+by)fq = Zieg pl2 JgleJan-kpkun-kyk

and

n-1

X =¥)pq = X—y)(px—qy)(p’x — ¢%y) - (p""'x — " y).
Further information related to (p, q) calculus can be found in [12, 13].

2. Construction of the Operators

Recently, Ansari and Karaisa [4] have defined and studied (p, q) analogue of Chlodowsky
operators

) = ——_yn_[1 kae-1y/2 (X< (1 _ )" (—[k]nq_ )
Cnlplq(f' X) pn(n—l)/z Zk=0 I:kjlp,qp (bn) (1 bn)p‘q f [n]p_qpk_n bIQ ) (21)
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where (1 - bl)n_k_l = [[ock-t (pS -q° %)

" p,q

Cholodowsky variant of Bernstein Schurer operators based on (p, q) —integers defined as

Cn,s(f; b, q; X) =
n4s n+s k(k—=1) (n+s—1)(n+s) X k X n+s—k—-1 (pn k[ pq )
k=0 [ ]p,qp : : (bn) (1 bn)p’q A, P (2.2)

The bivariate form of Bernstein Schurer operators and modified Bernstein Schurer operators
studied by Muraru and Acu, and Cai. Let us assume that n+d; =, m+d, =m for
d,d, ENand 0 < q4,q, < py,p21. We now define two dimensional Cholodowsky variant

of Bernstein Schurer operators based on (p, q) —integers as follows:
Com? 2 (Ex,y) =

(k4] (k]
Zhimo im0 Picn (ORI | =Bt by, = P by, 23)
[n]py,q,P [mlp,,q,P;

for all nmeN , feC(yp,) with Iy p = {(Xy):0xb, ,0yby,} and C(lyp, )=

{f:1, b, — R iscontinuous}.

Here (b,) and (b,,) are increasing unbounded sequences of positive real numbers such that

b
n=, 2.4
n—-co [n]Pth ( )
lim —2 =0 2.5)

m-oo [M]p;,q,

and <I>l((li,1];q1)(x) and CIJ(p2 qz)(y) are

o) k1(k1-1) A(i-1) n ki1 s s x
141 1= 1 __ 1 2
(bkl,n (X) [ ]p q n 51—0 (p]_ q1 bn)'
141
(p2,92) kZ(kz_l) Ll m —ky—1 s, ¥
2,42 27 2
o P02 (y) = ] Mo6 ™ (b3 — a7 )

P2, C12
3. Main Results

Theorem 3.1 Let 0 <q, <p,l and 0 < g, < pml be sequences, then the sequence

Cgﬂ;z;ql'ﬁ(f; X,y) convergences uniformly to f(x,y) on [0,a] X [0,b] =1, for each f€
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C(I,p), where a,b be reel numbers such that ab,,, bb,, and C(I,;) be the space of all real

valued continuous function on [, with the norm || f ll¢(, )= sup |f(x I
xy)e

Theorem 3.2 Let f € C(I,,,). For all x € I,;,, we have

Cffr;iz:%,z)(f; x,y) — f(x,y)| 4w (f; 65 (%), 65 (V)),

where
82( ) bn[ ]D1 d1 + X {(h D1 Q1[n 1]D1 d1 —2[A ]D1 q1[n]p1.q1+[n]f)1,q1}; (31)
[n]D1 d1 [n]P1 d1
812T1(Y) — Yp;rﬁ-'-sbr;l[m]pz.% + YZ{QZ [m]pz.QZ [m_l]pz.QZ_zz[r_n]Pz'QZ [m]pz-QZ"'[m]lzDzqu}. (32)
[m]pz,qz [m]pZ:QZ

Theorem 3.3 Let f € C(I,,), then the following inequalities satisfy
Cee ) — £, )| 2[ s (85 (9) + w2 (6 85 ° )],
where 65(x) and 85 (y) are defined in 3.1 and 3.2.
Theorem 3.4 Let f € Lipy (B, B2). Then, for all (x,y) € I, we have
CER 2 (6%, y) — £, y) IMSE* ()85 (),
where 65(x) and 85 (y) are defined in 3.1 and 3.2, respectively.

Theorem 3.5 Let f € C*(I,p) and 0 < qp, qm < Pn, Pm1. Then, we have

ICLE12) (£ x,y) = £, )1 1 fy gy S+l Fy gy S

We now study the convergence of the sequence of defined linear positive operator to a
functions of two variables which defined on weighted space and compute rate of convergence
via weighted modulus continuity.

Theorem 3.6 Let Cr(frhz;ql‘ﬂ be sequence of linear positive operators defined (2.3), then for

each f € Cg and for all (x;y) € Iy, p,,, we have
lim Il T (6%,y) = (o y) llp= 0.
Theorem 3.7 Let f € Cg and C, is a constant independent of n, m, then we have
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|ePmam (gxy)~fey)|

sup

Cow, (f;64,6=),
(x,y)ERZ p3(xy) 2 p( 7 Om)

where 6% =0 (M) and 512T1 =0 (pmﬂbnz[rﬁ]pm,qm).
[n]pn.Qn [m]pm:Qm
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Ozet

Bu ¢alismanin amaci ilkdgretim matematik 6gretmeni adaylarinin verilen bir problem
karsisinda Ogrencilerde olusabilecek kavram yanilgilarini tahmin edebilme ve etkin
Ogretim yontemlerini kullanabilme bilgilerinin incelenmesidir. Arastirma verilerini, 44
matematik 6gretmen adayinin olasi 6grenci hatalarini tahmin etme ve bu hatalara
yonelik ¢6ziim Onerilerini ortaya koyma amaci giiden kar-zarar konusuyla ilgili bir
probleme verdikleri yanitlar olugturmaktadir. Verilerin betimsel analizi sonucunda
O0gretmen adaylarinin ¢ogu verilen problem karsisinda 6grencilerin diisebilecekleri
kavram yanilgilarin1 tahmin edebilmesine karsin ¢ok azi bu kavram yanilgilarini
Onlemeye yonelik etkin 6gretim yontemlerini kullanabilmistir. Bu durum 6gretmen
adaylarinin pedagojik alan bilgilerinin yeterince gelismemesi ve onlardaki deneyim
eksikligi ile iliskilendirilebilir.

Keywords: Kavram yanilgisi, Pedagoji, Alan bilgisi, Ogretmen aday1

1. Giris

Kavram yanilgisi yanlis bir kavramin dogru imis gibi goriilmesi olup dgrenciler bu yanilgilara
sik sik diisebilmektedir. Ogrencinin kavram hatasina diismesi 6gretimde sik rastlanan bir
durum olmakla birlikte 6grencinin hatasinin farkina varmamasi ve dgretmenin bunu fark
etmemesi tercih edilmeyen bir durum olarak karsimiza ¢ikmaktadir. Ogretmenler grencilerin
hataya diisebilecekleri durumlari tahmin etme ve gerekli onlemleri alma ile matematik
ogretiminde anlamli  6grenmeyi gerceklestirebilirler. Ozellikle problem ¢dziimlerinde
Ogrencilerin yanlig ¢oziim yapmalarina imkén vermeden problemi anlamlastirma ve onemli
noktalar1 vurgulama yoluna gidebilirler. Bu ise ¢ogu kez 6gretmenin pedagojik alan bilgisi ile

iligkilendirilebilir.

Ogrenci hatalariin nereden kaynaklandigini anlamak ve nasil &nlenecegini planlamak,
Ogrencinin cevabini analiz etmek ve bu cevabin dogru olup olmadigina karar vermekle baglar

(Boz, 2004). Ciinkii 8grenciler ¢cogu kez yanlis bir kavrami dogru gibi zannedlp yanilgiya
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diisebilirler. Ozellikle problem ¢6zme esnasinda bazi kavramlari yanlis iliskilendirerek
kavramsal hatalar yapma yoluna gidebilirler. Bu yanlis iliskilendirme ¢ogu kez 6grencinin
problemi ezbere c¢ozmesinden veya kavramsal anlamayi yeterince gerceklestirememis
olmasindan kaynaklanabilir (Yenilmez ve Yasa, 2008). Kavramsal anlamanin daha iyi
gergeklestirilmesi akil yiirlitme, elestirel diistinme ve iliskilendirme gibi zihinsel becerilerin
ogrencilere kazandirilmasi ile yakindan iliskilidir (Karaaga¢ ve Kose, 2008). Dolayist ile
O0gretmen Ogrencilerin kavramsal hatalarin1 6nlemek ve ogrencilerde daha anlamli bir
O0grenme saglamak i¢in bu hatalarin farkina varabilmeli ve etkin 6gretim yontemlerini
kullanabilmelidir. Bu ¢alismanin amaci ilkdgretim matematik 6gretmeni adaylarinin verilen
bir problem karsisinda 6grencilerde olusabilecek kavram yanilgilarini tahmin edebilme ve

etkin 6gretim metotlarin1 kullanabilme bilgilerinin incelenmesidir.

2. Yontem

Bu calismada, 6gretmen adaylarinin 6grencilerde olusabilecek kavram yanilgilarini tahmin
edebilme ve etkin 6gretim yontemlerini kullanabilme bilgilerinin incelenmesi amaci ile nitel
arastirma yontemlerinden durum c¢alismasit deseni kullanilmistir. Arastirmanin ¢alisma
grubunu 44 ilkogretim matematik 6gretmeni adayr olusturmaktadir. Verilerin toplanmasi,
O0gretmen adaylarinin olasi 6grenci hatalarmmi tahmin etme ve bu hatalara yonelik ¢6ziim
Onerilerini ortaya koyma amaci giiden kar-zarar konusuyla ilgili bir problemin 6gretmen
adaylarina yoneltilmesi ile gergeklestirilmistir. Ogretmen adaylarinin bu probleme verdikleri
cevaplar nitel analiz yontemlerinden betimsel analiz teknigiyle analiz edilmistir. Once
arastirmacilar tarafindan bireysel analizler yapilmis, sonra bir araya gelinerek yapilan

analizler tartisilmis, farkliliklar tizerinde durulmus ve uzlasilarak analize son sekli verilmistir.

3. Bulgular ve Yorum

Ogretmen adaylarinin verilen problem karsisinda 6grencilerin diisebilecekleri hatalara kars
¢coziim Onerilerine yer vermeden 6nce kag¢ tane 6gretmenin problemi dogru anladig1 ve dogru
¢6ziim yolu iirettigi belirlenmistir. Ogretmen adaylarinin bir kismi sorulan soruyu yanlis veya
yetersiz cevaplandiriken, bir kismi dogru cevaplandirmistir. Cevaplara iligkin istatistikler
Tablo 1°deki gibidir:
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Tablo 1. Ogretmen adaylarinin soruya iliskin vermis olduklari
cevaplara yonelik frekanslar

Ogretmen adaylarimin cevaplar: f
Yanlig ¢oziim 9
Yetersiz ¢oziim 13
Dogru ¢6ziim 22

Tablo 1°de goriildiigii gibi 44 6gretmen adayinin yarisi soruya dogru cevap verirken digerleri
yanlis ya da yetersiz ¢oziimlerde bulunmustur. Yetersiz ¢dziimde bulunan 6gretmen adaylari
genellikle dogru ¢oziim yolunu takip etmelerine ragmen islem hatasi yaptiklari i¢in yanlis
sonuca ulagsmiglardir. Yanlis ¢6ztim yapanlar ise ytizdelik veya indirim hesaplarken ¢oziim
yolunda problem yasadiklar1 i¢in dogru ¢6ziime ulasamamislardir. Asagidaki tabloda
O0gretmen adaylarmin olabilecek Ogrenci hatalarina yonelik tahminlerine ve bunlarin

giderilmesine yonelik yaptiklari ¢oziim Onerilerinin sayisal istatistiklerine yer verilmistir.

Tablo 2. Ogretmen adaylarinin hatay1 tahmin edebilme ve ¢6ziim oOnerilerinde
bulunabilmelerine yonelik frekanslar

Kodlar

Hatay1 yanlig tespit etme ve yanlis ¢oziim Onerisi getirme

Hatay1 kismen dogru tespit etme ve yetersiz ¢6ziim Onerisi getirme
Hatay1 kismen dogru tespit etme ve dogru ¢oziim Onerisi getirme
Hatay1 dogru tespit etme ve kismen dogru ¢6ziim Onerisi getirme
Hatay1 dogru tespit etme ve dogru ¢oziim Onerisi getirme

— N — N

1
3

Tablo 2’de tiim Ogretmen adaylarmin ¢6ziim Onerisinde bulunduklari ancak bunlardan
bazilarmin onerilerinin yetersiz ya da yanhs oldugu goriilmiistiir. Ogretmen adaylarinin
coziimlerine iliskin istatistikler incelendiginde 7 6gretmen adayinin hatay1 yanlis tespit ettigi
ve dolayisiyla yanlis ¢oziim Onerisi getirdigi, 2 6gretmen adayinin ise hatayr kismen dogru
tespit ettigi ancak yetersiz ¢6ziim Onerisi getirdigi goriilmiistiir. Baz1 6gretmen adaylarinin
dogru olan ¢oztimleri yanlis algilamasi ve 6grencinin hata yaptig1 algisina kapilmasi onlarin
hatay1 yanlis tespit etmelerinin bir nedeni olabilir. Hatayr kismen dogru tespit edenlerin
yetersiz ¢oziim Onerilerinde bulunmasi ise beklendik bir durum olarak karsimiza ¢ikmaktadir.
Adaylarinin yetersiz ya da yanlis ¢6ziim 6nerisi getirmelerinin sebebinin onlarin soruyu yeteri

kadar incelememesi veya anlamlastiramamasindan kaynaklandig: diistintilmektedir.

Tablo incelendiginde 21 adayin hatayir dogru tespit etmelerine ragmen kismen dogru ¢oziim

Onerisi getirdikleri goriilmektedir. Bu 6gretmen adaylarinin soruyu dogru ¢6zmelerine ragmen
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yetersiz Oneri getirmeleri aslinda onlarin net ifadeler kullanmamisg ve yeterli 6rneklendirmeler
yapmamis olmalarindan kaynaklanmigtir. Bu durum 6gretmenlerin diigiincelerini ifade
ederken ayrintiya girmek istemediklerinden kaynaklanabilir. Bagka bir deyisle ¢ogu adayin
baz1 seylerin bilincinde olduklar1 ancak diisiincelerini kisa ve kestirme yollardan ifade etmeyi

tercih ettikleri sGylenebilir.

Tabloya gore adaylarin 14’tiniin dogru ¢6ziim 6nerisi getirdikleri ancak bunlarin 1’inin hatay1
kismen dogru tespit ettigi 13’liniin ise hatay1r dogru bir sekilde tespit ettigi goriilmiistiir.
Yeterli orneklendirme yapmadan bir agiklamada bulunulmasi hatanin kismen dogru tespit
edildiginin bir gostergesidir. Hatayr dogru bir sekilde tahmin edip yeterli bir sekilde ¢oztim
Onerisi getirenler ise genellikle ogrencilerin hatasim1 fark ettirecek sekilde yeterli
orneklendirmelere ve aciklamalara bagvurmuslardir. Bu durum Ogretmen adaylarinin
pedagojik bilgilerinin yeterli diizeyde olmasinin onlarin ifade giiglerini iyi temsil etmesi ile

iligkilendirilebilir.
4. Sonuc ve Oneriler

Arastirma sonuglarina gore hatayr dogru belirleyen ve yeterli ¢6zlim Onerisinde bulunan
adaylarin sayisi tiim Ogretmen adaylarina nazaran yeterli diizeye ulasmamistir. Ogretmen
adaylarinin biiyiik cogunlugu hatay1 dogru tespit edebilmelerine ragmen kismen dogru ¢6ziim
Onerisi getirmiglerdir. Dolayisiyla 6gretmen adaylarinin ¢ogu verilen problem karsisinda
Ogrencilerin diisebilecekleri kavram yanilgilarini tahmin edebilmesine karsin ¢ok azi bu

kavram yanilgilarin1 6nlemeye yonelik etkin 6gretim yontemlerini kullanabilmislerdir.

Adaylarin yetersiz ¢oziim Onerilerinde bulunmalar1 ve yeterli 6rneklendirme yapamamalari,
onlarin soruyu anlamalarina ragmen {stliinkorii ¢oztimler trettiklerini gostermektedir. Bu
durum 6gretmen adaylarinin pedagojik alan bilgilerinin yeterince gelismemesi ve onlardaki
deneyim eksikligi ile iligkilendirilebilir. Dahasi bu 6gretmen adaylarinin 6grenciye hatasin
buldurmak yerine daha ¢ok anlatma yolunu tercih ettikleri diisiniilmektedir. Bu ise 6gretimde
cok fazla tercih edilmemektedir. Ogretmen adaylarina ogrencilerde olusabilecek kavram
yanilgilarin1 arastirma ve tahmin etmenin yani sira, bu hatalar1 giderebilecekleri 6grenme

ortamlarinin saglanmasi ile bu eksikligin giderilebilecegi diigtiniilmektedir.
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Abstract

Soft Set Theory was introduced by Molodtsov to deal with uncertainties. Also, there
are increasingly many studies about the soft set theory. Scott topology is well known in
theoretical computer science and topological lattice theory. Soft Scott topology was
introduced by using soft set relation. To define soft Scott topology, directed and directed
complete soft sets were introduced by Tanay and Yaylali. We know that, way-below soft set
relation has a very important role in the soft Scott topology. Since Auxiliary soft set relation is
a general form for the way-below soft set relation, we study relation between auxiliary soft set
relation and soft Scott topology. We obtain some results.

Keywords: Soft Set Theory: Soft Set Relation: Way-Below Soft Set Relationisk: Auxiliary Soft Set Relation:
Soft Scoot Topology

1 Preliminaries and basic definitions

Definition 1. [4] Let U be an initial universe and E be a set of parameters. Let P(U) be the set
of all subsets of U and A be a subset of E. A pair (F,A) is called a soft set over U where
F: A — P(U) is a set-valued function.

In some studies a soft set (F,A) was shown as (F,4) = {(a,F(a)) | a € A}, but in some
studies F(a) was written instead of (a, F(a)) just as a notation for make it shorter. In this paper,
we will use F(a) as a notation instead of (a, F(a)).

Definition 2. [3] A soft set (F,A) over U is said to be a Null soft set denoted by @, if for every
c€AFi)=0

Definition 3. [3] For two soft sets (F,A) and (G,B) over a common universe U, we say that is
a soft subset of (G, B) and is denoted by (F,A) € (G, B) if

(1) A c Band,
(11)) Ve € A, F(¢) and G(¢) are identical approximations, which means F(g) = G(g)

(G,B) is said to be a soft super set of (F,A), if (F,A) is a soft subset of (G,B).

Definition 4. [3] Union of two soft sets (F,A) and (G,B) over the common universe U is the
soft set (H,C), where C = A U B, and for each e € C,

F(e),ife€ A—B
H(e) = G(e),ife€e B—A

F(e) U G(e),ife€e ANB
52
We write (F,A) U (G,B) = (H,C).
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Definition 5. [3] Intersection of two soft sets (F,A) and (G,B) over a common universe U is
the soft set (H,C), where C=AMNB and for each e € C,H(e) = F(e) N G(e). We write
(F,A) A (G,B) = (H,0).

Definition 6. [1] Let (F,A) and (G,B) be two soft sets over U, then the cartesian product of (F,
A) and (G,B) is defined as, (F,A) X (G,B) = (H,A X B) where H : AX B - P(U x U) and
H(a,b) = F (a) x G(b), where (a, b)€ AxBitrii.e. H(a,b) = {(hj, h)) | h; € F(a), h; € G(b)}

Definition 7. [1] Let (F, A) and (G, B) be two soft sets over U, then a soft set relation R from
(F, A) to (G, B) is a soft subset of (F, A) x (G, B).skIn other words, a soft set relation R from
(F,A) to (G,B) is of the form R = (H;,S) where S € A X B and H,(a,b) = H(a, b) for all
(a,b) € S where (H,A X B) = (F,A) x (G,B).

Definition 8. [1] Let R be a soft set relation on (F, A), thenists

1. R is reflexive if H;(a,a) € R,Va € A. it
2. R is symmetric if H; (a,b) € R = H,(b,a) € R.
3. R is transitive if H;(a,b) € R,H;(b,c) € R = H;(a,c) € R forevery a,b,c €

A.

Definition 9. [2] A soft set relation R on (F,A) is antisymmetric if F(a) X F(b) € R and
F(b) X F(a) € R forevery F(a),F(b) € (F,A) imply F(a) = F(b).

Definition 10. [2] A soft set relation < on (F,A) which is reflexive, antisymmetric and
transitive is called a partial ordering of (F,A).st»The triple (F,A,<) is called a partially ordered
soft set.

Definition 11. [6] Consider a soft set (F,A) equipped with reflexsive, transitive soft set
relation <. This soft set relation is called preorder and (F,A) is called a preordered soft set.

Definition 12. [2] Let (G, B, <) be a partially ordered soft set. Then, for b € B, G(b) is the
least element of (G,B) in the ordering "<’ if G(b) < G(x) for all x € B and for b € B,G(b) is

the greatest element of (G,B) in the ordering *<” if G (x) < G(b), Vx € B. i

[ L}

Definition 13. [6] Let < be an ordering of (F,A), let (G,B) € (F,A). For a € A, F(a) is an
upper bound of (G,B) in the ordered soft set (F,A,<) if G(x) < F(a) istrifor all x € B. For a € A,
F(a) is called supremum of (G,B) in (F,A.<) (or the least upper bound) if it is the itrleast

element of the set of all upper bounds of (G,B) in (F,A,<).iske

(Ll

Definition 14. [6] Let (F,A) be a soft set. (F,A) is called a finite soft set, if it is a soft set with

r
'

a isipfinite parameter set.isgp!

[l

Definition 15. [6] Let (F,A) be a preordered soft set. A soft subset (G,B) of (F,A) is directed
steiprovided it is nonnull and every finite soft subset of (G,B) has an upperbound in (G,B).

Definition 16. Let (F,A) be a soft set with a preorder soft set relation <. For (G, ]%% C (F,A)
1) [6]1(G.B)=(H,C) where C ={a € A: F(a) < G(b) for some b € B} and H =FI.
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i))[6]1(G.B)=(K.D)where D = {a € A : G(b) < F(a) for some b € B} and K=F|py.
i) [6] (G,B) is a lower soft set iff (G,B) =|(G,B).

iv)  [6] (G,B) is an upper soft set iff (G,B) =1(G,B).ss!

v)[6] (G,B) is an soft ideal iff it is a directed lower soft set.

vi) [7] A soft ideal is principal iff it has a maximum element.

Definition 17. [7] A soft inf-semilattice is a partially ordered soft set (F, A, <) in which F (a),
F (b) have infimum for any two elements a, b € A A soft sup-semilattice is a partially

ordered soft set (F, A) in which any F (a), F (b) in (F, A) have a supremum. A partially
ordered soft set (F, A) which is both soft inf-semilattice and soft sup-semilattice is called a
soft lattice.

Definition 18.

1. [6] A partially ordered soft set is said to be directed complete soft sets if every
directed soft subset has a supremum.

1. [7] A partially ordered soft set which is an soft inf-semilattice and directed
complete will be called a directed complete soft inf-semilattice.

2. [7]1 A soft lattice is called complete soft lattice in which every soft subset has a
supremum and infimum. A totally ordered complete soft lattice is called a complete soft
chain.

3. [7]Apartiallyorderedsoftsetiscalledacompletesoftint-
semilatticeiffeverynonnullsoftsubset has an infimum and every directed soft subset has a
supremum.

4. [7] A posset is called bounded complete, if every soft subset that is bounded

above has a least upper bound.

Definition 19. [8] Let (F, A, <) be a partially ordered soft set. We say that F (a) way-below F
(b) iff for all directed soft subsets (G, B)E(F, A) for which sup(G, B) exists, the soft set
relation F (b) < sup(G,B) always implies the existence of a G(d) in (G,B) with F(a) < G(d).

F(a) way-below F(b) is denoted by F(a) < F(b).

This definition was expressed simultaneously by Sayed [5] as "Let (F,A) be a posset.
For any two elements F(x),F(y) € (F,A). F(x) is approximate to F(y), and write F(x) < F(y),
if for any directed soft subset (G,B) € (F,A) with V(G,B) existing and F(y) < V(G,B), there
exists G(z) € (G.B) such that F(x) < G(z). "

Definition 20.

1[5] A partially ordered soft set (F, A, <) is called soft continuous if it satisfies the axiom of

approximation:
54
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(VF(a)in(F,A)) F(a) = \/ — {F(a)skeii.e. for all F(a) in (F,A), the soft set $F(a) which is
(H,C) such that C={bE A|F(b)<F(a)} and H = F|(, is directed and F(a) = sup(H,C).
steiii [S] A directed complete partially ordered soft set is soft continuous as a partially ordered
soft set will be called soft set domain.
i11 [8] A soft set domain which is complete soft set lattice is called continuous soft lattice.

v [8] A complete soft semilattice which is a soft set domain as a partially ordered soft set is
called a complete continuous soft semilattice or alternatively bounded complete soft domain.

v [8] A soft domain in which every principal soft ideal ¥ F (x) is complete soft lattice is called
an L-soft domain.

3 Compact soft elements and Algebraic soft domains

Definition 21. In any partially ordered soft set (F, A), an element F (k) is called compact soft

element (or isolated soft element) iff F (k) < F (k), i.e. whenever (D, C) is directed soft
subset of (F, A) such that sup(D, C) exists and F (k) < sup(D, C), then F (k) < D(c) for some ¢

€ C. The soft subset of all compact soft elements is denoted by K(F,A).

Definition 22.

a. A partially ordered soft set (F, A) is called algebraic iff it satisfies the Axiom
of Compact Approximation

(VF(a) in (F,A)) F(a) = v —(| F(a)NK(F, A))stri.c. for all a € A the soft set
|F(a) AK(F,A) is directed and F(a) = sup(| F(a) NK(F,A)).

b. A directed complete algebraic partially ordered soft set (F, A) is called
algebraic soft domain.

c. An algebraic soft domain which is a soft lattice is called an algebraic soft
lattice.

d. An algebraic soft domain which is a soft semilattice is called an algebraic soft
semilattice.

e. A complete soft semilattice which is an algebraic soft domain as a partially
ordered soft set is called a bounded complete algebraic soft domain.

f. An algebraic soft domain in which every principal soft ideal |F(a) is a

complete soft lattice is called an algebraic soft L-domain
Theorem 3. In a partially ordered soft set (F, A), the following statements are equivalent:
a. (F,A)isalgebraic;

b. (F,A) is soft continuous and F(a) < F(b) iff there is a F(k) in K(F,A) with
F(a)< F(k)< F(b). 55
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In particular every algebraic partially ordered soft set is continuous partially ordered soft set
and every algebraic soft (semi)lattice is continuous soft (semi)lattice.

Theorem 4. Let (F, A) be a directed complete partially ordered soft set. If (F,A) has a least
element F(0), then F(0) is in K(F,A). If two elements F(a), F(b) in K(F, A) have supremum in
(F,A), then sup{F(a), F(b)} is in K(F,A).

Definition 23. A soft semilattice (F, A) is called an arithmetic soft semilattiice iff it is
algebraic and if K(F, A) is a soft semilattice of (F, A), i.e., if sup{F(a), F(b)} is in K(F,A) for
all F(a), F(b) in K(F,A). An arithmetic soft lattice is an algebraic soft lattice in which the soft
set of compact soft elements is a soft subsemilattice.

Theorem 5. Let (F,A) be an algebraic soft semilattice. Then the following statements are
equivalent:

a. (F,A) is arithmetic;ste!
b. K(F,A) is a soft semilattice.
Acknowledgement: This work is supported by the Scientific Research Project of Mugla Sitki Kogman

University, SRPO (no: 16/073) and the Scientific Research Project of Mugla Sitki Kogman University, SRPO
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Abstract

Soft Set theory was introduced by Molodtsov in 1999 to deal with uncertainties in the
economics, engineering, environmental and related scientific areas which need of certain
mathematical solutions but classical mathematical tools are inadequate to satisfy their needs
related to the uncertainties derived from complicated problems. Moreover there are
increasingly many studies about the soft set theory. Babitha and Sunil gave soft set relations.
By using soft set relations, directed soft set, soft Scott topology and meet continuous soft set
were defined. In this study, alternative definition for meet continuous soft set is given by
using soft Scott topology. Also we showed that these two definitions are equivalent.
Furthermore some results about meet continuous soft set and soft Scott topology are proved.

Keywords: Soft set, Soft set relation, Soft topology, Soft Scott topology

1 Preliminaries and basic definitions

Definition 1. [5] Let U be an initial universe and E be a set of parameters. Let P(U) be the set
of all subsets of U and A be a subset of E. A pair (F,A) is called a soft set over U where

F:A - P(U) is a set-valued function.

Definition 2. [4] A soft set (F,A) over U is said to be a Null soft set denoted by @, if for every
c€AF(Ee)=0

Definition 3. [4] For two soft sets (F,A) and (G,B) over a common universe U, we say that
(F,A) is a soft subset of (G, B) and is denoted by (F,A) € (G,B) if A € B and Ve € A, F(g)
and G(g) are identical approximations, which means F(g) = G(¢) . (G,B) is said to be a soft

super set of (F,A), if (F,A) is a soft subset of (G,B).

Definition 4. [4] Union of two soft sets (F,A) and (G,B) over the common universe U is the
soft set (H,C), where C = A U B, and for each e € C,

F(e),ife€e A—B
H(e) = G(e),ifee B—A . Wewrite (F,A) U (G,B) = (H,C).

F(e) UG(e),ife€e ANB
57
Intersection of two soft sets (F,A) and (G,B) over a common universe U is the soft set (H,C),
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where C=ANB and for each e € C,H(e) = F(e) N G(e). We write (F,A) N (G,B) = (H, C).

Definition 5. [1] Let (F,A) and (G,B) be two soft sets over U, then the cartesian product of
(F,A) and (G,B) is defined as, (F,A) X (G,B) = (H,A X B) where H: AXB - P(U xU)
and H(a,b) =F (a) x G(b), where (a, b)€ AxBi.c. H(a,b) = {(hj, hj) | h; € F(a),hj €

r

G(b)}. A soft set relation R from (F, A) to (G, B) is a soft subset of (F, A) x (G, B).iske

(AL

Definition 6. Let R be a soft set relation on (F, A), then
1. [1] R is reflexive if H; (a,a) € R,Va € A. it!
2. [1] R is symmetric if H; (a,b) € R = H,(b,a) € R.

3. [1] R is transitive if H;(a,b) € R,H;(b,c) € R = H;(a,c) € R for every a,b,c € A.

4. [2] R is antisymmetric if F(a) X F(b) € R and F(b) X F(a) € R for every F(a), F(b) €

(F,4) imply F(a) = F(b).

Definition 7. [2] A soft set relation < on (F,A) which is reflexive, antisymmetric and
transitive is called a partial ordering of (F,A).st»The triple (F,A,<) is called a partially ordered

soft set.

Definition 8. [7] Consider a soft set (F,A) equipped with reflexsive, transitive soft set relation

<. This soft set relation is called preorder and (F,A) is called a preordered soft set.

Definition 9. [2] Let (G,B,<) be a partially ordered soft set. Then, for b € B, G(b) is the least
element of (G,B) in the ordering "<’ if G(b) < G(x), Vx € B and for b € B,G(b) is the greatest

r

element of (G,B) in the ordering <’ if G(x) < G(b), Vx € B. sl

(AL

Definition 10. [7] Let < be an ordering of (F,A), let (G,B) € (F, A). For a € A, F(a) is an
upper bound of (G,B) in the ordered soft set (F,A,<) if G(x) < F(a) istrifor all x € B. For a € A,
F(a) is called supremum of (G,B) in (F,A,<) (or the least upper bound) if it is the isteleast

-

element of the set of all upper bounds of (G,B) in (F,A,<).isk!

(L

Definition 11. [7] Let (F,A) be a preordered soft set. A soft subset (G,B) of (F,A) is directed

steprovided it is nonnull and every finite soft subset of (G,B) has an upperbound in (G,B).

Definition 12. Let (F,A) be a soft set with a preorder soft set relation <. For (G, B) € (F, A)
1. [711(G.B)=(H.C) where C ={a € A: F(a) < G(b) for some b € B} and H =F|.
2. [711(G.B)=(K.D)where D = {a € A : G(b) < F(a) for some b € B} and K=Fip.
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3.[7]1 (G,B) is a lower soft set iff (G,B) =|(G,B).
4.[7] (G,B) is an upper soft set iff (G,B) =1(G,B).iste!

5.[7]1 (G, B) is a soft filter iff it is a filtered upper soft set.

6. [8] A soft filter is principal iff it has a minimum element.

Definition 13. [8] A soft inf-semilattice is a partially ordered soft set (F,A,<) in which F(a),

F(b) have infimum for any two elements a, beA istiA soft sup-semilattice is a partially ordered

soft set (F,A) in which any F(a), F(b) in (F,A) have a supremum. A partially ordered soft set

(F,A) which is both soft inf-semilattice and soft sup-semilattice is called a soft lattice.

Definition 14. [7] A partially ordered soft set is said to be directed complete soft sets if every
directed soft subset has a supremum.
Definition 15. [9] A soft inf-semilattice (F, A) is called soft meet continuous if it is directed

complete soft set and satisfying F(x)sup(G, B) = sup(F(x)(G,B)) for all xeA and all directed
soft subsets (G, B) € (F, A).

Definition 16. [6] A soft topology T on a soft set (F,A) is a family of soft subsets of (F,A)
satisfying the following properties

i) @, (F,A) € Tiis

ii) If (G,B), (H,C) € %, then (G,B) N (H,C) €T ;

iii) If (F,, A,) € T for all a € A, an index set, then Uyep (Fy, Ay) € Tiskr

(Rl L}

If 7 is a soft topology on a soft set (F, A), then (F,A,7) is called the soft topological space.

Definition 17. [3] Let (F, 4, T) be a soft topological space and (F, B) € (F, A). Then, the soft
interior of (F,B) is defined as the soft union of all soft open subsets of (F,B) and the soft

closure of (F, B) is defined as the soft intersection of all soft closed supersets of (F, B).

Definition 18. [6] A collection f} of some soft subsets of (F, A) is called a soft open base or

simply a base for some soft topology on (F, A) if @ € §, Ue = (F, A) and if (G,B),(H,C)ep

then for each eeBNC and xeG(e)NH(e) there exists ( ,D) Ef such ikithat (I,D) €

59

r

(G,B)A(H,C) and x € I(e), where D €B N C. ikl

[ L
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Definition 19. [11] Let (F,A,T) be a soft topological space and S be a collection of nonnull
soft open subsets of (F,A). If finite intersection of the elements of S is a base for T then S is

called soft subbase.
2 Soft Scott topology and Soft Lawson Topologyit:

Definition 20. [7] Let (F,A) be a directed complete partially ordered soft set and

(G,B) € (F,A). Then (G,B) is called a Scott soft open set iff (G,B)=1(G.B) and sup(D, C) €
(G, B) implies (D, C) N (G, B) # & for all directed complete soft sets (D, C) € (F,A). The
collection of all Scott soft open sets of (F,A) is called soft Scott topology on (F,A) and this
topology will be denoted by o(F,A).

Definition 21. [10] Let (F,A) be a partially ordered soft set. The soft topology generated by
the soft complements of principal filters (F,A)—1{F(a)} (as subbasic open soft sets) is called
the soft Lower topology and denoted by o(F,A).

Definition 22. [10] Let (F,A) be directed complete partially ordered soft set. Then common
refinement of 6((F,A))Vw((F,A)) of the soft Scott topology and the Lower soft topology is
called the soft Lawson topology and denoted by A((F,A)).

3 Relation Between Meet Continuous Soft Sets and Soft Scott Topology

Definition 23. A directed complete partially ordered soft set (F, A) is soft meet continuous if
for any a€A, F(a) and any directed soft set (D,C) with F(a) < sup(D,C), then F(a) is in the
Scott soft closure of [(D,C)N|F(a).

Theorem 1. For directed complete soft semilattice the preceding definition of meet continuity

is equivalent to the standard one.

Theorem 2. A directed complete partially ordered soft set (F,A) is soft meet continuous iff for

any Scott open soft set (G,B) and any acA, 1((G,B) N|F(a)) is Scott open soft set.

Theorem 3. For a meet continuous directed complete partially ordered soft set (F, A) we

have:

) (G,B) € MF,A), then 1 (G,B)ea(F;A);st) 60
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i1) if (H,C) 1s an upper soft set, then intG(H,C)Zintx(H,C);[s}:p}
111) if (H,C) 1is a lower soft set, cl5(H,C)=cl) (H,C).
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Abstract

In this paper, some characterizations of translation surfaces in 3-dimensional Heisenberg

group generated by two spacelike curves have been studied.
Keywords: Heisenberg group, Lorentz metric, translation surface.

1. Introduction

The theory of minimal surfaces in three-dimensional Euclidean space has its roots in
the calculus of variations developed by Euler and Lagrange in the 18-th century and in later
investigations by Enneper, Scherk, Schwarz, Riemann and Weierstrass in the 19-th century.
Then, C. B. Morrey studied minimal surface in Riemannian manifold. Using the direct
methods of calculus of variations, he was able to give an existence proof for a large class of
Riemannian manifolds of differentiability C' which,especially, contains all compact C'
manifolds. During the years, many great mathematicians have contributed to this theory.

Translation surfaces in E*, firstly studied by H. F. Scherk. He proved that, besides the
planes, the only minimal translation surfaces are the surfaces given by

z=llog
a

cos(ax)
cos(ay)

_! log|cos(ax)| 1 10g|COS(ay)"
a a

where a is a non-zero constant, [8]. Then, the study of translation surfaces in the
Euclidean space was extended when the second fundamental form was considered as a metric
on a non-developable surface. M. I. Munteanu and A. I. Nistor have studied the second
fundamental form of translation surfaces in E*, [1]. The translation surfaces in 3-dimensional

Euclidean space generated by two space curves have been investigated by Cetin. Also they
showed that Scherk surface is not only minimal translation surface. [5] Some classification of
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the translation surfaces with constant mean curvature or constant Gauss curvature in 3-
dimensional Euclidean space E’ or 3-dimensional Minkowski space E; have given by Liu

[3]. D. W. Yoon has studied translation surfaces in the 3-dimensional Minkowski space
whose Gauss map G satisfies the condition AG = A4, where A denotes the Laplacian of the
surface with respect to the induced metric and 4 is a 3 x 3 real matrix, [8]. Translation
surfaces in the 3-dimensional hyperbolic space H*> have been studied by Lopez in [4] and he
classified minimal translation surfaces. Translation surfaces can be defined in any 3-
dimensional Lie groups equipped with left invariant Riemannian metric. Translation surfaces

in the 3-dimensional Heisenberg group Nil® in terms of a pair of two planar curves lying in
orthogonal planes defined by J. Inoguchi, R. Lopez and M. 1. Munteanu, [2]. They classified

minimal translation surfaces in Nil®. Translation surfaces in Sol3 constructed by R. Lopez
and M. 1. Munteanu and they investigated properties of minimal one, [5].

The purpose of this paper is to study and classify modifieded translation surfaces in
Heis, and investigate conditions of being minimal surface. Also, obtain characterizations of

points on this surface.

2. Materials and Methods

The Heisenberg group Heis, is a Lie group which is diffeomorphic to R® and the

group operation is defined as
1
(x,y,z)*(xl,yl,zl)Z X+x,y+y,z+z +E(xyl —xly) . 2.1

The identity of the group is (0,0,0) and the inverse of (x,y,z) is given by (—x,—y,—z).

The left-invariant Lorentz metric on Heis, is

g=ds =—dx’ +dy" + (xdy+ dz)z. (2.2)

The following set of left-invariant vector fields forms an orthonormal basis for the
corresponding Lie algebra:

e, =—.,e,=——X—,e; = —. (2.3)

The characterising properties of this algebra are the following commutatigg relations:
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[ez>e3]=el>[elvez]=[el>e3]=0

24)
with
g(e.e)=gle,.e,)=1,g(e5,e5) =—1. (2.5)
Proposition 2.1. For the covariant derivatives of the Levi-Civita connection of the left
-invariant metric g, defined above the following is true: Levi Civita connections are
0 e e
2V,e;=les 0 e, (2.6)
e, —e O

where the (i,))-element in the table above equals for V, e, for our basis

{ekak = 19253}= {31,62,63}.

Let y:1 — Heis, be a unit speed spacelike curve with timelike binormal and {T ,N,
B} are Frenet vector fields, then Frenet formulas are as follows

V.,T=kN,
VN=-kT +7B 2.7
V.B=1N,
where x, 7 are curvature function and torsion function, respectively and
g(T,T) = g(N,N)=1,¢(B,B)=-1 2.8)
g(T,N) = g(T,B)=¢g(N,B)=0.
With respect to the orthonormal basis {e,.e,,e;}, we can write
T=te +t,e, +tse,,
N=ne +n,e, +n,e,, (2.9

B=be, +b,e, +b,e;.
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3. Results and Discussions

Some Characterizations of Translation Surfaces in Heis,

Let t//(x, y) be a spacelike translation surface in 3-dimensional Heisenberg Group

which is endowed with the Lorentzian metric g . Then t//(x, y) parametrized as

y(x.y)=alx)+By) 3.1)

where o and g are unit-speed spacelike curves in Heis, , x and y, arclength
parameters, respectively. Let {T,,N,,B, } and {T;,N;,B,} be the Frenet frame field of &
and B, respectively, where g,(B,.B,)=g,(B,.B,)=-1.

Let y(x,y) be a translation surface in Heis,. Then, from (3.1) the translation surface

1S
l//(x,y)=(a1+,81,a2+ﬂ2,053+ﬂ3), (3.2)
where, a(x)= (e, (x), o, (x). &, (x)) and B(y)=(8,(v). 5,(»). 5:(»))
The coefficients of the first fundamental form are

E = gly.y)=1,
F = gW,.v,)=|L|[T,|cosp=cosp,
G gy,.y,)=1.

So, the first fundamental form is
I = dx* +2cosgdxdy+dy’.
Let unit tangent vector fields of a(x) and AB(y) be
T, =te +1e, +1e,,
T, =te + e, + Le;.

From above equations, the Gaussian curvature K is given by
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K = %{sinh@a sinh @, (1, + (t,1, +1,)°
I-cos @
— (1, +1)) (G + (4G +5) = (L1 +1))
~Ginh 0, sinh 0, ([ (17, ~1,5)+ 7 T
| [ R,
+[5(t1t3+t3t1)+t2] —[5(t1t2+t2t1)+t3] ))
I~ ~ 2
([5(t3t2—t2t3)+t1]
[ N,
+[E(t3tl+tlt3)+t2] —[5(t2t1+t1t2)+t3] 1}
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Abstract

In this paper, some new properties of A-net surfaces and parallel surfaces of A-net

surfaces in Riemannian three dimensional Heisenberg group are obtained
Keywords: Heisenberg group, parallel surface, A-net surface.

1. Introduction

Creation of parallel surfaces is useful in design and manufacture. Making of dies for forging
and castings require modeling of parallel surfaces. Enhancing or reducingthe size of free-from surfaces
requires calculation of curvature and other properties of the new surface, which is parallel to the

original surface. A surface M’ whose points are at a constant distance along the normal from another
surface M is called parallel to M . Since choosing of the constant distance along the normal is
arbitrarily, there are infinite numbers of surfaces. From the definition, the parallel surface can be
declared the locus of point which are on the normals to M at a nonzero constant distance » from M,

[1].

If a isometric representation between two surfaces preserves the principal curvatures of these
surface. The name of these surfaces are Bonnet surfaces. In [12], he deal with the Bonnet problem of

finding the surfaces in E* which can acknowledge at least one nontrivial isometry that preserves
principal curvatures.This problem considered locally and for the general case. Then, to find a Bonnet
surface a method is deduced. In according to this, A-net on a surface such that, when this net is
parametrized, the conditions E=G, FF=0,M =c = const.# 0 are satisfied, is called an A-net,

where £, F', G are the coefficients of the first fundamental form of the surface and #,,, h,, h,,

are the coefficients of the second fundamental form. And necessary and sufficient condition for a
surface to be a Bonnet surface is that the surface can have an A-net. Then, in [7], it is considered the
Bonnet ruled surfaces which accept only one non-trivial isometry that preserves the principal
curvatures, then, she gave the definition of the A-net surface and determined the Bonnet ruled surfaces
whose generators and orthogonal trajectories form a special net called an A-net.
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2. Materials and Methods
In this paper we deal with the Riemannian metric
g=ds’ =dx +dy’ +(xdy+dz) .
which has the covariant derivatives of the Levi-Civita connections;

0 e -—e,

1
Ver_eil:z -e; 0 e |

1

-e, e O

where the (i, j) -element in the table above equals Ve, . Then, we study A- net parallel

surface in this group. Then, we give some characterizations of this surface.

3. Results and Discussions

A- net and A- net Parallel Surfaces in Heisenberg Group

. . . . . 3 .

In this section, we characterize A-net surfaces in Euclidean 3- space E’. Then, we obtain
constant mean curvature and Gaussian curvature of this surface. A-net on a surface is defined
following conditions

E=G,F=0,h, = constant#0,

where E, F, G are the coefficients of the first fundamental form of the surface and /4,

h,,, h,, are the coefficients of the second fundamental form.

Then, parallel surfaces of the surface 49(u,v) 1S

o, v)=0(u,v)+aU(u,v)
where a is a constant and U(u, v) is unit normal vector field of the surface G(u,v)

In this section, we will study following surface and its parallel surfaces;

O v)=(f (). gv) hlu,v), 3.1)

68
where f (u), g(v) and h(u,v) be smooth functions.
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Theorem 3.1. Let ﬁ(u,v) be a smooth surface in Heisenberg group which is parametrized

(3.1). If the surface @u,v) is a A-net surface, then following conditions are provided;
i) oe.v) = g(v)f o) +clu)
i) /7 +(g)f @)+e ) = g7
iii) (2(v)f () +¢ @)*A+1)= £ u)1-2).

where c(u) is a smooth function, A is a constant.

Proof. If we take derivatives of the surface, which is given with the parametrization (3.1), we
have

0, f'(”)el +h, (”’V)eza

0, = & (e + (b ()~ g () (hes e
Then, components of the first fundamental form of the surface are
E = 1))
Fo= ) wv)-g 6)/@). 62)
G = g°()+hy)-g () ).
From equations (3.3), if
F=0,
we have
. (1, v) = 0ot (1, v)— g (v) ()= 0.
Let assume that
)£ () ()= 0.
So,
hu,v)= g(v)f () +c(u). (3.4)

Then, because of £ =G, the following differential equation obtains; 69



INTERNATIONAL CONFERENCE ON MATHEMATICS
“An Istanbul Meeting for World Mathematicians”
Minisymposium on ApproximationTheory&Minisymposium on Math Education
3-6 July 2018, Istanbul, Turkey

F2w)+(gW)f @)+ @) =g (v)
The unit normal vector field of the 9(u, v) is
U =§(— (8(v)f (@) +c @he, + e, (3:5)

Then, components of the second fundamental form of the surface are

1

hy = (W)= g0)f @)+ (),
? (3.6)
hy, = E(fz (u)+g(v)f'(u)+c'(u)),
h, = const.= A
1 L (3.7)
= L) @) =2
and
h, = const.= A,
) , , (3.8
> 200 g0 @) ) = ’
From (3.7), (3.8), we have
@0)f @)+ @) A+1)= £ @k1-2), (3.9)
where A = ﬁ
/12
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A common supercategory of topological spaces and metric spaces is defined as
approach space by Lowen [1] in 1989. Sober approach space is introduced in [2] as the
equivalent of sober topological space in metric texture. After that, sober metric approach
space is defined in [3]. In the works of Smyth [4,5], smyth completeness introduced in
1994. The aim of this work is research to provide a relation between smyth complete
metric space and sober metric approach space by findings in [3].

Keywords: Metric space, Sober, Approach space, Metric approach space, Sober approach space.

1. Introduction

In this article we will study a notion of sobriety for approach spaces that fulfills the
conditions of the metric Space. I give an account of the basic facts concerning the results
about sobriety. These results bring to the foreground a completeness-aspect of the notion of
sobriety which is somewhat hidden in the topological setting.

2. Definitions, Results and Discussions

Approach spaces, introduced by Lowen [1], are a common extension of topological spaces
and metric spaces. Sober approach spaces, a counterpart of sober topological spaces in the
metric setting. An approach space X can be characterized by means of various defining
structures. One of these is the so-called regular function frame RX. An approach frame L is a
frame equipped with two families of unary operations, addition and subtraction of a € [0,].
It is proved there that a topological space is sober as an approach space, if and only if it is
sober as a topological space. So, it is natural to ask what kind of metric approach spaces are
sober? The answer is obtained in [3] and a bit surprising: a metric space is sober, as an
approach space, if and only if it is Smyth complete. In this work in this work I will present the
results handeled in [3].

Definition : ([3]) An approach space (X, J) consists of a set X and a map J : X x 2* — [0, o],
subject to the following conditions:

(A1) d(x, {x})=0,

(A2) d(x, @) = o,

(A3) d(x, A U B) =min{d(x, A), d(x, B)},

(A4) d(x, A) > o(x, B) + suppes o(b, A),
forallx €X and 4, B €2 . The map J is called an approach distance on X.
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Given an approach space (X,0), define Q(): X x X — [0, o/, by
Q0)(x, y) = o(x,{ y}), then Q(0) is a metric on X, called the specialization metric of
(X, 0). The correspondence (X, 0) — (X, €2(9)) defines a functor

Q : App — Met.
This functor is a counterpart of Q : Top — Ord in the metric setting.

Approach spaces can be equivalently described in many ways [3], one of them we need is the
description by regular functions. A regular function of an approach space (X, 6) is a
contraction ¢ (X, 6) — P, where P is the opposite of the Lawvere distance on [0, =], i.e.,
Q(Sp) :dR.

The following proposition says that an approach space is uniquely determined by its regular
functions:

Proposition : ([3]) Let (X, 0) be an approach space. Then the set RX of regular functions
of (X, 0) satisfies the following conditions:

(R1) For each subset {,}c; of RX, supie;” € RX.

(R2) For all ¢, v € RX, min {¢, v} € RX.

(R3) Forall p € RX and a € [0, ], both ¢ + o and ¢ g a are in RX.
Conversely, suppose that S € [0, «]" satisfies the conditions(R1) - (R3).
Define a function d : X x 2¥ — [0, o] by

o(x, A) =sup{px)|p € S, Ya € 4, p(a)=0}.
Then (X, 0) is an approach space with S being its set of regular functions.
Contractions between approach spaces can be characterized in terms of regular functions.

Definition : A metric space is Smyth complete if every forward Cauchy net in it converges
in its symmetrization.

Smyth completeness originated in the works of Smyth that aimed to provide a common
framework for the domain approach and the metric space approach to semantics in computer
science. As advocated in [4-5], in this paper we emphasize that the relationship between
approach spaces and metric spaces is analogous to that between topological spaces and
ordered sets. This point of view has proved to be fruitful, and is well in accordance with the
thesis of Smyth.

Theorem : ([3]) Let (X, d) be an approach space.
(1) (X, 9) is a sober approach space.

(2) For each contraction f from (X, 8) to a sober approach space (Y, p), thergis a unique
contraction
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f:(X,0) = (Y, p)suchthat f=f°nX.

Lemma : For each metric space (X.d), the approach primes of I'(X, d) are exactly the flat
weights of (X, d).

Proof: Given an approach prime ¢ of I'(X, d), we show that ¢ is a flat weight of (X, d).
It suffices to check that ¢ satisfies the flat weight conditions:

Suppose @(xi) < g(i =1, 2). Consider the functions y(x) =max{0, ,—d(x;, X)}

and (x) =max {0, s;—d(x,, X)}.

It is easy to check that y and & are regular functions satisfying y < ¢ and

€ <o(y(x1) =¢1, E(x2) =¢2).

Proposition : ([3]) If (X, 0) and (Y, p) are approach spaces and /: X — Y is a map, then fis
a contraction if and only if for each ¢ € RY, ¢ ° f € RX.

Amap ¢ : X — [0, «]is a weight of (X, d) if and only if it is a regular function of I'(X,
d), as stated in the following conclusion:

Proposition : ([3]) For a metric space (X, d), a function ¢ : X — [0, «o/ is a weight of
(X, d) if and only if it is a regular function of the approach space I'(X, d).

3. Conclusions

Corollary : ([3]) Let (X, d) be a symmetric metric space. Then the sobrification of (X,
I'(d)) is a metric approach space and is generated by the Cauchy completion of (X, d).

Proof.This follows from that every symmetric metric space is Smyth completable.

Theorem : ([3]) Let (X, d) be a metric space. The following are equivalent:
(1) The approach space (X, I'(d)) is sober.
(2) (X, d) is Smyth complete.
(3) (X, d )is a fixed point of the Yoneda completion, i.e., yx: (X, d) — (FX, d)is an

isomorphism.

Acknowledgement : The author thank sincerely theconference chair for his most valuable

comments and helpful suggestions.

74



INTERNATIONAL CONFERENCE ON MATHEMATICS
“An Istanbul Meeting for World Mathematicians”
Minisymposium on Approximation Theory & Minisymposium on Math Education
3-6 July 2018, Istanbul, Turkey

References:

[1] R. Lowen, Approach spaces: a common supercategory of TOP and MET, Math. Nachr. 141 (1989) 183-226.
[2] B. Banaschewski, R. Lowen, C. Van Olmen, Sober approach spaces, Topol. Appl. 153 (2006) 3059-3070.

[3] H. Lai, D. Zhang, Sober metric approach spaces, Topol. Appl., 233 (2018) 67-88.

[4] M.B. Smyth, Quasi-uniformities: reconciling domains with metric spaces, Lecture Notes in Computer
Science, 298 (1987) 236-253.

[5] M.B. Smyth, Completeness of quasi-uniform and syntopological spaces]. Lond. Math. Soc. 49 (1994) 385-
400

[6] S. Vickers, Localic completion of generalized metric spaces, Theory Appl. Categ., 14 (2005) 328-356.



INTERNATIONAL CONFERENCE ON MATHEMATICS
“An Istanbul Meeting for World Mathematicians”
Minisymposium on Approximation Theory & Minisymposium on Math Education
3-6 July 2018, Istanbul, Turkey

Characterization of Fuzzy Topology by Fuzzy Relations
Giizide SENEL'

"Mathematics, Amasya University, Turkey,
E-mail: g.senel@amasya.edu.tr

In this paper I have studied the concept of fuzzy topological space generated by
a fuzzy relation as an extension of the corresponding concepts in [1], [2] and [3]
respectively, for the crisp case. Then several related results have been shown. I have
given some information about separation axioms in this fuzzy topology that some
specific problems related to compactness can be found out in the future works.

Keywords: Fuzzy set, Fuzzy relation, Fuzzy topological space.

1. Introduction

In this presantation, fuzzy topologies generated by fuzzy relations are studied. Several
related results are proved. In particular, characterizations of a fuzzy topology generated by
a fuzzy relation, a fuzzy topology generated by a fuzzy interval order,a preorderable fuzzy
topology and an orderable fuzzy topology are obtained. Fuzzy relations have been studied
by several authors, e.g., Chakraborty and Sarkar (1987), Chakraborty and Das (1983,
1985), Jayaram and Mesiar (2009), Kundu (2000) and Figueira et al. (2005). Apart form
definitions and theorems are numbered, known concepts are mentioned in the text along
with the reference [3].

2. Definitions, Results and Discussions

Definition (Zadeh 1965) : A fuzzy set in X is a function 4 : X — I, where [ is the closed
unit interval [0,1].
* Now we define some basic fuzzy set operations as follows:
Let 4 and B be two fuzzy sets in X. Then :
* 1.A=BifA(x)=B(x), Vx € X.
2.A<S Bif A(x) <B(x), Vx € X.
3. (4 VU B)(x) =max{A(x), B(x)}, Vx € X.
4. (4 N B)(x) =min{A(x), B(x)}, Vx € X.
5.4%x) =1—A(x), Vx € X (here A° denotes the complement of A).
* The constant fuzzy set in X taking value o € [0, 1] will be denoted by a .

Definition (Chang 1968) A fuzzy topological space is a pair (X, 7) consisting of a non-
empty set X and a family 7 of fuzzy sets in X satisfying the following conditions:

e 1.0y, 1, E71;

o 2.If {4;:i €} is an arbitrary family of fuzzy sets in 7, then i € 4, €. 76

e 3.If4, Ber,thendNBET.
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* Members of 7 are called fuzzy open sets (or 7 — fuzzy open sets) and a fuzzy set 4
in X is called closed if A° € 7.

Definition (Srivastava et al. 1981) A fuzzy point x; (0 < A < 1) in X is a fuzzy set in X such
that
o x(x)=A ifx'=x
* 0, otherwise.
Here x and / are, respectively, called the support and value of x;,
* A fuzzy point x; is said to belong to a fuzzy set 4 if 1 < A(x) and two fuzzy
points x, and y; in X are said to be distinct if x = y.

Definition (Zadeh 1965) Let X be a non-empty set.
Then a fuzzy relation R on X'is a mapping R : X x X — [ .

Definition (Klir and Yuan 1997) The transpose of a fuzzy relation R on a set X is the
mapping R : X x X — |

given by R’ (x, y) =R (3, x), for each (x, y) € X x X.

Definition (Zadeh 1971) The complement of a fuzzy relation R on a set X is the mapping
R°: X x X — I given by

R°(x, vy)=1—R(x, y), for each (x, y) € X x X.

Knoblauch (2009) had introduced a topology generated by a binary relation. Here I study
this concept mentioned in [3] in the case of fuzzy topology.

Definition [3] : Let R be a fuzzy relation on a set X. Then for x € X, the fuzzy sets L, and
R,, which are defined as

e Lx®) =R@ x) forally e X

* Rx(¥) =Rk, y) forally € X

are called lower and upper contour, respectively of the element x € X.

The fuzzy topology generated by the collection S; of all lower contours (i.e., S} = {Ly : x €
X}) will be denoted by 71, and the fuzzy topology generated by the collection S, of all
upper contours (i.e., S2 = {Rx : x € X}) will be denoted by 1.

Definition [3] : The fuzzy topology which is generated by the subbase S = {Lx},ex U
{Rx}xEX

is called the fuzzy topology generated by R and is denoted by zz.

3. Examples

1) Let R be a fuzzy relation on X = {x, y, z}, which is given as follows: m
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Ri{x|y| z
x| 1]o5| 0
y| o 1 |08
z |07 0| 1
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Then the fuzzy topology s is generated by the following subbase S:
S ={L,, Ly, L., R, R, R},
where L,, L,, L., R,, R,, R. are given by:

1 0 O o5 1.0
Lx=_+_+_7,Ly_ 05,147,
x y z X y z

. 1 1 ; 0
LZ=9+(£+,_RX= _+0_5+_,
x Y z b y oz

2) Let R be a fuzzy relation on X' = {x, y, z}, which is given as follows:

Rix|y | z
x|[1[03]0.5
y[O0] 1T]0
z|[0]09] 1

Then the fuzzy topology Jr is generated by the following subbase S:
S = {Lx: Ly: Lz, R_x, Ry: Rz},

where L,, L,, L., R,, R,, R. are given by:

o

0
Lx=—+0—+-7I{V= 3

zZ

2

5

<=

41,09

Yy Z

0.
.95, 0.3

y

== =

1
+5,R.= —+ 2+
z

b

Z

elo <

4. Conclusions

In this work, I have studied the concept of a fuzzy topological space generated by a fuzzy
relation as an extension of the corresponding concepts in Knoblauch (2009), Indurain and
Knoblauch (2013) and Mishra and Srivastava (2018) respectively, for the crisp case. As a
further study, the topological versions of representation theorems by using the fuzzy
topologies induced by fuzzy relations and their interrelationship may be studied. Allam et al.
(2008),have introduced some new methods, which are used to generate topologies by relations
and studied the interrelationship between these methods and other methods.

Such type of problems may be studied in the context of the topological structures induced by

fuzzy relations. 79
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In this study, we consider crossed product construction from view of Combinatorial
Group Theory and define a new graph based on the crossed product of finite cyclic groups.
Then we give some graph properties on this new graph, namely diameter, girth, maximum and

minimum degrees, domination number, chromatic number and clique number.
Keywords: Group Presentation, Graph Theory, Crossed Product

1. Introduction and Preliminaries

Crossed product construction appears in different areas of algebra such as Lie algebras, C*-
algebras and group theory. This product has also many applications in other fields of
mathematics like group representation theory and topology. This product is important than the
known group constructions since it contains direct, semi-direct, twisted and knit products of
groups (Agore and Fratila, 2010). Here, by considering crossed product construction from
view of Combinatorial Group Theory, we investigate the interplay between the crossed
product over finite cyclic groups and the graph-theoretic properties of this extension in terms
of its relations. By graph-theoretic properties, we are interested in diameter, girth, maximum,
minumum degrees, domination number, chromatic number and clique number of the
corresponding graph of this crossed product. In the literature, there are some important graph
varieties and works related with them, for instance Cayley graphs, zero-divisor graphs. But
the graph constructed here is different and interesting in terms of using the relations and
normal form structure of elements of the crossed product of finite cyclic groups. We refer the
reader to (Karpuz et al., 2013(a); Karpuz et al., 2013(b)) for some other new graphs obtained
by presentations of given algebraic structures and to (Karpuz and Cetinalp, 2018) for studies

on crossed product.

Let C, and C,, be finite cyclic groups presented by <a;a" =1> and <b ;b = 1>, respectively.

Then the crossed product of C, by C,, C #/ C _, has the following presentation

C,#,C,=(ab;a" =1, b"=d’, bab=a’ ), (1)
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where 0<i<n—1,0<j<m-1,i(j—1)=0(modn) and ;" =1(modn) (Agore and Fratila,
2010).

For any simple graph I', the distance (length of the shortest path) between two vertices
u,vof ' is denoted by d.(u,v). The diameter of I is defined by
diam(T") =sup{d;(u,v):u and v areverticesof I'} . The girth of a graph T is the length of a
shortest cycle contained in I". However, if the graph does not contain any cycle, then the girth
of it is assumed to be infinity. The degree deg (v) of a vertex v of I' is the number of
vertices adjacent to v. Among all vertices, the maximum degree A(I') (or the minumum

degree 6(I')) of T" is the number of the largest (or the smallest) degrees in I". A subset D of
the vertex set V(I') is called a dominating set if every vertex V' (I')—D is joined to at least
one vertex of D by an edge. Additionally, the domination number y(F) is the number of
vertices in a smallest dominating set for the graph. The minumum number » for which T" is
n-colorable is called chromatic number of T", and is denoted by ;((F) . The largest number of
vertices in any clique (each of the maximal complete subgraphs) of I is called the clique
number and denoted by a)(F) In general, it is well known that Z(F) > a)(F) for any graph

I" (Gross, 2004).
2. A New Graph Based on Crossed Product of Finite Cyclic Groups

In the following, we define an undirected graph I’ =(V,FE) associated with presentation

cH#c,

given in (1) which all results will be constructed on it. The vertex set /' of the graph F(, e
consists of the followings:

e generators of Cn#ng (a and b)) and the identity element 1, /. .
e words of the form &' (1<i<n—1)and »’ 1< j<m-1),
e words of the form a'd’ (I1<i<n—-1,1<j<m-1).

In fact this vertex set consists of the normal form structure of elements of C #/C, . The edge

E ofthe graph I' ., . consists of the followings:

e connect each vertex o' with o' forall 1<i<n—-2 (a'Ua™"), 82
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e connect each vertex b’ with 5’ forall 1< j<m—2 (b’0b"™),
e connect each vertices @' and b’ with the vertex a'b’ from both sides for all
1<i<m—land 1<j<m-1(d0db 0b),

e connect the unique vertex 1(, e with all vertices
(a'll lc‘n#écm (1<j<n-1, 51 lc,,#gcm (1<j<m-1)and a'b’ U lcn#gc,,l (1<ign-1,12j<m-1))
VAR Z Nabin. V' |

Figure 1. Crossed product graph I'

C" #lg CW

As seen in Figure 1, the numbers of vertex and edge sets depend on the orders of generators of
C #/C . Therefore, we have

n-a—m

2 -1 2 -1 2 -1 2 212 2 -1 3 37.2 3 -1
V={,a,a,..,a" ,b,b",...b" ,ab,ab",...,ab™", a’b,a’b",....a’b"", a’b,a’b",....,a’b"",

n-1 n-172 n—-1y3 m-1
vy @ b,a" b, a" DT

and thus ‘V(FC e )‘z

Cn#,of{'cm|: mn and ‘E(FC e )‘: 3mn—-m-n-3.

3. Graph Theoretical Results over I'

CHLC

By considering the graph I' drawn in Figurel, we will mainly deal with some graph

C,#C,
properties, namely diameter, girth, maximum, minumum degrees, domination number,

chromatic number and clique numberof T, . .

Theorem 3.1 The diameter of the graph I’ is 2.

('"H #ZY C!H

Proof. By Figurel, it is seen that the vertex 1 is connected with all other vertices of the

cH#C,
forms a (1<j<n-1),b (1<j<m-1)and d'b’ (1<i<n-1,1<j<m-1). Thus we can

reach to all vertices in F(‘,,#£<',,, by using the vertex 1 . So we get diam(F clc, ) =2.m

Ct4Cn
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Theorem 3.2 The girth of the graph I' ., . is 3.

na~m

Proof. By Figure 1, we have four types cyclec of the forms

] +1
(1<i<n-2) 1(;,#&(;” Do/0o™ 0 1@,,#;'

1<j<m-2
1 D a/ D a1+1 D 1(7 N c, ( J m ) ,

('VH#.(L-( vWl ( ‘)Vl

1(7,,#£(7m Ua'b’Da'll 1((,"#‘,(, and 1(/,”#_4(‘,", Oa'b’ b’ [ 1<7,,#é(7,,, (1<i<n-1,1<;<m-1).

am

So the length of the shortest cycle contained in the graph I' is3.m

cHC,

Theorem 3.3 The maximum and minumum degrees of the graph I', . are
A(F(,” #KJ(‘”,) =mn—-1 and O (F(,” #5(,”’) =3, respectively.
Proof. By the vertex definition of the graph I'_ ., we have ‘V(F e )‘= CH#H C |=mn. By

Figure 1, we have vU1 ., forall veV (I ) ) . Because of this, we get mn—1 vertex adjacent

na~m

C#4C,

to the vertex 1., .

nam

. Hence deg, , (1.,,. )=mn—1. Besides, the number of the largest degrees

‘na~m

in a simple graph which has mn vertex is mn—1, we have A(I' = mn—1. For the minumum

C#C, )

degree of I' we consider the vertex of the form a'd’ (1<i<n—1,1<j<m-1). By Figure 1,

(VVI#(C(‘W >

we have a' [1 a'b’ [1 b’ for this type of vertex. Every vertex is also connected with the vertex 1 e

n"a~m

For the graph I’ . since the minumum degree depends on the vertex of the form a'b’ , we obtain

'Il#g( ‘/ll >

6T, . )=3.m

nla~m

Theorem 3.4 The domination number of the graph I' . . is 1.

Proof. By Figure 1, we have vU1 ., . forall veV (I, .).So {1(7 e } is a dominating

n"a~m

set. By the definition of the graph I’ Al the smallest dominating set is { 1 e } . Hence, we

get y(I',. we )=1.m

“nlam

Theorem 3.5 The chromatic number y (I’ ) is equal to 4.

(‘n #é( 'vm
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Proof. By Figure 1, we have vUI1. ,. forall veV (', .). That means if we label the
vertex 1., by color A, then all other vertices have different colors. Let us suppose that the

colors for the vertices @' and b’ are labeled by B and C, respectively. Since these vertices

are connected to a'b’ we have a different color labeled by D for the vertex a'b’ . So the graph

r has 4 minumum number of colors for its vertices. Thus, y (I’ )=4.m

CVI#(; CNI (NII #ﬁ (wlll

Theorem 3.6 The clique number o(I" ) is equal to 4.

CHLC

Proof. According to Figure 1, there exist one type of complete subgraph which has the largest
number of vertices. This subgraph has edges of the form 101 a'[1a'b’[J 5/ [11. Thus, we get

o )=4.m

(‘H#é ( ‘Wl

4. Conclusions

In this study, we defined a new graph based on the crossed product of finite cyclic groups.
Then we obtained some graph properties on this new graph. The importance of this graph is
that it has been defined by using the normal form structure of elements of crossed product
construction.
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Abstract
Our study falls within the general theoretical framework of the dual didactic and ergonomic approach
developed by Aline Robert and Janine Rogalski (2002). It aims to identify the representations of
Tunisian teachers about the official mathematics textbook and their didactic choices relative to its use
in the development of a lesson or during its concretization in class, particularly in the case of teaching

mathematical proof.

In order to be able to bring replies to our questions, we adopted a methodology of research held in two

times:

- In a first time, we have developped a global study focused on “speech on the practices” whose
objective is to inform us on teacher representations and some of their choices relatively to the use of

the textbook.

- In a second time, we have conducted a local study: it concerns the effective teaching practices based

on the observation of a sequence presenting a mathematical proof.

Keywords: Teaching practices, Textbook, Mathematical proof.

1. Introduction

Before 1990, we find few French and Tunisian researches explicitly interested in the study of the
teaching practices where the favored pole of study is the teacher. This kind of researches are
developed gradually from year 1989 and much more clearly since 1993 (Comiti and Grenier, 1995;
Bosch and al, 2003). It’s also the case of the general theoretical framework of the dual didactic and
ergonomic approach developed by Aline Robert and Janine Rogalski (Robert, 2001 ; Robert and
Rogalski, 2002 ; Rogalski, 2003). These authors chose to close to a didactic analysis of the work of the
pupil and the organization of this work by the teacher, an analysis of the teacher as exercising a job, by
using concepts of cognitive ergonomics to interpret the practices of the teachers as the expression of a

work in an open dynamic environment. The complexity of the practices brings the authof§ to
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distinguish five components of practices: the study of the two first components (cognitive and
mediative components) can provide information on the operating logic of the teacher and the study of
the three other components (institutional, personal and social components) can help to enlighten on

regularities in the practices.

Our study falls within this general theoretical framework. We suggest to center, more particularly, on
the teacher representation of the textbook and on his didactic choices relative to its use in the
elaboration of a lesson or during its realization in class. Note that, in Tunisia, the studies in didactics
of mathematics approaching the use of the textbook are rare and the theme, in spite of its importance
remains untidy. So, let us consider, by this work, to put the light on the relationship of maths teachers

to the textbook, what could contribute to a better use of this support.

2. Materials and Methods

Our interest concerns the textbook of the level third « Maths » (17-year-old pupils specialized
in mathematics). When appeared in 2009, this latter was highly contested and has generated
debate between teachers and authors due to the new presentation of the course contents, based
exclusively on activities. In addition, this textbook is full of various mathematical notions
introduced at this crucial level. Furthermore, it’s the unique official book intented for the
pupils and represents, in this way, the only curriculum reading defining teaching contents and
circumscribing pedagogic orientations. Therefore, it has an important scientific, institutional
and social power. As already said, we aim to identify the representations of teachers about this
official textbook and their didactic choices relative to its use in the development of a lesson or
during its concretization in class. To this end, we aspire to bring replies to the following

question:

“What are the transpositive choices of the teachers (margin of discretion) to reconcile

institutional injunctions and those imposed by the reality of the class (constraints) 7>
The research methodology adopted is held in two times:
- In a first time, we develop a global study focused on “speech on the practices” whose

objective is to inform us on teacher representations and some of their choices relatively to the

use of the textbook. The tool of data collection is a questionnaire proposed to theSt;achers
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- In a second time, we conduct a local study : it concerns the effective teaching practices
based on the observation of a sequence related to the lesson « Derivative number ». The

objective of this study is to refine the results stemming from the global study.

In this article, we present only results concerning the analytic study based on a questionnaire.
This latter is composed of 21 questions which can be divided into three great groups QT1,
QT2 and QT3. The questions QT1 relate mainly to the position of textbook, as an
institutional standard. The questions QT2 concern the kind of teacher management of
different parts composing the textbook and the questions QT3 are specific to the lesson

« Derivative number ».

3. Results and Discussions

For conciseness, we limit to give, in what follows, only the results relative to the question 13
of the questionnaire, concerning the working modality of proof activities in the classroom.
Note that the textbook of the level third Maths presents the proof of theorems by means of
activities in order to give to the pupils the opportunity to take part in building mathematical
knowledge, to reason, to learn new methods and tricks and to get used to the mathematical
rigor. It’s important for us to identify the importance of the proof activities in the practices of
the quizzed teachers.

The question 13, proposed to 93 teachers quizzed, runs as follows :

“ In most cases, in the classroom, the modality followed when performing a proof activity is :
- The teacher gives the solution of the activity without prior individual work of pupils ;

- The teacher gives the solution of the activity after prior individual work of pupils ;

- The solution of the activity is the result of collaborative work without prior individual work
of pupils;

- The solution of the activity is the result of collaborative work after prior individual work of
pupils.

- Otherwise ;

SPOCIIV. oo et et et et et e e e e et et e e e e e e et et e e e e e e e e e e e s
JUSETY TRES CROICE ... "

The teachers' sample composed by the 93 teachers answering to the questionnaire can be

described by the following pie charts: 88
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The answers of the teachers to the question 13 can be so summarized:

Code of Modality of work of proof activities Percentage
modality |

The teacher gives the solution of the

Yo
activity without prior individual work 3
of pupils
The teacher gives the solution of the 7%
activity after prior individual work of
pupils
MD The solution of the activity is the result 9%
S o coliaborative work without prior v
individual work of pupils
The solution of the activity is the result \
i of collaborative work after prior %
individual work of pupils
MDa3 Mixture of modalities2 | 3 2%
MDay Mixture of modalities 24 8%
LTI Mixture of modalities 3; 4 2%
MDa3g Mixture of modalities 2;3: 4 1%

As indicated in the table above, the greatest choice of the teachers is the modality MD4
(63%). These latter prefer to do the proof activities in the classroom after prior individual
work of pupils and the solution of the activity is proposed after collaborative discussion and
work. These results can be interpreted as follows:

- In terms of mediative component : the teachers attach importance to the engagement
of pupils.

- In terms of cognitive component : the knowledge building is seriously considered.

- The justifications given by the teachers show that they award a particular importance
to the pupils work and they want to provide them opportunities for reasoning, using
acquired knowledge, exchanging and correcting ideas.

Seventeen percent of teachers declare that they don’t let pupils work on proof activities
individually, before proposing a solution to these activities (MD1, MD3). They88xplain their

choice by constraints, which are mainly institutional: Lack of time, heaviness of the
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curriculum, great staff of pupils in the class, difficulty and lenght of proof activities,

willingness to propose rigorous proofs well formulated.

4. Conclusions

Based on a little part of our research, this article aim to show how, via a questionnaire
proposed to tunisian maths teachers of level third Maths, concerning how do they use the
textbook in the classroom, we were able to identify some components of their practices, in the
particular case of proof teaching and learning. The questionnaire informed us mainly and
partly on the three first components of practices concerning the use of textbook :

The cognitive component,

The mediative component,

The institutional component.
Note that it’s difficult to highlight the personal and the social components of practices just
from the results of the analytic study. These components need to be identified from the
invariants of cognitive and mediative components detected in the observation of teacher

practices on a long period, what we aspire to make in our later researches.

References

A. Robert, Les recherches sur les pratiques des enseignants et les contraintes de 1’exercice du
métier d’enseignant . Recherches en didactique des mathématiques, vol. 21/1-2 (2001).

A. Robert, J. Rogalski, Le systéme complexe et cohérent des pratiques des enseignants de
mathématiques : une double approche. Canadian Journal of Science, Mathematics and
Technology Education, Volume 2, Issue 4 (2002).

C. Comiti, D. Grenier, Two examples of "split situation" in the mathematics classroom. For
the learning of Mathematics, 15/2 (1995).

J. Rogalski, Y a-t-il un pilote dans la classe ? Une analyse de l'activité¢ de I'enseignant comme
gestion d'un environnement dynamique ouvert. Recherches en Didactique des
Mathématiques, vol 23.3 (2003).

M. Bosch, L. Espinoza, J. Gascon, El profesor como director de procesos de estudio: analisis
de organizaciones  didacticas  espontdneas. Recherches en  Didactique  des
Mathématiques 23/1, (2003) 79 -136.

90



INTERNATIONAL CONFERENCE ON MATHEMATICS
“An Istanbul Meeting for World Mathematicians”

Minisymposium on Approximation Theory & Minisymposium on Math Education
3-6 July 2018, Istanbul, Turkey

An Induced Isometry on a Total Space of a Vector Bundle
Hulya Kadioglu'

" Department of Mathematics and Science Education, Yildiz Technical University, Turkey,
E-mail: hkadio@yildiz.edu.tr

Abstract

Let (E, m, M) be a vector bundle. There exists a specific Riemannian metric on E
which is induced from a given Riemannian metric g on M. In this study, we use this special
metric and define an isometry on the total space of the vector bundle E. We find these
structures on the tangent bundle of S*.

Keyword(s): Fiber bundles, Isometry Group, Vector Bundles, Principal Bundles.

1. Introduction

Let (E, m, M, V) be a vector bundle, where M is an n- dimensional Riemannian manifold. It
is shown in [5] that one can construct a Riemannian metric on an abstract bundle by using
the notion of partitions of unity. Since vector bundles are special kind of bundles, such
metric can be constructed on E as follows:

where g is the Riemannian metric on M, and y = pr, o ® where ® represents the local
trivialization of the bundle. Here g is called the “induced metric” on E. It is shown that if
E is a vector bundle, then gy is the usual metric (or inner product) on the vector space
TV =V x V. Therefore equation (1) transfers into following equation:

eV, W) = g(@.(V), m.(W)) + (. (V), v.(W)) (2)
where (,) represents the usual inner producton V X V.

The main purpose of this paper is to use this special metric to define an isometry on a
trivial bundle E which is induced from the base manifold M. As an example, we also
construct such structures on tangent bundle of S*. We assume all manifolds are Hausdorff,
second countable, connected.

2. Theory

In this section, we apply the definitions and theorems in [6] to trivial bundles. Suppose that,
® is a trivialization on a trivial bundle E. Let f be an isometry on M, and h4, h,€E. If h; = h,,
then they have to be in the same fiber. Suppose that hy, hyem~*{x}, then we have'l
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(f em, pry o ®)(h)=(f o 7, pry o ®)(hy) . 3)
Since @ is a diffeomorphism, then the following equation holds:
PH((f o1, pry 0 @) (h)=P 7 ((f o 7, pry 0 @) (). 4)

Equation (4) shows that ®~1((f o m, pry o ®)) is well defined, and can be expressed as a
function from E to itself. Now we give the formal definition of above function:

Definition 1. Let f be an isometry on M. We define a function F: E — E as follows:
F(h) = @7X((f o m, pry o ®))(h). )

Theorem 2. F is an isometry with respect to the induced metric gy on the total space E.

Proof. The more general proof of this theorem can be found in reference [6].

3. Application on a Cylinder

Now we apply the concepts on cylinder. It is well known that a cylinder is the tangent bundle
of S, and tangent bundle is a vector bundle.

We view ST as the unit circle in IR? . Then is a submanifold of IR* , where
T(ST) = {(x, v) €S* X IR? : v €T, (SV)}= {(x, v) €S x IR?: {x,v)= 0}.

The right hand side of the formulation suggests that v L x in hence in IR?. Therefore (x, v)= 0
and x? + x2 = 1 suggests that v = (v;,v,) = A(x,, —x;). The last equation shows that x and A
completely determines the tangent vector v. This defines the trivialization ® of T(S1).

The trivialization ®: T(S') — S X IR, is defined as follows:
(x,v) = P(x,v) = (x,4)
Suppose that f: S — S be an isometry. The corresponding function
F: TS - TS* is as follows:
F(x,v) = @7H((f e m)(x,v), (pr2 ° P)(x,v))
= o7 (f(x), )
=(f (), Ay, =y,))

92
where x = (xq,%,), v = (v1,v,) = A(x2, —x;), and (y4,y2) = f(x). So, we define
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F:TS* > TS as F(x,v) = (f(x), ©), where ¥ = (¥, 7,) = A, —y,))-
Now we give an example in finding the induced isometry of a given function fon St.
Example: Let f: ST — S defined as

f(x1,%3) = (x,c080 — x,5in6, x,5inb + x,cos0H)
It is indeed an isometry on S*. Then, by definition 1, we have

F(x,v) = (y1,¥2,01, 72)

where (7, 7,) = A(Y2,—¥1)), and (¥4,¥2) = (x,c050 — x,5inb, x,sinf + x,cos0). Itis
indeed a function on S*, because y? + y2 = 1 and

(y,7) = (x1c050 — x,5in0)(Ay,) + (x,5inb + x,co0s6)( —1y;)
= A[(x,c0s0 — x,5inB) (x,sinb + x,c0s0) — (x,5in6 + x,c0s0)(x,cos6 — x,sinf)]

Il
o

On the other hand, if we let f(x) =y, f(2)=t, and (71, 7;) = A(y2, =Y1), (Wy,W,) =
o(ty, —t1)). we have

(F(x,v),F(z,w)) =(f(x), f(2)) + (v, w)
=(x,2) + A(y2)o(tz) + A(y1)o(tr)
=(x,z) + Ao(yit; + y2t3)
(x,z) + Aoy, t)
(x,z) + Ao{x, z) (6)

On the other hand,

((x,v), (z,w)) = (x,z) + (v,w)
=(x,z) + (A(xz, —x1),0(22, —21))
=(x,z) + Ao{x, z) (7)

Since right side of the equations are equal, then (F (x,v), F(z,w)) = ((x, v), (z,w))
which concludes that F is an isometry.
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1. Introduction

In this paper, we focus on metric nilpotent Lie algebras. Considering all metrics on a
nilpotent Lie algebra, nilsoliton metrics are the most preferable since non abelian nilpotent
Lie groups do not admit Einstein metrics. A metric on a nilpotent Lie algebra is call
“nilsoliton metric” if its Ricci endomorphism differs from a derivation D by a scalar multiple
of the identity map, that is D = Ric — fId where D and f is called “nilsoliton derivation”
and “nilsoliton constant” respectively. Also if the nilsoliton derivation has n different real
eigenvalues, we call the derivation as a “simple derivation”. Here, our main purpose is to
develop an algorithm for the classification of finite dimensional nilpotent Lie algebras
endowed with nilsoliton metric with simple nilsoliton derivation. For more information
regarding to the nilmanifolds, please refer to [5,6,7,8, and 9]. Classification results in various
dimensions can be found in [1,2,3 and 4].

Throughout this paper, we give some detailed algorithms named Badpairs, Goodpairs,
Invertible, and SimpleD. We haven’t finished some of the algorithms for the complete
classification yet. Thus the algorithms given in this paper is not the entire list of algorithms
that are needed in classifying nilsoliton metrics with simple derivations. We plan to take care

of this issue in our continuation paper(s).
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2. Basic Notations
Now let’s define some combinatorial objects associated to a set of integer triples:
A={(i,j,k):1<ijk<n} (1)

1. For 1 <1i,j,k <n, we define 1 X n matrix (a row vector) y[‘j =e te —eg
where {e; : 1 < i < n}is the standard orthonormal basis for IR™. We call y{‘j as
the ‘root vectors for A’.

il. Let y4,¥5,...Ym be be an enumeration of the root vectors in dictionary order. We
define root matrix Y, to be the m X n matrix whose rows are the root vectors.

1il. Gram matrix U, is m X m symmetric matrix, whose (i,j) th entry is the inner
product of the i th and j th root vectors.

3. The Algorithm
In order to use the computational procedure, we need to represent the Lie algebras, sub-

algebras, or any other element regarding to the Lie algebra itself such a way that they can be
dealt with by computer. For this purpose, we use structure constants. It is well known that any
n-dimensional Lie algebra can be represented by its structure constants cikj forl <i,j,k <n,
that satisfies the Jacobi identity condition. The Lie product of two elements of this Lie algebra
is completely determined by these structure constants. In this section, we also mention about
theorems/ lemmas on which the algorithm based.

Algorithm for Listing A = {(i,j, k): 1 < i,j,k < n} and Its Subsets:

Before mentioning these algorithms, we need to write all possible triples as the rows of a

matrix (which will be of type (731) X 3). We call it as Z matrix. By using this matrix, one can

easily compute greatest Gram matrixU,. Additionally, we compute all possible sub matrices
of this Z matrix by coding each row of Z as 1 in a logical matrix W. That means, for example:
If sub matrix of Z is the first 3 rows of Z when |A| = 6, then the corresponding row of W

matrix will be [1 1100 0].
Now we give the algorithms:
a. Badpairs: This algorithm is designed for computing a matrix with two columns such

that the rows of this matrix correspond to the entry 2 in the Gram matrix U. This

algorithm is based on Lemma 2.7 in [3].
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Input: Z matrix

Output: A r X 2 matrix such that for any row [1 j], the (i,)) th entry of corresponding
Gram matrix is 2.

Stepl: Compute the Gram matrix U for Z.

Step2: Find #(i,j) such that (i,j) th entry of U is 2.

b. Goodpairs: This algorithm is for computing the matrix with two columns whose rows
correspond to -1 entry in the Gram matrix. This algorithm is based on Lemma 2.8 in

[3].
Input: Z matrix
Output: A r X 2 matrix such that for any row [i j], the (i,j) th entry of corresponding
Gram matrix is 2.
Stepl: Compute the Gram matrix U for Z.
Step2: Find #(i,j) such that (ij) th entry of Uis -1.

c. Invertible: This algorithm is for pruning the rows of W such that the row corresponds
to an invertible Gram matrix.
Input: A logical matrix W.
Output: Eliminated W matrix.
Stepl: Use the # of rows of W, name it as q. Use for loop for 1 < i < q, and compute
corresponding Gram matrix U.
Step2: If U is invertible, then eliminate that row from W matrix.

d. SimpleD
Input: Logical matrix W.
Output: A logical matrix whose rows corresponds to the Lie algebras with simple
nilsoliton derivation.
Stepl: Use the # of rows of W, name it as q. Use for loop for 1 < i < q, and compute
corresponding Gram matrix U, and the vector v; which is one of the solutions of the
system Uv = [1],,. Here [1],, represents m X 1 matrix such that all the entries are
Is.
Step2: Compute the eigenvalues of nilsoliton derivation D.

Step3: Eliminate rows of W if the eigenvalues are not distinct.
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Abstract

We consider the existence of solutions of water wave equation using the standard
Faradeo—Galerkin method. Using the Galerkin method, we establish the existence of
solutions of the problem. In particular we deal with the water wave equations with a
logarithmic nonlinearity. We see the main theorem for the existence of solutions for
this type of equations. Using an orthogonal base of the space, we search for an
approximate solution and we prove the theorem.

Keywords: existence of solution; approximate solution; numerical-type of models; standard Galerkin method;
water wave equation

1. Introduction

We consider the water wave equation. We consider the finite volume method, in particular the
Galerkin method. We consider the integral form of the conservation law

d [*
Ef q(x,)dx + f (q(x2, 1)) — f(q(x1,1)) = 0 (1.1)

We want to obtain a model for non-linear equations. In the first part using the fully non-
linear model for irrotational water waves in the form (see [1], [2]) given as

0 =6L =246 [[Ldxdt (1.2)
Dingemans (1997) describes several methods with positive-definite Hamiltonian, but these
methods are quite tedious and have certain ambiguities regarding the order of certain
operators, (see [3], [4]). The present method leads to a positive-definite Hamiltonian and can
be fully non-linear if desired. The present model is an additional elliptic equation in the
horizontal plane has to be solved (see [6]). High-order non-linear models solve free-surface
evolution equations derived from a Hamiltonian under the constraint that the Laplace equation

is satisfied exactly in the interior of the fluid domain (see [7] ).

In the second part we deal with the existence and decay of solutions of the followjgig problem
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Uy +Au+ u+ h(uy) = kuln|u| (1.3)

with boundary conditions
ou
u(x,t) = %(x,t) =0, xedQ, t>0

u(x,0) =ug(x);  u(x,0) =uy(x) (1.4)

M. Al-Gharabli And S. A. Messaoudi J. Evol. Equ. and established the existence and
uniqueness of the solution for the Cauchy problem. Hiramatsu et al. [9] introduced the
following equation

utt—u + u + ut + |u|2u = uln|u| (1.5)
to study the dynamics, Q-ball in theoretical physics.

2. Materials and Methods

Definition 2.1. ( weak solution of eq. (2.1))
U, +Au+ u+ h(u,) = kulnlu| (2.1

A continuous function u = u(t, x) is a global weak solution to the Cauchy problem (1.2) if:
u=u(t,x) € C((0,0) x Q)N L*(R, H"(12)) and ||ull ymq) < llugll umeq) Vt>0
u(t, x) satisfies equation (1-2) in the sense of distributions.

Lemma 2.2..Logarithmic Sobolev inequality

(see [13,14]). Let u be any function in H,™(Q) and a > 0 be any number. Then
2

1 ca
2 f |ul? In|u| dx < 3 [lull?in]|ul|? +E [Aul|? = (1 + na)|Jul|? (2.2)
Q

Lemma 2.3. Logarithmic Gronwall inequality

(see [8]). Letc> 0 andy € (0, T,Q). Let w be any function w: [0, T[ — [1, oo satisfies

w<c(l+ foty(s) w(s)Inw(s)ds),0<t < T,then
w < cexp (cfoty(s)ds), 0<St<T (2.3)
Lemma 2.4. The Cautchy — Schwartz inequlity

Recall: For the Hilbert space with a norm (u,v) and its resulted norm ||(u, v)|| =/ (u, v),
than the Cauchy-Schwartz inequation is  |u(x), v(x)| < |lullllv|l .
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3. Results and Discussions Galerkin method for existence of solutions

Theorem 3.1

Let (ug,uq) € HP(2) x L?(£2). Then, problem of equations (2.1) has a global
week solution as u = u(t,x) € C((0,T), H'*(2) n C*(0,T), L*(2) n C%(0,T), H™(Q2))
Proof: To proof the theorem we consider the standard Faedo-Galerkin method. We take an
orthogonal basis of the space HJ*(2) in the form {wj};ozl. This is othonormal in L?({2). Let

Vin = span{w1,w2, e e Wiy } and let the projections of the initial data on the subspace V,,, be
given by

ug'(x) = Xt qjw; (x) , ui*(x) = XL, bjw;(x)
where ul* - uy in H*(2) and ul® - u in L?(Q2), as m > «.

We search for an approximate solution u™(x,t) = §'n=1 g}n(t)wj (x) of the approximate
problem in V,,

Jo @Witw + Au™Aw + u™w + h(uw)dx = [ wu™in|u™|*dx, w € Vy,
u™(0) = ug" = Xz (uo,w;) w; 31

ur*(0) = uf* X0, (ug, wj) w;
This leads to a system of ODEg for unknown functions g}”(t). Based on standard excistence

theory for ODE, one can obtain functions:

g;:[0,tm) 2 R, j=12,...m,

which satisfy (3,4) in a maximal interval [0, t,;,),t, € (0,T ].

Then, using Cauchy-Schwarz’ inequality, we get

lu™(O11F < 2[lw™(0)I3 + 2

t aum
(s)ds
L%

2

t
< 2lum (0|13 + 2T f " (s) 12ds 3.2)
0

t
lu™(ON1F < 2[lu™(0)II3 + 2TC (1 +f [lw™ (17 Inflw™ 13 dS>101 (3.3)
0
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Applying the Logarithmic Gronwall inequality to the last inequality, we obtain the following
estimate

lu™||3 < 2¢,e%67 < 2¢,
Hence, from the inequality (3.8) it follows that:
uf 1122 ) + 18U™ 12 + ™72, < Cs

where (5 is a positive constant independent of m and t. This implies

sup |[[ul||? + sup [lAu™|%, 0y + sup U™ < C (3.4)
te(0,tm) G te(0,tm) O ot Q) *

Therefore, u™(x, 0) makes sense and u™(x,0) = u(x, 0) in L?(Q)

Also, we have u™(x,0) = uf*(x) = uy(x) in H*(QY)
Hence, u(x,0) = uy(x)

So, uf*(x,0) makes sense and u(x,0) - u;(x,0) in H7™(Q)

But ul™(x,0) = u™(x) » u;(x) in L?(Q)
Hence, u:(x,0) = uy (x).

4. Conclusions

The finite element and Galerkin methods are currently the standard numerical

technique in use to solve various nonlinear problems.

We show that t,,, = T and that the local solution is uniformly bounded independent of m and
t. So, the approximate solution is uniformly bounded independent of m and t. Therefore, we

canextend t,,, to T.

The methods retain the advantages of weak formulations, which lower the continuity

requirements of matching elements and permits to use simple basis functions.

However, these methods demand a great amount of numerical integration.
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Abstract

We consider water wave equation. We use a linear combination and a linear operator
to the solution of this equation. Using the Galerkin method we give the idea to
approximate the solution with a polynomial on water wave equation. The polynomial
satisfies the water wave equation using a set of parameters. Giving the exact solution
and the approximation of solution we can compare the exact error.

Keywords: Linear operator; approximate, solutions; water wave equation; linear parameters; Galerkin method

1. Introduction

We consider the idea to approximate the solution with a polynomial involving a set of
parameters. The polynomial is made to satisfy both the differential equation and the
associated boundary conditions. Using orthogonality of polynomials, we can approximate the
solution to the differential equation on shallow water wave equation. The method has been
used to solve problems in mechanical engineering such as structural mechanics, dynamics,

fluid flow, heat and mass transfer, acoustics and other related fields.

Milder, Miles and Broer deal with the water waves on the Hamiltonian theory of surface
waves (see [1], [2], [3]). The Galerkin method permitted finite-element techniques to be
extended into areas such as fluid mechanics and series solution of some problems in elastic

equilibrium of rods and plates (see [10]).

Waves in a surf zone were studied by Svendsen, Madsen and Hansen (see [7]). The idea of
approximation for long wave equations is given by Broer (see [4]). To get exact calculation

on approximation technique we use algebraic software as Mathematica ([11]).

Several other researchers have tested the validity of the KdV equation al}g ., variants in

laboratory experiments (Remoissenet [9], Helfrich and Melville [8]).
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2. Materials and Methods

Prior to the development of the finite element method, there existed an approximation
technique for solving differential equations. The basic idea is to use a function with a number
of unknown parameters to approximate the solution. Then a weighted average over the
interior and boundary is set to zero.

Let we have a linear equation Lu=v (2.1)

Where u is the unknown function and v is the given function. L is a linear operator
(differential operators, matrices etc.). An approximate solution to eq. (1.1) is given by a linear
combination of N base vectors in the

linear space as U= XN ue; (2.2)

where u; is the unknown coefficient and e; is the base vector in the linear space.

Define E, the error between the approximate solution and the exact solution as
E=LUi—c=LYNL ue —c=%L ule(x) —c(x) (2.3)

3. Results and Discussions of Approximation

The finite-element method is a special case of the Galerkin method in which the base
functions are chosen such that each base function becomes 1 at the corresponding nodes but
otherwise 0 at other nodes. The link with the Galerkin method permitted finite-element
techniques to be extended into areas such as fluid mechanics.

Let’s we have the forth differential equation for a plate space as follow
tw 9w | atw _ puxy) | 9w (3.1)
ax* ' 9x29y? = 9y* D dx2 ’
where, p, is the lateral pressure that is being applied, D is the flexural rigidity of the wave.

Since Eq (2.1) is a fourth-order differential equation, two boundary conditions, either for the
displacements or for the internal forces, are required at each boundary. This equation can be
rewritten using the two dimensional Laplacian operator

2 2
<V2= 9 67) as: 105
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22w
ViV2iw = % W (32)
Consider a differential operator L, defined as
o* o* 0*
L (3.3)

~ |ox® * 0x?0y? * dy*

We can express the solution to the above equation in terms of the eigenfunction and
eigenvalues, which are defined as:

Leym(x,y) = ApmLlenm(x,y) (3.4)

where e, (x,y) are the eigenfunctions and 4,,,,, are the corresponding eigenvalues. Once the
eigenfunctions and eigenvalues are known, it is possible to express w(x,y) as,

w(x,y) = i i Wrme mm e, (X, Y) (3.5)

n=1m=1

We can write the above equation in the following form,
Ac = A, BC, (3.6)

where

a b
o = f f LLF, (. y)f, Cx, y) dydx
00

(3.7)

a b
by = f f Lfi(x,)f, G ) dydx
00

The quantities A and B are N x N square matrices as shown below:

A1 or eer eee e AN b11 fr e we erw blN

ANN «or ove oee e ANy bNN e vee ran e bNN

where A,,,,,, 1s the eihgenvalue and ¢ will be the corresponding eigenvectors.  1¢g
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Simply Supported Boundary Condition on Approximation

At first, considering the simply supported boundary condition for a square plate dimensions
a and b subjected to lateral loads.

The governing differential equation of the free zone subjected to lateral loads is:

o*w o*w *w _ py(xy) n 2%w
dx* = 0x%20y2 = oy* ) dx?

(3.8)

where, p, is the lateral pressure that is being applied, D is the flexural rigidity of the wave. A
boundary that is prevented from deflecting but free to rotate about a line along the boundary
edge, is defined as a simply supported edge. The conditions on a simply supported edge
parallel to the y-axis at x = a, are.

2 2 Wlyeq =0 (3.9)

0 0

Wleeg = =D + ﬁa—yf)x=a =0 (3.10)
(3.11)

The first step in solving this problem is to systematically choose a trial function e that
satisfies the plate’s boundary conditions. Polynomial approximating functions will be used to
represent the lateral displacement of the plate. In this discussion, the trial function e;(x, y) will
be represented as:

N N
0:xy) = ) ) alifly(x,y) (3.12)
i=1 =1
where
u;(x,y) = xb - yMi (3.13)

and, L; and M; are positive integers and @;(x,y) are coefficients to be determined

In the simply supported boundary condition example, it is found that an eight order
polynomial is the lowest order possible to satisfy the boundary conditions

@;(x,y) = a[1,1] + a[2,1]x + a[3,1]y + a[4,1]xy + a[5,1]x? + a[6,1]y? + a[7,1]xy? +
o tal42,1]x3y5 + +af43,1]x%y° + a[44,1]xy” + a[45,1]y8 (3.14)

4. Conclusions

The numerical method can be used to approximate the solution to ordinary differential
equations, partial differential equations and integral equations.

Several other researchers have tested the validity of the KdV equation and variants in
laboratory experiments (Remoissenet [9], Helfrich and Melville [8]). Their study includes a
numerical scheme with error estimates, a convergence test of the computer code, a
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comparison between the predictions of the theoretical model and the results of laboratory
experiments

The Galerkin method is used to determine he coefficients of approximated polynomials. The
finite element and Galerkin methods are currently the standard numerical technique in use to
solve various nonlinear problems on water wave equations and shallow water wave equations.
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ABSTRACT

In an unpublished work, explicit differential equations representing the commutative pairs of
some well-known second-order linear time-varying systems have been derived. In this
contribution, the commutativity of these systems are investigated by considering 27 linear
second-order differential equations. It is shown that the system modeled by each one of these

equations has commutative pair or not with (or without) any condition.
Keywords: Commutativity, differential equations
1. INTRODUCTION

It is well known that cascade connection is the connection of two subsystems one after
the other so that the output of the first system behaves as the input of the second one. The
order of connection becomes important sometimes and one must decide which subsystem
should be the first one. For this aim, secondary characteristics of the combined system
concerning such as sensitivity, disturbance, robustness should be considered; then engineering
skill, experience, and most possibly some mathematical analysis are needed equipment.
Although, the input-output relation of two interconnections are the same in ideal conditions,
one of them comes out to be preferable when the mentioned secondary performance
characteristics are of concern. Hence, commutativity, that is the invariance of the main input-
output characteristics with the order of connection in a cascade structure, comes out as an
important subject for scientists and engineers.

Two different cascade connections 45 and BA of the subsystems A and B where 4
and B are assumed to be continuous time systems with time-varying parameters are
considered. If both of AB and 54 have the same input-output relation we say that the pair
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E. Marshall was the first scientist who defined and studied the above commutativity
concept [1]. He mainly released the commutativity conditions for first-order linear time-
varying systems. His work also includes the reality that first and higher order systems can be
commutative only if they are of the same kind, time varying or invariant. Although
elementary and simple, Marsall’s work carries importance of introducing a future research

subject in the literature.

After that, commutativity has been investigated by a few scientists only and several
important developments have been realized theoretically. M. Koksal [2] and S. V. Saleh [3]
are the only scientists until 2011 since Marshall’s paper in 1977. They derived commutativity
conditions of second-order linear time-varying systems. These conditions are studied in [4]
for systems of any order. A summary of the previous results including the case of non-zero
initial conditions, and explicit commutativity conditions for linear systems described by a
fifth-order differential equation with time-varying coefficients were presented in [5] by M.
Koksal and M. E. Koksal.

The importance of cascade-connection becomes prominent in electrical circuits [6, 7].
Further, one of the basic tools of modulation in communication theory is the use of linear
time-varying electronic circuits. Therefore, the subject of commutativity when linear time-

varying differential systems are of concern becomes crucial in applications as well.

In this study, many of the second-order linear differential equations in the literature are
reviewed in Chapter 2. In Chapter 3, the theoretical results of [4] are applied to these second-
order differential equations for finding their commutative conjugates. Finally, the paper ends

up with Conclusions which constitute Chapter 4.

2. SECOND-ORDER DIFFERENTIAL EQUATIONS
Let the system 4 be described by

a, ()7, () + a, (£) V() + ag(t)y,(t) = x,(£);t =0 (1)

which is a second-order linear differential equation with time-varying coefficients. Assume
the initial conditions are ¥4(0) and ¥4(0). The coefficients @ (%), a;(t) and a5(t) are such

that @»(t) £ 0. The input and output of System 4 are represented by *4(t) and ,1-}40(?],
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respectively. We notate that ¥7,(t) = v, (t) = }rA[r] v (t) = yvi(t) = UA[:I‘j and these

de®

notations will be also used for some other variables be in the rest of the paper.

Some famous differential equations are listed below and treated in this paper. In

general, they are famed by the name of the person who introduced them in the literature [8-9].

Among these 27 equations, some of them are special or general forms of the others.
Further, although they have different names, some can be transformed to others. Which one is
special or general form being not important in this study. We study them for the existences of

their commutative pairs, and search for the commutative pairs if they exist.

Table 1: Well-known second-order linear differential equations

Line | Name of
# Equation

1 |Baerwave DE | (x—a)lx —ay)y" +3[2x — (d, + dy)ly’ — (k5% —px + g%)y = 0

Formula

) g(;:nﬂuent Hyp. | .~ PO e

3 Coulomb wave | i [L 2y LE+1 J] =
DE i xz

4 | Halm’s DE Q+27FPy" +dy =0

5 | Hermite DE y' —Zxy' +dy=10

6 | Ince’s DE-first | ¥” + Gsin(2x) y' + [n — péecos(2x)]y = 0

7 Ince’s DE- . @ +Pros2t +ycosdt ;
second e (1 + acos2t)®  °
8 | Kelvin DE 2y +xy = (T oY)y =10
9 Lame’s DE- (=" Wx —e " +axlx® — b + 27—l
first —1m(rr"—l:r: —".!J +|::' Sply =0
10 Lame’s DE- + J ; El(n- +5 g —plp+ 1 + kx| 6
second -4 Y e xlr —allx —B) ¥=
11 Legendre DE- (L—x®ly" —2xy' +ulp+y=0
first
12 Legendre DE- | ¢, _ " —2xy' + u{a Wy G I} =0
second
Legendre DE- o g e T 5 _—
13 third (1 —x%y" —2xy +_.RnLr D—plp+1) r:_ll;._n

14 | Lommel DE 20" 4 xy' + (37 —vP)y = kxit

H=
H=
H=
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T z
° ek — = m — |
15 | Malmsten’s DE | y" +—y' = (4= +z:) ¥
Mathieu DE-
I (g — 2 . | —
16 first ¥+ (a — 2qeos2xly =0
17 Mathieu DE- v+ [ —2r)cotx]ly’ + (a + kfcos®xly = 0
second
Mathieu DE-
g — 2 h §l=
18 third 3 (a — 2qcosh2x)y =0
Poschl-Teller & LfR(k—1) A@-1)y ]
19 DE-first iy [n (s:'n:{nr}+ cus:(nx]]_b ]:1 =4
Poschl-Teller o | f k-1 A —1) ] :I i
20 DE-second s lﬂ (Sm 172 (ax) T cos K2 ax) |
21 | Sharpe’s DE " +y' +x+ Ay =0
Spheroidal - ; ( e )
1 — x=y™ — Zxy A Saed —lv=0
22 wave DE-first Wath o R e
Spheroidal -3
23 | wave DE- (1 +x%)y" + 22y + (A —cfxT — =i L)y =i
second
24 Sturm-Liouville piv" + gty + [wix) —glxi]y =0
DE
25 Ultrasphencal (1—x"v" —(2a+ Lxy" +nin+ 2aly=0
DE - g ’
. : 1. = =g
26 | Whittaker DE ¥+ (—1 +=4 ~ ]j‘ =0
X X
27 géllttaker-Hlll y'+[A+Bros2r+ Ccosdx]ly=10

3. COMMUTATIVE PAIRS OF SECOND-ORDER DIFFERENTIAL EQUATIONS

by

We now consider another second-order time-varying system 5 of type 4 represented

by (£)¥5(t) + by (t)¥5(£) + by(t)yp(t); (£);t = 0,

with the inputs and outputs *z(t) and ¥z (t), respectively:; with the initial conditions ¥5(0)

and ¥5(0); and with the time-varying coefficients b,(t) £ 0, b, (t), by(t).

arc

The set of necessary and sufficient conditions that systems 4 and B are commutative
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b, s, 0 0 €
[51] =22 az”® 0 [cil, (3a)
by ay a;"*(2a; —d;)/4 1]l%

—al® i [ﬂ,} - ﬁ(clﬂi +3a; — 8a, a4, + 84,a, — cl»aziij]] c; = 0. (3b)

Conditions (3a) requires three relations between time-varying coefficients of systems
A and B, where ¢a.c,, ¢y are arbitrary constants. Condition (3b) implies that not all second
order systems have commutative pairs; and to have a commutative pair like B, the
coefficients of A must satisfy Eq. (3b) with the constant ¢; in Eq. (3a). Note that if ¢, in Eq.

(3a) is chosen as zero, order of system B reduces to one. When both ¢, and ¢; are zero, B

. . . 1
becomes a scalar (algebraic) system with gain —, ¢ # 0.
o

The commutativity property of the linear second-order time-varying differential
equations listed in Section 2 are investigated next by using (3b) and the results are listed

Table 2.

Table 2. Commutativity property of differential systems described by some famous DE

Conditionally
Not commutative Commutative
commutative
1,3, 6-7,9-10, 12, 15-20,
2,5,8,11,13-14, 21, 24 4
22-23,25-27

Example: The example is for the case of “Conditionally commutative”. We assume a system
A which is modelled by the second equation (Lame’s differential equation-first type). The
coefficients of Eq. (1) are

a, = (x*—=b*)(x*—c*),a, =x(x*—b*+ x> — %), a; = m(m + 1)x* + (b* + ¢*)p for
Lame’s differential equation. The expression in the parenthesis in Eq. (3b) should be a
constant for the existence of the commutative pair of a system. For i = 0 or m = —1, this
expression is constant then the equation has commutative pair. Using Eq. (3a), the coefficients

of its commutative pair are found as follows: 113
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2 = Cafiz = £3(x% — b*)(x2 —c?),

by = caay + a2 = cox(x2 — B2+ x2 —c2) + ¢4/ (22 — B (x2 —c2),
—_— -
bc, = C:ﬂ.c,+ C'J_ﬂ-j_ : {_Eﬂ-l e ﬂ:j@ + Coy

Cy
5 (2 — b3 x2— o)

=—(b*+ciip+ Z Ra{x?— b2 +x% — ) — 4x3 + 2x(c? + b2} + ¢l

Then, commutative pair is written as follows:

ea{xZ—b)(xZ— ey + |eax(x2— b2 + x2 — D)+ e/ (x2 — b)) (2 — CE}] ¥

€1
2 (% =B Jxt —c?)

+[—f_bj +cip+ - [Zx(x2—b2 +x2 —¢c2)—4x3 + 2x(c2 + b3) + r:.}]}y

In the following Table 3, commutativity conditions are given and the final forms of the
equations are presented in the case of the fact that condition is used in the stated equation. In
Table 4, commutativity conjugates of all equations are presented after finding them by using

(3a).

Table 3: Commutativity conditions

Line| Name of Condition for . .
. . . Final Forms of Equations
# Equation Commutativity

1 | Baerwave DE |k=p=10 (x—d)(x —da)y"+ [x —0.50d, +d- )]y — gy =10
) Coulomb wave | p=0,L=0 P

DE iim=0.L=1
3 | Halm’s DE no condition (1+x)%y" +dy =0
4 | Ince’s DE-first |d=10 y' +uy=0

Ince’s DE- .
5 g=f=y=0 ¥y =0

second f
6 | Lame’s DE-first| ' ™ =2 (x2— b2 — e + xlx =B + 2 — ey + (B2 + ¢

iym=-1
s .b. k=0

7 Lame’s DE- 2 g e B B o

second B AT L T

iNp=-1.5
I ., 1

3 Legendre DE fim=—0.5 a2 cay it p= _ ]}, s

second ifym = 0.5 41273
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i1 a= 0,7 —2r=4s -
- Yoty ——¥= 0
9 | Malmsten’s DE | ) m=0rm—2r=4s 3% s
fif)ym=—2, }-"+f}-f_(ﬂ+? 4__"\,1,:[:
pf—2r=4ds—4g " G
10 Mathieu DE- o
first v +ay=10
1 Mathieu DE- S 20
second
12 g/llﬁ.glleuDE- g=0 v —ay=10
13 Poschl-Teller | a=0
DE-first ffk=A=0
ink=04=1 v —athty =0
Péschl-Tell “‘r-‘ y i
14 | /9% erer v k=14=0
DE-second !
NMk=4=1
15 Spheroidal wave TR AR E’l_ . 1 _‘]}rz i
DE-first i)c=0,m=—0.5 4(1—x7)
Spheroidal wave| ii) ¢ =0,m = 0.5 i y 1 "
16 DE-second (1+x 0" + 253 +[1__"_4{J.+.r“|]} =0
17 Ultraspherical | a=-1 (1—x7)y" — 30y +nn—2)y =0
DE iie=—2 (1—xy" + 32y +nn—4)y =0
18 | Whittaker DE k.=0,m=10.5 yegr=e
19 \S]éuttaker—Hlll e P

Table 4: Commutative conjugates of differential equations in Table 3

Line . - .
4 Name of Equation | Commutativity Conjugates
ca{x— d)(x — da)y" +{ealx — 0.5(d, + do)] + £/ (5 —dy Hx — da) } '
1 | Baer wave DE = { ! - k J
+{—c.q” +eply = X
2 | Coulomb wave DE | cov"+cpv'+ (2 + cply = 1o
3 | Halm’s DE co(1— x5y e (=2l + (e A—cx+ ey = x;
4 | Ince’s DE-first Ea¥ " + Cy¥ + (Call+ €)Y = Xa
5 | Ince’s DE-second | cav"+eyy'+ ey = %2
eafxt — BT — e By + [eax(xt — BT+ 27 — ey (xT =By — e ]y
b
6 | Lame’s DE-first +[—(b* + 5 Ip+ —— £ [Zx(x® = b+ 2" — T ) —4x® + 2x(c? + B°
ca{x—b7)x" —c7)
3t 3 3c.  3c
bl : LI T ¥ A Lo _j_ it
7 | Lame’s DE-third cay "+ ( g €1 )y {F St '3[:-:]} =1
] Legendre DE- sl —22y" ~ (2658 — exT= ) y" 115
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0.25 3 -1—2x
+[|:':I:,.:.!i_;.!+l]— =]+, +|:'D]1.'=.r:
— X 441 — x-
" r ] r
9 | Malmsten’s DE €2y +(c;;+ rlj}r’+[—c:{Azm+E-j+cL +|:=,]_1:=x:

10 | Mathiue DE-first

cav" + v +lc.a + o)y = Xo

11 | Mathieu DE-second

12 | Mathieu DE-third | ev” + ey’ +(—coa +egdy = x;

Pdschl-Teller DE-

13
first e e Hl—eatht ey =x
Poschl-Teller DE- | ~ . : wr =
14
second
. o g i | R T — .I' i N
Spheroidal wave ex(1=x%y" — (25— ef1-7))
15 0.25 4 -1 —2%
DE-first +[|:'3(.-1— =]+ +':'n]}' =,
1—x% a1 —x°
T T SIS
. Cakl +x7)y +|2ex+ eyl x]y
Spheroidal wave 2 e Ry )3
16 025y  —1+2x
DE-second + [c:(.i. =t -]+ ¢, +'3n]
1t/ “afize
el =2 =~ [::‘t':':-'r & '31"- l If (n*—n) —c, _...+ cn}."=.‘r:
17 | Ultraspherical DE - [ vloi
Eall— x5y " + |3+l — x| v + [rgtaz'—4r:,l+ £ +c ]}r =X,
L 1.1“_ — o o
Fr T C:
18 | Whittaker DE ey + ey ':_E+ a5)y=1%

19 | Whittaker-Hill DE | c;v" + ¢y + (€24 +ep)y = x;

4. CONCLUSION

In this study, second-order linear differential equations are searched in the literature and 27
second-order linear differential equations are presented. The existences of their commutative
pairs are investigated with (or without) condition and which equation’ commutativity pair
exits is presented with (or without) any condition. Commutativity conjugates of differential

equations whose commutativity pairs exit are constructed.
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Abstract

In this paper we prove a version of the Saks-Henstock Lemma for (oM)-integral ((oH)-
integral, strongly (oM)-integral,) integrals with values Banach lattice. We have used it to
prove that one interesting difference between these kind of integration is the fact that the
(oH)-integral possess the properties represented by Hake theorem.

Keyword(s) Banach lattice, (o0H) and (oM)-integral, Hake theorem.

1. Introduction and preliminaries

It is known that the McShane integral and the Henstock-Kurzweil integral are two kinds of the
Riemann-type integral. Relations of different generalizations of Riemann-type integral was done in the
last decades and afterwards the notions of order-type integrals were introduced and studied for
functions taking their values in ordered vector spaces, and in Banach lattices. In particular we can see
[51, [4], [2], [10], [9], [6], [7], [8], [11] [12]. We are inspired from the works of Candeloro and
Sambucini [5] as well as Boccuto et al. [1], [3] about order —type integrals. In this paper a definition of
strongly (oM)-integral, ((oH)-integral,) is given and a version of the Saks-Henstock Lemma for (oM)-
integral ((oH)-integral, strongly (oM)-integral,) integrals with values Banach lattice are proved. We
have used it to prove that one interesting difference between these kind of integration is the fact that
the (oH)-integral possess the properties represented by Hake theorem.

A sequence (1;,),, is said to be order-convergent (or (o)-convergent ) to r, if there exists a sequence
(Py)n € R, such thatp,, ! Oand |r;, — 7| < p,, Vn €N.

(see also [9], [11]), and we will write(o) lim ,1;, = 7.

A gage is any map y:T - R*. A partition I1 of T is a finite family IT = {(E;, t;):i =1, ..., k} of
pairs such that the sets E; are pairwise disjoint sets whose union is 7" and the points t; are called tags.
If all tags satisfy the condition t; € E; then the partition is said to be of Henstock type, or a Henstock
partition. Otherwise, if t; is not necessary to be in E;, we say that it is a free or McShane partition.
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Given a gage y, we say that IT is y-fine if d(w, t;) < y(t;) forevery we E; and i =1, . . . ,k. Clearly,

a gage y can also be defined as a mapping associating with each point ¢; € 7 an open ball centered at

t;and cover E;.

Let us assume now that X is any Banach lattice with an order-continuous norm. For the sake of
completeness we recall the main notions of integral we are interested in.

Definition 1.1.

A function f: T — X is called (0)- McShane integrable ((oH)-integrable) and J € X is its (0)-
McShane integral ( (oH) -integral) if for every (o)- sequence (b,), in X, there is a
corresponding sequence (¥;,),of gauges (y,,(t): T — 10, +oo[ such that for every n and (y,,) -
fine M-partition (H-partition) {(E;, t;),i = 1, ...,p} of T holds the inequality

lo(f, 1) = ]| < by-
Where a(f, 1) = Z?=1 f(t;) n(E;). We denote
J = (oM) [, f,respectively ] = (oH) [, f.
Theorem 1.2 [5].

Let f: T — X be any mapping. Then f is (0)— Henstock integrable ( (0)- McShane integrable) if and
only if there exist an (0) —sequence (b,,),, and a corresponding sequence (y;, ), of gages, such that for

every n, as soon as 1,1 are two -¥» fine Henstock (McShane) partitions, the following holds true:

lo(f,11) —a(f,11) 1< by,
Definition 1.3.

A function f: T — X is said strongly oM (oH)-integral on T if there is an additive function
F:%B — X, such that for every (0)- sequence (b,), in X there is a corresponding sequence
(Yn)n of gauges (¥, (t):T — ]0,+[ on T such that for every y, -fine M- partition(H-
partition) IT= {(E;, t;):i = 1, ...., s}of T holds the inequality

i=|f()u(E) — F(ED| < by
where F (E;)= (oM) fEi f (F(E)=(oH) fEi f)
Denote SoM (SoH) the set of functions which are strogly oM (oH )-integrable on T.

2. The Saks-Henstock Lemma
Lemma 2.1 (Saks-Henstock).

Assume that f:T — X is (0)— McShane integrable. Given (0)- sequence (b,) agsume that a
corresponding sequence (¥, ), of gauges (¥,,(t): T — 10, +oo[ on T such that for every n
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and for every y,,-fine M- partition IT= {(E;, t;):i = 1, ...., k}, of T holds the inequality

|2 £t n(E) — (M) [, f| < bn

Then if {(F}, T]-): j=1,..., m} is an arbitrary y,,-fine M-system we have

|27 () 1(E) = (oH) f, )| < b

Proof. Since {(Fj,‘[j):j =1, ....,m} is a y, -fine McShane system the set I\ U;’;l(F}O) contains of a

finite system K;l=1,....,p of non-overlapping intervals in T.The function f is (0) -McShane
integrable and in virtue of Bolzano —Cauchy theorem (1.2), the integral (oM) le f exists. By the

definition of the integrals, for any (0) — sequence (a,), there is a sequence (yy), of gauges on M,,
such that (5, (t)) < (¥, (t)) for t € K; such that for every | = 1, ...., p, we have

|z, F(sD R(ED = (o) f f] < 22
Provided {(El-l, Sl-l): i=1,..., kl} is ¥y, -fine M-partition of the interval K;. The sum

Sy () u(F) + S0, B, F(shu(ED

represents an integral sum corresponds one M-partition ¥, — fine of the interval T and consequently
by the assumption we have

L F @) r(F) + Z0, B FsDHR(EL) = (oM) [, f| < by

Hence
|Z7e D RED = (oM) f, £| <
< |20 () n(F) + 0, T FsHr(ED = om) [, £+

k n
+ IV |2 FDu(ED) = M) [, f| < bn+ P22 < by + an.
We obtain the proof of the theorem.

If we replace M- partition in the proof of Lemma 2.1 by H- partition we obtain the following result
for the (0)— Henstock integral.

Lemma?2.2 (Saks-Henstock).

Assume that f:T — X is (0)— Henstock integrable. Given (0)- sequence (by), gssume that a
corresponding sequence (¥;,), of gauges (¥,,(t): T — 10, +oo[ on T such that for eovery n
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and for every y,,-fine H- partition I1= {(E;, t;):i = 1, ...., k}, of T holds the inequality

|2y £ (B = (o) [, | < bn

Then if {(F}, T]-): j=1,..., m} is an arbitrary y,,-fine H-system we have

[ () () = o) f, | < b
The following variant of the Saks-Henstock lemma is for the strong version oM (oH)-integrable.
Lemma 2.3 ( Saks-Henstock)

Assume that f:T — X is SoM (SoH)- integrable then to every (0)- sequence (b,), in X
there is a corresponding sequence (¥,), of gauges (y,,(t): T — ]0,+co[ on T such that for
every n and for every arbitrary y,,-fine M- system (H-system) II= {(E;, t;):i=1,....,s}of T
holds the inequality

izl fEDu(E) — F(ED| < by
Proposition 2.4

If f:T - Xis SoM (SoH)- integrable with the additive interval function F: 8 — X .Then for every
EE B

F(E)=(oM) [, f (F(E)=(oH) [, f)

Assume that f:T - X is SoM (SoH)— integrable and E€ B then to every (0)- sequence
(bp)n in X there is a corresponding sequence (¥y,)n of gauges (y;,(¢t):T — ]0,+oo[on T
such that for every n and for every arbitrary ¥, -fine M- system (H-system) II=
{(E;,t)):i=1,...,s}of T holds the inequality

ZifEIu(E) — F(ED| < by

If {(E;, t;)} is an arbitrary y,,-fine M- partition (H-partition) of the interval E then by Lemma 2.4 we
have

1% fDuE) — FE)| = | [F tdu(E) — F(E)]|
< 3 If tDu(E) — F(ED| < by
And this shows that F(E)=(oM) [, f (F(E)=(oH) [, f).
Theorem 2.5 (Hake)

Let [a,b] € R, f:[a,b] = X.If the integral (oH)be fdu and (0)-lim,_,,+(oH) fcbf = L € X exists

for every a < ¢ < b then the integral (oH) f; f exists and holds the equality:
121
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b
(OH)f f =L
a
for any y,,-fine H- partition {(uj, [aj_l, aj]):j =1,..., m} of the interval T .

By the definition 1.1 the integral (oH) f(f f exists and holds the equality:

b
(oH)ff:LeX

3.Conclusions

We prove a version of the Saks-Henstock Lemma for ordered integrals integrals with values Banach
lattice. We have used it to prove that one interesting difference between these kind of integration is the
fact that the (0)- Henstock integral possess the properties represented by Hake theorem.
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Abstract

Recently, there are many paper paying attention to the integration in Riesz space. There is
introduced and studied the notions of order-type integrals, for functions taking their values in
ordered vector spaces, and in Banach lattices. In this paper we prove some convergence
theorems of order- Mcshane (Henstock- Kurzweil) equi —integrals on Banach lattice and
arrive same result in L-space as on Mcshane (Henstock Kurzweil) norm-integrals.

Keyword(s) Riesz space, Henstock integral, Mcshane integral, (0)-convergence.

1. Introduction and preliminaries

Recently, there are many papers paying attention to the integration in Riesz space. There are
introduced and studied the notions of order-type integrals, for functions taking their values in
ordered vector spaces, and in Banach lattices. In particular we can see [6], [7], [3], [10], [9],
[5], [4], [8]. We are affected from the works of Candeloro and Sambucini [6] as well as
Boccuto et al.[1-2] about order —type integrals. In this paper a definition of strongly (oM)-
equi-integral (strongly (oH)- equi-integral) is given, some convergece theorems for the order -
equi-integrals with values Banach lattice are proved in particular, we give here some
convergence results for the strong version of order —equi-integrals.

A sequence (13,),, is said to be order-convergent (or (o)-convergent ) to r, if there exists a
sequence (p,),, € R, such thatp, ! 0 and |1, — 1| < p,, V7 € N.

(see also [9], [11]), and we will write(o) lim ,1;, = 7.

A gage is any map y:T — R*. A partition Il of T is a finite family IT = {(E;, t;):i =
1,...., k} of pairs such that the sets E; are pairwise disjoint sets whose union is T and the
points t; are called tags. If all tags satisfy the condition t; € E; then the partition is said to be
of Henstock type, or a Henstock partition. Otherwise, if t; is not necessary to be in E;, we say
that it is a free or McShane partition.Given a gage y, we say that [T is y-fine if d(w,t;) <
y(t;) for every w € E;and i = 1, . . . k. Clearly, a gage y can also be defined as a mapping
associating with each point t; € T an open ball centered at t;and cover E;.

Let us assume now that X is any Banach lattice with an order-continuous norm,¥or the sake
of completeness we recall the main notions of integral we are interested in.
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Definition 1.1.

A function f: T — X is called (0)- McShane integrable ((oH)-integrable) and J € X is its (0)-
McShane integral ( (oH) -integral) if for every (o0)- sequence (b,), in X, there is a
corresponding sequence (¥;,),0f gauges (y,,(t): T — ]0, +oo[ such that for every n and (y,,) -
fine M-partition (H-partition) {(E;, t;),i = 1, ...,p} of T holds the inequality

lo(f, 1) = ]| < by.
Where o (f, 1) = X7, f(t) n(E;). We denote

J = (oM) fT f, respectively | = (oH) [, f.
Theorem 1.2. [6].

Let f: T — X be any mapping. Then fis (0)— Henstock integrable ( (0)- McShane integrable)
if and only if there exist an (o) —sequence (b,), and a corresponding sequence (¥,,),, of
gages, such that for every n, as soon as I1",I1" are two -y, fine Henstock (McShane)
partitions, the following holds true:

lo(f,11") —a(f,1I') | < by

Definition 1.3.

A collection F of functions f: T — X is called (oM)-equi-integrable ((oH)-equi-integrable) if
every f € F is (0) —McShane integrable ((0o) —Henstock-Kurzweil integrable) and for any
(0)- sequence (b,,),, thereis a corresponding sequence (y;,), of gauges such that for any
f €F  the inequality holds provided {(E; t;),i = 1,...,p} is () -fine M-partition (H-
partition) of T.

1 f(&) R(ED = (M) [, f|<bn

(

1 () u(E) — (o) [, f| <by)
Lemma 1.4. (Saks-Henstock)

Assume that an (oM) -equi- integrable ( (oH)-equi-integrable) collection F of functions of
f:T — X is given. For every (0)- sequence (b,,),, assume that the sequence (¥,,), of gauges
on T is such that for every n and for every ¥, -fine M- partition (H- partition) II=
{(E;, t):i=1,...,s}, of T holds the inequality

124
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() n(E) — (o) [, f| < by
Then if {(F], Tj): j=1,..., p} is an arbitrary y,,-fine M- system (H- system) we have

|27 G u(Fy) = (o) [, 1] < b

|27 () u(Fy) = (M) [, 1] < b

For any f € F.

2. The (0)-convergence properties of ordered equi —integrals
Theorem 2.1.
If F={f,:T - X;u € N) is (oM)-equi-integrable sequence such that.

(o) —lim £, (&) = f(®), teT

Uu—0o

Then the function f: T — X is (0)-McShane integrable and holds the equation
((0) = lim (oM) [, fu = (oM) [, f).

Definition 2.2. A collection F of functions f: T — X is called strongly (oM)-equi-integrable (
strongly (oH)-equi-integrable) if every f € F is strongly (0) —McShane integrable ( strongly
(0) —Henstock-Kurzweil integrable) and for any (o)- sequence (by), there is a corresponding
sequence (), of gauges such that for every n and for every y, -fine M- partition( H-partition)
M= {(E;,t;):i =1,....,s},of Tand any f € F holds the inequality

| Xi=1 £ (&) u(Ey) — F(ED|<by,
F is the additive X-valued interval function corresponding to f € F.
Theorem 2.3.

If F={f,:T - X;u € N) is a strongly (oM)-equi-integrable sequence such that.
(0) —lim £, () = f(®), teT

UuU—0o

Then the function f: T — X is strongly (0)-McShane

(o) = lim F(T) = F(D).

E,, F are the additive X-valued interval function corresponding to f;,, f respectively.
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Proof. From the Definition 2.2. implies the (0M)-equi-integrability in dhe sense of
Definition 1.3 ,Theorem 2.1 implies the Mcshane integrability of f as well as the relation
(o) — lim E,(T) = F(T).
u—>0co
for every interval E C T.
Let (0)- sequence (b,), be given and let (y,,), be the corresponding sequence of gauges from

the definition of strong (oM)-equi-integrability of the sequence f;,. Suppose that I1= {(E;, t;):i =
1, ...., s} is an arbitrary y,,-fine M- partition, of T and consider the sum

=l f@Dp(E) — F(ED| <Xiilf)u(E) — fu(€)u(ED |+
?=1|fu(ti)#(Ei) - Fu(Ei)HZ?:llFu(Ei) - F(Ei)l < bn + bn + bn

We obtain

D I Eu(ED — F(ED| < 3b,

and the strong (0)- McShane integrability of f is proved.

Analogously a similar convergence result for the strong (0)- Henstock-Kurzweil integrable of
f can be proved.

3.Conclusions

Some convergece theorems for the order - equi-integrals with values Banach lattice are
proved in particular, we give here some convergence results for the strong version of order —
equi-integrals on Banach lattice and arrive same result in L-space as on Mcshane (Henstock
Kurzweil) norm-integrals.
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Abstract

The main concern of this study is to propose high order multistep collocation method for
evaluating the numerical solution of stochastic fractional integro-differential equations. For this
purpose the unknown function is approximated by Hermit interpolation and its Caputo fractional
derivatives are calculated and substituted in main equation. Also using some concepts of financial
mathematics, It’o integral in main problem transform to classic Stieltjes integral. Then utilizing
multistep collocation method, obtained equation reduces to some algebraic system. Illustrative
examples are given for showing the efficiency and accuracy of the method.

Keywords: Hermit interpolation, Stochastic integro-differential equation, Fractional calculus, Newton Cotes
quadrature

1. Introduction

The aim of this research is to present a high order multistep collocation method for

numerically solving the stochastic fractional integro-differential equations of the form
t t

D*E(t) = v(t) + f k.(s,t)E(t)dt + j K, (s, t)E(t)dB(t), 0<t<1, (D
0 0

with initial conditions &£U)(0) = $i, j=01,..,|al, where &, v and k;,i = 1,2 are the
stochastic processes defined on same probability space, B(t) is a Brownian motion and
a € R and all Lebesgue and It’o integrals in the integral form of (1) are well defined. First
the unknown function é(t) is interpolated by Hermit interpolation and its Caputo
fractional derivatives are calculated and substituted in equation (1). Also using some
concepts in financial mathematics, It’o integral in main problem transforms to classic
Stieltjes integral. Then multistep collocation method is applied to reduce the obtained
equation to some algebraic system and for evaluating some integrals Gaussian quadrature
is utilized. Illustrative examples are given for showing the efficiency and accuracy of the
method.

2. Some Preliminaries

In this section we briefly mention some necessary definition and concepts for following
discussion. 198
2.1. Brownian motion process



INTERNATIONAL CONFERENCE ON MATHEMATICS
“An Istanbul Meeting for World Mathematicians”

Minisymposium on Approximation Theory & Minisymposium on Math Education
3-6 July 2018, Istanbul, Turkey

Definition 1: [1] A real-valued stochastic process B(t),t € [0, T] is called Brownian motion,
if it satisfies the following properties:
e (Independence of increments) B(t) — B(s), fort > s, is independent of the
past.
e (Normal increments) B(t) — B(s), has normal distribution with mean 0 and
variance t — s.
e (Continuity of paths) B(t), t = 0 is a continuous function of't.

Note 1: In this paper we consider B(0) = 0 (with probability 1).

Lemma 1: (Integration by parts [1]) Suppose f (s, w) = f(s) only depends on s and f is

continuous and of bounded variation in [0, t]. Then
t

t
[ rras, = r©B. - [ B 3)
0 0
2.2. Fractional calculus

Definition 5 :The Caputo definition of the fractional-order derivative is defined as:

a _ 1 x M) _
Def(x) = P fO P dt, n—1<a<n ne€ N,
where a > 0 is the order of the derivative and n is the smallest integer greater than «.

For the Caputo derivative we have [2]:

e DY“C =0, (Cis a constant),
e D=0, BE Ny, B <]Jal,

r(g+1) -
. D"‘xﬁ=mxﬂ “ BENy, B=[alor BER—N,, > |al,

where [a] denotes the smallest integer greater than or equal to @ and || denotes the largest
integer less than or equal to « and Ny = {0, 1,2,...}.

3. Multistep Hermit collocation method

In this section, we apply multistep Hermit collocation method to approximate the solution
of stochastic fractional integro-differential equations (1). Let A be a uniform partition of the
interval I with grid points t, =nh, n =0,1,...,N and let h be the step size, so we get N
subinterval A; = [t;, tj44], 1= 0,1,...,N — 1. For given real numbers p; with
0 < p1 <...< py <1, we choose the following collocation points in the subinterval A;:

ti,j = tl' +,Djh, ] = 1,2,...,M, i= 1,2,...,N— 1.
Now suppose ¥ be the interpolant polynomial of & evaluated by Hermit interpolation and

defined in the interval A; as
1 M

Yi(s) = Y(t; +sh) = Z z hE B0, K)ye(s), 0 <s<1, 4)
k=0 j=1
where yy ; are polynomials of degree 2M — 1to be determined by imposing the interpolation
conditions
l/’(k)(ti,,-) =p>,j,k), k=01, j=1,2,..., M. 129 (5)
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The method is constructed by imposing the collocation conditions, which will be described in

the following. The approximation of ¢’ in the interval A; is given by
1 M

h'(s) = k' (t; + sh) = z z R Bij, k)yh (). (6)
k=0 j=1
Applying the interpolation conditions (5), we get
yO](pr) ]r' y(,),j(pr) =0, yl,j(pr) =0, V{,j(pr) = 6jrr
where 6jr is the Kronecker delta. In Hermit interpolation for j = 1,2,..., M we have
¥0,i(8) = Lo (s) = L' ;(p;)Ly;(s), Y1,j(8) = Ly;(s),
where

Lo,j(s) = 11¢](S - )2 Lyj(s) = (S - pj)Lo,j(S).
Now we put
B: = (8(,1,0),..., G, M,0), B, 1,1),..., G, M, D))",

T
P(s) = (70,1(5); o You(8),71,1(8),- -, )/1,M(5)) )

thus we can write the vector form of equations (4), as ;(s) = B;T®(s). Utilizing property I

(integration by parts) we can rewrite equation (1) as

DEE(D) = (D) + ko (6,05 + [} k1 (7, 0E(DdT = [[ Ko (5, 0% (@B@dr,  (7)
where K,(1,t) = %( k,(t,t)é(1)). Now by substituting 1; instead of ¢ in equation (7) and
discritizng the obtained equation in mesh points ¢; j, we get

D*Pi(s)lp, = v(ti;) + ka(ti], ti,j)l/)i(s)lpj

+ [k (rty) W@ — [, Kyt ty;) Yi(0B(@dx, (8)
also we can write
tij i—q tr+1 ti+pjh
f kl(T, ti,j) l/)i(T)dT = Z f kl(T, ti,j) l/)i(T)dT+ f kl(T, ti,j) lpi(T)dT
0 r= (zt: . t
- hka (r,t.,)W:(Ddr +h f ko (.t i (Ddr, (9)
similarly e
Ly j—1 tr+l
fKZ(T’ti,j)¢i(T)B(T)dT=Zf K,(7,t;;) ¥i(D)B(1)dr
0 ti+pjh O
+f KZ(T,ti,j)l,bi(T)B(T)dT
t1

- hZsz(r t; ;) )i (DB(@)dr + h j K, (2t )i (DB(Ddr, (10)

r=090
Therefore using (11)-(12), we have

DYi(),, = v(tr)) + katig 1 )i (p;)

130
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i-1 1

+ hz f (kl(‘L', ti,j) - Kz(r, ti,j)B(T)) Y;()dr

r=00
+h [ (ka (. t3) = Ko (7, 6,)B@) (@,
Applying vector form of Y; (s) we get
'BiTDa(pi(S)lp,- =v(t;;) + .BiTkZ(ti,j: tij))Pi(pj)

i-1 1

+ hp;" Z f (kl(‘[, tij) — K.z, ti’j)B(‘L')) &;(1)dr

=00
Pj

+ hﬁl’T f (kl(T, ti,j) - KZ(T, ti'j)B(T)) (pi(T)dT. (11)

0

Now for calculating the unknown coefficients f; in equation (11) we should approximate the
integral terms by some appropriate quadrature rule. For this purpose we apply Newton cotes
rule, using suitable variable change in the second integral of (11), we get

3iTDa4’i(S)|pj =v(t;;) + BiTkz(ti,j: tij))Pi(p;)

i-1 Q
+ h,BiT Z Z (kl(T]" ti,j) — Kz (Tj, ti’j)B(T)) Cpi(‘[j)a)j
r=0j=1
Q
hp;"
p] ]Zl (kl(Tj; ti,j) - KZ (Tj, tl,j)B(Tj)) (pl(Tj) (12)

where 7; and wj,j=12,..,Q are Newton cotes points and weights, respectively.
It should be considered that for evaluating the values of Brownian motion B(.) in Newton
cotes points, we utilize the definition of Brownian motion. We know that B(t) has normal

distribution B(t) — B(s)~vVt —sN(0,1),t >s. So we set step length Ay = % for some
positive integer T and let B; = B(y;) and y; = jAy. Applying Note 1, we have B; = B;_; +
dBj,j =1,2,...,T. Also each dBj is an independent random variable of the form /Ay N(0, 1).

Now, using linear spline interpolation at point (y;, B;) approximate function for B(y) is
obtained [3].

4. Illustrative Example

In this section for showing the validity and accuracy of proposed method we calculate
the absolute error |(t, B(t)) — Yy (t,B(t))|, where &(t, B(t)) and Yy (t,B(t)) are the
solutions of (1) obtained for T = 1000 and approximate solution of (12) by using N-points
Newton cotes rule. Consider the stochastic fractional integro-differential (1) with

_ L 4 _ E 3 th—a tl-« _ _ _
v(t) = Sttt roa T e Ki(s,t) =s+t, K,(st)=s, 1(?::1— 0.5,
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with initial condition £(0) = 0. Table 1 shows the absolute error of presented method for
some different values of t and N.

t Q=5 Q=10 N =5 [4] N =10 [4]
0.0 0.00000 0.00000 0.0000 0.0000
0.2 0.00014 0.00006 0.0016 0.0004
0.4 0.00075 0.00007 0.0013 0.0011
0.6 0.00082 0.00005 0.0081 0.0041
0.8 0.00033 0.00009 0.0055 0.0011
1.0 0.00058 0.00012 0.0168 0.0099

Table 1. Absolute errors for example 1
S. Conclusion

In this study a new approach based on multistep Hermit collocation method and Newton
cotes quadrature is introduced for solving stochastic fractional integro-differential equation.
For evaluating the Brownian motion in the points of quadrature spline interpolation is used.
Absolute errors in table 1 show the high accuracy of the method. This method can be
extended for numerical solution nonlinear stochastic fractional integro-differential equations
with additional work.
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Abstract

In this work cubic B-spline wavelets and their operational matrices of derivative
and integration are applied for numerical solution of some nonlinear boundary value
problems which arise in modeling a tabular adiabatic chemical reactor. Properties of these
wavelets via some projection methods leads to the nonlinear problem transforms to some
algebraic system. For showing the accuracy and efficiency of the introduced methods one
case study of main problem is given and findings are compared with the results of
alternative methods for numerical solving of this class of equations.

Keywords: Boundary value problems, Cubic B-spline wavelets, Operational matrix of
derivative and integration, Spectral methods
1. Introduction

The mathematical model for an adiabatic tubular chemical reactor which processes an
irreversible exothermic chemical reaction can be reduced to

u'(x)— 2u'(x) +w(x,ux))=0, 0<x<1, (1)
subject to the following boundary conditions
u'(0) = 2u(0), u'(1) =0, (2)

where w(x,u(x)) = A u (B —u)e* and A, u and B are the Peclet, Damkohler number and the
dimensionless adiabatic temperature rise, respectively, which are impressive in determination
of the steady state temperature of the reaction [1]-[2]. In fact the steady state temperature of
the reaction is equivalent to a positive solution u of equation (1). Authors of [3] have studied
on the existence of the positive solutions of this class of equations. Numerous researchers
presented various numerical methods for solving this problem [4]-[6]. In this paper we present
two new approaches for numerically solving of this kind of problems. In the first approach of
this study using cubic B-spline wavelets and their operational matrix of derivative and
spectral methods BVP (1)-(2) is converted to an algebraic system. Second method is divided
to applying operational matrix of integration of B-spline wavelets and similarly to second
method, the main problem is transformed to some algebraic system.

2. Cubic B-Spline Wavelets

Cubic B-spline scaling function ¢4 (x)is given by
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x3, x € [0,1)
1 ] -3x3+12x2—-12x+4, x€ [1,2)
=_ 3
P40 =5\ 353 — 2422 + 60x — 44, x € [2.3) )
(4 — x)3. x € [3,4)
2.1. Boundary scaling adaptation
e Left boundary cubic B-spline scaling functions: We define the boundary near
functions at the left boundary by
¢3,k (x) = (p4(8x - k))([(),l] (x)l k = _31 _21 _11 (4)
and for other levels of / we have
G @) = @2 x =Ky (x), k=-3-2,-1, J=34,.. (5)

e Right boundary cubic B-spline scaling functions: For the right end of the interval, note
that, by symmetry we have the following relations

$3,5(x) = P3_1(1 — x)x[0,11 (%), (6)
¢3,6(x) = ¢3,—2 1- x))([o,1] (x), (7)
¢3,7(x) = ¢)3,—3(1 - x))([o,1] (x), (8)
and for other levels of / , we have
d)],z]_k_g(x) = ¢3,k(21x - k)X[O,l] (x), k = —3, _2: _1:] = 3»4» (9)

2. 2. Interior scalings
Five interior cubic B-spline scaling functions are chosen as

¢3,k(x) = (,04(8.7(,' - k))([O,l] (X), k = 0I11213I4I (10)
and for other levels of J , we get
Pk = @, (2'x = K)xpo1yx), k=01,...,2"-4 J=34,.. (11)
Two scale dilation relation for cubic B-Spline wavelet is given by
_1Nk
Wy (0) = D1 T (Ds(k — L+ Dy(2x — k), (12)

Other inner and boundary wavelets are constructed similarly as in [7].

2.3. Function Approximation
A function f(x) € L?(R) may be approximated by cubic B-spline wavelets in arbitrary scale

Ju as
Jo- Ju i
fG) = N2 ¢, b1y, () + 20, SRS die () = = CTY(), (13)
where C and Y are $27{(J_{u}+1)}+3$ column vectors given by
T
C = (C]O'_3’ saay C]0,2]0—1' d]o'_3, seay d]u,zju—‘l-) )
T
V= (o300 bpp 2fo-1 Vom0 Vg 20ua)
with
1 ~ 1 ~
~ ~C]0,i = fo f(x) ¢]0,i(x)dx’ dj,k = fo f(x) lpj,k(x)dX,
where ¢, ; and Y; ;. are dual of cubic B-spline scaling functions and wavelets, respectively
and can be obtained by linear combination of cubic B-spline scaling and wavelet functions
[7].

3. Description of the numerical methods
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In this section we purpose two new and computational wavelets based methods for solving
BVP (1)-(2). In the first method cubic B-spline wavelets operational matrix of derivative (BS-
OMD) and in the second method cubic B-spline wavelets operational matrix of integration
(BS-OMI) are applied via some projection procedures for solving the main problem.

3.1. Approach I: : BS-OMD

In this method the unknown functions in equation (1) are expanded by using cubic B-spline
wavelets as equation (13),

u(x) = Cly(®), o(xuXx)) = wx) = CIY([x), (14)
also by using operational matrix of derivative, we can write
u'(x) = CEDY(®), u”’(x) = (ED?Y(%), (15)

substituting equations (14)-(15) in equation (1), we get
CI(D?2 —=AD)Y(x) + CLY(x) =0,
applying Galerkin method with Y(x) as weighting functions in the interval [0,1] we get
1

f (CT(M?2=AD) + CHY)YT(x) =(CI(D? —AD) + CIHI =0,
0

where II is invertible product matrix, so we have

C, = —(D?=AD)TC,, (16)
equation (16) is a linear system of algebraic equations with 2 x (2Ju*? + 3) unknowns and
2Ju*l 4 3 equations. On the other hand we have

w(x, CEY(X)) =CIY(x), (17)
for having another 2)u* + 3 equations, which will complete system of equations (16), we

collocate the equation (17) in the support points § = 2]u+]—1+3,j =1,.2,..., 20t + 1,
Considering the following boundary conditions

CIDY(0) —AClY(0) =0, cIDY(1) =0,
we obtain two equations, too. Therefore we have a system includes 2 x (2/u*! + 3)equations
with the same number of unknowns which could be solved by some iteration methods.

3.2. Approach II: BS-OMI

In this scheme we put w(x, u(x)) = Q(x) and approximate the functions describing the
equation (1) by B-spline wavelets as (13)
Qx) = CaY (), u’(x) = CY(), (18)

u'(x) =CIRYX) +14, u(x) = CTR?2Y(X) + mx+ 13 (19)
where ‘R is operational matrix of integration. Substituting equations (18)-(19) in equation (1),
we have

CIY(x) = A(CI RY(x) +n) + CLY (x) =0,
now utilizing Galerkin method via Y7 (x), we get
CI(1— AR) [, YT (x)dx + CF [, Y(OTT (x)dx = Any [ 7T (x)dx,

SO
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1
CI(1-AR)+ ¢l = Anlﬂ‘ljfT(x)dx, (20)

0
on the other hand we can write

w(xu®)) =w (I R2Y(x) + nx + 1) = CLY (%), (25)

J

collocating the equation (25) and boundary conditions (2) in the support points {; = T3

j=1,...,20u*1 + 3 we get

o (¢, CTR2Y(L) +m¢ +n2) =CEY(),

o 1 =—CiRY(D),

cF R

o 1= - R -V (D).
considering system of equations (20) and current equations, the nonlinear boundary value
problem (1)-(2) reduces to an algebraic system which could be solved easily by some iteration
method.

4. Case Study

Consider equations (1)-(2) with A = 10, 8 = 3 andu = 0.02. Existence of the unique solution
of this equation with these values was proved in [4] by the contraction mapping
principle. This equation was solved by mentioned methods in pervious section. For having a
geometric understanding of the solution and comparison of the effect of operational
parameters in main problem the results of first method are given by plots and the results of
other method are shown in tables 1 in some arbitrary mesh points, also in order to comparison
results of some other methods are given in relevant tables. Also For this case by mentioned
theorem in this section, our results satisfy the following inequality.

2.72399 x 1088 < u(x) < 3, 0< x < 1.

Figure 1.Numerical solution of case 1 obtained by approach I for § = 3 and \mu = 0.02 and
some values of A.

5. Conclusions
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In the present study, two interesting techniques have been developed for solving nonlinear
boundary value problems arising in chemical reactor modeling. In these methods some
projection methods such as Galerkin and collocation methods via compactly supported cubic
B-spline wavelets, as testing and weighting functions, and their operational matrices of
derivative and integration are applied. The purposed methods are applied for reducing the
nonlinear boundary value problem to some algebraic system.

X; J. =3 J =4 [5]N = 10 [6]N =9
0.0 0.006045 0.006048 0.006049 0.006046
0.2 0.018184 0.018192 0.018197 0.018190
0.4 0.030419 0.030424 0.030437 0.030423
0.6 0.042660 0.042669 0.042649 0.042666
0.8 0.054365 0.054371 0.054383 0.054369
1.0 0.061451 0.061458 0.061459 0.061459

Table 1. Comparison of the results of case 1 obtained by approach II
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Abstract
Proof has received significant attention in mathematics at all grade levels, and is

expected to be an important part of every student’s education. Despite the importance given to
proof, the corpus of existing literature has demonstrated that many secondary school teachers
and pre-service mathematics teachers have difficulties constructing and understanding proofs.
Textbooks are a crucial link between intended and implemented curriculum because they
provide teachers to identify content to be taught, to choose appropriate instructional strategies,
and to assess students’ learning. The purpose of this study is to examine how pre-service
mathematics teachers identify and modify tasks/problems/activities in middle school textbook
in Turkey. Twenty four pre-service teachers participated in this study and all attended a
course called mathematical reasoning, justification, and proof for 14 weeks. The primary
sources of data were students reports on textbook analysis and their classroom presentation on
their reports. The analysis showed that pre-service teachers were somehow successful while
identifying tasks/problems/activities related to proof in the textbooks, but had a hard time
while modifying them to teach proof. The students found that there were almost none tasks
that specifically focus on proof related activities, but found some tasks that can be modified

into proof-related activities.

Keywords: Reasoning and Proof, Textbook Analysis, Teacher Education

1. Introduction

The importance of the teaching and learning of justification and justification is
undisputed within the mathematics education community. That is mainly because proof is an
essential part of mathematics given its roles in establishing the truth of mathematical
statements (Tall & Mejia-Ramos, 2006), explaining why such statements are true and
convincing (e.g. Hersh, 1993; Hanna, 2000; Harel & Sowder, 1998), and promoting

mathematical communication and development (Schoenfeld, 1994). Proof can algp be seen as
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a way of problem solving that removes doubt about the validity of mathematical statements
(e.g. Selden & Selden, 2003; Weber, 2005; Harel & Sowder, 1998) and as a tool for learning
mathematics (Knuth, 2002a). Therefore, stakeholders (e.g., National Council of Teachers of
Mathematics [NCTM], 2000; Council of Chief State School Officers [CCSSO], 2010;
Mathematical Association of America [MAA], 2004) as well as mathematics education
researchers (e.g. Harel & Sowder, 1998; Hanna, 1995, 2000; Knuth, 2002a, 2002b) advocate
for the increased prominence of proof and reasoning in the mathematics education of students
at all levels. Despite the importance given to proof, the corpus of existing literature has
demonstrated that many secondary school teachers and pre-service mathematics teachers have
difficulties constructing and understanding proofs (Dogan, 2015). The mean reasons that
many teachers find the teaching of proof difficult, often due to their beliefs about teaching
proof and their perceptions that proof is not a mathematical practice that can be integrated into
the curriculum at all grade levels (Knuth, 2002a). Textbooks are a crucial link between
intended and implemented curriculum because they provide teachers to identify content to be
taught, to choose appropriate instructional strategies, and to assess students’ learning.
Considering several researchers that link between curricula and students’ learning, in order to
have an effective students learning of mathematics, especially proof, teachers need to
understand and analyze their textbooks with a specific goal. For this reason, the purpose of
this study is to examine how pre-service mathematics teachers identify and modify

tasks/problems/activities in middle school textbook in Turkey.

2. Materials and Methods

Twenty four pre-service teachers participated in this study and all attended a course called
mathematical reasoning, justification, and proof for 14 weeks. At the end of the semester, the
students were asked to analyze a unit of the textbook with the focus of numbers, algebra,
geometry, and probability and statistics. Their main assignment was to identify
tasks/problems/activities in middle school textbooks and modify tasks/problems/activities to
teach mathematics reasoning, justification, and proof. The primary sources of data were
students reports on textbook analysis and their classroom presentation on their reports. Open

coding (Glaser and Strauss, 1967) used to analyze the data.

3. Results and Discussions 140
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The preliminary analysis showed that pre-service teachers were somehow successful while
identifying tasks/problems/activities related to proof in the textbooks, but had a hard time
while modifying them to teach proof. The students found that there were almost none tasks
that specifically focus on proof related activities, but found some tasks that can be modified
into proof-related activities. The students identified 309 tasks in the middle school textbook.
They claimed that 105 of 309 tasks can be modified to a proving task. However, while
modifying the tasks, they correctly modified only 46 of 105 tasks as a proving task. For
example, the following task asks to find m(m )

In order to modify the task, the participant first solved it and found the angle as m(DAE ) =

15°, and then edited the question as “explain that the (m' ) is equal to 15°?” . He claimed
that just having the word “explain” would make the task a proving task. Another participant
modified the following task: “What is the area of a rectangle with sides 7 cm and 4 cm?”. He
changed the question as: “The area of a rectangle with sides 7 cm and 4 cm is 28 cm?.
Prove?” As seen from these examples, the main criteria for modifying the tasks for the

students was to change the wording of the problem and add the word “explain”, “proof” or

“justification” on the problem root as the question.

4. Conclusions

The research literature clearly shows that pre-service teachers’ conceptions of proof are not well
aligned with both researchers’ and policy documents’ expectations that proof ought to be central to
mathematics education and a learning tool at all grade levels, and that teachers must possess a sound
understanding of justifications and proof. If teachers have a robust understanding of justification and

proof, they might be able to help their students develop a better understanding of proofi.4lowever, one
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of the biggest challenges in learning and teaching of proof is how to help teachers develop their
knowledge of proof so that their instruction supports their students to develop a better understanding
of proof. Thus, having opportunities for pre-service teachers to engage in reasoning and proving
activities might allow us to have teachers who are well-equipped for teaching proof in future. It is
important to note that integrating their course with middle school textbook was a new idea for them.
Thus, even though they presented a limited understanding of proof in textbooks, providing the
opportunity helped them enhance their understanding of learning and teaching proof at the middle

school level.
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Abstract
Proof is an essential aspect of mathematical activity and central to mathematics.

Generic example proofs have received special attention in the literature and are seen as an
important aspect of producing justifications and proofs since generic example serves not only
to confirm an instance of a statement but to convey an argument to explain why such a
statement is always true. Therefore, generic example proofs can be a crucial part of learning
and teaching proof, especially at the K-12 level. This study explores how preservice
secondary mathematics teachers evaluate arguments that consist of generic examples. The
data was collected at an undergraduate mathematics course designed to engage pre-service
middle school teachers in proof-related activities as a means for developing the mathematical
knowledge and skills needed for effectively teaching proof in middle school mathematics
classrooms. The primary source of data was transcribed video data of class session, with
additional sources of data consisting of classroom artifacts and tasks. The results show that
while evaluating arguments, students have a hard time to identify whether an argument that
includes examples is an example-based argument or is a generic example proof. They did not
see the difference between example-based reasoning and generic example proof. The result
suggests that most pre-service teacher notion of generic example does not fit with the desired

outcome.

Keywords: Proof, Generic Example, Teacher Education

1. Introduction

Proof is an essential aspect of mathematical activity and central to mathematics. Yet despite
proof being viewed as a crucial mathematical activity, neither its various roles in mathematics
nor its nature has permeated K-12 education or have been well understood b¥42tudents. As

discussed by Hersh (1993), the primary purpose of proof in the classroom is to explain and to
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show why something is the case rather than just provide formal logic/proof. However, even
though proof is crucial in terms of how mathematics is learned and done, neither the roles of
proof in mathematics nor the nature of proof itself has been well understood by students at all
levels. Thus, the teaching and learning of justification and proof is of major concern to K-16,
especially to secondary and tertiary level mathematics education. Generic example proofs
have received special attention in the literature and are seen as an important aspect of
producing justifications and proofs (e.g., Balacheff, 1988; Dogan, 2015; Stylanides, 2007)
since generic example serves not only to confirm an instance of a statement but to convey an
argument to explain why such a statement is always true. As defined by Pimm and Mason
(1984), generic example that given as a particular does not rely on any specific properties of that
number. “A generic example is an actual example, but one presented in such a way as to bring out its
intended role as the carrier of general” (Pimm and Mason, 1984, p.284). Thus, if the presenters’
purpose of example is to provide a general argument without relying on that actual example, the
argument may count as a generic proof since it serves not only to confirm instance of a statement but
to convey an argument to explain why such a statement is always true. Similarly, Balacheff (1988)

describes generic examples as:

“The generic example serves not only to present a confirming instance of a proposition-which
it certainly is-but to provide insight as to why the proposition holds true for that single
instance. The transparent presentation of the example is such that analogy with other instances
is readily achieved, and their truth is thereby made manifest. Ultimately the audience can

conceive of no possible instance in which the analogy could not be achieved” (p.219)

Therefore, generic example proofs can be a crucial part of learning and teaching proof,
especially at the K-12 level. However, there is no consensus on whether an argument using a
generic example is a mathematical proof or not. In this paper, I see generic example as a
viable argument and acceptable justification at K-12 grade levels. This study explores how
preservice secondary mathematics teachers evaluate arguments that consist of generic

examples.
2. Materials and Methods

The data was collected at an undergraduate mathematics course designed to engage pre-
service middle school teachers in proof-related activities as a means for dle4\:eloping the
9]

mathematical knowledge and skills needed for effectively teaching proof in middle school
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mathematics classrooms. The primary source of data was transcribed video data of class
session, with additional sources of data consisting of classroom artifacts and tasks. The
students were given the following task and three hypothetical student arguments that justified
the claim in the task (Adapted from Isler, 2015).

The sum of any three consecutive numbers 1s equal to three times the middle number.
For example. 4. 5 and 6 are consecutive numbers and 4 + 5 + 6 equals 15, which
equals three times the middle number. 5. Show that the sum of any three consecutive
numbers 1s always equal to three times the middle number.

Three students gave the responses below. Please read all of the student responses,
and then respond to the questions below.

Student I: Emir

I found a way using marbles. I can make three columns of marbles representing any
three consecutive mumbers. The first column represents the first number; the second
column represents the middie number, and the third column represent the last mimber.
[ can take the top marble from the last column and move it to the first column. This
makes the number of marbles in each column the same as the mimber of marbles in the
middle column. Since the total number of marbles 1s alwavs three times the number m
the middle column, I know the comecture is always true.

3 /O

L BN J L I

® o0 ® o0

L I N ® ® 0

L BN J L B R

® o0 e o0

® o0 ® o 0

Student 2: Damla

5. 6, and T are three consecutive numbers and S +6 + "= I8, and3x6=18. 7. 8.
and 9 are three consecutive mimbers and 7+ 8+ 9 =24, and 3x 8 = 24. 569, 570,

and 571 are three consecutive numbers and 569 + 570+ 571 = 1710, and 3x 570 =
1710. Since it works in these three examples, I know the comecture 1s always frue.
Student 3: Kenan

'l show you using 4, 5 and 6. I canwrite 4 as (5-1) and 6 as (5+1). So, it will be (5-1)
+ 5 + (5+1). Since adding 1 and taking away | cancels each other, there will be three
3 's. So, you see that 1t equals adding three times the middle number that is 5.

Student 1 (Emir) and Student 3 (Kenan)’ responses can be seen as valid arguments, but
Student 2 (Damla)’s response can be seen as example based reasoning, but not a 4\éalid proof. |

adapted Glaser and Strauss’s (1967) constant comparison method to analyze the data.
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3. Results and Discussions

The results show that while evaluating arguments, students have a hard time to identify
whether an argument that includes examples is an example-based argument or is a generic
example proof. 3 of the 23 participants found Student 1°s argument as a valid proof. One of
the participants claimed that “this is a valid proof because the number of marbles is not
important here; from his model, we can see the structure of the argument...” Another one
claimed that “it is not a valid argument because students only visualize the problem by just
using one example, thus you cannot generalize it”. As seen from the excerpts, most of the
students claimed that the generic example does not count as proof since it uses a specific case
and does not use a general/formal language. This was the case for the Student 3°s argument as
well, only 4 of the participants found that as a valid proof. Also, 3 of them found Student 2’s
argument as a valid proof. Students mostly said ‘having a few examples is not enough to have
a valid proof’. Considering all participants evaluations, it can be claimed that they did not see
the difference between example-based reasoning and generic example proof. However, one
student stated that if a specific example is used to convey a general argument, then that can be
count as viable proof. She went further and argued that a generic example can be expressed in
general terms. Her justification helped other students develop a more robust understanding of
generic example. This is important because pre-service teachers need to identify what counts

as a valid argument in order to teach proof.
4. Conclusions

One important goal of generic example proofs is to reduce the abstraction of the argument by
not using variables and to make the argument accessible to all students. However, it is not
clear how this goal can be achieved if teachers have some important misconceptions about
generic example type proofs. The result suggests that most pre-service teacher notion of
generic example does not fit with the desired outcome, yet if they have enough opportunities
to engage in this kind of activities, they may well be prepared for teaching proof at the middle

school level.
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Bezier curves are the curves that we have seen the examples of thewr appli-
cations 1n the (CAD) (CAM) systems at very large field Bezler curves have
the property of staying 1n the convex hull, which 1s tormed by a group of points
called control points Furthermore, when any of the control points ot these
curves 18 changed, the curve changes locally in a neighborhood ot that point.

Keyword(s): Bertand curve, Bezier curve, dual vectors

0.1 Dual Vectors and Dual Bezier Curves

A dual number A is defined as A = a + ea*, where a and a* € B and
€2 = 0(e # 0). The set of all dual numbers is denoted by D Similarly a dual
vector X 1s defined as X = 2+ ex”®, where x and z* € P% and €2 =0 The set
ot all dual vectors 1s denoted by D?®.

Tlet A =a-+ea®™ and B = b+ eb* be two dual vectors Then the inner
product od these vectors 1s defined by

(A, B) = (a,b) +€({a,b”) + (a", b)) (1)

If ||la|| # 0 then the norm of a dual vector A = a + ea* 1s defined by

= lall+< (222 ©)

A dual Bezier curves is a Bezier curves which contrel peints are dual vectors.

A

So A dual Bezier curve of degree n 15 defined by
B(t) = ) biBl'(®) (2)
i=0

where the parameter t € [0,1] , the dual control points by =8+ eb} and the
functions Bf(t) are called Bersntein polynomials or Bernstein basis functions

and defined by if 0 <1 < n then B} (t) = (7) (1 - £)" ' orherwise BMt) =0
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Theorem 3.3. The First derwative of a dual Bezier curve B(t) of degree
n with control points by, by, ., by ts

n—1

ZB() = Y VB9 ®)

i—=0

where bgl) =n(bip1 —b;).

Theorem 3.4. A dual Bezier curve B(t) of degree n with control points

bo,b1, .., by is satisfied these properties as follows

1
B(0) = by, B(1)=b, (end point interpolation property),
d o
B0y = EB(O) = n(by — bo) (end point tangent propersy), (5)
' d z
B'(1) = —B(1) =n(by — bu-
1) = 2B)=nlb—b)

Theorem 4.1. Let a dual Bezier curve B(t) of degree n with controel points

bo, b1, .. b, be given. Then the dual Frenet vector fields {T = t+et*, N = n+en®, B = b+eb*}
of the dual Bezier curve B(t) at the point for £ = 0 can be written instead of
control points as

T | = %1—5:0 pas by — by i by — b (bl—bg,b{—bg)gbl—bo) ?
|61 —bo||  [lBx — Boll 161 — bo| |b1 — bol|
62 — 61 51 . 60
N — zfcscg—f—fcot@
S ) Rl
bg — b[ bl = bO
= csc i + cotcp> - (6)
( [[b2 — Ba || 181 — Bo|
b3 — b3 (bg—bl,bﬁ—b’{) (bg—bl) , b=t
—+€ |csc ¢ = = — @ ——coty| +
(Hbz — byl b2 — B4 ° b2 — b1 |
bt — b5 (b —bo, bt — b2 (by — bo) Biy— by '
—+e + cotp — ———(1 +cot )|,
(”51 — bol| 161 — Bo||* 61 — bo|
B | _ (ba—bo)A(by—b1) (b1 —bo) x (b —b1) i
t=0 — = = = N -
|| (b1 —Bo) A (by — b1) || [I(bx — bo) x (Bz — b1l

o (€= bo) x (65 = B) + (b — ) x (b2 = b)
[[(b1 — bo) x (b2 — by)|”
e (((bl Sha)x (Bs —b1), (B =bo) % (B% =) (br = B2 x (B =B1))
(b1 — o) x (b2 — b1)]°

(51 = bo) X (bg = bl))
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where U = @+ ep® 15 dual angle between the the vectors by — bg and by — by

Theorem 4.2. Let a dual Bezier curve B(t) of degree n with control points

bo,b1, .., b, be given. Then the dual curvature and torsion of given dual Bezier
curve B(t) at the point for £t =0 are

n—1 [ —b _
7 el vkl
™ |lbx = bol|
n—?((lﬁ—ég))((52—51),(53—53)) 7

= = = - i ? |
L ||(bl—bo) X (bg—t‘)l)

ny

7

where T is the angle between the vectors by — by and by — by .

0.2 The De Casteljau Algorithm

The De Casteljau algorithm tor dual Bezier curves 1s used to calculate the value
B(to) ot Bezier curves B(£) at any parameter £y € [0,1] and also used to divide

the dual Bezier curve into two curve segments called Bi. sy and Byign

Theorem 1 Let a dual Bezier curve B(t) of degree n with control points by, by, . ., by,
and any parameterty € [0,1] be gwen. Then

B(to) = by (8)
where 5? =b . fori=0,1..n and
B = (1—to)b] " +tobl;1 (9)

forj=0,1, ,nand fori=0,1, .n—3 [?]

As a result of th.is_alg_orithr_n _contro] Poi{lts ot de_vided_ dual Bezier curves
Biesi and B,jgne are {bg, b, ...,bS} and {53, b;‘_l, bt b?;} regpectively.

n—1-
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0.3 The dual Frenet Frame Fields of dual Bezier Curves

at Arbitrary Point %,

Theorem 2 Let a dual Bezter curve B(t) of degree n with control points bo, by, ..., b
be gwen. Then the dual curvature and torsion of given dual Bezier curve B(t)
at the point B(ty) fort =to as
- 5?1—2 _ 571—[ -
T L H_2_1 2 2”5111@ (10)
: ||bl — & |
_nea(BU B x BT -h) GO
- in—1 _ n—2 n—14 (2
& 157 ) (& =)l
wheregi are control points of the dual Bezer segment B, obtained by
subdivision algorithm tormulated by (77), T is the angle between the vectors
bn 2 bn 1 and bn— b{)
Theorem 3 Let a dual Bezier curve B(t) of degree n with control pownts bo, by, .., by

be given. Then the dual Frenet vector ,ﬁelds {T N, B} of the dual Bezier curve
B(t) at the point B{ty) fort =%, as

B L=n
L e .
le=to 15" =53] -
_ By x (B )

B o= TRy (] -

ptogrt - gl 1
Nl —e s L @_70 i -
li=ts ||b;—2_b;__1||c‘30 ||b¥ 1 an (14)

where 5f are control points of the dual Bezier segment B, gp obtained by

subdivision algorithm formulated by (77) and W is angle between the the vectors
Bl B and B2 71
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1 Bertand curve Pairs

In literature i1t 1s well known that a Bertrand curve a 1s a curve whose principal
normal ig the principal normal of another curve 8 [??7] These curve pairs
{a, B}are called Bertrand curve pairs Now let these curve pairs {a, 3} be
considered as each of them of these curve is Bezier curve in B3

Let a be a dual Bezier curve of degree n with control points bg, by, . ., by and
8 be a dual Bezier curve of degree n with control points g, .,&, and {e, 5}
be Bertrand curve pairs The dual Frenet-Serret frame on these curves can be
stated as {Tn, Na, Ba} and {T3, N3, Bg} respectively.

It 15 clear that

}V,_-t — j\/rs

gince {a, 8} are Bertrand curve pairs

Theorem: Let a be a dual Bezier curve ot degree n with control points

bo, b, and 8 be a dual Bezier curve of degree n with control points zg,
It the control points of these curves

Cn

2

¢ =b+ta

fori =0,1,2 aresatisfied for @ € D then these curves a and 3 are Bertrand
pairs. This means [t the control points ot these curves are Tr(3, D)— equivalent
then these curves & and G are Bertrand pairs where Tr(3, D) 1s the translation
group in dual Euclidean space D?

Theorem: Let a be a dual Bezier curve ot degree n with control points

bo, ., by and 8 be a dual Bezier curve of degree n with control points g, ..., &,
It the control points of these curves

G = kb;

tor2 =0,1,2 are satisfied tor & € D then these curves a and J are Bertrand
pairs This means If the control points of these curvesare LH (3, D)— equivalent
then these curves a and @ are Bertrand pairs where LH(3, D) is the linear
homotethies’ group in dual Euclidean space D?

Theorem: Let a be a dual Bezier curve ot degree n with control points
bg, ., by and G be a dual Bezier curve ot degree n with control points &g, ., €,

It these curves are Bertrand curve pairs then

n—2 n—1 _ n—1 In _ ri—2 n—1 n—1 s
5 P b —b c —ig i =g
"r)—lcsc@—li_ocotfﬂ = zo—lcsch’—li_O cot P
[ —op T T -% ez —er [E—

153



13 satisfied where b}, are control points ot the dual Bezier segment B, ;4 obtained

by subdivision algorithm tormulated by (?7) and T ig angle between the the vec-
1

tors b7~ —bF and b2 — b} ! and & is angle between the the vectors ¢} ' —ci
and c;‘_g — ci‘_l ;
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Abstract

The aim of this study is to introduce the neighborhood system of soft identity element of soft
topological groups by using the soft element which is defined by Wardowski in 2013.
Keywords: Soft set, Soft element, Soft topology.

1. Introduction

Soft set theory is defined by Molodtsov in 1999. After this definition many autors has been
contribute to this research area by defining soft groups [4,10], soft topologies [6,7] and soft
element [3]. After having the definition of soft topological space and soft group, the
axiomatization of the concept is soft topological group is a natural procedure. The aim of this
study is to introduce the neighborhood system of soft identity element of soft topological
groups by using the soft element which is defined by Wardowski in 2013.

2. Preliminaries
In this section, we recall some basic notions in soft set theory.

Definition 2.1: [1] Let U be an initial universal set and E be a set of parameters. Let P(U)
denote the power set of U and A € E. A soft set Fy is called a soft set over U, where f, is a
mapping given by f;: E = P(U) such that fy(x) =@ ifx € A.

Note that the set of all soft sets over U will be denoted by S(U) and all nonempty soft sets
over U will be denoted by S¢(U).

Definition 2.2: [8] A soft set F, over U is said to be an empty soft set denoted by Fg, if for all
e€E, f(x)=0.

Definition 2.3: [8] A soft set F, over U is said to be an A-universal soft set denoted by Fy, if
for all e € E, f;(x) = A. If A = E; then the A-universal soft set is called a universal soft set,
denoted by Fy.

Definition 2.4: [8] Let F,, Fz € S(U). Then, F, is a soft subset of Fg, denoted by F, € Fp, if
fa(e) € fg(e) foralle € E.
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Definition 2.5: [8] Let F,, Fy € S(U). Then, the soft union F, U Fg, the soft intersection
F4 0 Fy and the soft difference F4\F5 of F, and Fj are defined by the approximate functions
as;

faoe(x) = fa(x) U fp(x), fars() = fa() 0 fz(x),  fap(¥) = fa()\fe(x)

respectively. The soft complement FAC~ of Fy is defined by the approximate function f ,z =
(fa(e))€, where (f4(e))¢ is the complement of the set f,(e); that is f,z = (fa(e))¢ =
U/fa(e) forall e € E.

Definition 2.6 : Let F, £ Fy € S(U). The soft complement (FBC) 4 in F, is defined by the
approximate function f &z = (f (e))¢, where (fz(e))¢ is the complement of the set fz(e) in

the soft set Fy; thatis f ¢ = (fe(e))€ = fa(e)/fz(e) forall e € E.

Definition 2.7: [7] Let F, € S(U). A soft topology on F,, denoted by 7, is a collection of soft
subsets of F, having the following properties, the pair (F,, T) is called a soft topological
space.

i) Fy F € £,

ii) Fg, F.€ T, then Fg N F.€ T,

i) A indexed set and for all o € A, Fg_ € T then Uy ¢4 Fp, € T.

Definition 2.8: [7] Let (Fy4, T) be a soft topological space. Then every element of 7 is called
soft open set. Clearly Fy and F, are soft open sets.

Definition 2.9: [3] Let F, € S(U). We say that a = (e, {u}) is nonempty soft element of Fy, if
e € E and u € F(e). The pair (e, @), where e € E, will be called an empty soft element of
F,. The fact that (e, {u}) is a soft element of F; will be denoted by (e, {u}) € F;. We denote
the set of all nonempty soft elements of F by F,

Example 1: Let U = {hy, hy, h3}, E = {ej, e, }. Take a soft set F4 € S(U) of the form
Fy = {(e1, {h.})}. Then all the soft elements of F, are (e, D), (e, {h,}), (€3, D).

Definition 2.10: Let (F,, ¥) be a soft topological space, Fz € F, and a € Fg. If there exist a
soft open set F such that & € F, € Fy then Fj is called soft neighborhood of soft element a.

If Fp is soft open set then Fj is called soft open neighborhood. We denote the set of all soft
open neighborhoods of a by V.

Example 2: U= {ul, U,, u3}, A= {xll x21x3r} and
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Fy = {(xq, {ug, uz}), (g, {us ), (x5, {uq, uz})} is a soft set over U. Some of the soft subsets of
F, are listed below.

Fy, = {Cer, {u D, Fy, = {Cee, {ug, us D, Fy, = {Cer, {ur D), (x, {us D,
Fy, = {Ccq, {ug, usd), (e, {ug D,

The collections of F, T; = {5, FA}, T, = P(Fy) ve t3 = {5, FA,FAI,FAZ,FAS,FAJ are soft
topology. Nonempty soft elements of F, are

{(Ceq, {ug D), (e, {usd), O, {ug D, (x5, {ug}), (x3, {uz 1)}, So set of all Soft neighborhoods for
each soft element is given in the below fort he soft topology 5.

‘7\7(951,{”1}) = {FA’FA1'FA2’FA3’FA4}' mxl,{u3}) = {FAZ’FA4}' J‘T(xz,{uﬁ) = {FA'FA4}'
‘Ni(xz.,{uﬁ) = {FA}' mxz,{uz}) = {FA} .

Definition 2.11: [3] Let (F,, T) be a soft topological space and § S £ . If every element of £
can be written as the union of elements of 3, then £ is called a soft basis for the soft topology
. Each element of f is called a soft basis element.

Definition 2.12: Let (F,, ¥) be a soft topological space a € F, and 8, be the family of soft
open neighborhoods of a. If for every soft open neighborhoods Fy of a there exist a soft set
F. € f, such that F; € Fj then 3, is called soft local base at the soft element «.

Definition 2.13: [10] Let (E,>) and (U,x) be two groupoids, A € E and F, € S¢(U).The
binary operation ¥ on F, is defined by;
(e;, {ug}) # (ej; {ul}) = (ej° ej:{uk *u,}) forall (e;, {ug}), (ej, {ul}) EF,.

Fy is said to be closed under the binary composition ¥ if and only if e; o ¢; € A and uy, * u; €
F(e; o €;) forall (e;, {w}), (e;, {w;}) € F;.

Definition 2.14: [10] If F} is closed under the binary composition ¥, then the algebraic system
(F4,%) 1s said to be a soft groupoid over (E,U).

Definition 2.15: [10] Let (F;,%) be a soft groupoid over (E,U), the binary composition ¥ is
said to be
i)commutative if (e;, {w,}) ¥ (ej, {w;}) = (ej, {w;}) # (ey, {w}), forall

(el'! {uk})J (ej! {ul}); (em» {un}) g F/{;
ii)associative if ((ei' {wH# (e {ul})) ¥ (e {un}) = (e, {wgh) * ((ej; {w}) % (em, {un}))'

Definition 2.16: [10] A soft element (e, {u}) € F; is said to be a soft identity element in a
soft groupoid (F4,%) if for all (e;, {u,}) € Fj, 157
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(eiﬁ {uk}) * (eil {uk})_l = (ei' {uk})_l * (ei' {uk}) = (e: {U})

Definition 2.17:[10] Let (F;,%) be a soft groupoid with soft identity element (e, {u}). A soft
clement (e;,{u,}) € F; is said to be invertible if there exists a soft element
(e;, {ug})~* € F; such that

(eil{uk}) * (ei' {uk})_l = (ei: {uk})_l * (eil{uk}) = (8, {U})

Then (e;, {u}) ! is called the soft inverse of (e;, {uy}).

Definition 2.18:[10] Let (E,°) and (U,*) be two groups, A,B € E and F, € S¢(U). A soft
groupoid (F,,¥) is said to be a soft group over (E,U) if

1) ¥ is associative,

ii) there exist a soft element (e, {u}) € F; such that

(e, {we}) * (e, {u}) = (e, {u}) # (ey, {wi}) = (e, {wye}) forall $(e;, {ux}) € F5

ii1) for each soft element (e;, {uy}) € F,, there exists a soft element (e;, {uy})~* € F; such
that (e;, {ux ) ¥ (e, {ux D™t = (e, {wxe D™ % (e, {ur}) = (e, {u}). We often refer to a soft
group Fy, rather than use the binary structure notion (F,,¥), with the understanding that there
is of course a binary operation on the set Fj.

3. Soft Topological Group Based on Soft Element
Throughout this section, let (E,o) and (U,*) be two groups, A € E and F, € S;(U).

Definition 3.1: Let (F,,¥) be a soft group and (F,, T) be a soft topological space. Then (F,, ¥,
T) is called a soft topological group if;

1) For each soft neighborhood Fg of (e;, {uy}) ¥ (ej, {w;}), there exists a soft neighborhood F
of (e;, {ux})and a soft neighborhood Fy, of (e, {v;}) such that F ¥ Fj, € Fp.

2) For each soft neighborhood Fg of (e;, {ux})™1, there exists a soft neighborhood F f
(e;, {ug}) such that F.™* € Fp.

Theorem 3.2: Let a=(ej, {ul})be a fixed element of a soft topological group (F,, ¥, 7). Then
the mappings
T(eju)’ (e, {wi}) = (ej;{ul}) % (e, {ug)), l(e].,{ul})i (e, {wi}) — (e, {we D) # (ej; {ul})-

of F, onto F, are soft homeomorphisms of Fj.

Proposition 3.3: Let (F4, %, T) be a soft topological group and e = (ey,{e,}), be the soft
identity soft element of F, . If B, is a soft local base at the soft identity then
B, ={Fz % a: F5 € B,}is a soft local base at the soft element a.

Proposition 3.4: Let (F4, %, T) be a soft topological group and e = (ey,{e,}), be the soft
identity soft element of F,. If 3, is a soft local base at the soft identity then f§ ={Fp ¥ a: Fz €
B.,a € F,}is a soft base for the soft topology . 158
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Theorem 3.5: Let (F,, %, ©) be a soft topological group and /3, is a soft local base at the soft
identity e = (e, {e,}) of F4, then B, satisfies the following conditions:

a) If Fz, F; € J, then there exist a soft set F,, € f3, such that F, € Fz N F; € ..

b) If « € Fy € f,then there exist a soft set F, € f, such that F, ¥ a € Fj.

c) If F3 € B, then there exist a soft set F, € f8, such that F, ¥ F.~* € Fj.

d) If F3 € f,and a € F, then there exist a soft set F, € 8, suchthata > ¥ Fp ¥ € Fy

e) For all Fp € f3, there exist a soft set F; € f3, suchthat F; ¥ F. € Fp .
Acknowledgement: This work is supported by the Scientific Research Project of Mugla Sitki
Kog¢man University, SRPO (no:16/001) and SRPO (no:18/062)
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Abstract

Soft set theory is a topic of interest for many authors working in diverse areas due to its rich
potential for applications in several directions since the day it was defined by Molodtsov in
1999. To contribute this research area, in this paper we examine some properties and results
on soft element and soft topological space such as soft cluster and soft isoleted points of a soft
set, boundary of soft sets and so on. Moreover we give some examples to clarify our
definitions.

Keywords: Soft set, Soft element, Soft topology.

1. Introduction

Some operations on soft sets were defined by Maji et al. [9]. After that, Cagman and
Enginoglu [8] studied several soft operations to make them more functional for improving
several new results. Cagman et. al. [7] defined the soft topology. Also, Shabir et al. Studied
on soft topology too [6]. Wardowski [3] approached soft sets as classical mathematics by
giving definition of soft element. Following to these studies our purpose for this study to
examine some properties and results on soft element and soft topological space such as as soft
cluster and soft isoleted points of a soft set, boundary of soft sets and so on. Moreover we
give some examples to clarify our definitions.

2. Preliminaries
In this section, we recall some basic notions in soft set theory.

Definition 2.1: [1] Let U be an initial universal set and E be a set of parameters. Let P(U)
denote the power set of U and A € E. A soft set Fy is called a soft set over U, where f, is a
mapping given by f,: E = P(U) such that f,(x) =0 ifx € A.

Note that the set of all soft sets over U will be denoted by S(U).

Definition 2.2: [8] A soft set F4 over U is said to be an empty soft set denoted by Fy, if for all
e EE,fA(X) = @

Definition 2.3: [8] A soft set F,; over U is said to be an A-universal soft set denoted by F,, if
for alle € E, f;(x) = A. If A = E; then the A-universal soft set is called a universal soft set,

denoted by Fj.
160
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Definition 2.4: [8] Let F,, Fz € S(U). Then, F, is a soft subset of Fg, denoted by F, € Fg, if
fa(e) € fz(e) foralle € E.

Definition 2.5: [8] Let F,, Fy € S(U). Then, the soft union F, U Fg, the soft intersection
F4 0 F and the soft difference F4\F5 of F, and Fj are defined by the approximate functions
as;

faos(X) = fa(x) U fp(x), fane(¥) = fa) N fp(x),  fap(®¥) = fa()\f5(x)
respectively.

The soft complement FAC of Fy is defined by the approximate function f ,z = (fs (e))¢, where
(fa(e))¢ is the complement of the set f,(e); that is fie=Ua (e))¢ = U/fs(e) foralle € E.

It is easy to see that (FAC)CZFA and Fmé = F.

Definition 2.6 : Let F, £ Fy € S(U). The soft complement (FBC)A in F, is defined by the
approximate function f ¢ = (fp (e))¢, where (fz(e))¢ is the complement of the set fz(e) in

the soft set Fy; thatis f ¢ = (fe(e))€ = fa(e)/fz(e) forall e € E.

Definition 2.7: [7] Let F4, € S(U). A soft topology on Fy4, denoted by 7, is a collection of soft
subsets of F, having the following properties:

i) Fy F € %,

ll) FB, FCE f, then FB ﬁFCE f,

1i1) A indexed set and forall o € A, Fp, € Tthen Uy ¢4 Fp, € T.

The pair (F,, T) is called a soft topological space.

Definition 2.8: [7] Let (Fy4, T) be a soft topological space. Then every element of 7 is called
soft open set. Clearly Fy and F, are soft open sets.

Definition 2.9: [7] Let (F,, T) be a soft topological space and Fgz € F,. Then Fy is said to be
soft closed if the soft complement of Fy in the soft set F, 1is soft open. Fy and F, are soft
closed sets.

Definition 2.10: [3] Let F, € S(U). We say that @ = (e, {u}) is nonempty soft element of Fy,
ife € E and u € F(e). The pair (e, @), where e € E, will be called an empty soft element of
F,. The fact that (e, {u}) is a soft element of F, will be denoted by (e, {u}) € F;. We denote
the set of all nonempty soft elements of F, by Fj 161
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Example 1: Let U = {hy, h,, h3}, E = {e,,e,,}. Take a soft set F; € S(U) of the form
Fy = {(e1, {h:})}. Then all the soft elements of F, are the following:

(31' ®)a (81, {h1}); (821 Q)
Proposition 1: [3] For each F, € S(U), the followings holds:

Fo = U, uperal(en (wD} and Fy = U, o yzr; (e ()}

Definition 2.11: Let (F,, T) be a soft topological space, Fz € F, and a € Fg. If there exist a
soft open set F such that & € F. € Fy then Fj is called soft neighborhood of soft element a.

If Fg is soft open set then Fy is called soft open neighborhood. We denote the set of all soft
open neighborhoods of a by V,,.

Example 2: U = {uy,u,,u3}, A = {x4,%3,%3,} and

Fy = {(xq, {ug, uz}), (g, {us }), (x5, {uq, u,3)} is a soft set over U. Some of the soft subsets of
F, are listed below.

, = {0, fus P},

, = {0y, fug, us P},

Fa, = {(xq, {u1}), (2, {ua D3,

o = {0, {ug, usd), Gea, {wa D3

The collections of F, T; = {5, FA}, %, = P(F,) ve 3 = {5, FA,FAl,FAz,FA3,FA4} are soft
topology. Nonempty soft elements of Fy are
{(Cep, {ug D, Ceg, {us}), Oy, {ug ), (x5, {ug}), (x3,{u})}. So set of all Soft neighborhoods for
each soft element is given in the below fort he soft topology 75.

Noentup) = (Far Fayr Fayi Fago Fa, b,
Noenusp) = {Fapr Fa, b

Noepturp) = {Far Fa,},

Neg iy = (Fad -

Nexsurp = (Fad -
162
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Definition 2.12: Let (F,, T) be a soft topological space, Fy € F, and a € Fg. If there exist a
soft open set F such that a € F; € Fy i.e., Fy is soft neighborhood of soft element «, then a
is called s soft interior element of Fj.

The set of all soft interior elements of Fy is called soft interior of Fg and it is denoted by Fg°.

Definition 2.13: Let (F,, T) be a soft topological space, Fz € F, and a € F. If for every soft
open neighborhood F of a, Fz N F; # Fp, then a is a soft closure element of Fp. The set of
all soft closure elements of Fg is called soft closure of F5 and denoted by Fp.

Example 4: If we consider the soft topology (Fy4, T3) given in Example 2 and the soft subset o
Fp = {(xy, {us}), (x3, {us )} of Fy,

Then F;: {(en, {us}), (s, {ug D), (s, {up D}

Definition 2.14. Let (F,, ¥) be a soft topological space, Fz € F, and a € Fg. If for all open
soft neighborhood F, of a, Fg N F./a # Fy then «a is called a soft cluster element of Fjp.
The set of all soft cluster elements of Fj is denoted by Fj.

Definition 2.15. Let (F,, T) be a soft topological space, Fy € F, and a € Fy. a is soft called
soft isolated element of Fp if and only if {a}is soft open set. A soft topological space is
called discrete if and only if every soft element in the soft set F, is soft isolated.

Definition 2.16 Let (F,, ¥) be a soft topological space, and Fz € F,. The soft boundary of Fg

is Bd(Fg)=Fg N F,\Fj.

3. Conclusions
In this paper we studied on soft topological structure based on the definition soft element. One
can expand this work by searching more topological structures from the same point of view.

Acknowledgement: This work is supported by the Scientific Research Project of Mugla Sitki Kogman
University, SRPO (no:16/001) and (no:18/062)
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Abstract
The object of this article is to derive sufficient conditions for close-to-convexity of certain
(normalized) analytic functions. Furthermore, it is shown that a convex function is close-

to-convex of order 27" in unit disk U where r is a positive integer.

Keywords: Analytic functions, Univalent functions, Starlike functions, Close-to-convex functions, Convex
functions and Subordination principle.

1. Introduction

Let the class A of functions f analytic and univalent in the unit disk 7//={z:|z|<l} ,

normalized by the conditions f(0)=0 and f'(0)=1. Thus each f € U has a Taylor series

expansion of the form
f(z)= Z+Zanz"
n=2

Also let by £’(27") denote the subclasses of A consisting of functions which are close-to-

convex of order2™" inY . We know that ([1, 2] and [3, 7])

2™ ={f:f e A and Re(%j >27",(z €U, g isconvex functionin 7/{)}
g'(z

Now, we recalled the principle of subordination between analytic functions, for two functions

f and g analytic in U , we say that f is subordinate to g in U , written f <g or

f (z)< g(z) , if there exists a Schwarz function h(z) analytic in U , with h(O) =0 and

|h (z)| <1 suchthat f(z)=g(h(z)), zeU.
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In particular, if the function g is univalent in %/ then f < g if and only if f (0) = g(O) and

f(u)cg(u)
The following lemma which is known as Jack's Lemma will be required for our present paper.

Lemma 1. Let the (nonconstant) function w(z)be analytic in % with w(0)=0. If |w(z)|

attains its maximum value on the circle |z| =r <1 at the point z, € U , then

zZ,W' (zo) = cw(zo)
where c¢ is a real number and ¢ >1([5,6]).
2. Materials and Methods

We consider the following theorem providing a sufficient condition for close-to-convexity of

functions f € 4.

Theorem 1. Let the function f € A satisfy the inequality

Re(1+ Zf"(z)j> 3*2 eu)

f!(z) 2 +21+r
then /\’Z(f'(Z))>1;T%,(Z€7/)
1+2"
or equivalently, fel ( ;H j

Proof. The proof requires to define a function w(z)as follow

, _1+2"’w(z)
1@)= 1+w(z)

Then, clearly, w(z)is analytic in z € U withw(0) =0. We also find from that

(w(z)=-LzeU).

1+ 7@ 2@ ) (zeU).

1(2) 1+27w(z) l+w(z)

166



INTERNATIONAL CONFERENCE ON MATHEMATICS
“An Istanbul Meeting for World Mathematicians”
Minisymposium on Approximation Theory & Minisymposium on Math Education
3-6 July 2018, Istanbul, Turkey

Suppose now that there exists a pointz, € U , such that
[w(z,)| =1 and |w(z)| <1, when |2] <|z,|.
Then, by applying Lemma 1, we have
2w (z)) = ow(z,). (c=Lw(z)=e":0€R).

Thus we can obtain that

/\’Z{l N zof”(zo)J 1. 2_’0(2_’ +cosé’) c

I'(z) 14227 cos0+(27) 2
" 27" (1+27" -r

then, RZ(HMJSH (+ ) 2—1_1+ 2 p

f'(2) 1+227+(27) 2 2 (1+27)
or equivalently, Re(l + Z;f (Z;)J < 23:221+r , (2, €U),
which obviously contradicts the hypothesis. It follows that

|w(z)| <1, (z € '(//)
That is, Fizy =2 w(z) _|1-7 (Z? <1, (ze).
1+w(z) |f’(z)—2’

This evidently completes the proof of the theorem.

Theorem 2. Let the function f € A satisfy the inequality

/\’e(1+ Zf”(z)J L2432,

f!(Z) 1+2l+l‘ 2

1427
2’, b

then |f’(z)—1|< (zeU).

Proof. The proof of theorem is also based upon Lemma 1. We let the function w(z)be given

by 167
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f(2) =(1+2_’)w(z)+1, (z € 1/)

Then, clearly, w(z) is analytic in z € U with W(O) =0.

e i)

1'(2) (1427 )w(z)+1° (ze)

Suppose that there exists a point z, € U , such that |w(z0 )| =1land ’w(z)’ <1, when |z| <|z,| .

Then, by applying Lemma 1, we have

zW'(z,) = ew(z,). (c >1w(z,)=€";0¢€ R).

As a result, Re 1+Z°f (z,) 22+3i2 . (zeu),
f'(zo) 1+27

which obviously contradicts the hypothesis. It follows that

|W(Z)| <1, (z € ’L{),

that i, F@=(1+27)w(z)+1=w(z) = (ﬂ(z%
fr(Z)_1| < 1-;2’ . (zeU).

This evidently completes the proof.

Theorem 3. If the function f € A satisfies the inequality

(1-2

B+y
|f¢(z)—1|ﬂ|zf!r(z)|7<2ﬂ—+22, (ZET/{,ﬁ,}/ZO)

then, Re(f’(z))>F, (zeu).

Results and Discussions

168
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Re(f'(z))> _%, (zeU),

by setting » =11in Theorem 2.

Corollary 1. Let the function f € A satisfy the inequality

R.e(1+w}<§, (zeU)
) 5

then |f’(z)—1|<§, (zeU)

hence f el .

Corollary 2. If the function f € A4 satisfies the inequality

" 2" -1
|Zf (Z)| < 22+r 4 (Z € 7/{)’
, 1+2"
then, Re(f (Z))>F, (zeu).
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Ozet

Daha nitelikli, yaratict ve ¢aga uyum saglayabilen Ogrencilerin yetigsmesini
amaglayan bir egitim sisteminin en temel bileseni siiphesiz 6gretmendir. Ogretmenler bu
amag¢ dogrultusunda 6grenci seviyesini dikkate alarak, nitelikli ve etkili egitim slire¢leri
gergeklestirmelidir.

2012 yilinda yapilan “4+4+4 Egitim Sistemi” degisikligi ile, 5. smf diizeyi
ortaokula dahil edilmis ve okula baslama yas1 72 aydan 66 aya, veli izniyle de 60 aya kadar
indirilmistir. Sistem degisikliklerinin sonucunda, ortaokul matematik 6gretmenleri, ilk defa
somut islemler donemindeki yas seviyesinden ogrencilerle karsilasmistir. Dolayisiyla,
ortaokul matematik Ogretmenlerinin, 10-11 yas 6grencilerinin biligsel 6zelliklerine uygun
olarak problem c¢ozme stratejileri ve matematiksel temsiller kullanmalari 6nemli hale
gelmistir.

Bu c¢alismada, ortaokul matematik 6gretmenlerinin somut islemler doneminde problem
¢ozme becerilerini ve yetkinliklerini tespit etmek amaglanmaktadir. Nitel arastirma
yontemlerinden durum c¢aligmas1 olarak ydiriitiilen arastirma, farkli mesleki deneyime sahip
bes Ogretmen ile gergeklestirilmistir. Verileri toplamak {izere, Problem Cozme Testi ve
Goriisme Formlart olarak iki tiir veri toplama araci gelistirilmistir. 11k asamada dgretmenlerin
5. sif diizeyinde derslerde ve problem ¢ozmede karsilastifi zorluklari tespit etmek icin
birinci goriisme formu uygulanmustir. Ikinci asamada, ogretmenlerin ortaokul seviyesinde
problem ¢6ziim yaklasimlarini belirlemek amaciyla, somut ve soyut islemler donemine uygun
olarak ¢6ziilebilen dort problemden olusan Problem C6zme Testi uygulanmistir. Son olarak,
Ogretmenlerin problem ¢6zmede kullandiklar1 strateji ve temsiller dikkate alinarak, bu
yetkinlikleri nasil kazandiklarni tespit etmek amaciyla ikinci goriisme gergeklestirilmistir.
Ogretmenlerin bireysel problem ¢6zme siirecleri ve yar1 yapilandirilmis goriismeler
kaydedilmis, elde edilen veriler betimsel analize tabi tutulmustur.

Bulgular, oOgretmenlerin genel olarak her iki biligsel diizeyde ¢6zim
gelistirebildiklerini gosterirken, somut donem uygulamalarinda deneyim kazanmalarina farkl
faktorlerin etki ettigini ortaya ¢ikarmistir.

Anahtar Kelimeler: Problem Cézme Yetkinlikleri, Ortaokul Matematik Ogretmeni, Somut Islemler
Donemi
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1. Giris

Egitim, iilkelerin her alanda ilerleyebilmesinde 6nemli role sahiptir. Egitimin en
onemli bilesenleri sliphesiz 6grenci ve 6gretmendir. Daha nitelikli, yaratic1 ve ¢aga uyum
saglayabilen ogrencilerin yetismesini amaglayan egitim sistemleri, O6gretmenlerin
niteliklerini artiracak ortamlarla desteklenmelidir. Diger bir deyisle, degisen egitim
sistemlerine uygun ve beklentiler dogrultusunda egitim verecek ogretmenlerin yetkin
olmasi gerekmektedir. Bu yetkinlik “6grenci seviyesini dikkate alarak, nitelikli ve etkili
egitim slireci gerceklestirmek™ olarak tanimlanabilir.

Tiirkiye’de 2012-2013 egitim-6gretim déneminde uygulamaya gecilen 2012 Egitim
Sistemi Degisikligi [2012 ESD] ile, 5. smif diizeyi ortaokula dahil edilmis ve okula baslama
yast 72 aydan 66 aya, veli izniyle de 60 aya kadar indirilmistir (MEB, 2012). Bu degisiklik ile
ortaokul kademesinin (10-13 yas) somut ve soyut islem donemlerini bir arada
bulundurmasindan dolayi, 6gretmenlerin farkli biligsel seviyelerde 6gretim gerceklestirme
becerilerine sahip olmasi 6nemlidir. 2012 ESD oncesinde egitim fakiiltelerinde verilen
matematik alan egitimi derslerinde 6., 7. ve 8. smif (soyut islemler dénemi) 6grencileri i¢in
diizenlenmis O6gretim faaliyetlerine odaklanilmistir (Altun, 2008). Ortaokul matematik
Ogretmenlerinin, gerek aldiklar1 egitim, gerekse sistem degisikligi Oncesinde kazandiklari
mesleki deneyim g6z Oniinde bulunduruldugunda, genel olarak somut islemler doénemi
ogretim yaklasimlarina yeterince sahip olmadiklar1 varsayilabilir. Ogretmenler ortaokul
seviyesinde ilk defa somut islemler donemindeki 10-11 yas seviyesinden &grencilerle
karsilasmistir. Dolayisiyla, 6gretmenlerin, bu yastaki 6grencilerin biligsel 6zelliklerine uygun
olarak problem c¢ozme stratejileri ve matematiksel temsiller kullanmalari 6nemli hale
gelmistir.

Ogretmenlerin hizmet 6ncesi egitimlerindeki eksiklikler, mesleki gérev siirecinde hizmet ici
egitimlerle giderilir. 2012 yilindan itibaren diizenlenen hizmet i¢i egitim faaliyetleri
incelendiginde, 5.smnif 6grencileri veya somut islemler donemi 6zelliklerini igeren herhangi
bir egitime rastlanmamistir (OYEGM, 2018). Bununla birlikte &gretmenlerin mesleki
gelisimleriyle ilgili Ozmantar ve Onala’nin (2017) yaptig1 arastirmada katilimc1 matematik
Ogretmenlerinin % 66°s1 kendi alanlariyla ilgili higbir egitim almamistir. Ayni1 c¢aligmada,

matematik O6gretmenlerinin % 44’tiniin matematik 6gretimi ile ilgili hizmet i¢i egitime
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katilmalarma ragmen, yaridan fazlasi etkili matematik Ogretimi konusunda hala egitime

ihtiyac1 oldugunu belirtmistir.

Ogretmenlerin nitelikli bir egitim almalar1 6z yeterligini de etkileyecektir. Oz yeterlik, belirli
bir performansa ulagsmay1 saglayacak eylemleri organize etme ve sergileme becerisine iliskin
diistinceler olarak tanimlanabilir (Bandura, 1994). Matematik basarisi ile 6z yeterlik arasinda
ortaya koyulan dogru orantili iliski daha 6zele inildiginde problem ¢ézme ve 6z yeterlik
arasinda da goriilmektedir. Matematik dersindeki 6z yeterlik, problem ¢dzme siirecindeki
kabiliyeti de etkilemektedir (Pajares & Kranzler, 1995). Bu ¢alismada, ortaokul matematik
Ogretmenlerinin somut islemler dénemi 6grencilerinin seviyesine uygun nasil problem

¢Ozdiikleri ve bu konuda kullandiklar1 temsillerin yeterliligi incelenmektedir.

2. Yontem

Bu c¢alismada, ortaokul matematik dgretmenlerinin somut islemler déneminde problem ¢6zme
becerilerini ve yetkinliklerini tespit etmek amacglanmaktadir. Nitel arastirma yontemlerinden
durum calismasi olarak yiiriitiilen arastirmanin katilimec1r grubu MEB’e bagli ortaokullarda
gbrev yapan matematik ogretmenlerinden olusmaktadir. Ogretmen segiminde, mesleki egitim
ve deneyim durumlarina gore cesitlilik gz oniinde bulundurulmustur. Ogretmenlerin Egitim
Fakiiltesi mezunu olma, mezuniyet yili (4+4+4 egitim sisteminin uygulanmaya baslandigi
2012 ESD oncesi ve sonrasi mezunlari igermesi) ve 5. siif diizeyinde gérev almalari 6lgiit

alimustr.

Verileri toplamak tizere, Gortisme Formlar1 ve Problem Cézme Testi olarak iki tiir veri
toplama araci gelistirilmistir. 1lk asamada Ogretmenlerin 5. sif ogrencileriyle ilk
deneyimleri, 6grencilerin beceri ve davranis 6zelliklerini tanima, lisans egitimlerinin yeterligi,
problem ¢dzme ve problem ¢oziimlerini biligsel donemlere gore siniflama durumlarini tespit
etmek i¢in yar1 yapilandirlmis 6n goriisme formu uygulanmustir. Ikinci asamada,
Ogretmenlerin ortaokul seviyesinde problem ¢oziim yaklasimlarini belirlemek amaciyla,
somut ve soyut islemler donemine uygun olarak ¢6ziilebilen dért problemden olusan Problem
Co6zme Testi uygulanmustir. Son olarak, 6gretmenlerin problem ¢dzmede kullandiklar: strateji
ve temsiller, ilgili alan yazin (Janvier, 1987; Hiebert & Carpenter, 1992; Posamentier &

Krulik, 2016; Van De Walle, 2004; Wadsworth, 2015) dikkate alinarak, bu yet}{ﬁlikleri nasil
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kazandiklarini tespit etmek amaciyla ikinci goriisme gerceklestirilmistir. Ogretmenlerin
bireysel problem ¢ozme siiregleri ve yar1 yapilandirilmig goriismeler kaydedilmis, elde edilen

veriler betimsel analize tabi tutulmustur.

3. Bulgular

Bulgular, 2012 ESD 6&ncesi mezun 6gretmenlerin 5. smif diizeyindeki ilk deneyimlerini
yetersiz olarak tanmimladigini ortaya cikarmustir. Ogretmenler, bu eksikliklerini 5. simf
diizeyinde daha uzun siire derse girerek giderilebilecegi inanci tasimaktadir. Ogretmenler
problem ¢6zme stratejilerini, zamanla ve Ogrencilerin ¢oziimii anlama durumuna gore
sekillendirdiklerini ifade etmislerdir. Diger bir deyisle 6gretmenler, problem ¢6ziimlerinde

farkli stratejileri deneyerek uygun olanlar1 kullanma yoluna gitmislerdir.

2012 ESD sonrasi mezun ile ¢ift ana dal programi (ilkdgretim matematik ve smif
Ogretmenligi) ve mezunu Ogretmenler ise, lisans egitimlerinin yeterli oldugunu, 6gretimde
herhangi bir sorun yasamadiklarini, fakat 5. siif o6grencilerinin diger simif diizeylerinde

karsilasmadiklar1 davranislar sergiledikleri i¢in zorluk yasadiklarini ifade etmislerdir.

Ogretmenlerin, somut\soyut islemler donemine uygun olarak problem ¢oziimii
sergileyebildikleri, ¢ozlimleri siif diizeylerine gore kategorize edebildikleri, ¢oziimlerde
farkli temsiller kullandiklar1 ve bu siiregte Polya (1957) problem ¢6zme adimlarinmi takip
edebildikleri belirlenmistir. Bu yetkinligi kazanmada 2012 ESD 6ncesi mezun dgretmenlerin,
siif dgretmeni meslektaslarindan destek almadigi, sosyal aglar1 ve zaman ig¢inde deneme
yanilma yolunu benimsedikleri belirlenmigstir. 2012 ESD sonrast mezun dgretmenlerin ise
Ogretim ve problem c¢ozmede yetkinlikleri lisans egitimlerinden kaynaklanmaktadir. Bu
O0gretmenler, somut islemler donemi O&grencilerinin bilissel seviyesine uygun olarak
psikomotor becerileri 6ne ¢ikaran kesme, boyama ve geometride arag¢ gere¢ kullanimina 6nem

verdikleri belirlenmistir.

2012 ESD o6ncesi mezun 6gretmenler kendilerini 7. ve 8. sinif diizeylerinde yetkin gormekte
ve problem c¢oziimlerinde soyut islemler donemine uygun cebirsel islemlere oncelik
vermektedir. 2012 ESD sonrasi mezun dgretmenler ise kendilerini en ¢ok 5. sinif diizeyinde
yetkin bulduklarmi, bu becerileri biiyiik 6l¢lide lisans egitiminde ve sosyal aglardan

edindiklerini ifade etmistir. 5.sif 6grencileriyle ilk deneyimlerini genel olaraﬁ%ilgisizlik ve
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belirsizlik olarak tanimlayan 2012 ESD 6ncesi mezun dgretmenler, ilk yillardaki 5. sif
Ogrencilerinin sonraki yillara goére daha basarili olduklarini belirtmis, bu durumu yas
degiskeni ile agiklamislardir. 5. siif 6grencilerinin diger smiflara gére daha yavas yazma,
O0grenme ve problem ¢dzme hizina sahip olmasmin gelisimsel bir farklilik oldugunu, bu
farkliliktan dogan zorlugun asilabilmesi ve sinif i¢i biitlinliik saglanabilmesi i¢in derste defter
tutma zorunlu tutulmustur. 2012 ESD sonrasi mezun 6gretmenler ise defter tutmayi derste

disiplini saglayabilmek ve s6zel ¢oziimlerin kalicilig1 i¢in zorunlu tuttuklarini belirtmistir.

4. Sonug¢ ve Tartisma
Ortaokul matematik Ogretmenlerinin somut islemler dénemi yetkinliklerine sahip oldugu
tespit edilmistir. Ogretmenlerden 2012 ESD &ncesi mezun olanlarin bu yetkinligi 5. smifin
dersine girerek ve deneme yanilma yoluyla kazandiklarmi ifade etmeleri, Gokkurt Ozdemir,
Erdem, Omek ve Soylunun (2017) ¢alismasindaki, 6gretmenlerin somut islemler donemi
problem ¢oziimlerinde deneme yanilma yolunu kullanma egiliminde olmalar1 ile
desteklenebilir. 2012 ESD sonrasi mezun Ogretmenler ise bu problem ¢dzme yetkinligini
lisans egitimleriyle kazanmistir. Ayrica 6gretmenlerin problem ¢oziimlerine cebirsel yollarla
baslama egilimde olmasi; problem ¢ézme alan yazininda soyut islemlerin tercih edilmesi ile

ilgili bulgular1 desteklemektedir (Tatar, Isleyen ve Okur, 2005).

Ortaokul matematik Ogretmenlerinin somut islemler donemi problem ¢6zme becerilerinin
gelismesinde sirasiyla, lisans egitimi, tecriibe, sosyal aglar, daha Onceki 6gretmenlerin
problem ¢ozme stratejileri, 6grencilerin problem ¢6zme stratejileri ve kaynak kitaplarin etkili
oldugu belirlenmistir. Sosyal aglar ve internetin mesleki gelisimdeki énemi, Bas’in (2016)
calismasindaki bulgularla benzerlik gostermektedir. Ogretmenlerin, ortaokul diizeyinde yetkin
olmalarina ragmen, etkili 6gretim ve diger dgretmenlerin tecriibelerini kazanabilmesi igin,
hizmet i¢i egitim ve ders izleme faaliyetlerine istekli olmalari, EARGED (2008) raporu ve

alan yazindaki (Ozmantar ve Onala, 2017) bulgularla desteklenebilir.

Bu sonuglardan yola ¢ikarak, aragtirma kapsaminin genisletilerek daha fazla 6gretmene 5.
siif dgrencilerinin biligsel gelisim 6zelliklerini, doneme uygun problem ve etkinlikleri,

uzaktan hizmet i¢i ya da at6lye egitimleriyle aktarilmasi faydali olacaktir. Egitimlerin yaninda
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Ogretmenlerin birbirine tecriibelerini aktarabilecekleri ortamlarin ve ders go6zlemleme

faaliyetlerinin ytiriitiilmesi 6nerilebilir.
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1. Introduction
It is known that a densely defined closed operator N in any Hilbert space is called

formally normal if D(N)c D(N') and ||Nf||=”N*f’ for all e D(N), where N is the

adjoint to the operator N. If a formally normal operator has no formally normal extension,
then it is called maximal formally normal operator. If a formally normal operator N satisfied

the condition D(N)=D(N"), then it is called a normal operator [1].

Generalization of J. von Neumann's theory to the theory of normal extensions of formally
normal operators in Hilbert space has been done by E. A. Coddington in work [1] And also

the first results in the area of normal extension of unbounded formally normal operators in a
Hilbert space are due to Y. Kilpi [2]—[4] and R. H. Davis [5] Some applications of this

theory to two-point regular type first order differential operators in Hilbert space of vector
functions can be found in [6] (also see references therein).

In this work, in the third section all maximal formally normal extensions of the minimal
formally normal operator generated by a linear differential expression in weighted Hilbert
space of vector-functions defined in right half-infinite interval are described. Furthermore, the
spectrum of such extensions is investigated.

2. Statement of the Problem
Let H be a separable Hilbert space anda € R. And also assumed that

a:(a,0)—>(0,0), e C(a,©) and o 'el(a,©). In the weighted Hilbert space

Li (H ,(a,OO)) of H — valued vector-functions defined on the right semi-axis consider the

following linear quasi-differential expression with operator coefficient for first order in a form
l(u) = (au)' + Au(t),

where A: H— H is a selfadjoint bounded operator with condition 4> FE:H — H is an

identity operator.
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By a standard way the minimal L, and maximal L operators corresponding to quasi-
differential expression /(") in L, (H ,(a,OO)) can be defined (see [6],[7]). In this case the

minimal operator L, is formally normal, but it is not maximal in (H ,(a,oo)) .

The main purpose of this work is to describe of all maximal formally normal extensions of

the minimal operator L,in terms of boundary conditions in Li (H ,(a,oo)). Moreover,

structure of the spectrum of these extensions will be surveyed.
3. The General Form of the Maximal Formally Normal Extensions
In this section the general form of all maximal formally normal extensions of the minimal

operator L,in L’ (H ,(a,oo)) will be investigated.
In a similar way the minimal operator L, generated by quasi-differential-operator

expression
I'(v)= —(Otv)v +Av(t)
can be defined in L, (H,(a,oo)) (see [6],[7]).
In this case the operator L' =(L0)* in Li (H,(a,oo)) is called the maximal operator

generated by /”(-). Itis clear that L, L, Lj < L.

In this case the following assertion is true.
Lemma 3.1. If [ is any maximal formally normal extension of the minimal operator L, in

L (H,(a,oo)) , then
aD(L)c W, (H.(a,»)),
where 17, , (H ,(a,oo)) is a weighted Sobolev space.

The minimal operator M, generated by following differential expression
m(u)= —z'(au)t
in L (H,(a,OO)) is a symmetric. And also a operator M =M, in L, (H,(a,OO)) it will be
indicated a maximal operator corresponding to differential expression m()

Lemma 3.2. The deficiency indices of the minimal operator M, in Li (H ,(a,oo)) are in

form
(n+ (M,).n (MO)) =(dimH ,dimH ).

For the description of all maximally symmetric extensions of the minimal operator M, in

L (H ,(a,OO)) we must be construct space of boundary values of M| .

Definition 3.3. [8] Let # be any Hilbert space and S:D(S)c H — 179be a closed

densely defined symmetric operator in the Hilbert space # having equal finite or infinite



deficiency indices. A triplet (H,;/l, 72),where H is a Hilbert space, y, and y, are linear

mappings from D(S*) into H, is called a space of boundary values for the operator S if for

any f, geD(S*)
(5°7.8), ~(£-S"g), =(n(/)-7:(2), = (r.(/)-1(2)),

while for any F,F, eH, there exists an element f eD(S*) such that y,(f)=F and
72 (f)ze

Lemma 3.4. The triplet (H,7,,7,),

is a space of boundary values of the minimal operator M, in L, (H ,(a,oo)) .

Theorem 3.5. If M is a maximally symmetric extension of the minimal operator M, in

L (H ,(a,oo)) , then it generates by the differential-operator expression m() and boundary

condition

(cu)(w0) =V (ca)(a).

where V:H — H is an isometric operator. Moreover, the isometric operator V' in H is
determined uniquely by the extension M i.e. M =M, and vice versa.

Now we describe the general form of all maximal formally normal extensions of minimal
operator L, in Li(H,(a,OO)).

Theorem 3.6. Let AI/ZWzl,a(H,(a,oo))cWZI(H,(a,oo)).Each maximal formally normal
extension L,Ly € L € L of the minimal operator I, in Li (H,(a,oo)) generates by the

differential-operator expression / () with boundary condition

(a)(w0) =V (ca)(a).

where ¥ and A4"’VA™"? are isometric operators in H . The isometric operator V is
determined uniquely by the extension L, i.e. L = Ly.

On the contrary, the restriction of the maximal operator L to the linealr86nanifold of

vector-functions (cu) e, (H ,(a,oo)) that satisfy mentioned above condition for some



12

isometric operator V, where A7?VA™"* also isometric operator in H, is a maximal formally

normal extension of the minimal operator L, in L, (H ,(a,oo)).

Proof. If L is any maximal formally normal extension of the minimal operator L, in

L (H,(a,oo)), then

Re(L) = AQ E,Re(L): D(L) - L4 (H, (a, ),
m(L)=EQ® L%(a),lm(Z): D(D) - L%4(H, (a,o),

where the symbol ® denotes a tensor product, are selfadjoint extensions of Re(L;) and
Im(L,) in L, (H ,(a,OO)), respectively. Then the extension Im(L) is generated by differential

expression m() and boundary condition

(a)(w0) =V (ca)(a).

where V' is an isometric operator in A such that it determined uniquely by the extension L,
ie. L =Ly [8].

On the other hand since the extension L is a maximal formally normal operator, then for
every u € D(L) the following equality holds

(Re(L)u, Im(Z)u)La(H'(a'oo) = (Im(L)u, Re(i)u)La(H'(a'oo).

In other words, for every u € D(L) we have ((au)y,Au) o) +(Au,(au )) =0.

L L(H (a.»))

o

From last relation and condition of theorem 4" w,, (H ,(a,oo)) cw, (H ,(a,oo)) we have

((aAl/zu)l,aAl/zu) +(05A1/2u,(05A1/2u)l) =0, that is, for every u € D(L)
LZ(H,(a,w))

L(H (a:2))

(aAl/zu,aAl/zu)'H dt =||(05A1/2u)(oo)||2 —||(aA1/2u)(a)||; =0. Hence there exists a isometry

Ry 8

operator K in H , such that A% (Otu)(OO)=KAl/2 (au)(a), that is,
(cu)(o)= A‘l/zVAl/z(au)(a), u € D(L).

Since the isometric operator K in H uniquely is determined by the extension L, then
from last equation it is obtained that AVPKA =V, thatis, K = A"VA™"? is isometric in H .

On the other hand, a sufficient part of this theorem can be easily to check. 81



Hence the proof of theorem is completed.
4. Spectrum of the maximal formally normal extensions

Here the spectrum of the maximal formally normal extension of the minimal operator L,
generated by linear differential expression / () with corresponding boundary condition in

Theorem 3.6 in L, (H,(a,%)) will be investigated.

Firstly let us prove the following results.

Theorem 4.1. The spectrum of any maximal formally normal extension L,in L (H ,(a,oo))

of the minimal operator L, has a form

. -1

ds
o(Ly) =<1€C:A= f FO) (In|u|™t + 2nmi — iargu),n € Z, u
a

co

ds
Eo| Vexp —Af

a(s)

Proof. Consider a problem for the spectrum for the any maximal formally normal extension
L,, thatis,

() (1) + Au(r) = u(t)+ £ (¢), AeC, ReA=1, 21 u, f € L, (H.(a,»))

with boundary condition (au)()=V (cu)(a), where V' and A"’VA™* are the isometric
operators in H.
Then it is clear that a general solution of above differential equation is in form

s e85t e sipfen] -

a

u(t;/t) =

] (s)ds, f, e H.

In this case we can easily see that u(-,4) e L, (H ,(a,oo)) for 1eC, A, >1.

Hence the boundary condition we get the following relation
exp —lji —V'exp —A'[ ds f,=exp —ﬂji V*jexp
2 o(5) 2 9(5) 20(s)) 4
From this it is seen that in order to A € O'(LV) the necessary and sufficient condition is

ol 55) ““{V ev| -] a(sJJ

o

Therefore 182



ds
A= f (In|u|™ + 2nmi — iargu),n € Z,u € o | V*exp —Af —

) -1 oo

ds

a(s)

a(s)
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1. Introduction
The general theory of singular or characteristic numbers for linear compact operators in

Hilbert spaces has been explained in I. Z. Gohberg and M. G. Krein [1] . Actually Schmidt E.
[2] and J. von Neumann, R. Schatten [3] have used there important results in the theory of

non-selfadjoint integral operators.
It is known that the traditional infinite direct sum of Hilbert spaces H,, n>1 is defined as

2 o0
" < .

Note that A is a Hilbert space with norm induced by the inner product

(w.v), = i(un,vn)H ,uve H (see [4])

n=l1 "
Throughout the paper we will use the notations as follows
(), =) M =M and (), =),

It is known that a lot of physical problems of today arising in the modelling of processes of
multiparticle quantum mechanics, quantum field theory and in the physics of rigid bodies

ul’l

HzéHn={u=(un):uneHn, nxl, i
n=1

n=1

A, n>1.
n

”H,, -

support to study a theory of linear operators in the direct sum of Hilbert spaces (see [5], [6]

and references in it).

Investigation of these problems in direction of spectral analysis of finite or infinite
dimensional real and complex entires special matrices (upper and lower triangular double-
band or third-band or Toeplitz types) in sequences spaces , ¢, ¢,, bs, bw,, [, have been
widely studied in current literature (for example, see [7] -[15] ).

On the other hand some spectral analysis of 2x2 and 3x3 types block operator matrices
have been provided in [16] ,[17] . Note that the structure of spectrum of diagonal operator
matrices has been surveyed in [18] . The compactness properties and belonging to Schatten-

von Neumann classes of diagonal operator matrices in the direct sum of Hilbert spaces has
been researched in [19] . 184



In this work, firstly the compactness properties of lower triangular one-band operator
matrices in the infinite direct sum of Hilbert spaces have been investigated. Lastly, belonging
to Schatten-von Neumann classes of this type operators will be studied.

Throughout the paper algebra of linear bounded operators, linear compact operators from
any Hilbert space %, to another Hilbert space 7/,, Schatten-von Neumann classes and

singular  numbers of any  compact operator will be denoted by
L(91), L(91,,91,), C,(9£,,91,), C,(9,,9(,), 1< p<oo and s,(-), n>1, respectively. And

also L(#)=L(#H,9(), C,(3)=C, (3.9) and C,(3)=C,(#,9), 1< p<co.

2. Boundedness and compactness of lower triangular one-band block operator
matrices

Here it will be investigated the continuity and compactness properties of lower one-band
diagonal block operator matrices in form

0
40
Aol A0 0
0 4, 0

in direct sum H = @H, of Hilbert Spaces H,, n>1 in case when 4, € L(H,.,H,,), n>1.

n’
n=l1

Note that A=A, and 4, = AK, where

0
Al
A2 0 ) )
4, = _ :H,=(0)®@PH, >PH,,
. n=1 n=1
0 A4,
0 0 1
0 0 1 0
1 0 0 ® P ®
V= . ‘@PH, > H,and K = H, > ®H,.
" "4 n=1 0 0 1 n=1
0 1 0 T,

Firstly, prove the following propositions.
Theorem 2.1. In orderto A € L(H ) the necessary and sufficient condition is

AI’I

sup||4 || < .
nxl1
Proof: Now consider the boundedness of the operator 4, under the condition sup |4, | < .

"£85

Indeed for any x=(x,)€ H we have



2 o
o, = 34, SIATIE, <(supba ] Sl (sl bk,
Hence A, € L(H,.H ). From th1s and relation A=A,V itis implies that 4 L(H).
On the contrary, if Ae L(H ), then via an equality 4,=AK it is obtained that
A, e L(H,.H).
Now we will shown that S“{’”I‘ln” <o, Let AeL(H) but S“.?”An” = oo, In this case, there

is a (k,) € N sequence such that

|4, ],
”Ak””=sup{ : kﬂerﬂ,uk”;tO,nZl}—WO, as n—» oo,

:
”Ak %, ||k
. * n n
In that case there is a (uk )c H, sequence such that ”*—‘ — o, as n — . Then,
k,
n kﬂ

A, u,
the (m,)<(k,) subsequence can be found such that for any n>1, w > n. That is,

*

m,
n m,

m,
n m,

L o . 1 .
for any n>1, the following inequality is obtained <—. In this case for the
n

0,..,0,%,.,0,..,0,v,, ,0,..), v, =— 27—
||A u,

" My

element in form v := (O, 0,...,0,v , n>1 is true

my 2

8
| —_

M = ZH

H i, U, ©

" " My j—
SRR o P

A u n=1

m, - m

S

||
—_

af, =3

n=1

Unfortunately,

im0

Consequently, v ¢ D(A) and so D(A) # H. This contradiction indicates sup”Aﬂ” < o0,
n>1

Theorem 2.2. If AeC,(H), then for any n>1,4,eC,(H,

n’

H,. ). Moreover, in case
A,eC,(H,.H,,), n=1 inorder for 4€C, (H) the necessary and sufficient condition is
A lI=0.

n

lim
Proof. The first part of theorem it is clear. The validity second part of theorem it is implies

from
A=A4)V, 4,=A4AK

and important results on compactness of operators in direct sum of Hilbert spaces [l 9].
Theorem 2.3. The spectrum of the operator 4 C, (H ) with dimH =+o0 is in form

o(4)=0,(4)=1{0}. 186
Proof. Consider the following problem to point spectrum Ax = Ax, x #0, A #0, x € H. Then



0=Ax,, Ax, =Ax,, A,x,=Ax;,...., A x, =Ax

v n ntl>c

Hence, for any n>1, x, =0. That is, x=0. Consequently, if 1 #0, then 1 ¢ 0, (A)

On the other hand 1 =0¢€ o, (4). Indeed, since dimH, >1 and(AH)l > H, or (TAH) #H,
then O e o, (A4).
Theorem 2.4. Let A€ C,(H). Then for the singular numbers of 4 is true

0

{5, (A):m=1} = J{s,(4,):k=1}.

n=l

Proof: In this case 4" A=@)A4,4,. Therefore A4 = @\/A;An. From this and Theorem 2.3.
n=l1

n=1

[18] it is obtained that o, (\/A*A ) = Ocrp («/A:An ) Hence

n=l

0

{s,(A):m=1} = J{s,(4,):k=1}.

n=l

From this it is implies the validity the following results.
Corollary 2.5.If A€ Cp (H), 1< p<oo, then forevery n=1, 4, € Cp (Hn’HnH)’

Proof. For p = this proposition has been proved in Theorem 2.2. Let 1< p <. Since

AeC, (H ), then the series Zs,ﬁ ( A) is convergent. Consequently, from inequality

m=1
280 (4,) <X s7(4). n21
k=1 m=1
it is implies that the series is,ﬁ’(An) is convergent. This means that for every
k=1

n>1,4,€C,(H,.H,,).

0

Theorem 2.6. In order to AeC,(H), 1< p<oo if and only if the series » > s/(4,) is

n=1 k=1

convergent.

Proof. 1f A€C, (H ), then the series an’;(A) is convergent. In this case by the Theorem

m=1

2.4. and important theorem on the convergence of rearrangement series it is obtained that the

series i i st (4,) is convergent.
n=l k=1
0

On the contrary, if the series » > s/ (4,) is convergent, the series » s/ (4) being a

n=l k=

—

m=1

rearrangement of the above series is also convergent. So 4€C, (H )

Corallary 2.7. For n>1,4,€C, (H,.H,,) and p=supp, <. Then 4eC,(H) if and
" nzl

n’

0 0

only if the series » > s7(4,) converges.

n=l k=1 187



Indeed, in this case for each n2>1, 4, €C, (H,.H,,). Then from Theorem 2.6. it is
obtained that the validity of proposition.

Corallary 2.8. For each n=1,4,€C, (H,.H,,) and p=supp,<ow. If the series

n=1

i i s (4,) is convergent, then 4eC,(H).

n=1 k=1
Remark 2.9. The similar problems can be considered for the block operator-matrices in form
0
0
0 0
A=| 4 ,A:H—> H.

A, '

0 A, 0
Note that in this case AA= diag(Al* A, A A,,... A A,,.. ) Then

s,(A)=5,(4,). k=1, m=>1.

0

n

Example 2.10. Let us H, = (C%].]), 4, :( 0; j, nzl,a€C |a|<1l. Then

4] =

" and lim|4,||=0. In this case the operator

o«
in direct sum H=@®H, is compact and singular numbers of A4 are in form
n=1

s, (A)=le| . n=1.

Moreover, AeC,(H) forany p, 1< p <o,
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Abstract

We study the initial and boundary value problem for the higher order Boussinesq
equation. The existence of a local solution is proved.

Keywords: The higher order Boussinesq equation; Initial and boundary value problem:;
Existence of local solution

1 Introduction

In this study, we consider the initial and boundary value problem of the higher order Boussi-
nesq (HBq) equation

Ut = Ugy + MUgatt — N2Uzzzztt T (,f(u))oc:u O<x<l, t>0, (1)
w(0,t) =0, u(l,t) =0, uze(0,8) =0, uge(1,t) =0, t>0, (2)
w(x,0) = ug(x), u(x,0)=ui(x), 0<z<1, (3)

where u(z,t) denotes the unknown function, 7; and 7y are real positive constants, f(u) is
the given nonlinear function and ug(z) and ui(z) are known initial conditions. The higher
order Boussinesq equation was first derived by Rosenau in [1] for continuum limit of a dense
chain of particles with elastic couplings. The same equation was also used to model water
waves with surface tension in [2] and the bi-directional propagation of longitudinal waves in
an infinite, non-locally elastic medium in [3]. Eliminating the higher order dispersive effects
(n2 = 0), the HBq equation reduces to the well-known improved Boussinesq (IBq) equation.

Zhijian and Guowang et al. have proved the global well posedness of solutions to the
initial and boundary value problem of the IBq equation in [4, 5]. The local and global well-
posedness of the Cauchy problem for the HBq equation has been proved in [3] and [6] in
the Sobolev space H® with any s > 1/2. The numerical investigation of the HBq equation
is studied in [7] by using Fourier pseudo-spectral method. It is therefore natural to ask
how the higher-order dispersive term affects the local solution to the initial and boundary
value problem. For this aim, we will study the local existence of solutions to the initial and
boundary value problem for the HBq equation. In this study, we denote the Sobolev space
Wk2(0,1) by H¥(0,1). We use notations as follows: ||.|, [|/loc ;s ||-|k.2 and ||.||x.co denote the
norms of the spaces L2(0,1), L(0,1), H*(0,1) and W*(0, 1), respectively.}90



2 Local existence of solution

In this section, we will prove the existence and uniqueness of the local solution for the initial
and boundary value problem (1)-(3) by using the contraction mapping principle. If we define
v(z,t) = [ u(&,t) d, then v satisfies

Vptt = Vgzz T M Vzaztt — 2Vzzzett T (f(Ux))x:L’a 0<ae<l, t>0, (4)

and initial and boundary conditions

0(0,8) =0, vp(1,t) =0, Vgzx(0,8) =0, vyga(1l,t) =0, t>0,
v(x,0) = vo(x), ve(x,0) = vi(x), 0<z<1, (5)

where vg(z) =[5 uo(§) d€ and v () = [ u1(§) dé. Now we consider the initial and boundary
value problem (5) of the following equation

Vit = Vgg + MUzttt — N2Vzzzxtt + (f(v:r)):ra 0<z<l1, t>0. (6)

Assume that f € C?(R) and v € C?([0,T]; H?(0,1)) is a smooth solution of problem (5)-(6),
then v is a generalized solution of problem (4)-(5). We define the function space H*(0,1) by

I:I4(07 1) = {u € H4(07 1)' U’(O) = u(l) =0, u:m?(o) = uxx(l) = 0}

Therefore u € C2([0,T); H*(0,1)) is a solution of problem (1)-(3). We rewrite the equation

(6) as
2 4

0
(I - 771@ +772%)Utt = fl(vx)xa 0<z< 17 t> 07 (7)

where f1(vy) = f(vz) + va.
The Green’s function G(z,¢&) of the boundary value problem for the ordinary differential

equation
dZy d4y
y—f)’”@{-rmw :0’ y/(O) :y/(l) :y//l(o) :y///(l) -0

is given by

e@2(2-8) | gaat ((’an: o) e1(2=8) 4 gag
) aq(e?er — 1)
ea1(2—z) + e

ag(e? —1)

for ni > 4n, where a; = 4/ UERRA "2:775_4772 and ay = |/ TR ”225_4772. The problem (5)-(6) is

equivalent to the problem

1
2m(ai—a3)l y(e202 — 1
G($7 5) = . 80(22((2—£C) + eoz)gx

(eMT4e ™M) 0<x <

e2t 4 emo28) (e fem ) e <x <1,

2772(“%_0‘%)[ OéQ(@QaQ — ]_) (

o(2,1) = vo(x) + vr ()t — /0 /0 (t = 7)Gelw, ) fi(ve(&, 7)) dédr 0 < < 1,
0(0,8) =0, vp(1,8) =0, V200(0,8) =0, Vgpe(1,¢) =0, t >0, (8)

i.e. v e C*([0,T); H4(0,1)) is a solution of (5)-(6) if and only if v € C?([0, T]; H*(0,1))
is a solution of problem (8).
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Theorem 2.1 Assume that vy,v; € W(0,1), vj(0) = vj(1) = v{(0) = vi(1) =
vy (0) = vy’ (1) = v{"(0) = o{"(1) = 0 and f(s) € CYR) with f(0) = 0. Then prob-
lem (5)-(6) has unique weak solution v € C*([0,T°); W*>°(0,1)) where [0,T°) is the
mazximal interval of existence of v(t), and if

Supg(”“(t)”oo + Jvz () lloo + [0z (B)lloc + 10222 () |oo) < +o00, (9)

0<t<T
then T° = +oo.
Proof 1 : We consider the Banach space
X(T) = {v e C(0,T]; W**(0,1))|v2(0,1) = vp(1,1) = V322(0,1) = Vgua(1,2) = 0}
which endowed with the norm
I o llxey= sup 10() lsoe= sup (o®lloe + 02 (E)lloc + oas@lloc + [aza(t) ).

0<t<T 0<t<T

(10)

We define the set
B(M,T) = {vlv € X(T), |[ollxir) < M}, (11)

If the equation (7) is integrated twice with respect to t, the solution of the initial and
boundary value problem satisfies the integral equation v = Sw where

(Sw)(z,1) = vo(x) + va(x)t / / (t — 7)Gelw,€) fi (wel€, 7)) dedr.  (12)

We first prove S maps B(M,T) into B(M,T) for T small enough. Using the triangle
inequality, we have

|Sw(z, )] < \Uo(ﬂﬂ)|+|v1(ﬂf)!t+/O (t—7)| ; Ge(w,§) fr(we(€, 7)) dEldr.

Using |Ge(z,€)] < —=2 - and locally Lipschitz continuity of f, we obtain
Ny —4n2

(L+1)M ,

NG

. . 2(m++/n?—4n2) . m++/n?—4ns
Similarly |Gey(x,€)| < W and |Gegy(x,€)] < m, we have

4
(m + /07 — 4n2) L+1)M

(13)

1Sw(t)||ee <

[[olloo + llenfloct +-

1(Sw)a(t)]loe < Hv’olloo+||v’1lloot+\/

P (771 4772) 2
+ 4
1(Sw)oe®lloe < (ol + o) oct + BENYI 3 gy
T2 771 — 4np 2

Since Gepyy(,€) has jump discontinuity at & = x, we get
t 1
(Sl ) = e/ @) + o @t = [ ¢ =7) [ Gl i el ) der
0 0
- / (t — 7)(fulws (2, 7))dr. 192
0



Using |Gegza(x,€)| < (1+ /i —42)?

W7 we obtain

2n5(ny
(1 +\/nf — 4mp)? t2
Slwma?xt oog U”/oo+ U”/ oot"i’ L+1)M—.
1S wane Dlle < 10+ e ot + () P 1) (2 10

By choosing M as
M = 2([Jvollso + [[v1]loe + 106]loc + 14 lloc + 1th llo + 107 oo + 10" loo + [V} lloc)
and sufficiently small T satisfying
2(1+ o1 +af +ab)
ni — 4ng

we have || Sw || xy< M. This proves that S maps B(M,T) into B(M,T).
The next step is to prove that S is contractive, namely,

T < min{l, [( + 1)(L + 1)]_1/2}

1
|Swy — Swal|x iy < §||w1 — wal|x (1), Y wy,wy € B(M,T).
We have

Sw1 — S’U)Q = /O(t - 7-)/0 G§<x7€)(f1(w1§(§7 T)) - fl(w2§(€, T))) deT

We define T : [0,00) = [0,00) by (1) = maxiq<ed|fi(s)], |fi(s)[}. Using the Mean
Value Theorem for fi and integration by parts we obtain

|Swy () — Swa(t)|lee < m 1) £ ||wi(t) — wat)]]1,00- (14)

Similarly, we have
[(Sw1)a(t) = (Swa)e(t)lloo < m FOM) 2 [Jwr () = ws(t)]]1,06 (15)
[(Sw1)aa(t) — (Swa)aa(t ) £?Jwi(t) — wat) 11,00 (16)

||oo_¢7
||oo_<m

[(Sw1)aza(t) — (Sw2)uaa(t M) 752||w1(t) — wa(t)|1.00-

(17)
Adding the inequalities (14)-(17), we have
1+ar+af+of

Vit — 4

By taking the supremum with respect to t, we get

[Swi(t) — Swa(t)llse0 < F(M) ¢

+ Dllwi(t) — wa(t) |30 (18)

1
|Swy — Swal|x (1) < §||w1 — wallx (1),

where T < \/ VAlie

2f (M)(1+a1 +a2+ad++/n2—dnz)

We conclude that S is a contraction mapping from B(M,T) to itself when M is
sufficiently large and T is sufficiently small relative to M. The problem (8) has at most
one solution v € C([0,T"]; W*(0,1)) for each T" : 0 < T" < T°, where §q,T°) is the
maximal interval of existence of v(t).



Theorem 2.2 Assume that vg,v; € H™3(0,1), m > 1, v,(0) = v)(1) = v} (0)=v{(1)
=y (0)= vy (1) = v"(0)=v{"(1) =0, f(s) € C"(R) and f(0) = 0. Then problem (8)
has a unique solution v € (-, C™*7%([0,T7);

H**3(0,1)), where [0,T°) is the mazimal interval of existence of v(t). Moreover if (9)
holds, then T° = +oo.

Corollary 2.3 Asume that ug, vy € H™2(0,1)HY0,1), f € C™(R),(m > 2),
f(0) = 0. Then problem (1)-(3) has a solution u € (,*, C™*7%([0,17);

H*2(0,1) N H*(0,1)) where [0,T°) is the maximal interval of existence of u(t). More-
over, if

T

sup (esssup | [ (&, £)d€] + [[u(t)]loo + l[ua()lloo + Uuza()lloc) < 400, (19)
0<t<TO =z€[0,1] 0

then T° = +00.

Now, we will obtain the stability of problem (1)-(3) as in the following theorem.

Theorem 2.4 Assume that ug,uy € H*(0,1), f(0) = 0. Then the solution u of prob-
lem (1)-(3) belongs to C*([0,T°); H*(0,1)), and continuously depends upon the initial
data, i.e. if u € C*([0,T°); H*(0,1)) is another solution of problem (1)-(3) corre-
sponding to the initial data Gy, @y € H*(0,1), then for any e > 0, then there is a
6 > 0 such that |Ju(t) — a(t)||3, + [Jue(t) — @(t)||5, < € for allt € [0,T(T < T°) as
o — o35 + llur — @55 < 6, where [0,1°) is the mazimal interval of existence of
u(t).

According to Corollary (2.3) and Theorem (2.4), we have the following corollary.

Corollary 2.5 Under the assumptions of Theorem (2.4), problem (1)-(3) has a unique
solution u € C*([0,T%); H*(0,1)). And if (19) holds, then T° = +oc.
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Abstract

In this study, we applied WKB analysis of the three coupled long wave-short wave
interaction (LSI) equations. We consider the semi-classical limit of the LSI for initial
data with Sobolev regularity, before the shocks appear in the limit system.

Keywords: The long wave-short wave interaction equation; Dispersive perturbation:
Quasilinear hyperbolic system

1 Introduction

In this study, we investigate the semi-classical limit, i.e., ¢ — 0, of the three coupled long
wave-short wave interaction (LSI) equations are given by

i€ + ac i = Blu + [bi]*)y (D)
i€y + ac’9Zvs = But + [U5[*)ys (2)
Ou = B, (W57 + [W5[) - (3)

Here, the real valued function uf(x,t) is the amplitude of long longitudinal wave and the
complex valued functions ¢, (z,t) and v9(x,t) are the slowly varying envelopes of short
transverse waves. The coupling parameters o and S are real constants and € is a small
parameter (0 < € < 1). The initial data are the WKB states (or Lagrangian states)

) ) ) 7
i (0.0) = vioo) = Aol exp (IStol@) ), k=12 ¢
for the short waves and

u(x,0) = ug(x) (5)

for the long wave. Note that Si o,k = 1,2 are functions of H*(R) (Sobolev space) for s large
enough, Ak, 0k =1,2are functlons polynomlals in €, with coefficients of Sobolev regularity
in 2. More precisely, we are concerned with the behaviour of the solutions tol 98I equations
(1)=(5) as € — 0 with rapid oscillating initial data for the short waves.



2 Modified Madelung transformation

We will use the modified Madelung transformation to convert LSI equations (1)—(3) into a
linear dispersive perturbation of a quasi-linear hyperbolic system. Therefore we can apply
for the Lax-Friedrich-Kato theory. We look for the solutions of the form

WE = A (2,1) exp [és,g(x, t)], k=12 (6)

Here the amplitudes A{(z,t) and A5(x,t) are allowed to be complex-valued. Substituting the
ansatz (6) into (1), we obtain
ie0 AT — A70:S1 + QEQEMAi + 1200, A1 0SS + i€ AT 0y ST
A (0,5) = Blu+|AS[2) AS
We can decompose the above equation as
OpAS + 2000, A0, ST + A0 ST = i€y A (7)
08T + (097 + B(u+|A*) = 0. (8)
Similarly, substituting the ansatz (6) into (2), we have
i€0y AS — ASOLSS + a€®0pp AS + 1200€0, AS0,SS + e A5 S5
—aA5(8,55)% = Blu+|A5[*) A
and it can be decomposed the above equation as
OLAS + 2000, A50, 55 + aA505,55 = iae0p, A5 (9)
OS5 + (9,55 + B(u+|ASI*) = 0. (10)

Since A{(x,t) and A5(x,t) are complex valued functions, we take Af, = aj +ibj,k = 1,2. We
use the substitutions vi, = 20,5}, k = 1,2 which yield the following equations

€

Bra + vSdpal + %@;Uf = —edypbS (11)
Opb§ + v]0.b] + b—Qi(‘?xvi = €dya] (12)
O] + 010,07 + 200,u° + daf(ajOga] + b]0zb7) =0 (13)
Oras + v50,a5 + %589305 = — €0y b5 (14)
Ob§ + 050,05 + b—2§0xv§ = €0y a4 (15)
Ov§ + 050,05 + 200, uf + daf(a50.a5 + b50,05) =0 (16)

and the long wave satisfies the conservation law
Ot — B0y (|ag]? + [bi]* + [a5]* + [b5]%) =0 (17)
This system can be written in the vector form 196

(U + AU)OU + V = ael(U°) (18)



where

Uz, t) = (ai(x,t),bi(x,t),vf(x,t),ag(m,t),bg(a:,t),vg(a:,t))T
Ve(a,t) = 28(0.0, u (w, 1), 0.0, u (2, 1))
and the initial datum are given by

up(r) = u(z,0), (19)
and

€ € € € € € € T
UO(m) = (CLI(ZE, 0)7 b1($7 0)7 Ul('x: 0)7 az(l'a O)» b2($7 0)7 U‘z(xv 0))

(20)
€ € € € € € T
= (‘11,0(37)751,0(17)a”1,0(17)7%,0(-77)75270(-73)71)2,0(-77)) :
The matrices A and L are given respectively by
v§ 0 ai/2 0 0 0
0 v§ b§/2 0 0 0
dafal 4afb;  vf 0 0 0
€y — 1 1 1
AU) = 0 0 0 v§ 0 a5/2 (21)
0 0 0 0 v5 5/2
0 0 0 4afas 4apbs  v§
and
Oz 0 0 O 0 0
0 0 0 O 0 0
L= 0 0 0 0 =0z O (22)
0 0 0 O 0 O
0 0 0 O 0 0
Obviously the matrix A(U€) can be symmetrized by
8aBf 0 0 0 0 O
0 8B 0 0 0 O
0 0 1 0 0 0
§= 0 0 0 8p 0 O (23)
0 0 0 0 8aB O
0 0 0 0 0 1

which is symmetric and positive definite for a8 > 0. Therefore, we have the existence and
uniqueness of the classical solution of the dispersive perturbation of the quasilinear symmetric
hyperbolic system (18)—(20).

Theorem 2.1 Let s > % and aff > 0. Suppose My > 1, M and T are given such that
[Mo + (Mg + M)T)eMT < 20 . (24)

(1) If Ve € L>=([0,T); H*(R)) N C([0, T]; HS~%(R)) such that |[VE||gs < M and the initial
data Us € H*(R) satisfying ||U§| rs(my < Mo are given then, the initial value problem
for the (18)—(20) has a unique solution U¢ € C([0,T]; H*(R)) N C([0,T); H*2(R))
such that ||U®||gs < 2M.

(2) IfU° = U(EO)7 U(El) are the solutions corresponding with V¢ = V(go), V(El) for the same initial

conditions U§ satisfying the condition (1), then
197

”U(EO) — U(61)||Hs—2 S CeCl‘\/IoTTH‘/(%) — ‘/(gl)lle—S s (25)



(3) Let k =1,2. If p(2,0) = (af(x,0))* + (b{(2,0))® > 0 then p(z,t) > 0 for all t > 0; if
p5.(x,0) has a compact support, then pi(-,t) does too for any t € [0,T] and

R{pi( 1)} < R{pE(,0)} + (1+ T, (26)
where R{f} = sup{|z| : f(z) # 0}.
The proof is similar to that given in [1] (Theorem 3.1), the key step is to show
Vee L*(0,T]; H¥(R)) ﬂ C([0,T); HS2(R))
such that |V¢||gs < M, which is equivalent to show
ut € L2([0, T]; H*H(R)) () C([0, T]: H* ' (R)) .
To this end, we represent the long wave equation (17) as an integral form

t
ut(x,t) = up(x) + ﬁ/ Ou (lag|* + DT + Jag]® + [b5]*)dr
0

then by Cauchy-Schwarz, Minkowski integral inequalities and the imbedding H' < L? we

have
2\
dl‘)

1
2 2
0. (a5 P+ I + a5 + 5P| ac) “ar

00 t
[ ()2 < [lugllzz + 5(/ ‘/0 By (|af? + [bS[* + las|” + [b5]*) dr
—00

< ||ua||Lz+ﬂ/0t(/_Z

< lufllzz + 26T (laillzy + 1651 + lasllz + 19517) -

Similarly, for higher derivatives (s > 1)
@l s < Nlublls—r + 28T (las |l 7rs + 611720 + llaslfFr + 165117+) -

Moreover, since af, by, € C([0,T]; H*(R)) N C*([0,T]; H¥ %(R)), k = 1,2, the integral formu-
lation also shows that
u® € Lip([0, T]; H*~'(R)).

Theorem 2.2 Assume the hypothesis of Theorem 2.1. Given initial datum U, Uy € H(R)
and U§(x) converges to Up(x) in H*(R) as e — 0. Let [0,T] be the fized interval determined in
Theorem 2.1. Then as e — 0, there exists U € L>°([0,T]; H*(R)) and v € C*([0,T]; H*~'(R))
such that for all 0 >0

ve — U in C([0,T7]; H*°(R)), (27)
ut — u in CY[0,T); H°"1(R)). (28)

The function U(z,t) belongs to C([0,T]; H*(R)) (N CL([0,T]; HS~*(R)) and is a classical so-
lution of limit system.

The proof is the standard compactness argument, Arzela-Ascoli theorem (applied in the
time variable) and the Rellich lemma (applied in the space variable).
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Abstract

This study examines the criteria that science and mathematics teachers use when
developing interdisciplinary mathematical modeling activities. In the study, the
interdisciplinary dimension is limited to mathematics and science and teachers choice of
subjects while integrating two disciplines were also investigated. This study was carried
out by 9 science teachers and 9 mathematics teachers who participated in a three-month
workshop training in which the theoretical knowledge about mathematical modeling and
interdisciplinary mathematical modeling was presented. The teachers were asked to
develop interdisciplinary mathematical modeling activities in groups of two, one being
science and one being mathematics. As a result of the preliminary analysis, it was seen
that teachers related the two disciplines before the training mainly in the context of
science that requires mathematical calculations such as physics. However, after the
workshop, they related two disciplines more in biology oriented subjects while developing
interdisciplinary mathematical modeling activities. The teachers included real-life
scenario that may be meaningful for the students in the developed-activities that enable
them to provide different models effectively. The results are thought to be important in
terms of seeing the contributions of the workshop training to the teachers.

Keywords: Interdisciplinary Mathematical Modeling, Mathematical Modeling Teacher
Competencies, Activity Dimension

1. Introduction

With the rapid changes in technology and knowledge, the competencies that individuals
possess vary as well. One of the important aims of the education system is to enable
individuals to solve the problems they have in real life with the knowledge and skills they
have (MEB, 2018). Mathematical modeling may have an important effect in acquiring
these kinds of skills (Lesh and Doerr, 2003). Mathematical modeling is a complex process

involving solving a problem situation in real life with the aid of a mathematical model and

" Turkey (TUBITAK) under grant 117K 169. The views expressed do notnecessarily reflect the (}I%?cial positions
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interpreting the obtained solution in real life and evaluating the final outcome (Berry and
Houston, 1995). By engaging in mathematical modeling, students discover the
mathematics in real life and have the opportunity to see that mathematics is not a separate
discipline from life, and that it is intertwined with life. Students realize how mathematics
is needed in real life (Borromeo Ferri, 2018). It helps students better understand the
relationship between mathematical concepts and allows them to develop different
perspectives on a problem situation (Chamberlin and Moon, 2005). Because of it is nature,
mathematical modeling may bring together many disciplines (Lingefjard 2007).Thus,
mathematical modeling can be seen as a bridge to STEM education (English, 2015). From this
perspective, interdisciplinary mathematical modeling (IMM), which can be expressed similar
ideas as the understanding of mathematical modeling that deals with different disciplines
together. It is very important to integrate IMM activities that enhance problem-solving skills
by providing the opportunity to combine different disciplines in the instructional program and
use it in practice in order to support the development of learning at the conceptual level. For
this purpose, it is necessary to increase teachers' awareness and skills of IMM activities. Ferri
(2018) stated that teachers should have some competencies for effective modeling teaching,
and they have dealt with the qualifications in four different dimensions as theoretical, activity,
practice and diagnosis. In this study, the competencies of the teachers in the aspect of activity

were discussed with regard to task design.
2. Materials and Methods

This study, which addresses IMM in the context of science and mathematics disciplines, was
conducted by 9 mathematics and 9 science teachers. All teachers participated in a three-month
workshop training in which the theoretical knowledge on IMM and mathematical modeling
was presented. At the end of the training, the teachers were asked to develop IMM activities
in groups of two, one being science and the other being mathematics.

3. Results and Discussions

The results showed that, at the beginning of the workshop, teachers associate science concepts
such as force-motion, pressure, simple machines, which are required mathematical
computation with mathematics. Yet, when they were asked to design an IMM activity at the
end of the workshop, they mainly associate mathematics and science disciplinzeos0 in biology-

related concepts such as environmental problems, renewable energy sources, conscious
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consumption, recycling. The main topics that teachers associate with are "force-motion",
"pressure", "simple machines", "electrical circuits". When the activities that teachers have
developed after training are examined, it has been determined that the science standards
included in the activities are biology-oriented. The standards associated with the activities are

presented in Table 1.

Problem Concepts in Science
' Saving use of resources - Conscious consumption -
Water Saving Problem ' '
Environmental education
Heat Insulation Problem Head conductivity and insulation of materials
Apricot Problem Nutrition Balance - digestion
Green Classes Problems Photosynthesis- Oxygenated Respiration
Water Storage Problem Fluid Pressure - Energy Conversion
Pet Bottle House Problem Recycling- Sustainable Development
Forest Problem Photosynthesis - Oxygen respiration
Farm Problem Diet
. Fossil fuels - air pollution - greenhouse effect -
Carbon Footprint Problem . '
environmental education

The science curriculum focuses on teaching the science concepts without entering the
mathematical competition, which may be the reason why teachers prefer more biology-related
concepts while designing the activities. Other reason might be the nature of IMM which
focuses on real-world activities in association with mathematics and science. The aspects that
teachers paid attention to when designing their activities included a real-life scenario that
might be meaningful for the students with a strong story to encourage them to solve the
problem (Sahin, Dogan, Giirbiiz ve Cavus Erdem, 2017). The emergence of different
models or solutions in IMM activities was another important criterion that teachers consider
when designing their activities. One of the most important features that distinguishes
mathematical modeling problems from other problems is that they includes different

solutions (English, 2006, Antonius, Haines, Jensen, Niss and Burkhardt, 2%(?07). While
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considering teachers' limited conceptions of IMM at the beginning of the study, their progress
of understanding and designing IMM activities were impressive and valuable.

4. Conclusions

Mathematical modeling and IMM are fairly new concepts for our country and gradually
begin to take place in teachers training programs. Of course, it is very important for
teachers to gain proficiency and to develop their awareness of IMM in order to take such
practices in their classroom. While considering teachers' limited conceptions of IMM at the
beginning of the study, their progress of understanding and designing IMM activities were
impressive and valuable. Thus, proving teachers this kind of training programs are important

for teachers development.
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Abstract
STEM education is an educational approach designed to meet the need for

educating creative individuals who systematically think in science, technology,
engineering and mathematics, giving them a critical perspective, and transferring their
learnings to new and different problems. STEM education is a constantly evolving field,
and many different views have been raised in this area. According to some researchers,
"Engineering" in the STEM section means "engineering" as well as "design and
production". The letter "S" describing the word "science" includes not only natural
sciences but also humanities and social sciences. The letter "E" is considered as design
and production and "S" as social sciences.

The aim of the study is to see to what level students learn some concepts related to
mathematics and social sciences together. For this purpose, the researchers worked
together with the teachers of Mathematics and Turkish to develop the "Reading Problem"
which is an activity to create interdisciplinary model. Before this problem was solved, the
students worked on modeling problems for 4 weeks with collaborative learning approach
and produced explanations, representations, mathematical forms, diagrams and
mathematical models from the solutions of these problems. The Reading Problem includes
learning areas of both mathematics and Turkish disciplines. This problem has been
applied to 7th grade students in groups of 3-4 studying in a city center in the eastern
region of Turkey. In the interdisciplinary problem-solving process, students have learned

some concepts related to Turkish and developed a mathematical model.

Keywords: Model Development Process, Interdisciplinary Model Building Activity, Interdisciplinary Problem

Solving 204
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1. Introduction

In today's dynamic and digital societies, mathematics, science, medicine, social
sciences, finance, engineering, economics and many other areas consist of complex systems.
Complexity, formed of interconnected and hard to understand parts, has led to significant
scientific methodological developments (Sabelli, 2006). With the spread of complex systems,
new technologies have emerged for communication, collaboration and conceptualization, and
these technologies have led to significant changes in the mathematical and scientific thinking
styles required outside the classroom environment, such as producing, analyzing, working on
and transforming complex data (English & Sriraman, 2010). These changes brought along
new educational approaches. STEM is also one of these educational approaches. STEM
education is an educational approach designed to meet the need of educating creative
individuals in science, technology, engineering and mathematics fields, who think
systematically, provide a critical perspective, transfer their learning to new and different
problems, and are increasingly needed.

One of the tools that make the transition to STEM education is Model Eliciting
Activities (MEA) (Maiorca and Stohlmann, 2016). Model Eliciting Activities (MEA) is an
open-ended interdisciplinary problem solving activity that encourages students to build

models to solve complex real-life problems and encourage them to test their models.

2. Method
In this study, multi-tiered teaching experiment (Lesh & Kelly, 2000) was used to see
the development of the students in the process of solution of "Reading Problem". In addition,
a modified version of the design research method (Dolk, Widjaja, Zonneveld, & Fauzan,

2010) was used to support the interpretation of research findings and the analysis of data.

3. Results
Findings in the study were handled within the framework of the semi-structured
preliminary interview with teachers and the semi-structured final interviews with teachers and
students. In a preliminary meeting with the teachers, they were asked "Do you teach your

lessons by associating them with everyday life?", "Would you tell the lesson %%‘/5 associating
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the topics with other disciplines? "Are you able to explain the topics with examples?" in
order to see whether they relate their lessons to daily life. Below are some of the answers

given by teachers to these questions:

Oy ... Some students say they do not need to learn some subjects because they do not use them
in everyday life. Therefore, we had better choose daily life examples after the topic is
explained. Let me give an example: Let's say on a 100 km road, a car spends 5 It of fuel.
According to this, how much fuel do you spend on the 400 km road? So, I think it would be
better to give examples of daily life like this.

Oy: In the explanation of some subjects, we use mathematics. It helps make this lesson more
permanent and effective. For example, I use the concept of clusters when teaching similarities

and differences.

In the last meeting, teachers were asked "Have you ever seen such kind of problems (Reading
Problem) before?", "Do you think these problems have improved the ability to associate
disciplines?", "Do you think such problems should be included in the curriculum?", "If these
problems are included in the curriculum, what kind of benefits can be provided to the

students? ". Below are some of the answers given by teachers to these questions:

Oz 1 have never encountered such comprehensive problems before. One of the questions that
students constantly ask is, "How does this matter benefits us in daily life?" Once students have
encountered such problems, they no longer feel the need to ask such questions.
Interdisciplinary learning certainly develops with such problems. The Mathematics Practice

course needs to be composed of such problems.

Oy: I think such problems improve the ability to associate Turkish-Mathematics. I also think
such problems should be included in the curriculum. I always believed that there must be
transitions between courses. I believe that such problems increase permanence, motivation and

students' confidence in themselves.

Students were asked such questions as "Have you ever encountered such problems

before?", "What benefits did these problems provide you?", "Would you like these types of
206
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problems to appear in school books?" Below are some of the answers given by students to

these questions:

Umit: No. I have never encountered such problems before. Afier solving these problems, I learned to

make connections between lessons.

Zehra: I generally did not like every lesson, but thanks to these problems, I started to like Mathematics
and Turkish especially. I did not use to love mathematics before but now I do. I like Turkish more than

before. Fortunately, I have seen these good problems.

4. Conclusion

The two teachers who participated in the study process stated that they already made
everyday life and interdisciplinary associations of the subjects they taught. Mathematics
teacher said that such problems should be included in the course of Mathematics Practices.
Turkish Teacher thought that such problems should be included in the curriculum and stated
that these problems provide interdisciplinary passage. Turkish Teacher stated that such
problems affect permanent learning, students' self-confidence and motivation in a positive
way. As for students' opinions, the students reported that they had never encountered such
problems before, and that such problems had positively improved the ability of
interdisciplinary association and attitude towards other disciplines. In addition, there are
students who pointed out that DAMOEs increased self-confidence and influence

mathematical attitude positively..
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Abstract
Among the large number of existing indices, an important class of such measures relies on

Shannon’s entropy to characterize graphs by determining their structural information
content. The Sackin index of a rooted tree is defined as the sum of the depths of its leaves.
In this paper, we study the entropy of weighted tree structures with the Sackin index as

weights. Exact formulas for the entropy of paths, stars, comets and dendrimers are given.

Keywords: Weighted trees, Entropy, Sackin index.

1. Introduction

Studies of the information content of complex networks and graphs have been initiated in the
late 1950s based on the seminal work due to Shannon. Numerous measures for analyzing
complex networks quantitatively have been contributed. A variety of problems in, e.g.,
discrete mathematics, computer science, information theory, statistics, chemistry, biology,
etc., deal with investigating entropies for relational structures. For example, graph entropy
measures have been used extensively to characterize the structure of graph-based systems in
mathematical chemistry, biology and in computer science-related areas [1]. Rashevsky is the
first who introduced the so-called structural information content based on partitions of vertex
orbits [9]. Mowshowitz used the the same measure and proved some properties for graph
operations (sum, join, etc.) [8]. Moreover, Rashevsky used the concept of graph entropy to
measure the structural complexity of graphs. Mowshowitz introduced the entropy of a graph
as an information-theoretic quantity, and he interpreted it as the structural information content
of a graph. Mowshowitz later studied mathematical properties of graph entropies measures
thoroughly and also discussed special applications thereof. Dehmer and Kraus [3] have
studied extremal properties of graph entropies based on so—called information functionals.
They obtained some extremality results for the resulting graph entropies which rely on the
Shannon entropy. Also by applying these results, they infered some entropy bounds for
certain graph classes. Kazemi [6] has studied the entropy of weighted graphs with the degree—



INTERNATIONAL CONFERENCE ON MATHEMATICS
“An Istanbul Meeting for World Mathematicians”

Minisymposium on Approximation Theory & Minisymposium on Math Education
3-6 July 2018, Istanbul, Turkey

based topological indices as weights (see [4] for the degree—based topological indices). The

goal of this paper is to study of entropy with a distance—based index as weights.

2. Sackin Index

The distance D(v) between the rooted root and node v (the depth of node v) in a tree of order
n has been studied by many authors. Sackin index is one of the oldest measure that summarizes

the shape of a tree [10]. [t adds the number of internal nodes between each leaf of the tree and

the root to form the following index S(n)= Z;Ni , Wwhere the sum runs over the n leaves of

the tree and A, is the number of internal nodes crossed in the path from i to the root (including

the root). An equivalent formulation of S(#) is by counting the number of leaves under each
internal nodes S(n)ZZ':]Tf /, Where N(; is the number of leaves that descend from the

ancestor j. In fact, the Sackin index S(n) of a tree of order n is defined as the sum of the

depths of its leaves.

3. Entropy

For a given graph G and vertex v,, let d; be the degree of v,. For an edge v,v,, one defines:

py ) "

i d
Zw(v,v‘ ; )
Jj=1

where w(v,v,) is the weight of the edge v,v, and w(v,v,)> 0. The node entropy has been

di
defined by H (v,)Z—ZpU log p,. Motivated by this method, Chen et al [2] introduced the

Jj=1
definition of the entropy of edge-weighted graphs, which also can be interpreted as multiple

graphs. For an edge-weighted graph, G = (V,E,w), where V', E and w denote the vertex set,

the edge set and the edge weight of G, respectively.

Definition 1 For an edge weighted graph G = (V, E,w), the entropy of G is defined by:

](GJW)=_ puvlogpuv’
u; ’ ’ 210
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w(uv)

Zw(uv) '

uvek

where p, =

The above definition of the entropy for edge-weighted graphs is based on the probability

function (1).

4. Main Results

Foratree T, of order n,assume that L, is the set of its leaves.

Theorem 1 Let

_ 0, vel, )
" Doy, vel, )

Then for n>3,

I(T,,w)=1logS(n) —SL > D(»)log D(»),

veLn
where S(7n) is the Sackin index.

Corollary 1 Assume n>3. Let D, (v) and D

max

(v) be the minimum and maxumum of depth of

node v in a rooted tree. By Theorem 1,

log(M) <I(T, w)< log(M).

Dmax (V) ’ Dmin (V)
In the rest of the paper, we use the weight defined in equation (2).

Theorem 2 Let P, and S, be the path and star of order n, respectively. Then

0, pendentnode= root
log(n—1)— ilog(i)+(n—i —ll)log(n —-i—-1)
n_

1(F,,w) =

, pendentnode# root

log(n—1), centralnode=root

I(Sn,W)={

log(n—2), pendentnode=root 211
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where i =1.....n—i—1.

Theorem 3 Let D(¢;r) be a monocentric dendrimer with the progressive degree t and the radius

r.
a) If the center is the root node, then /(D(t;r),w)=log(t" (¢ +1)).

b) If a leaf or branching node in i -th orbit is the root node, then

tr+1

(r+i)log(r+i)+t"(r—i)log(r—i)
t"(r(t+1)+i(t-1))

I(D(t;7),w) = log(t” (r(t + 1) +i(t=1))) — ci=1,.r

Theorem 4 Let D(¢t;r) be a dicentric dendrimer with the progressive degree t and the radius r.

a) If one of the centers is the root node, then

tr+1

rlogr+t™' (r+1)log(r +1)

1(D(t;7),w) = log(t"" (2r +1)) - 7(2r 1)

b) If a laef or branching node in i -th orbit is the root node, then
I(D(t;r),w) =log((t =1)t" (r +i)+t" (r —i) +1""' (r +1i))

=1 +D)log(r+i) +1 (r=i)log(r—i) + £ (r +) log(r +)
(=Dt (r+i)+t (r=i)+t™ (r+i)

b

where i =1,....2r.

Theorem 5 Let C(n;t) be a comet of order n with t pendent nodes.

a) If a pendent node in star S, , is the root, then

(t—=2)log2+(n—t+1)log(n—t+1)

I(C(n;t),w)=log(n+t—-3)— 3
n+t—

(n—1)log(n—1)
Aln_ .

b) If the central node in star S,,, is the root, then I(C(n;t),w)=log(n—1)—
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c) If the pendent node in path P,

n—t

is the root, then

HCr0,w) = loglt—1)(r—r+1)— 22D,

d) If anon-pendent node in path P,_, is the root, then

_log(i-1)+(n—-1-(i-2))log(n-1-(i-2))

1(C(m;0),w) = log((t =1)(n =1 = (i =2))+ (i 1)) oG- 0oD)

3
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Abstract

In this study, energy of the moving timelike particle in different force fields are
computed by considering fundamental definitions of the differential geometry and
kinematics of the moving particle.

Keywords: Dynamics System, Force, Energy, Parallel Vector Field.

1. Introduction

Many researches have been done on the energy of a vector field under certain
circumstances. Unit vector field's energy on a Riemannian manifold M 1is described to be
equal to the energy of the mapping M — T ,M, where T M is defined as unit tangent

bundle equipped with Sasaki metric, [31 By similar argument volume of a unit vector field

= 1is described as the volume of the submanifold in the unit tangent bundle defined by
x (M) [4]

Then studies on the energy of unit vector fields are divesified by investigating energy
on the special vector fields in the last couple years. For instance, Altin [1], computed energy

of a Frenet vector fields for a given non-lightlike curves in semi Euclidean space. Korp nar
[7], discussed timelike biharmonic particle's energy in Heisenberg spacetime.

Motion of a particle in space has always drawn attention of scientists due to wide
range application of the subject. Motion of the particle in absolute space and time was defined
firstly by Newtonian dynamics. Then geometric generalization of this action which includes
terms belonging to curvature of the moving particle's trajectory in different spaces are given
in [5,8].

The equations of particle motion's in the certain vector field are thought that utilizes
generalized accelarations, velocities, and coordinates and is appropriate for obtaining motion's
integral. For instance, [1 O] investigated Lagrangian equations of particle's and photon's
motion in Schwarzschild field to show that attraction exerted on photons and paricles through
gravitational field is proportional to kinetic energies of photons and particles. Jyajectories of
charged particle moving on M under the influence of a magnetic field B corresponds to
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magnetic curves such that Lorentz force can be defined as skew-symmetric (1,1)-type tensor
field for B thanks to Riemannian metric.

2. Materials and Methods

Let I be a particle moving in a space such that the precise location of the particle is
specified by F=F(t), where ¢ is a time parameter. Changing time parameter describes the

motion and hereby the trajectory corresponds to a curve ¢ in the space for a moving particle.

¢ g

, where v=v()= 2 is the velocity vector and = # 0. In particle

It is defined by s _ v
dt

dynamics, the arc-length parameter s is considered as a fucntion of 7. Thanks to the arc-
lenght, it is also determined Serret-Frenet frame, which allow us determining characterization
of the intrinsic geometrical features of the regular curve. This coordinate system is

constructed by four orthonormal vectors e(;) assuming the curve is sufficiently smooth at

each point. The index within the paranthesis is the tetrad index that describes particular

member of the tetrad. In particular, eff)) is the unit tangent vector, eﬁ), ef‘z),e(“z) are the first,
second, third unit normals to the curve ¢, respectively. Orthonormality conditions are
summarized by e(, (s = 1,5, Where 7, is Lorentzian metric such that: diag (—1,1,1,1). For a
nonnegative coefficients x,7,5, which are known as first, second and third curvature of the

curve ¢, and vectors e(f)(i = 0,1,2,3) following equations and properties satisfy:

Deiy , Deyy p
R el R}
De/! Del:

(2) _ 7 ¢ (3) _
s Fe T o T %G

Since we identify e(; as a unit vector tangent to the the curve's trajectory at each point on the
curve, we have e() =dl"/ds, where T is the point on the trajectory of curve ¢. Thus
€(0)-€(1)-€(2) and e(;) generate the Frenet frame [21

As is known, Frenet frame is not defined when the first curvature vanishes. Parallel
frame of the curve is determined as an alternative way to handle with this problem. This
method is based on the choice of first, second and third normal vectors of the curve which are

choosen as a perpendicular to unchanged tangent vectors of the curve such that derivatives of
the first, second and third normal of the curve depend only fixed tangent vector. In other

words, vectors of Frenet frame {e(g),eﬁ),efg),eé)} is replaced by {eff)*),ef{;,e(‘%lféé’;} due to
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Lorentzian rotation. We should remind that eff:) = ¢(y). By the fact that rotation of Lorentzian
preserve the feautres and characters of the vectors then we have similar construction for

parallel frame vectors as Frenet frame vectors. That is, e(, (s =1,,, Where 7,, is Lorentzian

metric such that: diag (—1,1,1 ,1). For a nonnegative coefficients k,,k,,k;, which are known as

first, second and third principal curvature of the curve { with respect to parallel frame, and

vectors eff; (z' =0.1 ,2,3) following equations and properties satisty:

De/(l:)) _ ,U* ”* ,U*
s = kle(l) + kze(z) + k3e(3),
De!'\ el De!’,
o _ [ (2) () _ ’
e ki€(o)s i ky€{(p) ol kie(),

where x =./k’ +k; +k; and k, = xcosycosy, k,=x(sinycos¢—siny cosysing)
ky = k(siny sing + siny cosy cosg) [6]
Energy on the Unit Vector Field in Space

Definition 1 Let (M , p) and (N,Z) be Riemannian manifolds. Then the energy of a
differentiable map f - (M , p)—) (N , h ) can be defined as

1 &
amerg(f)=2 [ 2hldf(e,)drle, ).
a=1
where {ea} is a local basis of the tangent space and v is the canonical volume form in M
[3]

Proposition 2 Let O:T (T ‘M )—) T'M be the connection map. Then following two conditions
hold:

i) woQ=wodw and w-Q=wowm, where 5:T(T1M)—>T1M is the tangent bundle

projection;
ii) for pe T.M and a section £:M —> T'M ; we have Q(dg“(p))ZDpé, where D is the

Levi-Civita covariant derivative [1,3].

Definition 3 Let ., € TS(T ‘M ), then we define 216
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ps(s1-6,)= pldols,).dols, )+ p(O(s). O(s, )

Theorem 4 Let the moving particle on the space be a timelike, then we can derive following
relations on the energy of tangent, first, second and third normal of the Frenet vectors
respectively;

. 1 s . 1 s
gnergye (g 5L(—1+K2)ds, energie(y = 5L(—1+k12)ds,

* *

energey) = %j::(—l +k;)ds, energpely = %LS(—I + k7 )ds,
where k,,k,,k, are known as first, second and third principal curvature of the curve ¢, [91
3. Results and Discussions
If the moving particle & has a unit timelike tangent vector e, then v(t(s))="—== —e€())

v d’s dsY dsY dsY .
and als =_—=_"_"e/\+k|— | e +k,| — | e +k| — | e/+. According to Newton's
((S)) d di o l(dtj (1) 2(0”] (@) 3(dtj () g

second law, the resultant force acting on the particle, which has the mass m, is defined by

2

d’s , dsz,* ds\ a’sz,*
F = ma=mﬁe(0)+mk1(5j efl) +me(Ej e(lz) +mk3(Ej ee).

For the set of parallel vectors {ef’O), e({; , ef’;),eg)}, we may write F = Foefg) + Flef{) + er(z) + F3ef§), where

Fo = F,-ef),Fi = F ¢ Fo = F,-e/,,Fs = F;-efi

Using this result we have following notations we have

d*s ds\’ ds\’ ds\’
F, =mﬁ, F, =mk1(Ej , F, =mk2(5j , F, =mk3(—] .

Energy on a Particle in Dynamics

Theorem 5. Energy on the unit timelike particle in the vector field of the resultant force F by using
Sasaki metric is given by

217
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3

snergf = %J.O(—1+m2(—(s+l<2s ) +(3k, ss+k s )

3

+(Bk, ss+kys ) +Ckyss+k,s )))ds,
where superposed dot denotes the time derivative of the function.

4. Conclusions

We believe that this study also will lead up to further research on the relativistic dynamics of the
particle in Minkowski space in terms of computing the energy on a paricle in different force fields.

Finally, application of the energy on the moving particle of the dynamics and electrodynamics can be
done in different spacetimes.
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Abstract

In this study, we investigate a special type of timelike magnetic trajectories
associated with a magnetic field B defined on a 3D semi-Riemannian manifold. Firstly,
we consider a moving charged timelike particle, which is assumed to be under the action
of a particular external force in the magnetic field B on the 3D semi-Riemannian
manifold. Then, we assume that timelike trajectories of the particle associated with the
magnetic field B correspond to a particular timelike dynamical magnetic curve of the
magnetic vector field B. Furthermore, we compute energy of each dynamical magnetic
curve by considering the least action principle. Then, the radius of gyration and the gyro-
frequency of each timelike magnetic trajectory are investigated to comprehend the exact
movement of the charged particle in the given uniform magnetic field B. Finally, we give
the physical interpretations of the study.rite your abstract here. Please do not exceed 5
pages with your references.

Keywords: Magnetic field, force field, timelike magnetic curve, energy, magnetic force.

1. Introduction

A magnetic field B defined on a n —dimensional Riemannian manifold is a closed
2-form such that its Lorentz force is a one-to-one tensor field.
The magnetic trajectories associated with the magnetic field B are magnetic curves ¢ in

n —dimensional Riemannian manifold such that they satisty V(,é’ =¢().

In three dimension, we know that vector fields and 2-forms are the same thing,
magnetic fields correspond to divergence free vector fields, and uniform magnetic fields
mean parallel vector fields. These facts help us define Lorentz force equation by the cross
product. In other words, equations of Lorentz force (¢ ) associated with a magnetic field

B can be computed by ¢(‘¥) =B x .

As a result, Lorentz force equations for magnetic curves ¢ can be stated by

V. =) =Bx{ 2
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In the literature, one of the major goals is to obtain magnetic curves associated
with the magnetic field B on a n-dimensional Riemannian manifold - Thus, intrinsic
geometrical features of the n— dimensional Riemannian manifold can be used to
determine the curvature of the magnetic curves. Consequently, magnetic curves can be
figured out completely depending on the particular structure of the manifold. For example,
[1,3,8,9,10,1 1,12] demonstrated that trajectories of magnetic fields defined on the
Riemannian surface having a constant Gaussian curvature K could easily be determined.
These research efforts were expanded to distinct ambient spaces. For instance, [8,9]
obtained explicit trajectories associated with Kahler magnetic fields by assuming the
ambient space is a complex form of space. Furthermore, [10] gave detailed prescription

for normal flowlines of the contact magnetic field by assuming ambient space is contact
manifold in 3D.

Studies on the theory have been extended by defining Killing magnetic fields with
the help of Killing vector fields. A variational approach method on magnetic flows of the
Killing magnetic field in 3D was developed. Hence, [1 1] investigated that solution of the
equation of Lorentz force can be considered as Kirchoff elastic rods and vice versa by
studying magnetic flow on a Killing magnetic field in 3D. Then, [12] dealt with the
magnetic flowlines associated with Killing magnetic fields on the unit sphere in 3D.
Finally, [1 3] described N-magnetic and B-magnetic curves as the trajectories of the certain

magnetic field and they revealed their magnetic flows associated with Killing magnetic
field in 3D.

By considering the dynamical evolution of a charged particle in the existence of an
electromagnetic field and a succession of the Lorentz equation together with the Lorentz
force law it is possible to obtain original magnetic trajectories belonging to the particle,
which is under the action of external forces i.e. frictional force, normal force, and
gravitational force, in an associated magnetic field B. In this study, we use geometry of a
semi-Riemannian spacetime to obtain the timelike magnetic curves.

2. Materials and Methods

We consider a moving particle, whose timelike worldline is described by the
embedding o” = a”(t), where a” are local coordinates in a 3-dimensional Minkowski
space with the given metric 7, = diag(-1,1,1) for an arbitrary parameter 7. Tangent

u

vector of the worldline of the particle is defined by a* = , Wwhere o’ are the

embedding functions. One-dimensional metric is defined as ¢ =7, a” ass5 o -« along
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1
the curve- The arc-lenght parameter of the trajectory is also computed by ds = (—¢)5dt.
We take ¢ =1 to take the advantege of using intrinsic geometry of the unit speed curve.
Now, we introduce normal and binormal vectors of the trajectory, which are denoted by
e, and e;. Thus, we obtain an orthonormal basis such that it satisfies

Da” -Da* =-1,Da” ‘€, =0, and e, e, =Q,.i,j=12,

1,i=j
Here D denotes differentiation with respectto s and Q, = {O _ ]
' JF .

It also obeys following 3-dimensional Frenet-Serret equations

Do) = *g)

Dy = Ko+,

De(o)e(z) —TE(l).

where x is the curvature and 7 is the torsion of the curve. Here e, is selected to

represent to the tangent vector of the timelike worldline in place of Da” [1 4]

Now, we assume that the moving particle is an under the action of an external
force in a given space. Let I be a moving particle with a positive mass 7 such that it
slides downward on a surface. Then the forces acting over a particle sliding on a surface
are the normal force, the weight force, and the frictional force. These forces are expressed
in terms of Frenet-Serret elements as the following way. The normal force is C=aCe,,

where C =||C|| and a =tl; the gravitational force is D=m(le +/eq)), where /,_,, is
gravitational coefficient; the frictional force is A=—bCe(0), where b 1is frictional

coefficient [1 5].

3. Results and Discussions

Timelike frictional magnetic curves in E;

Now, let I' be a moving charged particle with a positive mass m such that there exists a

frictional force acting on the particle in a given magnetic field B in E;.

Theorem 1. The curve ¢ is called as a timelike frictional magnetic curve if the frictional
force field of the curve satisfies the following equation.

221
D A=§(A)=BxA.
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Timelike normal force magnetic curves in E;

Now, let I" be a moving charged particle with a positive mass m such that there exists a

normal force acting on the particle in a given magnetic field B in E;.

Theorem 2. The curve ¢ is called as a timelike normal force magnetic curve if the

normal force field of the curve satisfies the following equation.

D.C=§C)=BxC.

Timelike gravitational magnetic curves in E;

Now, let I" be a moving charged particle with a positive mass m such that there exists a

gravitational force acting on the particle in a given magnetic field B in E; .

Theorem 3. The curve ¢ is called as a timelike gravitational magnetic curve if the

gravitational force field of the curve satisfies the following equation;

D_D=¢§(D)=BxD.

4. Conclusions

In the future studies, we will concentrate on other special magnetic curves associated to
magnetic field B by considering some other important spaceitme structures. By doing this, we
are hoping that we have a better understanding on dynamics of the moving charged particle in

any magnetic.
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Abstract

In this study we consider a general family of nonlinear wave type equations and
investigate their equivalence transformations. The method depends on generating
appropriate transformation groups between various types of different equations each
can be expressed as a member of the same family of equations. We show the nec-
essary conditions to be able obtain transformations between linear and nonlinear
wave type equations, so that the exact solutions can be written for nonlinear equa-
tions via the linear ones. An example is also given for a particular nonlinear wave
equation which is equivalent to the simple constant coefficient wave equation. An
an exact solution to nonlinear wave equations is also given via the transformation

group.

Keywords: Lie Group Application, Admissible Transformations, Equivalence Transformations, Exact

Solution, Nonlinear Wave Equation

1. Introduction

The behavior of nonlinear partial differential equations has significant concern in Applied
Mathematics and Mathematical Physics as they express many physical problems. Lie
group analysis to nonlinear differential equations has many applications. Recently, group
classification of differential equations, invariant solutions of some group of equations and
equivalence groups of differential equations has been examined by many researchers to
understand the behavior of the equations and many different approaches have been de-
veloped for this purpose.

Systems of partial differential equations containing some arbitrary functions or param-
eters which we may call family of differential equations have a great interest in both
mathematical and physical sciences. Equivalence transformations preserve the family of
equations while changing the functional dependencies of their arbitrary functions. So
that the transformations can generate maps between different types of equations belong-
ing to the same family. Those different types of equations can be constant coefficient
or variable coefficient, homogeneous or nonhomogencous or more interestingly linear and
nonlinear equations. Lie group of equivalence transformations plays a special role, since
the computation technique is straight forward. Some interesting studies can be found in
the references Ozer(2018a,b), Long(2017).

The aim of the present work is to investigate the admissible point transformations for
a family of 2 dimensional wave equation which represents a great varietyoef wave type
equations. In the second section we generate the determining equations for the Equiv-
alence group of transformations of the family, then obtain the explicit solutions of the
determining equations with the certain relations between each other. In the last section



we consider a particular application to nonlinear equation which can be transformed into
the very well known constant coefficient wave equation.

2. Equivalence Transformations

In the present paper we shall investigate the equivalence group a general family of two
dimensional wave equation

Uy = f(xv t7u7 um7uy7 ut)i + g(.T, t7u7 um’u?ﬁ ut)y' (1)

which will be transformed into

where u is the dependent variable of the independent variables z,y,t and f, g are smooth
nonconstant functions of their variables, subscripts denote the partial derivatives with
respect to the corresponding variables and all over bars represent the transformed variables
and functions via an appropriate point transformation.

Let M be a 3 dimensional manifold with a local coordinate system x = (z;) = (x,y,1)
which we call the space of independent variables. A vector field on the tangent space of
the manifold M can be written as:

) o 0 0
V= Xg Y Ty Uy, 2)

where X, Y, T and U are coordinate functions covered by the manifold M.
X =X(z,y,t,u), Y=Y(x,y,t,u), T=T(z,yt,u), U=U(zy,t u).

To construct the equivalence groups we first write the equation as a set of first order
equations by defining
V1= Up, V2 =Uy, V3=

then consider the functional dependecies of the free functions as auxiliary variables:
é’i = fa:v 5% — fyv *5;, — fta 5% = Gz, 5% Gy, '53 g¢, O fua 02 = Gu,
M= fvu s'? = fU27 s*h = Guys s¥ = Gus
can now be The extended manifold then has the coordinate cover as:
K= {x,y,t,u, f,g,v1, Vo, V3, S, S3, 83, 51, 53, 53, 01, 02, 51, 1%, s %2} (3)

The prolongation vector V over the extended manifold covered by K is in the form:

2

( , 3 (
f/=v+S1 +S2—+Z Z
j=1

=1 7,]_

0
asu S5 @

where the coefficients are assumed to be in the form:
‘/} - ‘/j((v? Y, t? u, U1, U2, U3)7 SL - Si(zv Y, ta u, vy, V2, U3, f (]) 225

and the coefficients related to the new variables representing the functional dependencies
of the free functions f and g are functions of all the coordinates of (3). Transformations



between the members of the family of given family of 2 dimensional wave type equations
are determined by solving the system of ordinary differential equations.

dT _ dy _ dt _ di _
Y X@gta, L=v@EgLa, —=TE551), —=UF7ka
dE_ (:E7y7 ) )7 de (%y» ,u)7 de (ff,% ,U), de (:E7y7 ,U), (5)
% = Sl(jvﬂv fﬂ ’L_L, 7176271_}1% f_7 (7)7 % = Sz(fvga t_7 ﬂa 617172’1_}37.}8—» (_])7
under the initial conditions
2(0) =z, §(0) =y, {0) =t, u(0) = u, f(0)=f, §(0) =g (6)

2.1. Determining Equations

The family of two dimensional wave type equations (1) considered in the present work
can be written as: of o P
g U3
T 7
or oy ot 0
In general a first order pde can be expressed
oxt N 0x? n ox3
or dy ot
(7) and (8) can be matched by defining

Elzf’ 22:.97 23:_1]37 X=0

Thus the general formula determined for (8) by Suhubi (2000) now can be applied to (7)
by the following determining equations:

SP+Vz=0, S=0 (9)

+¥X=0 (8)

the first is written from
o 0 90®_ 9 o
8?)3 8?}3 03 8?}3 N 8’03 823

Solution of the determining equations (9) give the infinitesimal generators for the family
of wave type equation as:

X =X(z,y,t,u), Y=Y(x,y,t,u), T=T(), U=U(xy,t u),
Vi=U, + (U, + X, + Xyv) + Yy00)v1 + Y0,
Vo=U, + Xyv1 + (U, + Y, + Xyv1 + Y,00)00,
Vi = U, + Xy01 + Yivs + (Uy + T+ Xyv1 + Yy00)03
St = (B 42T + U, + Yyvy — Xo)f — (X, + Xyv2)g + oMoy + a2yt
(2X; + Xyvs)vs + S,
S? = (B 42T + U, + Xyv1 — Y,)g — (Yo + Yyu1) f — o*?0; + a®vy+
(2Y; + Yyus3)vs + (7
where o = o (x,y,t), B = B%(z,y,t,u) and the followings must hold:
Oéil - Oé;,2 = Xy — ﬁi =Yy — 657 /Bi + /33 = Uy, 226
Uy — X, =Yy = 1T +v(z,y), o =1T+alt)+7(z,y). (11)

(10)



Theorem 1. Any map between the linear and nonlinear members for the family of wave
type equation that can be expressed as

U = f(.I,t, U, Uy, uy7ut)m + 9(557 t?“: Uy, Uy, U’t)y

is only possible if at least one the transformation of the local coordinates involves the
dependent variable.

Proof. One can simply see that from the first equation of (11). 0

3. Application

Let us consider a particular example for the transformation between linear and nonlinear
members of the wave type equation given by (1) by choosing

X=u Y=7T=U=0 (12)
The infinitesimal generators then can be written from (10) as:
Vi= U%? Vo =010, V3 =wyu3, St= —Vsg + 1)32,7 5% = v19. (13)

By integrating these equations under their initial condition (6) we have the equivalence
transformations

_ U1 _ (%) _ U3
U = , Vg = , = , 14
! ].-E'Ul 1—61)1 s 1—6’111 ( )
r (g vy —v3) _ g
f=rf- ?’g: .

1—evq 1—evq

One can simply see that the transformation written above is an admissible equivalence
transformation. The partial derivatives can be written as:

0 _00r domon_ 0
81 9r0z  drouor - Vog
0 0 0y 0 Ox Ju 0 0
= ot oo = o teva—,
Oy Oydy Oxrdudy Oy 0T
o 0ot 0 O0x 0u 0 0

_— = ———_:—+'l_)—.

o otof  orouor ot or
Using these derivatives with the transformed functions obtained (14) one can simply
satisfy B

f:ﬁ+§_]g =773t-:> fx+gy = U3,

That proves the transformations (14)_t0 be_ an appropriate equivalence transformations.
Thus the transformed free functions f, g, h and 93 become in terms of the transformed
variables:

_ - T ~ ~ ~ B
f=f+e<1+t€a_—ugg>, g=1+etz)g, v3=10 (15)
€T
227

where the functions f, § are the functions in terms of the transformed form of particular
choice for f, g.



Example 1: Let us consider the classical constant coefficient wave equation in the
plane
Ugy = Ut (16)

by choosing f = u,, g = 0 whose general solution can be written as u = (y)(t — z) +
é(y)(t + x). Equation (16) is transformed into via (15)

1
———— [2¢cug(1 + etig)tzg + (1 — 03 )Uzz| = Ug.
TETTAE [2¢z( )tz + ( {)laz] = T
A solution of for this nonlinear equation can be determined by applying the equivalence
transformations (14) to the general solution of the constant coefficient equation (16) as:

u— (@)t —T—eu) = o)+ 7z +eu) = 0.

We should warn the reader that this implicit solution is not a general solution to the
nonlinear problem.

Many other applications can be done by choosing different infinitesimal generators X,Y,T
and U as long as they satisfy the equalities (11) between each other by simply running
the same procedure give above.

References

S. Ozer, On the equivalence groups for (2+ 1) dimensional nonlinear diffusion equation,
Nonlinear Analysis: Real World Applications (2018) 43, 155-166.

S. Ozer, Lineer Olmayan Dalga Denkleminin Lie Gruplar: Analizi, Marmara Fen Bilimleri
Dergisi, (2018) 30 145-156.

F. Long, A. Karnbanjong, A. Suriyawichitseranee, Y.N. Grigoriev, S.V. Meleshko. Ap-
plication of a Lie group admitted by a homogeneous equation for group classification
of a corresponding inhomogeneous equation, Communications in Nonlinear Science
and Numerical Simulation (2017) 48, 350-360.

E.S. Suhubi, Explicit determination of isovector fields of equivalence groups for second
order balance equations., International journal of engineering science, (2000) 38, 7,
715-736.

228



INTERNATIONAL CONFERENCE ON MATHEMATICS
“An Istanbul Meeting for World Mathematicians”
Minisymposium on Approximation Theory & Minisymposium on Math Education
3-6 July 2018, Istanbul, Turkey

An Algorithm of Application of Lie Groups to Family of Differential Equations

Saadet S. Ozer

Istanbul Technical University, Faculty of Science and Letters,
Department of Mathematics, 34469 Maslak Istanbul
E-mail(s): saadetsozer@gmail.com; saadet.ozer@itu.edu.tr

Abstract

Differential equations, involving some free functions of their variables represent actually,
a set of equations with the same structure, which we may call family of differential
equations. Lie Group application to family of differential equations have significant
importance in generating maps between the members of the family. When preserving the
structure of the family of differential equations, if an appropriate transformation exist, the
transformation group of the family generate maps between equivalent but different
members. In this study, we give the general perspective to the transformation groups of
family of differential equations. An algorithm to determine the structure of the admissible
members is expressed.

Keywords: Lie Group Application; Admissible Transformations, Equivalence Transformations; Exact Solution

1. Introduction

In classical physics, almost all field equations, representing the behavior of certain materials
differ by some parameters which express the physical properties of the medium. In
mathematics, such differential equations, involving some free functions of their variables
represent a set of equations with the same structure. We call these equations as  family of
differential equations. Each member of the family is a different differential equation with
various properties such as, homogeneous, nonhomogeneous, constant or variable coefficient,
linear or nonlinear.

Lie Groups have many applications to differential equations such as determining solutions,
group classification, constructing their invariant quantities etc. Lie Group application to family
of differential equations have significant importance not only in the meaning of the ones
mentioned above, but also in the meaning of generating maps between the members of the
family. An application to Lie groups; Equivalence Group of family of differential equations is
a tool of generating maps between the members of the same family of equations. The idea of
using Lie’s classical invariant group theory (Lie 1884, 1888, 1897) for the family of differential
equations is based on Ovsiannikov (1982) and has been developed and used by many
researchers to various systems of differential equations representing great variety of physical
problems.

In this study, after giving basic definitions with their examples, we shall give the general
perspective to the transformation groups of family of differential equations. An alternative
algorithm to determine the group will be developed and an example will be discussed to make
the problem clear.
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Definition 1 (Family of Equations). A set of differential equations

a o / o, _
./T"(SL'Z',U 7ux1.xz,..xp7@k(q)(xi7u 7ux1,;v2...1;p)) =0

s called a family of differential equations where x;, © = 1,2..n, are independent, u®, o =
1,2,...N, dependent variables, ¢, are the smooth functions of their variables. ¢y q) denotes

2

the smooth functions ¢y and the partial derwatives w.r.t to both x;’s u™‘s and ug, ,, . ’s.

Example: f(z,t,u,uz).+g(x, t,u,uy) = wp,  f(x,t,u, uy, )+ g(x, 6w, ug, uy) = uy
are one dimensional general family of diffusion equations and wave equations, respectively.
It is clear that for different choice of the free functions f and g, we may have completely
different type equations of the families, like constant coefficient, variable coefficient or
more interestingly, linear and nonlinear equations.

2. Equivalence Transformations

Definition 2 (Equivalence Groups). For a given differential equation of the family the
equivalence group £ is the group of smooth transformations of independent, dependent
variables, their derivatives and smooth functions preserving the structure of the differential
equation but transforms it into another equation.

Example: Equivalence Transformations: T = Z(z,t,u), t = t(z,t,u),u

T = af(x7t7u7ul‘7ut)7 ﬂt_: ﬂf(x’t7u7u$7ut)7 f = (x7t7u7uat’ut7f’g>7
= g(x,t,u, uy, uy, f, g) generate maps between

u(z, t,u),

Q 2

ot u,uy), + gz, tou,uy) = up <— f(Z,8,0,1z)z + g(T, 1,0, Uz) = Ur

To determine the equivalence transformations we shall use a geometric method developed
by Harrison and Estabrook (1971) applied to Balance equations by Edelen (1980) for sym-
metry groups and finally applied to equivalence groups for first order Balance Equations
by Ozer (2004), for second order by Suhubi (2000).

Definition 3 (Balance Equations).

0¥ (x, u, Vu)
oxt
15 called a single Balance Equation of order two, where x are independent variables, u is
the dependent variable and V is the gradient operator.

+ X(x,u, Vu) =0, i=1,2...n (1)

Almost all quasilinear field equations can be written as a Balance equation.

2.1. Method

To determine the equivalence groups for the Balance equation given in (1) we extend the
(n + 1) dimensional manifold M = {z*,u} by adding the arbitrary functions {v; = wu,,
¥ ¥} and to consider the functional dependencies:

o oY oY . 1) _0X p 0¥

7 7 _

st =—— 0 s = = —, T=—. I'= 2
T Qi ou’ ov;” " Oat ou’ v, @)
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to the manifold with the coordinate cover K = {z*, u,v;, ©", ¥, sj, ot 8% t;, 7t} A general
vector field in the tangent space of the extended manifold covered by K is represented as

follows:

0 0 6 0 d 0 8 15} 6 g .0
— 45! S'—+8% — —

o Vo Van S o  as e S ae g s T ot e
(3)
The explicit solutions of the infinitesimal generators, namely the coefficients of the vector
field (3) on the tangent space of the extended manifold are obtained by Suhubi (2000) as:

V=X

; 9, Ot A
St = (w+ ;:Z 0))X" — (D; "X + av; + ', H = ( i )L — DS (4)
where D; = 2 + v, 2, oV = —a¥'(z", u), w = w(z*,u) and the coefficients for the
additional variables (2) as:
. OF"  OF? OF! . QF"  OF! OF! o OF"  OFt . OF' .
St = . K l;, 8" = K S = . ki t’
P o ot TR ou oo’ Tox T g o T an
oG 0G o4 ()G ()G oG . JG ;oG o0G L 0G
+ 17 T = ] + T, T = -+ 5] + —t".

R STACAAN S o Ton” T oy v O %

(5)
where F* = —S;-Xj —o'U—-s9V; 48, G=—-tX'—7U—t'V; + H.

2.2. Admissible Transformations between members of the family of equations

As we defined before, equivalence transformations map two equations belonging in the

same family between each other; for a balance equation, the map can precisely be shown

" I3 (%, u, Vu) 0¥ (%, u, V)
ox? oz’

The equivalence transformations for the given Balance equation are determined by solving

the set of the following autonomous differential equations:

—|— Z(X u VU) = 0 < 7 + E()_(, 'l_L, vﬂ) = O

T _xi@, Do, Do),
dg de ~ de (6)
S gs L
=Sz u,v;,2", %), — =H(T', u,v;,%", %)
de de

under the initial conditions: Z(0) = x, §(0) =y, £(0) =t, @(0) = u, f(0) = f, §(0) =
where the right sides of the ordinary differential equations are given in (4), here € is the
group parameter. The solution of (6) gives the complete set of admissible equivalence
transformations between the members of the family without any restriction on the func-
tional properties of the free functions ¥¢ and . Every particular functional dependence
of those functions gives new determining equations so that their solution generates the
admissible structure of possible maps. Studying such problems mainly interests in the
answers of some questions:
231



1. Can any particular form of nonlinear equation in the family be mapped into a
linear equation via point transformations? The same question for variable coeffi-
cient/constant coefficient, homogeneous/nonhomogeneous equations.

2. If there exist an admissible transformation between desired two types of equations,
what are the corresponding exact transformations?

3. For some particular set of admissible transformations, what are the special forms for
transformed equation?

To answer such questions we shall use an easy algorithm. Consider the family of differ-
ential equations in its most general form, find the infinitesimal generators for equivalence
transformations. After determining the relations between the generators, step by step
restrict the general form to the desired forms.

3. Application

In this section let us consider the diffusion equation which is widely studied by Ozer in
(2018) in the following form:

Uy — f(:r,y,t,u, uxvuy)x - g(a:,y,t,u, u;vauy)y = 0. (7)

She examined the problem in the classical method, but here we shall use the method given
above for the same problem and obtain the same results in a much more easier way.
To write the given diffusion equation (7) as a Balance equation

3 . o o . . 1 _ 2 3 _ o
=1, V1 = Uy, Vp=1Uy, v3=1;; X = [, X =g, X2=0, ¥=—uv3

(8)
must be taken. Because ¥.3 = 0, its corresponding coefficient in the vector field (3) must
be set identically zero:

=z =y x

S3=0. (9)
Moreover, the equality ¥ = —wv3 generates another determining equation, via
0 0 0 o0x3

I =0. 1
Gy~ Ouy o a0, o V=0 (10)

Solution of the determining equations (9) and (10) by using them from (4) yields

X = X(z,y,t,u), Y=Y (x,y,t,u), T=T(), U=U(x,y,t,u),
‘/1 = Uz+(Uu+Xx)Ul+XuU%+Ya:U2+Yuvlv2a

Vo = Uy + (Uy+ Yy)va + Xyv1 + Xy0109 + Y03,
Vs = Ui+ (U, + T)Ug + Xyv1 + Xyv1v3 + Yivg + Y, 0903,
St o= (Uy+T — Xo + Yyuo) f — (X, + Yyva)g + a0, + B,

S* = (Uy+ T~ Y, + X,01)g — (Yo + Y1) f — ooy + B2
Here we have the following relation to be satified between the vector field components

Xo+Y, +h(t)=U, +T. (11)
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The answer of the second question is hidden in the last equality. One can simply see that
the nonlinear dependency on the dependent variable v which will possibly construct maps
between linear and nonlinear members of (7) is impossible unless the transformation of at
least one independent variables involve the dependent variable w.

Let us consider the diffusion equation with a restriction on the general form of (7) by

of of
12_ 9] _ 21 _ _
° T Ouy ° Ouy

0, 0. (12)
The additional determining equations which come from (12) are S? = $?! = (. Their
solution, by using them the from (5), the infinitesimal generators for the transformations
of local coordinates become X = X(x,t), Y = Y(y,t). That tells us by considering the
above results with (11) together ”the answer of the first question is NO”. Basicly, as a
result we may say the existence of admissible point transformations for linearization of
such equations is only possible when either f depends on u, or g depends on u,.

Thus we should continue to seek the restrictions for the following equations.

e — f(z,y, 60, U, uy)g — g(x,y, 8, u, Uy, uy)y =0
w— f(z,y,t,u,uy)s — g(x,y, b, u,uy)y =0

Ut — f(w»y’uvux)z - g(:c,y,u,uy)y =0

e — [, u,uy)e — g(y, u, uy)y =0

up — f(u, ug ) — g(u,uy), = 0.

For every restriction, the structure of the infinitesimal generators gives a great classifica-
tion of the members for the family of differential equations. Which types of differential
equations are allowed to be mapped onto each other via point transformations.
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The main purpose of this study is to make a detailed space-time analysis of
earthquake activity in Giimiishane, Turkey, at the beginning of 2018. For this purpose, we
preferred the most frequently used statistical models for the evaluation of earthquake
potential. In this context, a statistical assessment of the regional and temporal variations
of the main seismicity parameters such as completeness magnitude Mec-value,
seismotectonic b-value, standard normal deviate Z-test called seismic quiescence and
GENAS algorithm to estimate all important rate changes of earthquake activity in different
magnitude thresholds are achieved. For the detailed analyses, the region between the co-
ordinates 39.5°N and 41.0°N in latitude and the co-ordinates 38.5°E and 40.5°E in longitude
was selected as the study area. Earthquake catalog are compiled from the Bogazici University,
Kandilli Observatory and Earthquake Research Institute (KOERI). This catalog includes
about 47.27-years period from September 21, 1970 to December 27, 2017. It is homogeneous
for duration magnitude, My, and consists of 2802 shallow earthquakes having magnitudes
greater than or equal to 1.0. Magnitude levels generally vary from 2.5 to 3.5 and, the
earthquake magnitudes reach a maximum in My=2.8. The variation of Mc-value in time also
shows a distribution between 2.5 and 3.0 after the year of 2000. So, average completeness
magnitude for the region was taken as Mc=2.8. Temporal changes of b-value show that there
is not any important decrease in recent years although some significant decreases in b-value
before some strong earthquakes in the region between 1970 and 2018 are observed. Regional
variations of b-value indicate that small b-values observed in and around Kelkit and Kdose
covering the north of Kose and the south of Kelkit may be significant in terms of the possible
earthquake potential. The analysis of seismic quiescence Z-value shows that no anomalies of
significant rate changes in the earthquake activity is detected in the study region at the
beginning of 2018. To separate the magnitude bands where significant variations occur, the
magnitude levels were separately evaluated by GENAS test. With this technique, important
changes in the number of the larger and smaller earthquakes than a given magnitude versus
time are described. The results show that a strong decrease is observed for both small and
large earthquakes at the beginning of 2018. There is a remarkable compatibility between the
results of seismic quiescence and the GENAS results. According to these results, the
earthquake hazard is low and earthquake risk is minor in Giimiishane province of Turkey.
Consequently, these types of statistical assessments of space-time characteristics may supply

important clues for the intermediate term earthquake potential.
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1. Introduction

Seismicity rate changes have been used in a large number of studies for many parts of the
world in order to detect the precursory seismic quiescence occurred in and around focal areas
several years before mainshocks. The quiescence hypothesis is firstly formulated by Wyss and
Habermann (1988) and it postulates that some main shocks are preceded by seismic
quiescence, which is a significant decrease of the mean seismicity rate. The duration of
seismic quiescence before strong earthquakes which is expected to mapped case histories of
seismic quiescence are needed to be 4.5+3 years. Precursory seismic quiescence before some
great earthquakes has been reported by many authors (e.g., Wiemer and Wyss, 1994; Oztiirk,
2018). Main purpose of this study is to put forth the future earthquake potential in Glimiishane
at the beginning of 2018 by investigating whether there is a significant seismic quiescence as
an observable precursor with Z-value technique, as well as GENAS modelling and

seismotectonic b-value.
2. Data and Methods

The earthquake database is taken from Bogazi¢i University, Kandilli Observatory and
Earthquake Research Institute (KOERI). Main tectonics in Giimiishane and vicinity (Figure
la) are modified from different authors such as Saroglu et al. (1992) and Bozkurt (2001).
Catalog is homogeneous for duration magnitude, M, and includes 2802 shallow earthquakes
with magnitudes 1.0<M;<6.5 from 1970 to 2018 (Figure 1b).

We used the standard deviate Z-test, generating the L7TA4(¢) (Log Term Average) function for

the statistical evaluation of the confidence level (Wiemer and Wyss, 1994):

Z=(R, —R,)/(SZ/N,)+(S2/N,)

(D

where R; is the average earthquake activity rate in all period of catalog, R, is the mean
activity rate in the considered time window, Szl and S22 are the standard deviations in these
time intervals, and N; and N, the number of samples, 7 is the current time.

The frequency-magnitude relation of earthquakes was described by Gutenberg-Richter (1944)

and gives a power-law distribution of earthquakes occurrences as follow:
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log,y N(M)=a—-bM

2)

where N(M) is the expected number of earthquakes with magnitudes greater than or equal to
M. b-value defines the slope of the frequency-magnitude distribution, and a-value is related to
earthquake activity rate.

The GENAS algorithm estimates the cumulative numbers of different magnitude thresholds
and describes the important variations in the number of earthquakes larger and smaller than a

given magnitude versus time. We used the declustered earthquake catalogue for GENAS

analysis.
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Figure 1. (a) Active faults in and around Glimiishane. Names of the faults: KLB-Kelkit
Basin, BYB-Bayburt Basin, KCFZ-Kelkit-Coruh Fault Zone, KLFS-Kelkit Fault Segment,
ACFZ-Akdag-Cayirli Fault Zone, DYF-Dagyolu Fault, TAFZ-Tercan-Askale Fault Zone.
Several significant centers are also given on the figure. (b) Earthquake epicenters between

1970 and 2018 with M;>1.0 as well as the declustered catalogue with M;>2.8. Stars represent

strong main shocks with M;>5.0 with their occurrence times.

3. Results and Discussions

Some activities such as foreshocks, aftershocks and swarms generally masks temporal
variations of the earthquake numbers and the related statistics. For this reason, it is necessary
to remove the dependent events from the catalog. To make a quantitative evaluation of the
precursory seismic quiescence, earthquake catalogue is declustered with the Reasenberg’s

(1985) algorithm. The cumulative number of earthquakes versus time for th%g%riginal and
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declustered catalogs are given in Figure 2. As seen in Figure 2, declustering process has
removed dependent events from original catalogue and after this process, a more
homogenous, reliable and robust earthquake catalogue has been obtained. Regional
distribution of b-value and Z-value in and around Giimiishane for the beginning of 2018 is
shown in Figure 3a and 3b, respectively. Small b-values are observed in and around Kelkit
and Kose covering the north of Kose and the south of Kelkit. Standard deviate Z-value shows
no anomalies of important rate changes in the earthquake activity at the beginning of 2018. In
addition to these statistical analyses, we used the GENAS technique in order to put forth all
the significant seismicity rate changes in Giimiishane (Figure 4). Results of the GENAS model
show the important breaks in slope which begin from the end of data for all magnitude
groups. Strong decrease is observed for both small and large earthquakes at the beginning of
2018. Consequently, a good correlation was observed between the results of seismic

quiescence and the GENAS.
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Figure 2. Cumulative number of earthquakes as a function of time for the original earthquake
catalog with 2802 shallow events with M;>1.0, for the declustered catalog with 2336 events

with M;>1.0 and for the declustered catalog with 1459 events with 1/,;>2.8.
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Figure 3. (a) Regional change of h-value with all the earthquakes with M;>1.0, (b)
Regional variation of the Z-value using declustered catalogue with M,;>2.8, in and around

Gilimiigshane at the beginning of 2018.
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Figure 4. Results of GENAS estimates for declustered earthquakes. Times of significant
changes (at the 99% confidence level) are marked in blue for seismicity rate increases and in

red for seismicity rate decreases as a function of different magnitude groups.

4. Conclusions

In this study, a space-time analysis of earthquake activity in Giimiishane, Turkey, is achieved
by applying the most frequently used statistical parameters such as seismic quiescence Z-
value, seismotectonic b-value and GENAS. Obtained results show that there is not a
significant fluctuation in the seismic activity at the beginning of 2018, and the earthquake

hazard is low and earthquake risk is minor in Giimiishane province of Turkey.
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In the scope of this study, a detailed statistical analysis of size-scaling distributions
of earthquake occurrences in Giimiishane, Turkey, at the beginning of 2018 was
performed by evaluating the most frequently used size-scaling parameters such as
completeness magnitude, Mc-value, described as the minimum magnitude of complete
reporting, seismotectonic b-value, a power-law of size distribution of earthquakes, fractal
dimension Dc-value, describing the size scaling attributes and clustering properties of
earthquakes, annual probabilities and recurrence times of earthquakes as well as the
magnitude distribution of earthquake activity. Statistical analyses were carried out in a
rectangular area covered by the co-ordinates 39.5°N and 41.0°N in latitude and the co-
ordinates 38.5°E and 40.5°E in longitude. Earthquake database is taken from Bogazici
University, Kandilli Observatory and Earthquake Research Institute (KOERI). This catalog is
homogeneous for duration magnitude, My, and includes 2802 shallow earthquakes having
magnitude equal to and larger than 1.0 in about 47.27-years period between September 21,
1970 and December 27, 2017. The cumulative number of earthquakes against time show that
any significant changes are not reported in seismicity from 1970 to 2003. However, the
number of earthquakes gradually increases after 2003 and significant fluctuations in the
earthquake activity are reported especially after the 2005s. Time-series analyses show that
there are slight increases in the number of earthquakes in 2003 and 2017 and, there is a
maximum increase in the number of events in 2012. The numbers of earthquakes show an
exponential decay rate from the smaller to larger magnitudes and magnitude levels are change
between 2.5 and 3.5 on average. Hence, the completeness magnitude for Glimiishane region is
taken as Mc=2.8. By using this Mc-value, b-value is calculated as 1.01+0.02 with the
maximum likelihood method. This result shows that magnitude-frequency distribution of
earthquakes in Giimiishane is well represented with a b-value typically close to 1.0. By using
95% confidence interval and linear curve fitting technique, Dc-value is estimated as
1.57+0.03. For this distribution, the scale invariance in the cumulative statistics are selected
between 5.11 and 89.01 km. This Dc-value indicates that seismic activity in Giimiishane is
more clustered at larger scales or in smaller areas. Analyses on annual probabilities of
earthquake occurrences show that magnitude levels between 4.5 and 6.5 exhibits a value
smaller than 1.0. Recurrence time of the earthquakes has a value of 30 years for My=5.5 and
100 years for Myg=6.0. These results reveal that Giimiishane has not a noticeable earthquake

potential for strong earthquake occurrences in the intermediate term.
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1. Introduction

There are many statistical models for a comprehensive analysis of size-scaling distributions of
earthquake occurrences. For this purpose, many researchers have used a lot of seismotectonic
parameters to evaluate the earthquake potential for different regions (eg., Hirata, 1989; Polat
et al., 2008; Oztiirk, 2015). Some of these parameters are given as b-value, Dc-value, annual
probability, recurrence time, moment and energy releases. The frequency-magnitude
distribution is known as the b-value of Gutenberg-Richter relation (Gutenberg and Richter,
1944). The b-value reflects the relative numbers of both large and small earthquakes, and is
related to the properties of the seismotectonic structures and stress distributions in time and
space. Fractal dimension Dc-value defines the heterogeneity degree of seismicity in active
fault system and some geological, mechanical or structural variations in heterogeneity
(Mandelbort, 1982). In the scope of this study, these two seismotectonic parameters are
analyzed as well as the completeness magnitude, annual probability and recurrence time in
order to supply some useful outcomes for the evaluation of earthquake potential in

Gilimushane province of Turkey.
2. Data and Methods

The earthquake catalog for Glimiishane and vicinity is compiled from Bogazi¢ci University,
Kandilli Observatory and Earthquake Research Institute (KOERI). Tectonic structures in and
around Giimtishane are compiled from different authors such as Saroglu et al. (1992) and
Bozkurt (2001) and given in Figure 1a. Catalog is homogeneous for duration magnitude, M,
and covers 2802 shallow earthquakes with magnitudes larger than or equal to M4=1.0 from
September 21, 1970 until December 27, 2017 (Figure 1b).

The relation between frequency and magnitude of earthquakes occurrences was given by

Gutenberg-Richter (1944). This power-law distribution of earthquakes is given as follows:
(2)

where N(M) is the expected number of earthquakes with magnitudes greater than or equal to

M. b-value defines the slope of the frequency-magnitude distribution, and a-vahzlflis related to

earthquake activity rate. Completeness magnitude, Mc-value, is a very important parameter
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for high quality and reliable estimations, especially in the estimation of b-value. If Mc-value
changes systematically as a function of time and space, temporal variations of Mc-value can
cause potential wrong evaluation of seismicity behaviors.

The analysis of correlation dimension has been used as a powerful tool in order to quantify
the self-similarity of a geometrical object. Correlation dimension Dc and the correlation sum

C(r) was suggested by Grassberger and Procaccia (1983) as in the following:

Dc = lriE){)l[logC(r)/logr]

2)

C(r)y=2N,_, /N(N-1)

3)

where C(r) is the correlation function, r is the distance between two epicenters, and N is the

number of earthquakes pairs separated by a distance R<r. If the epicenter distribution has a

fractal structure, c(r) ~ " is obtained.
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Figure 1. (a) Tectonic structures of Glimiishane and surrounding area. Names of the faults:
KCFZ-Kelkit-Coruh Fault Zone, KLB-Kelkit Basin, KLFS-Kelkit Fault Segment, BYB-
Bayburt Basin, DYF-Dagyolu Fault, ACFZ-Akdag-Cayirli Fault Zone, TAFZ-Tercan-Askale
Fault Zone. Some significant centers are also shown on the figure. (b) Epicenters of 2802
shallow events with M;>1.0 between 1970 and 2018. Stars show the strong main events with

M;>5.0. Dates of some strong events are also given on the figure.

3. Results and Discussions 949
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Mc-value is a significant parameter for many statistical studies, and temporal changes in Mc-
value can affect the estimations of the seismotetonic parameters. For his reason, we aimed to
use the maximum number of earthquakes for high-quality results. Figure 2 shows the
temporal changes of Mc-value. Mc-value has great values before 2000 whereas it shows a
decreasing trend after 2000. Average Mc-value for Gilimiishane from 1970 to 2018 is
estimated as 2.8. Using this Mc-value, b-value is calculated as 1.01+0.02 (Figure 3a). Average
b-value is given as 1.0 in literature and thus, frequency-magnitude distribution of earthquakes
in and around Giimiishane is well represented the Gutenberg-Richter law with a b-value
typically close to 1. Dc-value is estimated as 1.57+0.03 with 95% confidence (Figure 3b).
This log-log correlation function exhibits a clear linear range and scale invariance in the
cumulative statistics between 5.11 and 89.01 km. The areas of increased complexity in active
fault systems show higher Dc-value. The higher Dc-value is also quite sensitive to the
heterogeneity in magnitude distribution. Annual probabilities of earthquake occurrences are
given in Figure 4a. A value between 1 and 4 between magnitude levels 3.5 and 4.5, and a
value of smaller than 1 between magnitude levels 4.5 and 6.5 are observed. Recurrence times
of earthquake occurrences are plotted in Figure 4b. We observed quite smaller years (<1.0)
for magnitude sizes from 3.5 to 4.0, and 1-10 years for magnitude sizes from 4.5 to 5.0.
However, the values between 30 and 100 years are estimated for magnitude sizes between 5.5
and 6.0 while the values between 100 and 500 years are estimated for magnitude sizes

between 6.0 and 6.5.
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Figure 2. Completeness magnitude with time. Standard deviation (8Mc) is also given.
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Figure 3. (a) Gutenberg-Richter relation and frequency-magnitude distribution of earthquakes
in Giimushane province. Mc and a-values are also given. (b) Correlation integral curve
against distance. Black dots are the points in the scaling range. The slope of the blue line
corresponds to the Dc-value and cyan lines represent the standard error.
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Figure 4. (a) Annual probability and (b) Recurrence time of the earthquakes for different

magnitude sizes in Guimiishane province.

4. Conclusions

In the scope of this study, a statistical evaluation of earthquake activity for Gilimiishane
province of Turkey at the beginning of 2018 is supplied by analyzing several seismotectonic
parameters such as b-value, Dc-value, Mc-value, annual probability and recurrence time of
earthquakes. Mc-value is estimated as 2.8. b-value is calculated as 1.01£0.02 and is close to 1
and typical for earthquake catalogues. Dc-value is calculated as 1.57+0.03. seismicity is more
clustered at larger scales (or in smaller areas) in Giimiishane. The results of probability and
recurrence time of the earthquakes suggested that Giimiishane province of Turkey has not an

important earthquake risk and hazard for strong earthquake occurrences at the beginning of
2018.
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Abstract

We deal with the Camassa-Holm equation u; — Uy + 2KUy + 3UU — Ullyyy = 0
possesses a global continuous semigroup of weak conservative solutions for initial
data ul,—o =% in H! . The result is obtained by introducing a coordinate
transformation into Lagrangian coordinates. To characterize conservative solutions it
is necessary to include the energy density given by the positive Radon measure p with
H,. = (u? +uf) dx. The total energy is preserved by the solution.

Keywords: weak solutions; C-H equation; Radon measure; energy density; global solution; total energy.

1. Introduction

In this paper, we reformulate the Camassa — Holm equation using a different set of variables
and obtain a semilinear system of ordinary differential equations, as Bressan and
Constantin [1]. The Cauchy problem for the Camassa — Holm equation [4], [5].

Up — Uyyr + 2ku, + 3Ulyy — Ul = 0, Ulmg =1U (1.1)

has received considerable attention the last decade. With k positive it models, see [2], [7],
propagation of unidirectional gravitational waves in a shallow water approximation, with u
representing the fluid velocity. The Camassa-Holm equation has a bi-Hamiltonian structure
and 1s completely integrable. It has infinitely many conserved quantities. In particular, for
smooth solutions the quantities are all time independent.

f u dx, f(u2 + u?) dx, j(u:" + uu?) dx (1.2)
In this article we consider the case k = 0 on the real line, that is
Up — Upyr + 3UUY — 2UpUpye — Uy = 0 (1.3)

and henceforth we refer to (1.3) as the Camassa — Holm equation. The equation can be
rewritten as the following system
us +uu, + P, =0, (1.4a)

1
P—P,=u?+ Eu,zc (1.4b)
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More precisely, Constantin, Escher and Molinet [8, 10] showed some results. The Camassa —
Holm equation possesses solutions, denoted (multi) peakons, of the form

u(t,x) = Z p;(H)e~x-a:®l (1.5)

where the (pl(t) ql(t)) satisfy the explicit system of ordinary differential equations

ql=zzpw la=a], Eznpﬁwn(% q;) e~la-ail

Higher peakons move faster than the smaller ones and when a higher peakon overtakes a
smaller, there is an exchange of mass, but no wave breaking takes place. However, if some of
p;(0) have opposite sign, wave breaking may incur, see, €.g., [3, 6].

Bressan and Fonte [5, 11] presented another approach to the Camassa-Holm equation. The
flow map & — u(t) is, as we have seen, neither a continuous map on H?! nor on L?.

2. Materials and Methods

We reformulate the equation using a different set of variables and obtain a semilinear system
of ordinary differential equations, as Bressan and Constantin [1].

However, distinct variables from that simply corresponds to the transformation between
Eulerian and Lagrangian coordinates.

Let u = u(t,x) denote the solution, and y(t, &) the corresponding characteristics, thus
ve(t, &) = u(t,y(t,€)). Our new variables are y(t, <),

Ut E) =u(ty(60), HEE) = [P w? +u2) dx @.1)

where U corresponds to the Lagrangian velocity while H could be interpreted as the
Lagrangian cumulative energy distribution. The characteristics q(¢; t) are defined as
solutions of the equation

q: (§; ) = m(q(S; 0), 1)

with the initial condition q(&; t) = ¢&. Let we consider the momentum m = u — u,, of the
system and introduce the variable p related direct to the momentum, as

]
p(&; ) =m(q(; t),a—z & 6),
Then we can show that the following system
U =-0Q (2.2)
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is equivalent to the Camassa-Holm equation. Global existence of solutions of (2.2) is obtained
starting from a contraction argument. As noted in [1], even if HX(R) is a natural space for the
equation, there is no hope to obtain a group of solutions by only considering H*(R).

3. Results and Discussions for global solutions in Lagrangian coordinates

Assuming that u is smooth, it is not hard to check that
w? +ud); + (w@? +u?)), = W —2Pu), (3.1)
Let us introduce the characteristics y(t; &) defined as the solutions of

ut(t; f) = u(t,y(t,f)) (32)

for a given y(0; &). Equation (3.1) gives us information about the evolution of the amount of

energy contained between two characteristics. Indeed, given &; ,&, in R, let H(t) =
y(t &2)
y(t §1)
and y(t, &,). Then, using (3.1) and (3.2), we obtain

(u? + u2) dx be the energy contained between the two characteristic curves y(t, &;)

&= (P - 2P) Y| (33)

We now derive a system equivalent to (1.4). All the derivations in this section are formal and
will be justified later. Let y still denote the characteristics. We introduce two other variables,
the Lagrangian velocity and cumulative energy distribution, U and H, defined as U(t,§) =

u(tyt&))and  H(E) = [V +u2) dx (3.4)
From the definition of the characteristics, it follows that

Ut(t; 6) = ut(t;J’) +3’t(t'f)ux(t'J’) = - xoy(t'{:) (35)

This last term can be expressed uniquely in term of U, y, and H. From (1.4b), we obtain the
following explicit expression for ,

P(¢t) = % fR el <u2 (t,z) + %u?c(t, z)> dz (3.6)

Since He = (u® 4 uZ)°yye

1
Roy(e8) = =3 | son/@) =y exp(-1y@® = ywD) (Vs + Hudu (37)
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where the t variable has been dropped to simplify the notation. Later we will prove that y is an
increasing function for any fixed time t. If, for the moment, we take this for granted, then P, °y
is equivalent to Q where

1
00t = =7 sgn(¢ - wexp(=sgn(t —HOE) =y (Vye+hude ()

R

1
P8 =7 | exp(=sgn( —W©) = () (Vyy+Hgu d (39)
R

Thus P, °y and P°y can be replaced by equivalent expressions given by (3.8) and (3.9) which
only depend on our new variables U, H, and y. We introduce yet another variable, {(t; £),
simply defined as {(t,&) = y(t,&) — &. It will turn out that e L*(R). We now derive a
new system of equations, formally equivalent to the Camassa-Holm equation. Equations (3.5),
(3.3) and (3.2) give us

Gc=U
U =-0Q (3.10)
H, = U3 -=2PU

As we will see, the system (3.10) of ordinary differential equations for ({, U, H) from [0; T]
to E is well-posed, where E is Banach space to be defined in the next section. We have

1 1
Q€=_EH€_(EU2_P)}]€ and P5=ng (311)
Hence, differentiating (2.10) yields

See = Ug (oryg = Ug)
1 1
Uge =3 Hg — (U= P)y; (3.12)
HEt = —ZQUyg + (3U2 - ZP)UE'

The system (3.12) is semilinear with respect to the variables yg, Ug and Hg.

4. Conclusions

Solutions of the Camassa-Holm blow up when characteristics arising from different points
collide. It is important to notice that we do not get shocks as the Camassa-Holm preserves the
H* norm and therefore solutions remain continuous.

However, it is not obvious how to continue the solution after collision time. It turns out that,
when two characteristics collide, the energy contained between these two characteristics has a
limit which can be computed from (3.3). 949
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As we will see, knowing this energy enables us to prolong the characteristics and thereby the
solution, after collisions.
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Abstract

We introduce the model of equation that is closely related to the water wave equation.
We study the global existence of week solution for this class of equation. Using the
Gross logarithmic Sobolev inequality we establish the main theorem of existence of
week solution for this class of equation arising from Logarithmic Quantum
Mechanics. We can extend the results of [1, 2].

Keywords: logarithmic quantum mechanics; Gross-Sobolev inequality; logarithmic wave equation; global
existence of solution; nonlinear effects.

1. Introduction

We deal with a mathematical analysis for the problem of water wave equation on Logarithmic
quantum mechanics. The main difference between our work and [1,2] is: our problem is in k
dimensional case on H,™ and involves another nonlinear term u log |u|*; there is no
restrictions on the coefficient of the logarithmic nonlinear termu log |u|*. Recently in [8] a
numerical model is given. We mainly establish the global existence of weak solutions to the
problem (1.2). Firstly we write the problem in a weak version. Secondly we construct
approximate solutions by the Galerkin method. Finally we prove the convergence of the
sequence of the approximate solutions. To get a priori estimates of the approximate solutions,
we employ the Gross logarithmic Sobolev inequality and logarithmic Gronwall inequality.

In [1]- [2], Cazenave and Haraux established the existence a solution for the following equation

U +A+u+u; [ul?u =ulnju| , xef, t>0 (1.1)

for studying the dynamics of Q-ball in theoretical physics. In [2], Cazenave and Haraux established
the existence and uniqueness of a solution for the Cauchy problem for the following equation in R™.

uy +A=ulnlul® , (1.2)
In the following section we state some lemmas. In the section 3 we give the proof of the theorem.

The logarithmic nonlinearity is of much interest in physics, since it appears naturally in
cosmology and symmetric filed theories, quantum mechanics and nuclear physics [1, 14].
This type of problems have many applications in many branches of physics such as nuclear
physics, optics and geophysics. It has been also introduced in the quantum field theory.
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2. Materials and Methods

We denote by ||. ||, the LP(Q) norm, and ||V. || the Dirichlet norm in H,™. In particular, we
denote ||| =]|.||,.- We also use C to denote a universal positive constant that may have
different values in different places. We denote by (- , -) the inner product in L? (Q). and by

(- ,-) the duality pairing between H,' and H,™ . We also use C to denote a universal positive
constant may take different values in different places. Let’s we introduce the definition of
weak solutions for the problem (1.2).

Def. A function u on [0, T] is called a weak solution u(x, t) of problem (1.2) on Q x [0, T), if
u € C([0,T], Hy™ () ),u’ € C([0,T],12(Q)), uy =u’() and u'(0) =u'(x) andu
satisfies,

(u'(),0)+ (Vu,V8) + (w, @) + (u',0) — (uloglul*,@®) + (lul*u,0) =0 (2.1)

Lemma 2.1: (See [12]) Assume v € H," (), and Qis a bounded smooth domain in R™
(Q c R™). Then, for any a > 0, it holds that

3 4a a
[ 1o loglvl dx < (Flog ) w3 +5 N0 I3 + v I3 loghvl,  22)
Q

Lemma 2.2: (See [13]) Assume w(t) is nonnegative, w(t) € L” (0,T), w (0) > 0 and

wit)<w(@)+ a f w (s) log [a +w (s)]ds te (0,T), (2.3)
Q

where a > 1 is a positive constant. Then we have
w(t) < (a +w (0)* , t €(0,T), (2.4)

Lemma 2.3: (see [3, 5]) (Logarithmic Sobolev inequality) Let u be any function in
Hy™(Q), anda > 0 be any number. Then

2
dx (2.5)

[ul a? 1
quzln—dx+n1+l0a uzs—f|—u
Q| | T ( ga)|lull ™) >

3. Results and Discussions for the main theorem and the proof

In this section we deal with main theorem of existence of global week solution. By using
these lemmas and using the Gross logarithmic Sobolev inequality with the cOfbination of
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Galerkin method to construct approximate solutions, we can proof the main theorem. We
carry out the proof of Theorem giving the solution u, where u is a weak solution of problem
(1.2) on [0, T ), where T is the maximal existence time of weak solution The proof is based
on Galerkin method. We use the Gross logarithmic Sobolev inequality and the logarithmic
Gronwall inequality.

Theorem 3.1 Assume that u®(x) € H,™ (2), and u'(x) € L2 (Q). Then, the problem (1.2)
admits global weak solution defined on [0,T | forany T > 0.

Proof: Let {Wj}j;l be the eigenfunctions of the operator A = (A)™ with zero Dirichlet
boundary condition and D (4) = Hy™(Q) N Hy'(Q). It is well-known that {W f};o=1 forms

an orthonormal basis for L2(Q) as well as for Hy* (Q). Let P , be the orthogonal projection
of L2 (Q) onto V}, = the linear span of {w 1,...,wy}, k = 1. Letu, = Zlegkj (t) wj be an
approximate solution to (1.2) in Vj.. Then u; (t) verifies the following system of ODE:s:

(u % (©, wi)+ (Ve (), Vw) + (g, wj )+ (u'x ), wj )= (ug log lug 12, wy) +

(lug Pug ,wy) =0 3.1

u, (0) = Peu’(x), u'y(0) =Peut(x) (3.2)
for j = 1,..., k. More specifically,

w () =T w, O wy . u' (0) =X u'y, (O w;

Wherea uk]' (O) = (uO’ W]) P u 'k]' (0) = (ulr W])a ] = 1,...,k

Now we try to get the a priori estimate for the approximate solutions u; (t) of the problem
(1.2). Multiplying (3.1) by g ., (£) and summing with respect to j from 1 to k, we have
J

df1

! 2
dt|2 +Hue @Iz =0 (3.3)

1
llu’s ONF + e ON3 - f | (D17 logluy (O] dx + 7 Il (113
Q

Integrating (3.3) over (0,t), 0 < t < T}, we get

1 ! 2 1 2 2 2 1 4
5 I Oz + 5 11V Oz + llue Oz — f luye (O logluy (O] dx + 7 llwk (Ol
Q
1 / 2 1 2 2 2
= 5 ' (Ol +5 IV (0112 + llwe (Ol _fluk (0)]*logluy (0)| dx
Q

t
1
+ 5l O + [ 0 O ds < € = [ Ty O loglue (@)l dx (3.4
0 Q
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where Co = C ([u’llym ), llu'll2qy) is a positive constant. We use the inequality

[t?logt| < C(1+t3) forall t >0 (3.5)

Now we use Lemma 2.1 introducing Gross-Sobolev. Then, we use now (3.5) again to estimate the
logarithmic term

f luy loguy 2|? dx = 4-[ lug 1? (loguy 2)dx < ClQ| + € f lug |? dx < C|Q| (Iluk (S)”gom + 1)
Q Q Q

(3.6)

This implies that u;, log |uy |?) is uniformly bounded in L? (0, T, L% (©)). So, exists any function in
L2 (0, T, L2 (), such that |uy |* u, converges in it. This is u log |u|?.

By Sobolev inequality

[ e P dx = [l l® < Clhue ONgm < ¢ 37)
Q Q

As above we explained there exist any function as|u|?u in L2 (0, T, L? (Q)) such that
lug | ux = lul*u  in L*(0,T, L% (Q)) (3.8)

This clearly said that u satisfies the eq. (1.2) in the week sense. From (3.15) we have
1, (0) » u(0) weekly in L? (Q). Using eq.3.16 and by choosing u,(0) » u® strongly
in Hy,™ (), we have

u(0) =u° (3.9)
From (3.16), {u "y, w;) =»(u, w;) in L (0,T). This implies that (u ",(0), w;) -
(u’(0), w; ). Noting that u ', (0) > u® weekly in L?, than

u'(0)=u? (3.10)

From (3.22) and (3.23), the initial condition is satisfied. The theorem (3.1) is completed. The
global existence of week solutions to the problem (1.2) is established.

4. Conclusions

This type of equation arising from many applications in many branches of physics such as
nuclear physics, optics and geophysics [7, 9, 10].

The problem (1.1) is a relativistic version of logarithmic quantum mechanics introduced in [3,
4].

Based on the numerical simulations, we discuss how the Q-ball formation proceeds. Also we
make a comment on possible deviation of the charge distributions from what was conjectured
in the past.This type of problems have many applications in many branches of physics such as
nuclear physics, optics and geophysics.
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Abstract

Arrhytmia is one of the most common heart diseases in the world. Due to the
complex nature of the electrocardiogram, the hand-operared diagnosis of arrhytmia is very
tedious. In this article, a multi-class support vector machine based approach is proposed to
solve the ECG multi-classification problem. To do so, several features besides RR interval
are used. Various kernel functions in the multi-class support vector machine are tested for
arrhytmia classification. Performance evaluation for the proposed method was tested over
the MIT-BIH Arrhytmias Database.

Keywords: ECG, Arrhytmia classification, Multi-class support vector machine, Kernel functions

1. Introduction

Detection of arrhythmia classification is an important task in medicine. There are various
methodologies for automatic detection of the cardiac arrhythmia classification which have
been proposed in recent years. [1]-[7]. Khazaee et al. [ 1] used support vector machines (SVM)
and genetic algorithms (GA) to detect arrhythmia, which is referred to as identification of
premature ventricular contraction (V). But, their approach can only distinguish three types of
arrhythmia, including Normal beat (N), V and others. It did not explicitly express the kernel
function used in SVM The method present in [2] is based on Fisher Linear Discriminant. The
RR interval duration and the distance between the occurrence of P and T waves are observed.
Using these features Fisher’s Linear Discriminant is applied. In [3] an SVM-based method for
V arrhythmia detection is shown to be more efficient than Anfis. In [4] a new approach for
feature selection and classification of cardiac arrhythmias based on particle swarm
optimization-SVM (PSO-SVM) is proposed. In [5], a neuro-fuzzy approach for the ECG-
based classification of heart rhythms is described. Here, the QRS complex signal is
characterized by Hermite polynomials, whose coefficients feed the neuro-fuzzy classifier. In
[6] arrhythmia Detection using Independent Component Analysis (ICA) and Wavelet
transform to extract important features is proposed. In [7], a neural network classifier using

.. . o 256 )
wavelet and timing features is used for classifying beats of a large dataset. In machine
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learning, multiclass classification is the problem of classifying instances into one of three or
more classes. In this paper, we use a multi-class support vector machine (MSVM) to identify
3 heartbeat types; we distinguish normal heartbeat (N) from atrial premature beat (A) and
premature ventricular contraction (V). Besides, we try to use different features for ECG

classification and different kernel functions to classify them.

The organization of the paper is as follows. In Section 2, the basic working principle of SVM
and the different kernel functions are introduced in detail. In Section 3 Kernel function of
MSVM is applied to classification of arrhythmia and simulation results are discussed in detail.

We express conclusions in the last section.
2. Methodology

The MSVM method is a machine learning method. It is based on the structural risk
minimization principle and theoretical basis, by choosing the suitable subset function and the
subset of the discriminant function [8,9]. This method can be used to identify N, A, and V. A
selected part of the data is used to train the classifier, and the other part of the data is used as a

test. The MIT-BIH database data is used for the validation of the method.
i) Multi-Class Support Vector Machine

In this section, we present a “one-against-one” multiclass support vector machine (MSVM)
algorithm. The primary idea of MSVM is constructing separate hyperplanes between classes
in feature space using support vectors. When we are given the module vector W,, (m =
1,2, ..., 1) and the number of shaded modules z,, (z,, € 1, 2, ..., i), we can express the decision

function for the training data by

gmn(W) = x™M", ¢(W) + bmn (1)

We can solve the two-class classification problem by:

J
1
min = (MM 4 €Y (e
xmn’bmn’ymn 2
t
st (x™Tp(W,) + b™ > 1 —y™,if:z,, =m

257
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Here C is the associated penalty for excessive deviation, ™" is the nonnegative variables,

and ¢ is a function.

We can solve equation (2) by the Lagrange multipliers ™" After we obtain the optimal
solution (@™™)*, we can determine the optimal hyperplane parameters (x™")*and (b™")* can

be determined, and we can write the indicator function as

sign[Y1_, z; (@™ pW). (W) + (b™)*] (3)

We use the “one-against-one™ approach to extend SVM to the multi-class situation. There are
c¥ =r(r—1)/2 classifiers used in training. Each classifier is then trained with two different
classes. The strategy gives one vote to the nt" class, and the classes that receive the most

votes serve as classification results.
ii) Kernel function

The performance of MSVM largely depends on the choice of the kernel function. As we
change the kernel function, the training results will be different. Usually, there are four kinds

of kernel functions commonly used for support vector machines. Their kernel functions are as

follows:

Linear: KWy, Wy) = Wy Wy, 4)
Polynomial: KWy, wy) = Wy w,, + 1)4 (5)
Radial Bases Function: KWy, wy) = exp(—|lwy, — wy|l?/26%) (6)
Sigmoid: K (w,,, w,) = tanh(ew,,.w,, + 1) (7)

3. Proposed Method

MIT-BIH database is recognized as one of the three standard ECG databases. It is provided
by the Massachusetts Institute of Technology. In this paper, we use the data of the MIT-BIH
arrhythmia database. In the MIT-BIH arrhythmia database, there are different types of heart
disease data with 48 sets. A frequency of 360 HZ is used in ECG sampling. 258
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MIT-BIH library contains all the period of the RR interval. Four local timing features can be
extracted based on the RR interval, which can promote the ability of morphological
characters’ recognition. The effect of four feathers is most significant when distinguishing the
similar heartbeats patterns. Four local timing features are an RR time interval ratio (10), an
RR time interval difference (IF), and two RR time intervals. The 10 feature reflects the
heartbeat rate deviation of two adjacent RR intervals and the IF feature reflects the deviation

of non-adjacent RR intervals of heartbeat rate. They are defined as:

IF; =Ky, — Kiyg — (K — Ki—y) (8)

10; = (K; — Ki—1)/(Kiy1 — Ki) )
In the formulas above, K; refers to the time at which the R-wave occurs.
Other than 10 and IF, two other features which we will use are the preceding and the
following RR time intervals for each kind of heartbeat. For a normal pulse, the value of 10

approximately equals to 1, and IF equals to 0.

4. Results ans Discussions

To evaluate the workability of the proposed method, we used five records from the MIT-BIH
database (108, 114, 200, 201, and 213). 50 % of the sample data are used for training the
algorithm. The remained data are used for testing. The accuracy for classification of the

algorithm is defined as the percentage of accurate classifications.

Table I shows the accuracy of the MSVM algorithm with various kernel functions in the
detection of N, A, and V. In a Multiclass SVM, the associated penalty for excessive deviation
C and the turning parameter § involved in the RBF affects the classification accuracy. The
values of C and § used in our study are 65.21 and 31.02, respectively. These values were
obtained experimentally. From the Table I, we can see that the MSVM with a linear kernel
obtains the lowest accuracy. The quadratic polynomial kernel function improves the
correctness of the linear kernel function by using higher order operation, and the overall
accuracy reaches 95%. The RBF-MSVM shows better results in V detection. This result is

consistent with results obtained in many SVM classification applications. Acggrding to our
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experimental results, the RBF kernel function is better than the other kernel function types

(linear and quadratic polynomial). The accuracy of RBF-MSVM is 96.30 %.

TABLE I. COMPARISON OF THE ACCURACY OF DIFFERENT MSVM

Number Number Accuracy of test with different kernel
of beat used | of beat used Linear Quadratic RBF
in the train in the test Polynomial

N 4779 4780 95.61 % 95.82 % 96.21 %

A 49 50 98 % 98 % 100 %

\ 651 652 88.96 % 90.49 % 96.63 %
Overall 5479 5482 94.84 % 95.20 % 96.30 %

5. Conclusions

In this paper, we used four features of ECG obtained from the MIT-BIH database for an
MSVM based classification algorithm. The method proposed distinguishes normal heartbeat
from two types of arrhythmias. Besides, three M-SVMs with different kernel functions have
been evaluated. Numerical results show that the RBF kernel function gives the highest
accuracy, achieving the overall average accuracy of rate 96.30 %.
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Abstract
The aim of this paper to discuss a newly constructed subclass of bi-univalent
functions. Further, we establish Chebyshev polynomial bounds for the coefficients for the

class S{(2).

Keywords: Coefficient bounds, Bi-univalent functions, Chebyshev polinomials

1. Introduction

Let 4 be the class of functions f* of the form:
f(z):z+a222+a3z3+~~, (1)
which are analytic in the open unit disc U = {Z el 1Z| < l} normalized by £(0) =0, f'(0)=1.

Further, by S we shall denote the class of all functions in 4 which are univalent in U .

For two analytic functions, f and g, such that f(0) = g(0), we say that f is subordinate to

g in U and write f(z)=< g(z), zeU , if there exists a Schwarz function w(z) with w(0) =0

and |w(z)| < |Z

,zelU such that f(z)=g(w(z)), zeU . Furthermore, if the function g is

univalent in U , then we have the following equivalence;
f@)<gn)= f(0)=g0) andfU) < gU).
The definition can be found in (Nehari 1952).

The Koebe-one quarter theorem (Duren 1983) ensures that the image of U under every

univalent function f € 4 contains a disc of radius %. Thus every univalent function f has an

inverse f_1 satisfying /7' (f(z))=z, zeU and f(f_l w)=w, (

w <y (). 1o () 21/4).

Indeed, the inverse function f s given by

gw) = [ (W) =w—aw’ + (22 —a,)W' —(5& —5a,a, +a, )w’ +--22 )
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A function f € A is said to be bi-univalent in U if both f and f ! are univalent in U . Let

> denote the class of bi-univalent functions defined in U .

Many researchers have recently introduced and investigated several interesting subclasses of

bi-univalent function class >, and they have found non-sharp estimates on the first two
Taylor-Maclaurin coefficients ‘az‘ and ‘a3| (Altinkaya and Yal¢in 2015, Brannan and Taha

1986, Srivastava et al. 2010). However, there are only a few works determining the general

coefficient bounds |an| for the analytic bi-univalent functions in the literature (Altinkaya and

Yalgin 2015, Hamidi and Jahangiri 2014). The coefficient estimate problem for each of

—{1,2,3} (0 ={1.2.3...})

is still an open problem.

One of the important tools in numerical analysis, from both theoretical and practical points of
view, is Chebyshev polynomials. The majority of research papers dealing with specific
orthogonal polynomials of Chebyshev family, contain mainly results of Chebyshev
polynomials of first and second kinds 7, () and U, (¢) and their numerous uses in different
applications, see for example, Doha (1994) and Mason (1967). In the case of a real variable ¢
on (—=1,1), they are defined by

sin(m +1)0

1,(@)=cosmb, U, ()= -
sin®

where the subscript m denotes the polynomial degree and where #=cos@ . If we choose
T
t=cosa, xe| ——,— |, then
55

0

H(z,t)—i Z

1 -2tz +2* - sina

sin(m + 1)0{ ”

Thus
H(z,t)=1+2cosaz+(3cos’ o —sin’ @)z’ +---,
or equivalently

H(z,0)=1+U )z +U,(1)z* ++-- (z U ,t e (-L,1)), 263
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i 4
where U, (1) = SIH(L\/L(;OS)(m ell') are the Chebyshev polynomials of the second kind.
1t

Also it is known that
u,m=2tU, (t)-U, ()
and
U(t)=2t, U,(t)=4 -1, U,(t) =8 —4t,.... (3)

Definition 1.1. A function f €X given by (1) is said to belong to the class

S2(t) (O<5Sl,te(%,l},z,wer

if the following subordinations are satisfied:

1szh{4%m

]E < H(z,0)
21 /(& \ (2

and

1 wg%w)+(wg%w)
21 gw) gw)

T < H(w,1)

where the function g is the extension of £~ to U .

2. Chebyshev polynomial coefficient bounds

In this section, we derive the resulting Chebyshev polynomial estimates for the initial
coefficients |a2‘ and |a3| of functions f e S{(f) given by the Taylor-Maclaurin series

expansion (1).

Theorem 2.1. Let f € S2(¢). Then

)< 4512t
M o) 51y

and 264
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165°* 26t
|a,| < R
1+0) 1+06

Proof. Let f € S{(¢). In view of the definition of subordination, we can write

1 2f'(z) (zf'(2) ) ~ i
2\ /() +( f(2) J =1+U09(2) + U, (09" (2),
“4)
1| wg'(w) +(Wg'(w) jg =1+ U,y W)+ U, (O’ (w),
2| g(w) 2(w)
(5)

for some analytic functions ¢, y such that @(0)=(0)=0 and |p(z)| =| pz+p,z° +‘ <1,

l(w)| = ’qlw+qzw2 +- | <1, Then,

Ip|<L |g|<1 VvieD. (6)
In the light of (4) and (5), we obtain
la=Uop,
(7
2 ay-a+ D a =0 0p, + U0

(®)

-2 =00,
9)

(52;1) Gal —2a,)+ %af ~U, (g, +U, (D).

(10)

From (7) and (9), it follows that

P =—q
265

(1)
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and
O~ vzl +ad
(12)
Now, by adding (8) and (10), we obtain
(% +§ja§ U,y +4)+Us ()P} +470)
(13)

Therefore, by using (11) in the equality (13), we obtain

(252+5+1_U2(t) (1+6)

752 Uz(l‘) 252 ja22=Ul(l‘)(p2+q2),
1

From (3) and (6), we immediately have

0 < 4512t
M o) (5 +1Y

Additionaly, in order to calculate the bound on |a3 , by subtracting (10) from (8), we obtain

2(0+1) _2(1+§) ) B
S5 a, S a, =U,(0)(p, —q,)-

In view of (3), (6) and (12), we readily get the bound on |a3| as asserted in Theorem 2.1.
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Abstract
In the present paper, we introduce some new subclasses of >~ consisting of analytic

and m-fold symmetric bi-univalent functions in the open unit disc U . Moreover, for functions
belonging to the classes introduced here, we derive non-sharp estimates on the initial

coefficients |am+1| and ‘a2m+l|.
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1. Introduction

Let 4 be the class of functions f* of the form:
f(z)=z+a222+a3z3+~~~, (1)
which are analytic in the open unit disc U = {z el 1z| < 1} normalized by £(0)=0, f'(0)=1.

Further, by S we shall denote the class of all functions in 4 which are univalent in U . The
Koebe-one quarter theorem (Duren 1983) ensures that the image of U under every univalent

function f € A contains a disc of radius Y. Thus every univalent function f has an inverse

771 satistying 7' (f(2)) =z, zeU and f(f~'(w)=w,(

W <7y (), 79 (f) = 1/4). Indeed,

the inverse function f s given by

gw) = (w)y=w-—a,w +(2a; —a, )W’ —(5a; —Sa,a, +a, )w’ +-+-. (2)

A function f € 4 is said to be bi-univalent in U if both f and f ! are univalent in U . Let
2. denote the class of bi-univalent functions defined in U . For a brief history and interesting

examples in the class 2, see Srivastava et al. (2010), (see also Altinkaya and Yalgin 2015,

Brannan and Taha 1986, Hamidi and Jahangiri 2014).

268
For each function f €S, the function
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h(z)=’{’/f(z'") (zeU.,mell)

is univalent and maps the unit disc U into a region with m-fold symmetry. A function is said

to be m-fold symmetric (see Pommerenke 1975) if it has the following normalized form:

f(2)=z+ z a, .z"" 3)
pa

We indicate by S, the class of m-fold symmetric univalent functions in U , which are

normalized by the series expansion (3). In fact, the functions in the class S are one-fold
symmetric. Analogous to the concept of m-fold symmetric univalent functions, we here
introduced the concept of m-fold symmetric bi-univalent functions. Each function feX
generates a m-fold symmetric bi-univalent function for each integer m €[] . The normalized
form of f is given as in (3) and the series expansion for ', which has been recently proven
by Srivastava et al. (2014), is given as follows:

2
+ ((m + 1)am+l - a2m+l )W

m+1 2m+1

g =f"w=w-a,,w

1 3 3m+1 (4)
- 5 (m + 1)(3m + 2)am+l - (3m + 2)am+1a2m+l + a3n1+1) w .

We now define the following:

Definition 1.1. A function f €X  given by (4) is said to belong to the class
S5 () 0=su<l,0<s<l,z,wel)

if the following conditions are satisfied:

elwm@mf>ﬂ
2| (2 L f@2)

and

klmw{wmy>ﬂ

21 gw) g(w) 269
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where the function g is the extension of f TtoU .

2. Coefficient Bounds

In this section, we derive the resulting estimates for the initial coefficients am+1| and |a2m+l| of

functions f €Sy (0) given by the Taylor-Maclaurin series expansion (3).

Theorem 2.1. Let 0< u<1.If f € A4 of the form (3) belongs to the class S’ (5), then
20 [20-p)
- m \N25*+5+1

_8m+ DS (A-p) 250 -p)
[m(+6)] m(1+6)

m+1

and

|a2m+l

Proof. Let /' € S (6). In view of Definition 1.1, we get

1 7' +(zf’(z)

>l 7o) f(z)J = pu+1=01(2) )

and

1| wg'(w) +(wg'(w)

o oo g(W)J = i+ (1= )s(w). (6)

Next, define the functions

1(z)=1+1,z+1,,2° +++ (7)
and

sW)=1+s, w+s, W+ (8)
Then, #(z) and s(w) analytic in U with #(0)=1=s(0). Since the functions #(z) and s(w)

have a positive real partin U ,

£,|<2 and |sl.|S2.

In the light of (5), (6) and (7), (8), we obtain 270
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m(o +1) g

=(1-p), 9
25 2 ( ,Ll) m ( )
m(J +1) m (1 0)
28 (2a2m+1 _an21+1) T jz+1 (1 /u)tzm’ (10)
m(o +1
SO 6, = s, (1)
m(o +1 m(1-0
R VA P Lo R (12)
From (9) and (11), it follows that
t, =-s, (13)
and
o+1
w m+1 (1 /u)z(tzi + Szzn)' (14)

Now, by adding (10) and (12), we obtain

(m 6+ m 2(1-6)

5 252 j m+1 (1 lu)(th + S2m)

Therefore, we obtain

a2 — 252 (t2m + S2m) ]
" (287 + 5 +1)

Applying |ti| <2 and |s,| <2 for the coefficients #,, and s,, , we immediately have

8(m +1)5*(1-p)’ N 26(1- p)
[m(1+8)] m(1+6)

| 2m+l

, by subtracting (12) from (10), we

Additionaly, in order to calculate the bound on

obtain

2m(§+1)a _m(m+1)(1+5) 2

5 2m+l 5 m+l (1 lu)(th S2m)'

Applying |t,.| <2 and |si| <2 once again for the coefficients ¢,,, and s,,, we readily get the

as asserted in Theorem 2.1.

bound on |a2er1
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3. Conclusions

If we set & =1in Theorem 2.1, then the class S} () reduces to the classes Sy’ and thus, we

obtain the following corollary:
Corallary 3.1. Let 0< u<1.If f € 4 of the form (3) belongs to the class Sy , then

V20— )

|am+l| <
m

and

8(m+1)(1—ﬂ)2+1—ﬂ'

mz m

|02m+l| < 2
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Abstract

In this work, we obtain new characterizations about inextensible flow and KdV flow. Also,
we present a new approach for computing the geometry properties of curves by integrable
geometric curve flows. We use elliptic function expansion method in some new solutions by

using the KdV flow. Finally, we obtain figures of this solutions.
Keywords: KdV flow, Bicklund transformations, inextensible flows, elliptic function expansion method.

1. Introduction

In applied differential geometry, theory of curves in space is one of the significant study areas,
[1-5]. In the theory of curves, helices, slant helices, and rectifying curves are the most
fascinating curves. Flows of curves of a given curve are also widely studied, [7-13].

A particular nice feature of integrable systems is their relationship with invariant
geometric flows of curves and surfaces in certain geometries. Those flows are invariant with
respect to the symmetry groups of the geometries. A number of integrable equations have
been shown to be related to motions of curves in Euclidean geometry, centro-equiaffine
geometry, affine geometry, homogeneous manifolds and other geometries etc., and many
interesting results have been obtained [14-18].

This study is organised as follows: Firstly, we present a new approach for computing
the differential geometry properties of surfaces by using Bicklund transformations of
integrable geometric curve flows. We give some new solutions by using the extended Riccati
mapping method. Finally, we obtain figures of this solutions.

2. Materials and Methods
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Let y(s) be a smooth curve of constant torsion 7 in R’, parametrized by arclength s
. Let T, N and B be a Frenet frame, and k(s) the curvature of y . For any constant C, suppose
L= p(s; k(s);C) is a solution of the differential equation

%=Csin,8—k
ds

Then,
~ 2C .
7(s)=y(s)+—5——(cos BT +sin BN)
C +7

is a curve of constant torsion 7 , also parametrized by arclength s, [17].

Note that this transformation can be obtained by restricting the classical Backlund
transformation for pseudospherical surfaces to the asymptotic lines of the surfaces with
constant torsion.

We will restrict our attention to the geometric plane curve flows
7, = JT+gN,

where f,g depend on the curvatures of the curves and their derivatives with respect

to the arclength parameter, namely, these geometric flows are invariant with respect to the
symmetry groups of the geometries, [17].

For a spacial curve y(s,?) in a given geometry, let y(s,¢) be another curve related to

through the following Bécklund transformation
y(s,0)=y(s,0)+a(s, )T+ B(s,)N.

3. Results and Discussions

Bicklund Transformations for Plane Curve Flows

Consider the planar curve flow in the centro-equiaffine geometry, specified by
v, =hT+ fN,

where N and T are normal and tangent vectors of » . One can compute the time evolution of

N and T to get
T _ h—f f.+oh)T
N, —h - f AN/ 274
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The Serret-Frenet formulae for curves in centro-equiaffine geometry reads
T, =¢N,N, =-T.
Assume that the flow is intrinsic, [17], a direct computation shows that the curvature satisfies
¢, =(D; +44+24,07)f.
Letting ¢, = f in above equation, we get the KdV equation

9 = Py, + 609, (1

The corresponding KdV flow is
¥, = g N+24T.
which was introduced firstly by Pinkall [16].

4. Application to Mathematica

We consider the following traveling wave transformation for Eq.(1)

¢(S9t)=u(7/)e 7/=B(S_Qt)9 (2)

where O give the speed of the wave. Substituting Eq. (2) into Eq. (1), we obtain as follow,

~BQu () +6Bu(y)u (y)~B’u" (7)=0. 3)
In this paper we will solve the Eq.(3) by using the cn elliptic function expansion method [6] as
follows;

Assumed the solution of Eq. (3) is demonstrable as a finite series as follows:

o0 =u) =3 aenlym+Y. Ben [yl @

where c¢n [7;n] 1is the Jacobi elliptic cn function with the parameter 7

(0<n<l),y=B(s—Qr) and @, «,, B, for j= l,_N are values to be definited.
Balancing u” with u (u') in Eq. (3) gives
N+3 = N+N+1,5
= N=2.

Then the solution #(y) can write as follows, 275
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u(y) = o, +aseny:nl+anen’[ysnl+ Ben” [y nl+ Boon”[y;nl.

Substituting (6) into (3), collecting the coefficients of cn [y;n], and solving the obtaining
system, several solution groups are obtained. One of them is as follows:

o, = %(Bz(—4+8n2)+v),

a, = 0,

p = 07

a, = =2B°n’,

B, = =2B(-1+n).

From this result, Jacobi elliptic cn function solution is obtained as,
o(s,t)= %(B2 (=4 +8n*)+v)—=2B°n’cn’[B(s — Ot);n]—2B* (=1 +n*)en *[B(s — O1);n]
When the parameter 7 —>1, Eq. (8) is reduced to;

P(s,1)= %(482 +v)—2B’sech’[B(s—O0)]

which is the solitary wave solution of Eq.(1).

When the parameter 7 — 0, Eq. (8) is reduced to;
#(s,t)= é(—4B2 +v)+2B*cosech’[B(s —0t)]

which is another solitary solution of Eq.(1).
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Abstract

The problem of the determination of the transmission conditions and stresses on the common
boundary between layers is very important nowadays in terms of engineering and applied
mathematics. In this study the optimal control problem for the deformation of the laminate
formed by different materials is investigated. A numerical algorithm for determining the
properties of the thickness and hardness of the coating, taking into account the maximal of the
deformation predicted by the influence of a certain force, is given. Physical and geometric
interpretations of the obtained results are given with the help of a prepared computer program.

Keywords: Multilayered Material, Optimal Control Problem

1. Introduction

The contact problem related to the deformation of a rigid punch attracts the interest of
mathematicians, mechanics and engineers for many years. The problem was considered by
many authors: a historical review one can find in [7], [13], [17], [18] and [25]. Nowadays the
problem has not lost its relevance (see the series of articles by Aleksandrov and his coauthors
[1]-[6], by Borodich and his coauthors [8]-[14] and by Komvopoulos and his coauthors [17],
[19]-[22], [26]). We would like to point out some works here. The paper [7] is devoted to the
analysis of the infinitesimal deformations of a linear elastic anisotropic layer by using Stroh
formalism method. The work [25] deals with the contact problem of a stiff spherical indenter
with a composite plate by dint of the commercial software and the problem are simulated by a
2-D axisymmetric model. The results numerically obtained in [25] show independence of the
indentation response of an orthotropic laminate from the material, the authors demonstrate
dependence of the thickness of the multilayered material. In the paper [16] plane and
axisymmetric contact problems for a three-layered elastic half-space are consided. A plane
problem reduces to a singular integral equation with a Cauchy kernel in [16]. An analytical
solution of this type of equations one can find in [23]. In turn, to obtain the solution of the
integral equation the method of reduction to the corresponding conjugation problem can be
used [24]. In addition, the solution of the integral equation can be obtained by numerical
methods.

In the present paper, we give an analysis and numerical solution of the boundary value
problem for the Lame system, modeling the contact problem for a multilayered material. By
using the biquadratic basic functions, the transmission conditions are obtained on the
boundaries of interlayer by the Finite Element Method and the interlayer stresses are
analyzed.
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2. Statement of the problem

The mathematical model of the contact problem related to the deformation of a rigid punch
with a frictional pressure of a finite dimensional elastic material, which is a quadrilateral
region, is expressed by the boundary value problem for the Lame equation as follows (see, for
example [15]):

oo,,(u) N 0o, (u)

=F(x,y),
ox oy )
001.(1) | 2020 _ p(x, y), (1) e QC R,
ox Oy

uy(x,0)<-a+¢(x), 0,(x,0)<0,[u, +a-¢lo,(x,0)=0,
o,(u)=0, (x,0)el,;

0,,(u)=0,0,(u) =0, (.,y)el',;
ul(oay)=0> O-lz(u)zoa (an)erl;

o,w)=0,u,(x,-1)=0, (x,-[)el,.

Here Q= {(Xx,y): 0<x<lL,7ly<y<0},0Q=ToUIl ;UL Ul, (= {(x,0):0=<x<L},
o {(k,y): "Ly <y<0}, T1=1{0,y): Iy <y< 0}, I'. = {(x,~ly) : 0 <x <1y} is the region
occupied by the cross-section of the material under the influence of the punch and 0Q =1 U
UL UT, To={(x,0): 0=x <L}, I'G {(lk,y): -y <y<O0}, I''={0,y): -l,<y< 0},
I'in = {(x,71y) : 0 <x <1} is the relevant part of the boundaries of the region. Since the
condition at the I') — Q2 boundary is given by inequality, the contact region of the punch
I'. = {(x, yvyel;:u, :—a+g0(x)} is not certain, and therefore, even in the case of linear

elasticity this problem is non-linear.

In this study, the plate deformation problem of the layered material formed by different
materials with A, , u, are the Lame constants belonging to the €, layer forming the Q
region, respectively, u(x, y):(u1 (x.5).u, (x. y)) is displacement function and
0, (u) = 4 div(u) + 2 ,0u; / Ox, , o, (u) = 44, (Ou, / Ox; +0u, / 0x,) , i,j €{1,2} are stress tensor,
are investigated. By using the biquadratic base functions, the transmission conditions were
obtained at the L, ={(x,y)eQ:-[ <x<I, 0</, <l ,l,=0,] =ly,k=1,—ko} Ly =

QN+ ; boundaries by the Finite Element Method and the interlayer stresses were analyzed.
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3. Results and Discussions

In order to carry out numerical experiments let us consider two examples for two layers
materials: iron-copper and iron-steel. Let us refresh, that copper and steel more soft than iron.
The upper layer in both examples is iron. The elasticity modules and Poisson's constants of
these materials are Ep=30000[kN/cm?®], vp=0.27, Ec,=18100[kN/cm?], vc.=0.36,
ESt=2IOOO[kN/cm2], vs=0.3. In order to clarify the contact domain a, we use the multigrid
method. For the value of the indentation depth 0=0.035c¢m and for the different thickness of
layers we obtain the contact domain a. and the values of force (P) effected the body.

Ey, =30000 [ KN/em® |, vy, =0.27, | E,, =30000[kN/cm® |, v, =027,
E¢, =18100[ KN/em’ |, v, =0.36 | Eg =21000[ kN/cm® |, v, =0.3

h,, [em] P.10° ac P.10° ac

0.1 3.4052 0.2720 3.5009 0.2649

0.2 3.2611 0.2704 3.3830 0.2637

0.3 3.2473 0.2689 3.3301 0.2624

04 3.1462 0.2667 3.2901 0.2604

0.5 3.1058 0.2642 3.2587 0.2581

Table 1. The obtained values P and a, corresponding to the different thickness hg.,

Figure 1. The graphics a.(h) and P(h) for iron-copper and iron-steel body.

Acknowledgement: This work is supported by the TUBITAK program 2221 - "Fellowship
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Abstract
In this study, we study a spacelike surface in E; whose one of the principal curvatures is

identically constant. We give some results about spacelike surfaces on which spacelike
inclined curves lie as geodesic curves.

Key Words: Minkowski space, spacelike surfaces, inclined curves, geodesics.

1. Introduction

The study of special curves in surfaces is a well-examined topic in differential geometry.
Using the relation between surfaces and curves lying in them, characterizations of surfaces
have been given in some works. Planes, spheres and cylinders of revolution have been
characterized in different manners [1, 7, 8, 9]

Tamura characterized surfaces in £’ which contain helical geodesics under some additional

conditions [8]. In [9], he generalized characterizations given by [8] to Riemannian space
forms of non-negative curvatures. Gorgiilii and Hacisalihoglu characterized surfaces by taking

curves lying in them as inclined geodesic curves [1].

In this study, we try to see the results of [1] in Minkowski 3-space. We study spacelike

surfaces and spacelike curves lying in them by using curvature properties.

2. Materials and Methods

Let M be a complete and smooth spacelike surface in Minkowski 3-space E; with the metric
tensor / = <,> =dx’ +dy’ —dz". Let y(M) be the Lie algebra of all smooth tangent vector
fields to M . Further, let V and V be the Levi-Civita connections of E’ and M with the
matric induced by the non-degnerate metric tensor <,> , respectively. The second fundamental

form II of M in E’ is given by the Gauss formula //(X.,Y)=-V,( Y 29,7, for all
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X,Y e y(M) [2,4]. Let N be a unit normal vector field to A , then the shape operator S of
M derived from N is a (1,1)—tensor field on M given by <S(X),Y>=<]I(X,Y),N>, for
all X,Y € y(M). It is also well-known that D, N =-S(X), for all X € y(M) [2,4]. Along

with this study, we assume the shape operator § as a diagonalizable map. Also the mean

curvature and Gauss curvature is defined as follows:

= gtrace] (S), K=¢&det(S),
I

where ¢ = <N ,N >, and the subindex , denotes that these curvatures are computed due to the

first fundamental form of the surface.
Definition 2.1. ([5]) Spacelike angle: Let x and y be spacelike vectors in E; that span a

,and hence, there is a unique real

spacelike vector subspace; then we have |<x, y>‘ <[l

number 6> 0 such that (x,y) = |x]|3]|cosé.
Let y be a spacelike curve in E’ and V| be the first Frenet vector field of y. While
X e y(E)
is a constant vector field, if

<V1,X> = cos¢@(constant), (1)
then y is called an inclined curve (a general helix) in E’ . ¢ is called slope angle and the
space Sp{X} is called slope axis [2].

Let
y:IcE>McCE

s> y(s)
be a spacelike inclined curve parametrized by the arc-length, then the Frenet formula for the
frame field {V},V,.V,} along the spacelike curve is given as
VV1V1 0 « OV
VVIVZ=KOr.V2, (2)
VV1V3 0 = 0|1

where V.V, and V, denote the spacelike unit tangent, timelike principal normal and the
spacelike binormal vector fields of the curve y, respectively, and x,7 are the curvature
functions of y [2].

Let M be a spacelike surface in E’ and ¥ be a curve on M , and the tangent vector field of

the curve y is a _ T. The curve y in M is said to be geodesic provided [4] that

ds
V:T =0. 3)
Theorem 2.2. ([3]) If E,, E,, E, is a principal frame field on M Ef, then 254
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E[k,]=(k — k), (E,), E,[k]= (k —k,)0, (E). 4)
Lemma 2.1. If two families of geodesics intersect at a constant angle everywhere on M , then
M 1is aflat [6].

3. Results and Discussions

Characterizations of spacelike surfaces which contain spacelike inclined curves as
geodesics

Theorem 3.1. Let M be a spacelike surface in E] and y be a geodesic curve in M , then M
has no umbilic points.
Proof. Let M be a spacelike surface in E; and

y:IcE>MCcCE

s = y(s)
be a geodesic curve in M , then
ViV, =0. 5)
Using (5), we obtain
Vi ==LI(V.V)) € x(M)", (6)
where y(M)* denotes the set of all smooth normal fields to M. Using (2) and (6), we have
U, ==xVy = k= (U F,.V).V2) (7
This means that
V,=N.
By (1) and (2), we get
NV ==V, V,+ Vi, ==V, =1 = (I}, V). N). (8)

The functions k, and k, are the principal curvatures in M , and E, and E, are the
corresponding principal vector fields in M. Let @ be the angle between V| and E|. The unit
tangent vector field V| is a spacelike vector field because of choosing the curve y as

spacelike one. We also choose arbitrarily the base vector E, as spacelike. After computations
regarding to the angles by using the Definition 2.1, we have the following relation

V, =cosbE, +sinbE,
{1/3 =—sinbE, +cosOE,. ©)
Using (2), we write
H(E,E)=kN,andll (E,,E,)=k,N.
On the other hand, by means of the linear operator §' and (15), we obtain
UV, V) =(SI). V)N =(=k cos0 —k,sin’O) N, (10)
and
UL V,)=(SH).V;) N = (k; sin@cos 0 —k, sin@cosO)N. o, (11)

From (7), we find the curvature as follows:
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K=k1 c0529+k2 sinze. (12)
Similarly, from (8), we have the torsion as follows:
7= (k, —k,)sinfcoséb. (13)

From (12) and (13), we can express the harmonic curvature of the curve y as
K _kcos’@+k,sin’0
v (k,—ky)sinfcosd’

Kk ~H?+Kcos20—-H

h=-L= (15)

t 2WJH*+Ksin20

where k, # k,, thatis, M has no umbilic points.

(14)

then rearranging (14) gives us

Corollary 3.2. Let M be a spacelike flat surface in E; , then the spacelike geodesic curve y
makes a fixed angle with one of the parameter curves if and only if y is an inclined geodesic
curve in M .

Corollary 3.3. Let M be a spacelike minimal surface in E; , then the spacelike geodesic
curve y makes a fixed angle with one of the parameter curves if and only if y is an inclined
geodesic curve in M .

Theorem 3.4. Let M be a spacelike surface in E; whose one of the principal curvatures is
identically constant. If M has a spacelike geodesic curve y on itself which makes a fixed

angle with one of the parameter curves, then M is either a plane, a sphere or a circular
cylinder.

Proof. The orthogonal base {£,E,} for y(M) can be chosen as follows:
Vi E = AE,, Vi E,=uE,.
Using the connection equations
VLE, =Y o,(V)E,(p),
we obtain
Vi E, =—2E, Vi E =—uk,.

Since y is a geodesic in M , that is §VIVI =0, we compute

Veoser, +sindE, cosOE, +sin0k, = 0. (16)

Evaluating (16), we find
(sin> O —sin@ cosOL)E, +(cos’ A —sinf cosOu)E, = 0. (17)
Since {£, E,} is an orthogonal basis, we have the following equations:

{sinze,u—sinecos@l =0, (s
cos O —sinfcosOu=0.
From the equations in (18), we obtain

sindu—coséA = 0. 286 (19)

On the other hand, using the equations in (4) of Theorem 2.2, we have
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E[k,]= wk, — k), E,[k 1= A(k, — k).
Taking k, = const., by (20),, we arrive that
Mk, —k,)=0,
the following cases occur:
Let k, # k,, then (21) we have A =0, and from (19) we find that
usind =0
which occurs two cases as follows:
Case 1: If =0, then we obtain

§EIE1 = O, 652E2 = O,
the equation (23) means that the parameter curves y, and y, are geodesics in M . These two

families of curves intersect at a constant angle % since <E1,EZ> =0. From Corollary 3.3, M

is spacelike flat surface. Hence M is a spacelike circular cylinder.

Case 2: If sind =0, then & =0,0r = 7. As it is known that the angle & is between V| and
E,, so the vectors V| and E, become proportional since sin@ = 0. This means that M is also
a spacelike flat surface from Corollary 3.3.
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Abstract

In this study, the Darboux rotation axis of a null Cartan curve is obtained due to the Bishop
frame in Minkowski 3-space. The axis is decomposed into two simultaneous rotations. By a
simple mechanism, the axes of these simultaneous rotations are joined to each other. Also,

some characterizations of null Cartan Darboux helices are given due to the Bishop frame.
Key Words: Bishop frame, Null Cartan curve, Darboux rotation axis, Null Cartan Darboux Helix, Null slant
helix.

1. Introduction

Null curves have a crucial place in physics [2]. Geometrical particle model is wholly based on
the geometry of null curves in Minkowski spacetime. So the wave equations correspond to
massive spinning particles of a spin by quantization [4]. Also null curves have been identified

with geometrical particle models in Minkowski 3-space [9].

The study of pseudo null and null Cartan curves have been recently done via the Bishop frame
by Grbovic and Nesovic [5]. As it is known, the construction of the Bishop frame dates back
to the paper of R.L. Bishop in [1]. Bishop (parallel transport frame) frame is well defined and

constructed in Euclidean and its ambient spaces [1, 3, 5].

This work consists of two sections. In the first section, the Darboux rotation axis of a null
Cartan curve is obtained due to the Bishop frame. In the second section, some

characterizations of null Cartan Darboux helices are given due to the Bishop frame.

2. Materials and Methods

The three dimensional Minkowski space E; is a real vector space E’ endowed with

the standard indefinite flat metric <,> defined by

<>>=_x1y1+x2)’2+x3Y3: (1)
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where x = (x,,x,,x;) and y=(y,,»,,y;) are any two vectors in E’. The pseudo-norm of an

arbitrary vector x € E; is given by ||x| = Kx, x>‘ Similarly, an arbitrary curve y = y(s) in E;

can locally be spacelike, timelike or null (lightlike) if its velocity vector y  are, respectively,
spacelike, timelike or null (lightlike), for every s € I cE. The curve y = y(s) is called a unit

speed curve if its velocity vector y ' is unit one i.e., y” =1 [6].

A curve y:I —E; is said to be a null curve provided that its tangent vector y =T is
a null vector. A null curve y is called a null Cartan curve if it is given by the pseudo-arc

parameter s defined by

s) =4 (|7 @)du. 2)

There is only one Cartan frame {7, N, B} along a non-geodesic null Cartan curve y

satisfying the Cartan equations

T 0 x 0T
Nl|=|-t 0 «x|N| (3)
B’ 0 -7 O0|B

where the curvature x(s)=1 and the torsion 7(s) is an arbitrary function in pseudo-arc

parameter s [4].

The Bishop frame {7;,N,,N,} of a non-geodesic null Cartan curve in E; is positively
oriented pseudo-orthonormal frame consisting of the tangential vector field 7}, relatively
parallel spacelike normal vector field N, and relatively parallel null transversal vector field
N, [5].

Let y be a null Cartan curve in E; parameterized by pseudo-arc s with the curvature
x(s)=1 and the torsion z(s). Then the Cartan equations of y according to the Bishop frame

are given as follows:

Tl' K, &k 0 [T
N |=|0 0 «x |N,| (3)
N, 0 0 —-x,|N,
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where the first Bishop curvature x;(s)=1 and the second Bishop curvature satisfies Riccati
differential equation «,(s) = —% K'ZZ(S) —7(s); the Bishop frame {7}, NV,, N,} also satisfies the
following relations:

(0.7)=(Np.N,) =0, (N..N,)=1,

(T.N,) =(N\.N,)=0, (T,.N,)=-1, @

and 7,xN,=-1], N,xN,=-N,, N,xI =N,.
3. Results and Discussions

3
On Darboux Rotation Axis of Null Cartan Curves due to The Bishop Frame in E,

Let y be a null Cartan curve framed by the Bishop frame {7{, V|, N,} in Minkowski

3-space E; . Then via the Bishop frame, the angular momentum vector is found as
0=,N, +KN,. (5)

Therefore, the vectors N, and N, rotate with x; and x, angular speeds around the N, and

N, , respectively. The norm of (5) is

Joll = Vi =[xy

So, the Darboux vector is obtained as

0 &,N,+kK,N,
i ©)
lol Il
Then, the vector (ﬁ)' with the help of classical methods can be written as the linear
combination of vectors 7;, V,, N, , that is,
0. &)«
() =-S5 N,
el o
) ) 0. 0
where £(0) = sgn(”@”). This vector is also expressed as (H) =wN, XHE’
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where w is found as w—— Then , the vector —

” H rotates with angular speed w around
K

vector N,. Further, the vector N, rotates with angular speed Hé’” around — due to the

equation N, =9x N,. We obtain unit vector e from Darboux vector — where e=—

we find a vector ex N, which is orthogonal both e and N, .
4. On null Cartan Darboux helices due to the Bishop frame in E;

Theorem. A null Cartan curve y:/ —E; framed by the Bishop frame {7;,N,,N,} is a
Darboux helix if and only if the second Bishop curvature x, is a non-zero constant or the axis

is as in the form U = —<T1,U>N2.

Proof. Suppose that y is a null Cartan curve due to the Bishop frame {7],N,,N,}, a non-zero
vector U €E; is given by U(s) = 4T, + 4, N, + 4, N,. Differentiating this equation with respect to s and usin.

The vector U is found as

'[K ds .[K dsd 1 -|x,ds —szdS
s

U(s) = —e Ni- e (je ds)* N, (7)

Furthermore, the equations (5) and (7) imply
<8, U > = ¢, = constant. (8)

The null Cartan curve ¥ is a Darboux helix with an axis U according to the Definition of

Darboux helix. Conversely, assume that  is a null Cartan Darboux helix with an axis U.

Then <8,U>=constant Differentiating (7) with respect to s and using (3), we find
K,(N,,U)=0.

It follows that &, =0 or (N,,U)=0.1If

<N1’U> =0,
9)

differentiating (9) with respect to s and using (3) gives
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(N,,U)=0. (10)
With respect to the Bishop frame {7{,N,,N,}, the axis U of y can be decomposed as

U=—(N,.U)T, +(N,,U)N, —(T;,U)N, (11)
Subtituting (9) and (10) into (11), we find U =—(T,,U)N,.

Therefore x, =0 and hence «, = constant#0 or U = —<T1,U >N2.

Corollary 1. Every null Cartan curve y:I —E; with non-zero constant second Bishop

curvature due to the Bishop frame is a Bishop slant helix with non-null axis.

Corollary 2. Every null Cartan slant helix y:7 —E; with non-zero constant second Bishop

curvature is a Darboux helix due to the Bishop frame.
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Abstract

In this work, fractional (1+1)-dimensional Biswas-Milovic equation that defines the long-space optical
communications solved by using the residual power series method (RPSM) . The RPSM gets Maclaurin
expansion of the solution. The solutions of present equation are computed in the shape of quickly convergent
series with quickly calculable fundamentals by using mathematica software package. Explanation of the method
is given graphical consequens and series solutions are made use of to represent our solution. The found
consequens show that technique is a power and efficient method in conviction of solution for the fractional

(1+1)-dimensional Biswas-Milovic equation.
Keywords: Residual power series method, (1+1)-dimensional Biswas-Milovic equation, Series solution.

1. Introduction

Fractional calculus and differential equations have become the focus of many recent studies,
because of implementations in many fields [1-5]. Recently, there has been a significant analytical
improvement in fractional differential equations and its applications. For some articles for fractional
differential and fractional calculus equations, see [6-10].

In the present study, we apply RPSM to find powerful series solution for a fractional problem.
The new method supplies the solution in the shape of a convergence series. An repeated algorithm is
constituted for the designation of the infinite series solution [11-14].

In this work, we take up the Residual power series method to fractional Biswas-Milovic
equation (FBME) for finding its numerical solutions. The FBME has as follows

iDF " (x, 1) + 87D (x, 1) + nlux,0)| " (x,1) = 0, (1.1)
xeRt>00<a,p<1,

where ¢ and 7 are two constants with 7> 0, m is a value with m>1 and D is a Caputo sense

derivative and i =+/—1. For some articles for this equation,see [15-16]. We will find series solutions
of Eq. (1.1) for m =3, numerically by the RPSM. So far as we know, this is the first time which the
state is conceived for Eq. (1.1).

2. Numerical Solutions of the FBME with RPSM algorithm
293

Firstly, we study the FBME for m =3,
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iDf 6 (x, 1) + 8D (e, 1) + i, 1) 4 (x,0) = 0, @2.1)

by the initial condition u(x,0)=e".

The RPSM propose the solution for Egs. (2.1) with a fractional power series at point =0
[11]. Theorize that the solution selects the expansion shape,

=) tna
u(x,t)= x)—0<a<l,xel,0<t<R. 2.2
(x,0) ;f,,()rmm) 2.2)

Next, we let u, (x,?) to refer k . truncated series of u(x,?),

k tna
u, (x,t)= (X)) ———, 0<a<l,xel,0<r<R 2.3
(1) nzz;,f,( )F(Hm) (2.3)

where u,(x,1) = f,(x) =u(x,0)= f(x).

At first, to find the value of coefficients f, (x), n= l,_k in series expanded of Eq.(2.3), we
define residual function Res ; for Eq.(1.1) by

0%u’ (x,1) LS 0™ i’ (x,1)

Res(x,t)=1i
(x5 or” on?f

ER) R ERD!

and the k -th residual function, Res, as follows:

0%u; (x,1) LS 0*u; (x,t)

— 23 _
Res, (x,t) =i v Y. + 77|uk (x,t)| u,(x,t), k=1,2.3,... (2.4)

As in [11-12], it is clear that Res(x,#)=0 and llcimResk(x,t)=ReS(x,t) for each xe/

and ¢t >0.

Then, D" Res(x,t) =0, fractional derivative of a stationary in the Caputo's idea is zero and
the fractional derivative D;“ of Res(x,t) and Res, (x,t) are pairing at =0 with each r = W( To
give residual PS algorithm: Firstly, we replace the k -th truncated series of u(x,7) into Eq.(2.1).
Secondly, we find the fractional derivative expression D,(k_l)a of both Res, ,(x,t), k= 1,00 and

finally, we can solve found system

Dt(k_l)aReSu,k ()C,O) = 050 < o S 1 ’x € ]’ k - l,OO, (25)
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to obtain the needed coefficients f,(x) for n= 1,k. in Eq. (2.5). Hence, to determine fi(x), we
write £k =1 in Eq. (2.4),

0%u’ (x,1) 0™ (x,1) 2
Res,(x,t)=1i 811“" +0 8322’3 +1fu u) (x,1), (2.6)
where uy (x,1) = F(l fl() S(x)
for u(x,0)= f,(x)= f(x)=u(x,0)=e".
Therefore,
_ T £ 2 W, 1° 3 t
Res,(x,t) = 1if,(x)(3e™™ +3e M+ )fl(x)+r(1 . )fl(x) )+7(e +F(1 )fl(x)) (1+2r(1+a)cos(x)fl(x)
> iBx+7p) i@x+ap) | 2 2
+F(1+2 )f1( x)*)+6(e +3F(1+ )f1( x)(e F(l s )f1( )+ r(Hm)fl(X)
i) |
(e F(l )fl (x)).
From Egs. (2.5) we deduce that Res,(x,0)=0 at =0 and thus,
1 . ix i,
fl(x)=§1e (17 +8"™). 2.7
Therefore,
u,(x, t)——le”(n &’”ﬁ)m+e”. (2.8)
Likewise,
) 1 ) “
u,(x,1) = e"+=ie"(n+6e™”)———
»(x.1) 3 (n )F(1+a)
2a
_geix(n_i_&iﬂﬂ)Z ti.
I'l+2a)
u,(x,t) = e”‘+lze'*( +6™y— r
i 3¢ T T
5 2 | 2.9
— e+ ™) ——————ie"(n+ %) (23 +14%'”
9(77 )F(12)81 (n )* (23 )-
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To give a deficit overview of the content of our work, by the above recurrent connections, we
can demonstrate some graphical consequens of equation (2.1)

B

iy

M

Fig 1. The 3D graphic for the u,(x,?) approximate solution of the FBME (2.1) and its

aiy

contour for ¢ =f=0.9,0 =1 and 7 =2. (a) Real division, (b) Contour of real division, (c)

Imaginary division and, (d) Contour of imaginary division.

Fig 2. Solution of real part for the FBME when o« =0.5,0.6,0.7,0.8,0.9 (#=0.3 and
f=05 06=land n=2)

In figure 2, we plot the RPS approximate solution u;(x,?) for & =0.5—0.9 which are

closing the exact solution as the number of & increase. These figure clear that the convergency of the
approximate solutions to the exact solution related to the order of the solution and the exact error is
being smaller as the order of the solution is increasing.

3. Conclusions

In this paper, we obtained approximate solutions that is given in the shape of power series of the
FBME based on a fractional Caputo sense derivative and Residual power series method. It has been
establish that the structure of this RPS method obsesses a very fast convergent series with easily
calculable components using symbolic calculation software. The paper stressed our notion that the
introduced process can be applied as an instead to get analytic solutions of different kinds of fractional
linear and nonlinear partial differential equations practiced in mathematics, physics and engineering.
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Abstract
In the spirit of closing the gap between "classroom and distance learning", we propose a
method to overcome some of the challenges inherent in teaching statistics to students enrolled
in blended learning. Among the teaching techniques identified as essential, we have
articulated most of our strategy to a “Flipped Learning” model. Building on existing research,
we have developed a complementary approach that use the results of many researches in
Flipped Learning, ICT and Didactics. This complementary approach, articulated on didactic
conceptual sheets, has been used in teaching descriptive statistics for students in biology
(Biostatistics).

In this article, we describe the activities developed for the implementation of didactic
conceptual sheets in a “Flipped Learning” course. We have distinguished the effectiveness of
this learning opportunity to help students improve their understanding of concepts related to
statistics and biology. We have also identified concepts and misconceptions that need to be
highlighted and clarified in a biostatistics course.

In light of our observations, we recommend a complementary training strategy
(didactic concept sheets) that can be used in an interdisciplinary approach that articulates

Mathematics-Biology in a flipped learning model.

Keyword(s): Interdisciplinarity (Math—Biology), Flipped learning, Didactic Conceptual Sheets, Misconceptions,

Teacher practices

1. Introduction
Blended learning (“BL”) is an education program that combines online digital media with
traditional classroom methods. In “BL” approach student learns at least in part through

delivery of content and instruction via digital and online media with some elen26at of student
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control over time, place, path, or pace. “BL” integration has been transforming higher
education to provide more engaged learning experiences for students. “BL” is often combined
with a Flipped Learning (“FL”). This “FL” approach is a pedagogical model in which the
typical lecture and homework elements of a course are reversed. Students view short video
lectures or other mulitmedia content asynchronously before the class session. Then in-class
time is devoted to active learning such as discussions, project-based or problem-based
assignments, or laboratory exercises. This teaching model allows instructors to guide student
learning by answering student questions and helping them apply course concepts during class
time. Activities that have been traditionally assigned as homework are now done in class with
the instructor’s support.

The present study was conducted at the Higher Institute of Education and Continuous
Training (ISEFC). One of its programs is to provide continuous training face to face and/or
non-face training. Driven by the demand to increase access to learning opportunities,
educators were continually challenged to develop and integrate instructional delivery options,
one of which was “BL” and more specifically “FL”. This was a first-time experience for the
faculty at the institution. In this context of learning and in the spirit of closing the gap
between "classroom and distance learning", we propose a method to overcome some of the
challenges inherent in teaching statistics to students enrolled in our “FL” model. Building on
existing research, we have developed a complementary approach that use the results of many
researches in “FL” (Garrison & Kanuka (2004), Rotellar & Cain, (2016)), ICT and Didactics.
This complementary approach, articulated on biostatistics-specific Didactic Conceptual

Sheets (“DCS”), has been used in teaching descriptive statistics for biology students.

2. Materials and Methods

2.1. Student profile and targeted course

Our project was prepared and carried out from 2006-2018 in biostatistics course (descriptive
statistics), in biology bachelor's degree (licence) at the ISEFC - Tunisia. (Table 1)

2.2. Learning model

Most important part of our “FL” model is a loop involving multiple processes and steps,
which can be made effective with proper use of digital tools. Here’s a list of tools and process

. . ) 299
that we use in our “FL” classrooms, categorized by 5 procedures in the loop: Content Source;
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Virtual Learning Environment; Didactic Conceptual Sheets “DCS”; Involvement and
participation of teacher and students; Communication tools, review and survey.

- Content sources:

* Supports and documents: To start the “FL”, we used, and made available to students, our
self-courses and selected resources such PDF, Excel Word and PowerPoint documents,
website contents and pre-recorded lectures and videos.

* Disciplinary fields and key concepts: Teaching biostatistics is an example of integrating
interdisciplinary learning activities (mathematics, statistics and biology). In this project, we
have distinguished the effectiveness of this learning opportunity to help students improve
their understanding of concepts related to statistics and biology. We have also identified
concepts and misconceptions that need to be highlighted and clarified in a biostatistics course.
- Virtual Learning Environment: To create our lesson and share courses contents we used
“Virtual Learning Environment” (“VLE”) (usually: is Web-based; uses Web 2.0 (interactive /
social Web / read and write Web) tools and simulates real-world educational modalities).
According to this “VLE” we mainly used a Learning Management System (LMS) and a Wiki.
We have privilegied: Moodle as the LMS to create an organized content and track the
progress rate of the learners during all the flipped learning process. (Didaquest, 2018).
Mediawiki as the Wiki interface to implement the “DCS” as complementary approach in
“FL” and to create an expandable collection of interlinked web pages that allows any user to
quickly and easily consult, create and edit content.

- Didactic conceptual sheets “DCS”: We have combined the “Content sources™ to “DCS” as
a complementary approach to “FL”, and implement it in our Wiki. The constituent elements
of “DCS” are summarized in table 2 and further explained in Didaquest, 2018.

- Involvement and participation of teacher and students: When carrying out our flip
learning model we respect 4 pillars and 11 indicators recommended (FLN, 2014). We
combined this learning strategy to a didactics learning initiative that implements “DCS” to
optimize the courses contents and to make learning and training activities more dynamic.

- Communication tools, review and survey: We have implemented in our VLE digital
communications tools so as to come up with a compelling and more productive learning
experience. Such tools empower the students allowing them to communicate, to engage, share

. . ) . 300
their views, connect with the work of other students and edit a work collectively. These tools
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also enabled us to follow the evolution of students' learning while carrying out several
formatives evaluations and by collecting their assessments on the supports and tools used. The
used Moodle and Wiki learning interface have several built-in evaluation tools such: counter
which record usage, classifies visits by day, by visitor, most visited sections, duration, etc. We
will present a brief summary of the results and specifically theses concerning the students'
degree of satisfaction and the utility they showed in terms of the constituent elements of the

didactical concept sheets (Table 3). In this activity students will rank components of “DCS”.

Table 2 : Elements of a didactic concept sheet

Gender Total 1. Translation / 2. Definitions: 2.1 Domain,
Woman | Man Discipline, Thematic ; 2.2 Written definition; 2.3
2006 - 2007 13 7 20 Graphical definition / 3. Concepts or related
2008 - 2009 15 8 23 concepts / 4. Examples, applications, uses / 5.
2010 -2011 12 8 20 Possible errors or confusions / 6. Possible
2012 - 2013 13 11 24 questions / 7. Teaching Links and Programs: 7.1
2014 - 2015 14 ] 22 Ideas or Reflections related to his teaching; 7.2 Help
2017 - 2018 17 6 23 and tips; 7.3 Education: Other links, sites or portals;
Total 84 48 | 132 8. Bibliography

Table 3: Rating and ranking scale questions

Rating question: Student useful satisfaction
survey

Ranking scale question using a scale of 1 to 12 for
student satisfaction survey.

Please rate each of the following components on a
rating scale of 1-5, where 1 is ‘not at all useful’
and 5 is ‘very useful.””)

Please rank the following in order of importance from
1 to 12 where 1 is most important to you and 12 is
least important to you (justify your choices)

3. Results and Discussions

Result of rating question: Student useful satisfaction | Result of ranking scale question using a scale
survey of 1 to 12 for student satisfaction survey.
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Succinct overview and brief analysis of the results shows that all the students appreciate the
use of “DCS”. Their usefulness is more pronounced when the elements present practical
aspects that help them in their learning, such as misconceptions, questions / gggwers, helps

and tips. This study revealed many important elements, as enumerated in Didaquest (2018),
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the most significant of which are: Highlighting major misunderstandings in biostatistics. And
the importance of using examples from biology to clarify statistics contents. All the
justifications given by students confirm these results (Didaquest, 2018). Moreover, and in
reference to statistics’ consultations provided by our Moodle and Wiki interfaces, the “DCS”
are the most consulted elements, before, during and after the face-to-face learning sessions. In
order of consultation, the questions / answers, then the conceptions and the graphical ones
alone account for more than 63% of the consultations. It is clear that the “DCS”, as well as
helpful and appreciated, are also very used during the learning sessions related to the
biostatistics contents. 4s a student pointed out, these didactic concept sheets are for her like a

coach who accompanies and assists her during the learning phases.

4. Conclusions

The main advantage of the “DCS” is its large diversity of constitutif elements related to each
concept, which can be exploited or rapident completed by the students through the wiki
interface. Using the “DCS”, we show that many students were attracted by popular
misconceptions and questions related to biostatistics. In some cases, this appears to be due to
failure to emphasize the relevance of knowledge from mathemathics instruction to biological
contexts (Schwartz and al.,2016). The information gained from this study helped and will
further be used to adapt the current biostatistics learning strategy. According to the results,
and particularly the importance of their use, “DCS” seem to be a complementary tool in
blended learning and particularly in flipped learning dedicated to biostatistics. Indeed, in
addition to boosting and optimize content and learning sessions they seem to play a dynamic

role as a coach that can meet the needs and expectations of students.
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Abstract

In this paper, using CSS (Calderbank-Shor-Steane) construction method, we
construct self-orthogonal codes over F3 and we obtain new quantum codes with the
following parameters: [[18,6,4]]s, [[24, 0, 9]]s, [[27, 15, 4]]s, [[28, 20, 3113, [[30, 22, 3]]5,
and [[32,24,3]];.

Keyword(s): quantum code, linear code, self-orthogonal code

1. Introduction

All notations about linear codes we take from [12, 16]. Let F* be the n-dimensional
vector space over the Galois field F; = GF(q). The Hamming weight of a vector x € Fj',
written wt(x), is the number of nonzero entries of x, and Hamming distance d(x,y) between
two vectors x,y € Fy* is defined to be the number of coordinates in which they differ. A g-
ary linear [n,k,d] code C is a k-dimensional linear subspace of F* with minimum Hamming
distance d. A generator matrix of a code C is any k x n matrix whose rows are a basis of the
code. A weight enumerator of a code C is the polynomial

n
C(z) = Z A7
i=0

where 4; is the number of codewords of weight i.

The inner product is (x,y) =x;.y; + ...... + X,.yn, for two vectors x = (xy, ...,x,) and y =
(V15 ---yw) in FJt. The dual code CL of the code C (with respect to this inner product) is C-- =

{v € Fq"|(u, v) =0,V u € C}. It is known that C-L is an [n,n-k] code. We say that a code C
is self-orthogonal if the code C-L contains the codewords of C. If C = C-L then the code C is
self~dual.

The self-orthogonal g-ary linear codes are useful in order to construct quantum error-
correcting codes (QECCs) [6]. In the last two decades several papers (see [2, 3, 7, 10, 13, 14])
were devoted to the construction of QECCs over different fields by using their connections to
self-orthogonal g-ary codes. In this work, by constructing ternary self-orthogonal codes with
dual distance at least 3, we improve some bounds on minimum distance of nonbinary QECC:s.
The paper is structured in the following way. Section 2 consists of definitions and general
information about quantum computing and quantum codes. In Section 3 we describe the
relationship between self-orthogonal codes over F; and quantum codes and present the known
method for constructing linear codes by their residual codes. In the last section, we summarize
the obtained results.
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2. Quantum information and Quantum codes

In [17] P.Shor gave a randomized algorithm for factorizing an integer in polynomial
time on a quantum computer. Since factorization of large integers is the hard problem which
underpins public-key encryption systems such as RSA, the importance of this result is
obvious, and a large amount of research into the possibility of building a quantum computer is
going on. The relationship between quantum information and classical information is a
subject currently receiving much study. While there are many similarities, there are also
substantial differences between the two. Classical information cannot travel faster than light,
while quantum information appears to in some circumstances. Classical information can be
duplicated, while quantum information cannot [6].

Otherwise, in a classical computer, each bit of information is stored by a transistor
containing trillions of electrons. On a quantum computer, a single electron or nucleus in a
magnetic field carries a bit of information. Interaction with the environment is much more
serious, but decoherence puts a limit on the space and time resources available to a quantum
computer.

Binary case: A quantum analogue of a bit of information is called a qubit. It is the
state of a system in a 2-dimensional Hilbert space C*. The two possible states of a qubit are
labeled |0) and |1). To these two basis states orthonormal basis vectors can be associated |0)
=e) = ((1)) and [1) = ¢;= ((1)) A qubit can be in a superposition of these two states |p) =
«|0) + B|1), where a?+ B? =1 .An error, like any physical process, is a unitary
transformation of the state space. The space of errors to a single qubit is 4-dimensional, and is
spanned by the four unitary matrices (Pauli operators):

=G = QY =G Y. v

Nonbinary case: A qudit is a generalization of the qubit to a g-dimensional Hilbert
space C. For example, a qutrit (g = 3) is a three-state quantum system. The computation basis
is then a set of three (orthogonal) states |0), |1) and |2) and an arbitrary qutrit is a linear
combination of these three states |@) = «|0) + B|1) + y|2). A representation of an integer k
in a qutrit system can be made by writing £ in its ternary representation (for example, 73 =
22013y) and this can be encoded in a register of qutrits. The generalization of that to g-
dimensional Hilbert space is easy. In this case the Pauli operators for a g-dimensional Hilbert
space are defined by their action on the computational basis [11]:

X@Yjy=1j+1), Z@)) = |o)
where j € Fj' and w is a primitive g-th root of unity. The matrix representations of X and Z

for the qutrit are
01 0 1 0 0
X=<0 0 1), Z=<0 g2mi/3 0 )
1 0 0 0 0 emi/3

Definition 1 [10, 13]: Let V= ®™(C?) = C'QC'Q ...... QCY, dimV =q". A quantum
code C is a k-dimensional subspace of V. If the dimension of the quantum code {g5s g , it will
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be denoted by C = [[n, k, d]],, where d is the minimum distance. A code with minimum

distance d is able to correct errors that affect no more than l%] of the states.

3. The connection between self-orthogonal codes and Quantum codes

As it is too difficult to construct good quantum codes in general, we can consider
simpler constructions. An interesting and simple construction of quantum codes was
introduced in 1996 by Calderbank and Shor [5] and by Steane [18]. The CSS code
construction provides a direct link to classical coding theory. The problem of finding QECCs
is transformed into the problem of finding linear self-orthogonal codes under a certain inner
product over the finite field with 2 elements. Later, this construction was generalized for
quantum codes over different fields by Ketkar et. all [13].

Theorem 1 [5, 13]: Let C, and C, denote two classical linear codes with parameters
[n, ki, di]y and [n, k>, d>], such that C,E C. Then there exists a [[n, kit ky — n, d]], quantum
code with minimum distance d = min{wt(c) | ¢ € C;\C,U C,\C}}.

Corollary 1 [13]: If C is a classical linear [n, &, d], code containing its dual, cLcc,
then there exists an [[n, 2k - n, d]], quantum code.

In order to construct easier the proper self-orthogonal linear codes we use their
residual codes.

Definition 2: Let G be a generator matrix of a linear [n, k, d], code C. Then the
residual code Res(C, c¢) of C with respect to a codeword c is the code generated by the
restriction of G to the columns where ¢ has a zero entry.

A lower bound on the minimum distance of the residual code is given by
Theorem 2[8]:Suppose C is an [n, k, d], code and suppose c€C has weight w, where d

>w(q - 1)/q. Then Res(C, c) is an [1n - w, k - 1, d'], code with d' > d - w +[§J
If w = d then Res(C, ¢) is an [n - d, k - 1, d']; code with d' > EJ. Inverting this

operation we start from [n - d, k - 1, d'], residual code and search for an [n, k, d], code. The
other approach we use is to start from [# - i, k, d'], code (punctured code) and by extending it
we search for an [n, &, d], code.

Example 1: [4,4,1]3— [6,4,2]3— [9,5.4]3— [18,6,9];
Example 2: [2,2,1]4— [3.2,2]4— [8,3.5]4— [28.4,20]4

4. Results

Using the method described in the previous section, when we search for an [n, n-k, d],
code (with dual distance at least given d--) we construct residual codes for the code with these
parameters. After that, we use the generator matrices of the obtained residual codes and we try
to construct an [n, n-k, d], code with dual distance at least dL-. Here we use the fact that the
dual distance of the residual code also must be at least d- [8, 16]. If the construction is
successful we check the obtained code for self-orthogonality. As is shown in Example 1,
when we search for [18,6,9]; code with dual distance 4, we construct [9,5, > 3]s codes with
dL > 4 from their residual [6.4, > 2]; codes with d-- > 4 (extending the trivial [4.4,1]5 code).
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It is easier to construct linear codes with smaller dimensions because of the relatively
small number of their codewords. In the cases for large dimension it is difficult to find all
codewords in order to calculate their weights (i.e., to find the weight enumerator). In that case
it is enough to check the number of the linearly independent columns of the generator matrix
of the code. It is known [12, 16] that if for a given value d- there are d1 - 1 linearly
independent columns then the dual distance of the code is at least d--. For these reasons, in
our research we construct codes with smaller dimensions and check their dual distance.

Table 1 consists of the obtained results for self-orthogonal codes and the
corresponding nonbinary quantum codes. The obtained codes are different from the
parameters given in the papers [3, 9, 10, 15]. Also, by this method we construct some codes
with the same parameters as in [3, 9] (for example [[20,10,4]]3, [[20,12,3]]5, [[24,16,3]]3,
[[26,18,3]]3). All computer calculations were made by the program package Q-Extension [4].
In the Appendix 1 we present the generator matrices of the constructed self-orthogonal codes.

[n,n-k.d], d-- [[n2k-n,d-1l, | [nn-kd], d-- [[1,2k-n, d1]],
[18,6,9]; 4 [[18,6,4]]5 [28,4,18]3 3 [[28, 20, 3]]s
[24,12,9]3 9 [[24, 0, 9]]3 [30,4,18]; 3 [[30, 22, 3]]5
[27,6,15]3 4 [[27, 15, 4]]5 [32,4,21]3 3 [[32,24,3]]3

5. Conclusions

In this paper, using CSS construction method, we construct ternary self-orthogonal
codes and we prove the existence of the corresponding quantum codes. This research was
partially supported by the project FSD-31-303-05/2018 of University of Veliko Tarnovo.
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Appendix 1

Here we present the generator matrices of the constructed self-orthogonal ternary codes.
[18,6,9]3 [27,6,15]5

111111111000000000 111111111111111000000000000
122220000111010000 111112222200000111110000000
210001200122201000 120001220012220122001101000
112000020212200100 121120201211100011201220100
211122210021200010 111222210111210112102120010
101010120220100001 012121210010220020200220001
[24,12.9]5 [28,4,18]3
111111111000000000000000 1111111111111111110000000000
112200000111210000000000 1111112222220000001111100100
201222000102201000000000 1220001120001122001122222010
010112220001100100000000 0201201211201012202012012001
111122100121100010000000 [30,4,18]3
202010010112100001000000 I11111111111111111000000000000
210212010010200000100000 111112222200000000111111100100
020100120121200000010000 120001220011122000112220022010
201102120201000000001000 001201202012010120201201212001
110110200220200000000100 [32,4,21]5
001221120120000000000010 I1I11111111111111111100000000000
021101220012000000000001 11111112222222000000011111100100

11220001122000112200011122222010
20201201012120121012012012012001
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Abstract
This paper deals with the behaviour of solutions for scalar third order linear delay
differential equations. By the use of two distinet real roots of the corresponding

characteristic equation, a new result on the behavior of the solutions is obtained.
Keywords: Delay differential equation, Characteristic equation, Roots, Asymptotic behavior

1. Introduction

The theory of delay differential equations is important both theoretical and practical
interest. For the basic theory of delay differential equations, the reader is referred to the books
by Bellman and Cooke [1], Driver [4], EI’sgol’ts and Norkin [5], Hale and Verduyn Lunel [6],
Kolmanovski and Myshkis [7] and Lakshmikantham, Wen and Zhang [8]. The very
interesting asymptotic and stability results were given by Philos and Purnaras [9-10]. The
techniques applied in [11,12] are originated in a combination of the methods used in [9,10].
Yenigerioglu [12] obtained some results on the qualitative behavior of the solutions of a
second order linear autonomous delay differential equation with a single delay. The main idea
in [12] is that of transforming the second order delay differential equation into a first order
delay differential equation, by the use of a real root of the corresponding characteristic
equation. The same idea will be used in this paper to obtain some general results. Recently,
Cahlon and Schmidt et al. [2] have established the stability criteria for a third order delay
differential equation. This equation is obtained the stability of third order delay differential
equation using Pontryagin’s theory for quasi-polynomials. However, we study the stability of
the some problem using the method of characteristic roots.

Let us consider initial value problem for third order delay differential equation

Y'=py O+ Py (t=1)+ay'(D+ D4y (t=t) +vy(O+ D viy(t—1), 120 (1.1)
iel iel iel
where [ is an initial segment of natural numbers, p.q,V,Dp;,q;,V; for i€l are real constants,

and 7, for i €T positive real numbers such that t; #1; for ij.i, €I with i, #1,. Let’s define
T=maxrT;. (7 is a positive real number.)
iel
In a previous paper [3], we considered Eq. (1.1) with g; = 0 and v; = 0, i €1 which arose

from a robotic model with damping and delay. There are no practical stability criteria of the
zero solution of (1.1). Together with the delay differential equation (1.1), it is customary to
specify an initial condition of the form

y(O)=0(t) for —7<1<0, (1.2)
where the initial function ¢(t) is a given twice continuously differentiable real-valued
function on the initial interval [-7,0]. Along with the delay differential equation (1.1), we
associate the equation

22 =32p g vy e (kzpi+kqi+vi), (1.3)

iel 309
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which will be called the characteristic equation of (1.1). Eq. (1.3) is obtained from (1.1) by
looking for solutions of the form y(t)=¢"' for t>—-t . For a given real root 4, of the

characteristic equation (1.3), we consider the (second order) delay differential equation
Z'(t) =(p—-3r)Z'(t) + Z pie_%“z'(t —7,)+(q+2ph,— 3k§)z(t)
i€l
t
+Z g ot (a; +2pirg )z(t—1;) — Z e (kozpi +200q; + V; ) I z(s)ds . (1.4)
iel iel t-,
With the delay differential equation (1.4), we associate the equation
8% =(p—3hg)d+q+2phg =305 + D (p; 8+q; +2p;hy e HotOT
iel
_6_12(1317% +qihg +V; )(l —e e, (1.5)
iel
which is said to be the characteristic equation of (1.4). This equation is obtained from (1.4)
by seeking solutions of the form z(ty=e¢®' for t >—t. For our convenience, we introduce some

notations. For a given real root 4, of the characteristic equation (1.3), we set

Bry = e {x (Pid + ko + Vi =d, = 2Pk )} —a = 2pAg +324 (1.6)
iel
and, also, we define
L3 0) = 9"(0) + (Ao = P)O'(0) = D" Py (=7,) + (g — pry —qp(0)

iel

0
=X (P +a o=t + 2 e % (pAg +ahe +vi) [ e Fplo)dss (17

iel i€l -

in addition, provided that 3, # 0, we define

c1>1(xo;(p)(t)z@(t)e%t-M for —t<t<0. (1.8)

)“0
The proof in the following theorem can be made in the same way as in the article [12].
For a given real roots A, ,0, of the characteristic equations (1.3) and (1.5), respectively,
we consider the (first order) delay differential equation
W(0) = (p=3ky =28 )w(t) + D e " ipw(t— 1))

iel

t
Stz i
iel t-1,

Ti t
+z (pilg +qiry +V; )e_koti Ie_Sos { I W(u)du} ds. (1.9)
iel 0 t—s

The characteristic equation of the delay differential equation (1.9) is

Y=p=3hg =28, + ) pie Mo —(Z (P +; +2pihg)e o) J je_ysds

iel iel 0

310



INTERNATIONAL CONFERENCE ON MATHEMATICS
“An Istanbul Meeting for World Mathematicians”
Minisymposium on Approximation Theory & Minisymposium on Math Education
3-6 July 2018, Istanbul, Turkey

+Z (piké +qih +V; )e_kOTi I g O (Je_yudu] ds (1.10)

iel 0 0
The last equation is obtained from (1.9) by seeking solutions of the form w(r) = e¢”’ for
¢t > —7 . For our convenience, we introduce some notations. For a given real root 4, of the
characteristic equation (1.3) and a given real root J, of the characteristic equation (1.5), we

set
Mig.5, = Z(Plﬁo +q; +2pihg e 0Ty —p, )
iel
—p+3h +28, = Y. (Pihg + kg + v )e " '[s e %%ds (1.11)

iel 0

and let @,(4,;¢) be defined by (1.8). Also, we define
R (%, 850) = (D (A;9)) (0) =8, D@, (hg;)(0) (P —3Ay —28,)D; (A;9)(0)

0
— Mot Z ;D (ho; 0)(=7;) + (Z (pi0g +q; + 21317”0)3_0%%0)Tl J ,[ e—SOSq)l(xO :9)(s)ds

iel iel -1,

T 0
=3 (kg +aihg +v e [ { [, (xo;mxu)du}ds , (1.12)

iel 0 -s
where (@, (/10;¢))' is derivative of ®@,(4,:¢); in addition, provided that 77, ;, # 0, we define
P, (1.8 )0 = € 0, (i)~ oD g0l (113)

.,

2. An Asymptotic Result

Theorem 2.1. Let A, be real root of the characteristic equation (1.3), and let f, and
L(A,:;9) be defined by (1.6) and (1.7), respectively. Furthermore, let 6, be real root of the
characteristic equation (1.5), and let 1, ;5 , R(4,,6,;¢) and ®@,(4,,6,;¢) be defined by
(1.11), (1.12) and (1.13), respectively. Moreover, let y, be a real root of the characteristic
equation (1.10). Suppose that 8, #0 and 17, ; #0. ( Note that, because of B, #0, we
always have 6, #0 and y, #—06,. Furthermore, because of N, =0, we always have

7,#20.) Set

T
oty = Z:Pifie_(ko+60+yo)Ti - (Z (P;d) +0; +2pihg e Horo0m j _[ e Psds
0

iel iel

T S

+Z (Phd +qihg +v;)e o0 I e {j e "% du}ds (2.1)
iel 0 0

and, also, define 311
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0
K (s 80,703 0) = D, (g, 8 @)0) + . pie 00105 [ 778D, (3,85 9)(s)ds

iel -1

T 0
—(Z(pﬁo 05+ 2phg)e T ]I e {I e 1D, (xo,soxp)(u)du}ds

iel 0 -s

T S 0
+Z (pha +qihg +v,)e o j e { '[ e o {j e D, (N, 80;(p)(w)doa}du}ds .2

iel 0 0 —u

Assume that

Tl
_ —(Ag+3p+710)T; —(Ao+80)T; —YoS
Hoo.80.70 _Z|pi|e oy +(Z|p150 +q; +2Pi7“o|e o ]je “sds
0

iel iel

T s
+> [piAg + ik +V; ’e_xot‘ I e o { '[ e "u du} ds<1. (2.3)

iel 0 0
( This assumption guarantees that 1+¢&, 5 >0.) Then the solution y of the IVP (1.1) and
(1.2) satisfies
lim{eyot|:e(/%+50)ty(t) _ Me—(sut _ R(ﬂ,@ ’50;¢)j|} — K(AO ) 50 > }/O;¢) . (24)

e ’B% 77/10750 1 + 9‘X:/lo)é‘oio

References

[1] R. Bellman, and K. Cooke, Differential-Difference Equations. Academic Press, New
York, (1963).

[2] B. Cahlon and D. Schmidt, Stability criteria for certain third-order delay differential
equations, Journal of Computational and Applied Mathematics, 188 (2006) 319-335.

[3] B. Cahlon, D. Schmidt, Asymptotic stability of amechanical robotics model with
damping and delay, Journal of Mathematical Analysis and Applications 303 (2005)
36-53.

[4] R.D. Driver, Ordinary and Delay Differential Equations, Springer-Verlag, New Y ork,
1977.

[5] L.E. EI’sgol’ts and S.B. Norkin, Introduction to the Theory and Application of
Differential Equations with Deviating Arguments, Academic Pres, New York, London,
1973.

[6] J.K. Hale and S.M. Verduyn Lunel, Introduction to Functional Differential Equations,
Springer, Berlin, Heidelberg, New York, 1993.

[7] V. Kolmanovski and A. Myshkis, Applied Theory of Functional Differential
Equations, Kluver Academic, Dordrecht, 1992.

[8] V. Lakshmikantham, L. Wen, and B. Zhang, Theory of Differential Equations with
Unbounded Delay, Kluwer Academic Publishers, London, 1994.

[9] Ch.G. Philos and LK. Purnaras, Periodic first order linear neutral delay differential
equations, Applied Mathematics and Computation,117 (2001) 203-222.

312



INTERNATIONAL CONFERENCE ON MATHEMATICS
“An Istanbul Meeting for World Mathematicians”
Minisymposium on Approximation Theory & Minisymposium on Math Education
3-6 July 2018, Istanbul, Turkey

[10] Ch.G. Philos and LK. Purnaras, Asymptotic properties, nonoscillation, and stability for
scalar first order linear autonomous neutral delay differential equations, Electronic
Journal of Differential Equations, Vol. 2004 (2004), No. 03, pp. 1-17.

[11] Ch.G. Philos and 1.K. Purnaras, Behavior of the solutions to second order linear
autonomous delay differential equations, Electronic Journal of Differential Equations,
Vol. 2007 (2007), No. 106, pp. 1-35.

[12] A.F. Yenigerioglu, Behavior of the solutions to third order linear autonomous delay
differential equations, New Trends in Mathematical Sciences NTMSCI 6, No. 2, 200-
225 (2018).

313



INTERNATIONAL CONFERENCE ON MATHEMATICS
“An Istanbul Meeting for World Mathematicians”
Minisymposium on Approximation Theory & Minisymposium on Math Education
3-6 July 2018, Istanbul, Turkey

The Dirac equation solution
of the generalized symmetric Woods-Saxon potential energy
in one spatial dimension
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Abstract
We apply the two-component approach to the one-dimensional Dirac equation with a
generalization of the Woods-Saxon potential energy that was proposed by including the
surface effects. We find that the wave functions for the two-component spinor in terms of
the Confluent Heun function.

Keywords: Dirac equation, Generalized Woods-Saxon potential energy, Confluent Heun equation.

1. Introduction

P. Dirac expressed a relativistic first order wave equation 90 years ago to abolish the
flaws of the Klein-Gordon equation [Dirac 1928]. Dirac equation, with or without taking
account the electromagnetic interaction, describes all spin half particles i.e. electrons,
quarks. It was validated by its high accuracy in accounting the fine details of the hydrogen
spectrum and it is still in use of scientist in their effort to describe the Nature.

R.D. Woods and D.S. Saxon in 1954 used a new potential energy to calculate the
differential cross section of the protons that are scattered elastically by medium or heavy
nuclei [Woods and Saxon 1954]. The high accurate results let the WSP to gain reputation.
In 1983 G.R. Satchler proposed a generalization to the WSP, namely GWSP, where the
surface interactions are considered [Satchler 1983]. In one dimension this potential has the
form of

_VO W e—a(x+L) _VO W ea(x—L)
V(x) = 9(_x) 1+ e—a(x+L) + (1 + e—a(x+L))2] + @(X) Il + ea(x—L) + (1 + ea(x—L))Z

The GWSP energy has been subjected to many articles. Among them, we examined the
nonrelativistic analytical solution [Liitfioglu, Akdeniz, Bayrak 2016], and then we
compared the WSP and GWSP in terms of thermodynamic functions [Litfiioglu CTP
2018]. Furthermore, we made a similar comparison in between the relativistic and non-
relativistic solutions [Liitfiioglu CJP 2018]. Very recently, we investigated the scattering
and bound state solutions of the Klein Gordon equation in spin and pseudospin symmetry
limits [Lutfuoglu, Lipovsky, Kriz 2018, Liitftioglu 2018]. 314
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2. Materials and Methods

We begin by the relativistic free-particle Dirac equation in Natural Units system (h = ¢ = 1)

0
i ”——m)‘i’ x,t)=0.
(ir# s =m) w0
An external potential energy can be coupled to the equation via the momentum and the mass
quantities. Initially, the external potential that is under the investigation will only be coupled
to the momentum quantity with a coupling constant, namely e, as known as minimal
coupling.

[y” (la% - eA#> - m] Y(x,t)=0.
In (1 + 1) space-time dimension, we take the gamma matrices y° and y* to be the Pauli
matrices o and io*, respectively. Furthermore, we choose the time component of the four-
vector to be proportional to the potential energy, while the spatial component is zero. Note
that the potential energy is time independent, therefore the wave function is chosen to be the
multiplication of the terms that depend on time, e Bt and space, P (x). Then, the Dirac
equation becomes

d
|02 - V@) - " — = m|p) = 0.

We decompose the Dirac spinor, into two spinors, u, (x) and u,(x), given as

peo = (1)

uy (x)

Then, we obtain two coupled first order differential equations

du, (x) _
P (E=V(x)—mu(x),
W) gy + muy ).
dx

We introduce new combination of the spinors as Fliigge had done [Fliigge 1974]
¢ = u3 (x) + i up(x),
x(x) =uy (%) — iup(x).
315
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After substituting the new-introduced spinors, we re-arrange the coupled first order
differential equations and derive uncoupled second order differential equation system as
follows:

d? d
P b [E-v@) -m i v =0,

d2
X( ) [(E V(x)) -m? — i — V(x)] x(x) = 0.

3. Results and Discussions

We use the GWSP energy to solve the equations. Here, we present only the solution of one
spinor, the other spinor’s solution can be established similarly. Since the used potential is
symmetric in the negative and positive region, we discuss only one solution to avoid a
repetition. In order to have a dimensionless differential equation, we make the transformation

z=[1+e 2]

and we express the GWSP energy and its derivative

ylelds
V(ix) — —Vyz—Wz(z—-1),

dV(X) ylelds
dx

—az@Z-D[V,—-W)+2W z].
After straightforward algebra, we obtain the second order differential equation as

+
z z—1

d? (1 1>d ¢ L e, B D
dz? dz z%2(z—1)?  (z—1)2 z(z—=1)?2 z(z-1)

(2) =0,

Note that, we abbreviate some terms with new definitions as given:

mZ_EZ
€? = )
az
, _2EV,
=—
2
CZ=V_O
a? ’
D2=2EW+102:(V0—W)' 316
a
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o’
2 WZ
G —?-

)

We consider the general solution with an ansatz

¢L(2) = zH(z— 1%’ 7 f(2),

where
ik
K="
K
v=—,

and we define the wave numbers as

k =+vE?—-m?,

K=\/(E+V0)2—m2.

We obtain a second order differential equation to the f(z) function as given
1+2v+1+2u] df
z—1 z dz
GRu+1) -2w—-—pu—v+¢ GRv+D)+2uw+pu+v -6
* z * z—1 f

i [Z'G +
dz? !

=0.
Here
{=-2e>+B?-D?,
8§ = —2¢?+ B?—-D%*—-F2.
This equation is known as the confluent HEUN equation [Heun 1888, Ronveaux 1995]
d*w +1 + 1\ dw v
B ()G e
and its solutions are given in the form of HeunC(a,B,v,6,n,y), and the coefficients

should be obtained via the relations [Slavyanov and Lay 2000, Hortagsu 2018]

6=,u+v—a(ﬁ+—)2/+2>,
_ 0-’(,32"‘ 1)_#_<ﬁ+)’2+ )’ﬁ). 317
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4. Conclusions
In this work, we show that the Dirac equation under the minimal coupling of Generalized
Woods Saxon potential in (1+1) dimension owns a set of solutions in confluent Heun

functions.
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Abstract

Carlitz was the first to extend the classical Bernoulli polynomials, Euler polynomials and
numbers, introducing them as g-Bernoulli and g-Euler numbers and polynomials. He
introduced degenerate Bernoulli polynomials. Dolgy ef al. defined and investigated the
modified degenerate Bernoulli polynomials. Kim et al. and Kwon et al. proved some
identities and recurrence relations. Kim ef al. gave some explicit relation degenerate Bernoulli
polynomials associated with p-adic invariant integral Z,,. Young gave a symmetric identity for
the degenerate Bernoulli polynomials.

In this work, we prove some identities between these polynomials. Further, we prove some
relations between the degenerate Bernoulli polynomials and the degenerate second kind
Stirling numbers of first kind.

Keywords: Bernoulli Polynomials and Numbers, Euler Polynomials and Numbers, Degenerate Bernoulli
polynomials

1. Introduction

The classical Genocchi polynomials are defined in ([10], [11]) as

o tn 2t
Lo Gn() —=——=e™, |t|<m (1.1)

When x =0, G,(0) = G, are called the Genocchi numbers.

The classical Bernoulli polynomials and Bernoulli numbers are defined as the following
equations in ([1]-[11]) respectively

© t" t
Zn=OBn(X)E=Eext, |t| < 277: (12)

and

t

tTl
BBy =
n=0"n ;1 T et_q

For A € C, Carlitz [1] defined degenerate Bernoulli polynomials the following generating

, lt] < 2m. (1.3)

function

SR By (xS = — (142007, |t < 27 (14)

(1+At)2-1

When x = 0, B,(1) = B,(0|A) are called the degenerate Bernoulli numbers. Thus, by (1.4), we get

Bn(xl/l) = E?(?)(xll)n—lBl 319
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where (x|, = x(x — 1) ... (x = 2(n — 1)).

Degenerate Genocchi polynomials and the higher order degenerate Genocchi numbers are

defined by D. Lim [12] as following generating functions respectively;

n 1
N0 G (x]) = = — 25— (1 + 20)7 (1.5)
s (1+At)2+1
and
0 t" 2t
Y=o Gn(0]A) = =——5— 7 €N. (1.6)
T (1+AD7+1

Thus, by (1.5), we get

lim;_,o G, (x|1) = G, (x),lim,_,, G,(0|2) = G, n = 0.

In this note, we write as G, (x|1) = G, (x, 1).

2. Some Identities For The Degenerate Genocchi Numbers

In this section, we give the solution of the linear ordinary differential equations F*~1(¢) and
some recurrence relation for the degenerate Genocchi numbers.

Let

1

F=F() =——. (2.1)

(1+A)2+1

Then by derivative of (2.1), we get
FO =2 F(t) =2log(1+ D(FP - F) (2.2)

by using (2.2) and taking the derivative of (2.2), we have

2
@) _ A @ (4
20F®) = (log(m)) F@ 4 3F (log(1+}t)) 4 2F. (2.3)

Continuing this process, we can deduce

_1)IFW — g k1) (A
N =D = B e F4 (=55) 24)

k
where N € N, F® = (%) F(t). Now we take derivative of (2.4) as follows
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N!'FM @D = o ( FN+D) _ F(N)) (log(1+/1))‘
i

From (2.4) and (2.5)

fe1 k-1
N! FN+D =NYN_ a (N)F&-D (log(T/l)) + X 4 ) (NFED (1og(1+/‘l)) ’

Replacing N by N+1 in (2.4), we have

k—1
N1 FN+D ZN+1 a, (N + 1)F(k 1) (] g(1+/1)) ‘

Comparing the coefficient on the both sides of (2.6) and (2.7), we obtain

Na,(N) =a;(N+1),ay(N) =ay.,(N+1)
and

ay(N+1)=Na,(N)+ay_,(N),2<k <N.
From (2.8), we easily get

a;(N+1) =Na,;(N) =--=N!a,.

From (2.4), we write as

F =¥k=1ax (DF = a; (F).

Thus by (2.10) and (2.11), we get
a;(1)=1,a,(N+1)=N

For k=2 in (2.9)

a;(N +1) = XRZ9(N) a (N — k)

where (x)y =x(x—1) ...(x =N+ 1),N €N, (x), = 1.
Let us take k=3 in (2.9). Then we have

a3(N +1) = Nag(N) + a,(N) = SHZ2(NV) ap (N = k).
Continuing this process, we can deduce that

(N +1) =X (N ai (N = k), 2<j <N +1.
From (2.13),

a,(N+1) = k1 Zo(N) g, (N = ky)!

a;(N+1) = k1_=0(N)k2 a,(N — k)

= T A S 2T (N, (N =k = D)(N — ky — kg — 2)1.

321

(2.5)

(2.6)

2.7)

(2.8)

(2.9)

(2.10)

2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)



INTERNATIONAL CONFERENCE ON MATHEMATICS
“An Istanbul Meeting for World Mathematicians”
Minisymposium on Approximation Theory & Minisymposium on Math Education
3-6 July 2018, Istanbul, Turkey

Continuing this process

—i N—kj_,—j+1 N—kj_1—kj_p——ky—j+1
G+ =X 0T 5 B T W (N =g = 1),
X(N_k]—l_ j_2_2)kj_3 (N_kl_kz__ 1_1_]+1)'

(2.17)
where 2 < j < N + 1. From (2.17) and (2.4), we obtain the following theorem (For details an
above operation, see [5], [7], [8]).

Theorem. For N € N, the ordinary differential equations
. k-1
— 1) FN = yN-j+1 k=1) (A
(N=-DIF k=0 Gk (N)F (log(1+A))

1

have a solution F = F(t) = =
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Abstract

In mathematics, the study of Continued Radicals and Continued Fractions is very popular. In this
paper we will present some notes on the calculation of the convergent continued radicals,
fractions and exponents with integer elements and integer values by using the splitting of the

integers under radicals in certain ways which are very bizarre yet interesting.

Continued Radicals

Let’s start with some famous convergent continued radicals. For example, in real analysis or
number theory courses, we see problems like this:

Problem 1: What is the value of A when

A= \/2\/2\/2 . 1)

The following methods illustrate a few different ways to show that the above continued or nested
radicals is convergent and its value is 2.

Method 1: If 4 is the value of (1), then the same A4 is the value of the internal continued radicals
from the second radical to all the way up to the end of the expression, i.e. we have

A= 22T = 202 ) = VA

S0, A2 = 24 and this simple equation has two solutions A = 2 and A = 0 and of course we

reject A = 0 and A = 2 is the only acceptable value for (1).

Method 2: We may define a sequence to analyze the convergence of (1). Let’s consider the

sequence X, defined by Xxq = V2 and Xni1=+/2x, ;n=1,2,3,.... By using
mathematical induction, it is easy to show that, this sequence is an increasing sequence and it is
bounded above by 2 (prove it) and so the sequence is convergent and its limit, /, satisfies the

equation I = V21 and, similar to the above solution, we have [ = 2. S0, A = 2.
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Method 3: We can use the graphical method to investigate or find the fixed point of function

y = f(x) = V2x and observe that for any initial point the fixed point is (2 , 2). That means 2 is
the limit or the value of that A.

Method 4: Another method to figure out the value of (1) is by using series. We know that
1 1 1 1 1.1
V2 =22 andv2v2 = (2v/2)2 = (22)(2%) = 227 and in a similar manner, we have

The above geometric series with ratio 5 1s convergent and its sum is equal to one. So, A = 2.

To accept that the above geometric series is convergent to 1, we may use the following simple
high school level mathematics.

1

5= 16

N | =

1 1 1 1 1 1 1
ittt =145+ 3 ) =549

This simple equation implies that S = 1. Even we can use the following observation to show
that S = 1, (see [3]). Consider a square with side equal to one and area equal to one. Then divide
the square in half and continue dividing and adding the areas of the triangles.

1+1+1+1+ =1
2 4 8 16 o

Proof Without Words

=10
=

B
| =

Method S: After four different methods to calculate the value of the expression (1), here is my
simple and interesting splitting method that I haven’t seen used in any other place to solve the
problem (1). The value of the continued fractions (1) is equal to 2 because:
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2=VE=vVZx2=v2xVE=12xV2Zx =\/2xx/2><\/1=\/2><\/2><\/2>< = .
So,

2= [2V2V2...

This method is a very simple (it is at the high school level mathematics) and a very interesting
way to show that (1) is convergent and its valueis A = 2.

Now we consider the second famous convergent continued radicals:

B=J2+ 2+V2+ .

Here again by using methods similar to 1 and 2, above, we can easily show that B = 2. But, by
using our splitting technique we have:

2=x/Z=\/m=\/z+\/Z=\/z+W=j2+ /2+\/Z=Jz+ /2+\/m=---

So,

2=J2+J2+JTIT. Q)

After these two examples, and finding the values of the continued radicals by splitting the
numbers under the radicals, we will continue our presentation and we will work with more
continued radicals.

3=\/§=m=\/6+@=\/6+W=j6+ /6+\/§=J6+\/6+W

So,

3=J6+J6+J€IT. 3)

Another example of the splitting technique is

4=\/16=\/12+4=\/12+v16=\/12+\/12+4=\/12+ ’12+\/1 =
So,
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4=\/12+\/12+\/12+---. @)

The above three examples are three particular cases of the next problem.

Problem 2: Find all positive integers m such that the following continued radicals (5) are
convergent with integer values C:

C=\/m+\/m+W. (5)

It is easy to show that (prove it), m must be the product of two consecutive positive integers, i.e.
m=k(k+1)fork=1,2,3,...,and C=k+1, (see[1]). In other words, if m = k(k + 1) for
k=1,2,3,...,then C=k+ 1. By using the splitting technique we can arrange this time like this:

k+1=\/(k+1)2=\/k2+2k+1=Jk(k+1)+(k+1)=\/k(k+1)+w/(k+1)2=

\/k(k+ D+ Jk(k+1)+ (k+ 1)=jk(k+ 1)+\/k(k+ 1)+/(k+1)2=

\/k(k+1)+\/k(k+1)+\/mz\/m+\/m+\/m.

For example, form =2 =1X2,m =6 =2X 3, orm = 12 = 3 X 4 we have the above results
(2), (3), and (4) and form = 20 = 4 X 5 we have:

5=\/ﬁ=\/20+5=\/20+\/ﬁ=\/20+\/20+5=\/20+\/20+\/20+---
So,

5=\/20+J20+\/20+--- . (6)

We can even split 25 in different ways to get different nested radicals with the same value 5,

5=v25=v5+20=vV5+4x5=[5+4V25= 5+4\/5+4/5+4\/25=---

Hence
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5= 5+4\/5+4\/5+4\/5+--- )

Or,

5=v25=v10+15=v10+3 x 5= _[10 +3V25 = --

Hence

5= 10+3\/10+3\/10+3\/10+---

How about the next two tricks?

3=\/§=\/3+2X3=\/3+2\/§=\/3+2\/3+2X = 3+2\/3+2\/3+2\/3+.--

2=V4=V=2+3x2-= /—z+3\/—= -2+3 —2+3J—2+3\/—2+3\/—2+~-

We may try this splitting technique for more complicated iterated radicals too. For example, the
solution of the following famous continued radicals belongs to our pioneer and genius
mathematician, Ramanujan.

Al
a

oz61-2881

A AL A S LA AR BB B0 o

42F
Ramanujan Continued Radicals
The solution of the following continued radicals problem is from the great mathematician

Srinivasa Ramanujan. Over 100 years ago, he presented the solution of this problem with its
following solution in a simple yet very interesting splitting technique in the Journal of Indian

Mathematical Society; see [3, 6, and 7]. The problem was, compute the value of D when
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D= [1+2 1+3\]1+4/1+5\/1+'--.

To figure out the value of D we can calculate the first few terms of this continued radical. We
can easily notice that these values are increasing and are close to three. By using a computer, I

noticed that the approximate value of D is almost equal to 3. Actually, the real value of D is 3.

Here is a very neat and simple proof on calculation of D) from Ramanujan by using splitting
technique:

3=V9=Vi+t8=VI+2x4=V1+2Vi6=vV1+2Vi+15=V1+2VI+3x5=

J1+2\/1+3V25:\/1+2\/1+3\/1+24=\/1+2 1+3\/1+4><6=\/1+2\/1+3 1+4V36=

\/1+2\/1+3 1+4\/1+35=\/1+2\/1+3 1+4V1+5%x7= 1+2\/1+3\/1+4 1+5v49 =

This goes on and on and we never get to a dead end point. Because for any natural number n we
have

n+1=\/(n+1)2=\/1+n2+2n=\/1+n(n+2)=\/1+n\/(n+2)2

=\/1+n\/n2+4n+4=\/1+n\/1+(n2+4n+3)=

\/1+n\/1+(n+1)(n+3)= 1+n\/1+(n+1)m=---

Hence D = 3 and we have

3= (1+2 1+3\/1+4/1+5\/1+---.

The second continued radicals in the same page of the same journal was to find the
value of E when, (see [5])
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E=16+2|7+3 |8+4 9+5\/10+6\/11+7\/12+---.
\

Here again by using the similar to the above trick we can easily find that E = 4:

4=\/16=\/6+10=\/6+2><5=J6+2\/25=\/6+2V7+18=\/6+2 ’7+3V36 =

=\/6+2f7+3\/8+28= 6+2\]7+3/8+4\/49= 6+2 7+3\/8+4,9+5\/64=-~

Hence

4=16+2|7+3|8+4 9+5\/10+6\/11+7v12+-~.
\

Here is my final magic show. Similarly, by using our splitting technique, we can find few more
continued radicals (think and figure out the tricks):

4= |1+3 1+4—\/1+5 ’1+6\/1+---

5= 11+4 1+5\/1+6,1+7v1+---

6= [6+5 6+5\]6+5 ’6+5\/6+~-
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6 = 12+4\/12+4\/12+4V12+---

6 = 18+3\/18+3\/18+3\/18+-~

I am sure that many interested readers will find and create many other convergent continued
radicals with their values by using this interesting splitting technique.

One more comment. It is not true that any continued radicals with integers have integer value.

For example the value of the following simple continued radicals is the Golden Ratio @ (prove
it):

1 5
1+\/1+ 1+VIt = +2\/_=(p.

Interestingly, the value of the following simple continued fractions is also the Golden Ratio ¢:
1 1++/5
1 =
1+ ——  Z
1
T

1+

=(p_

Over all, for any positive integer number n, we have, see [5 and 6],

n+\/n+\/n+W 1+”1+4" )

And for any natural number n > 2, we have

_\/n_\/n_\/ﬁ=‘1+— vitdn )

2

Actually, the expression (7) is true for any positive real number a. To show that for any positive
real number a > 0, the continued radicals
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F= a+\/a+ a+va+--, )

is convergent, Wenjiang Tu in [4] proved that the following sequence x,, is convergent and its

s 1+V1+4
limit is equal to F = i 2+ =3

Xy =+Va,and X1 =Jatx, ;n=123,..

His proof has two parts. Obviously foranyn = 1,2, 3, ..., we have xX,, > Vva > 0 and

x2. . = a + x,. By using mathematical induction he showed that the sequence x,

increases. Easily, we notice that x, = v a +va > va = x4, and if x,, > x,,_; then

Ja+x, —x,)(Ja+x, +
xn+1—xn=m—xn=( arxn x")( a-T Xn xn)
(Ja+x, +x,)

a+x,—x2 a+x,—a—x,, Xp — Xp_1q

> 0.

atx,+x, JJatx,+x, Ja+tx,+x,

So, x,+1 > X, and this implies that the sequence x,, increases. Then he proved that x,, is
bounded from above. By using x,21+1 =a+x,,
at+x, a X, a

a
= + < +1<—+1=+Va+1.
Xn+1 Xn+1 Xn+1 Xn+1 \/E

Xn+1 =

This shows that v/a + 1 is an upper bound for the sequence. So x,, is a convergent sequence and

its limit is equal to F = =%, (see [4]).

. ) 1+V1+4
It is obvious that Va + 1 > hi 2+ ?

the least upper bound of x,, which is sharper than v/a + 1. By using mathematical induction we

14+V1+4 . .
i 2+ 2 It is not difficult to show that x; =+Va<

1+ Vit4 1+ Vita
%,then we show that X,,,1 < — 2+ = We have

1+v1+4a _ 2a+1+vV1+4a _ 4a+2+2vV1+4a ( 1+vV1+4a )2
2 2 B 4 B 2 '

, s0 va + 1 is not the least upper bound. Here we try to find

prove that the sequence x,, is bounded by

1+ V1+4a
2

XX i=a+x,<a+

. Suppose x,, <
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1+V1+4a

, and the sequence is bounded from above and we have a convergent

e 1+V1+4
sequence with limit equal to F = s 2+ =,

SO, xn+1 <

Now, the nice problem to discuss is finding all natural numbers n such that the odd number

1 + 4n, under radical, is a perfect square number, say k* with some odd integer k, which

1+V1+4n . .. .
is a positive integer. For example for n = 2,

implies that the limit of the sequence F =

1+/1+4(2) _
———==

we have F = 2 or for n = 110, we have F = 11. Of course there are many natural

2_ -
numbers n such that1+4n =k? or n = % = (%)(%), which is the product of two

consecutive natural numbers and we have mentioned it before. In other words with any odd
natural number k the continued radicals (7) is a convergent nested radicals with positive integer
1+VI+4n _ k+1

2 2’

k?-1 o
element n = — and with integer value F =

LTHAT0 _ 1421 _ gg

Here again by using splitting method for n =110, we have F = 5 5

11 =112 =vV121 =V110+ 11 = J110+V121 = \/110+\/110+
Or (see [4])

11 = 110+\/110+\/110+---.

We can change the square roots to cube roots too. For example, see [5]

3 3 3
2= |6+ 6+\/6+W

To show that the value of the above nested radicals is 2 we can use our splitting technique and
approach like this:

3 3
2=Y8=36+2=V6+V8== 6+\/6+i/6+§/m.

Similarly we have

3 3
3=327=324+3=324+327=-= |24+ \/24 +V24+32a+ -
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Continued Fractions

We can use the above splitting method and present some continued fractions. Here we present
two of them and the interesting readers can create more examples:

Example 1:
1_2_ 2 2 2 _
— 0 T 1.1 1 2z 2 2
2 1+1 1+E 1+m 1+1+%
1 2
2
1+ 3
X 1+—1+...
A=m or A=1.
Example 2:
1=2%= _ _ 2 _ 2 _ 2 _ 2
1 142 1 1 12 1+
3 2+1 Z+Z Z+? 2+3+
2
1= 3
1+ I
2+ 5
3+ 6
LY

Iterated Exponents

Before we start to discuss about the calculation of iterated exponents, it is better to mention a

very common mistake in calculating iterated exponents. We all know that the correct ways to

calculate the followings expressions are computing them from left to right.
20-8—-2=12-2=10 or24+6+-2=4+2=2.

But if we compute them from right to left, then we will get wrong results:

20-8—-2=20-6=14 or24+-6+-2=24-+-3=8.
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But to calculate expressions 243”2 or 237172 we must compute them from right to left. In
other words we must follow this convention rule a*b*c = a?* = a®") = a™(b"c). For example

27372 = 23" = 2% = 256 not 2°372= 82 = 64. Unfortunately, this is a common mistake and
even some famous calculators and internet math programs follow the left to right rule to
calculate iterated exponents, see the following pictures from different devices.

. . . 2 3
Now we go back to our playing with exponent issue. From 2=+2 and 3 = V3" and
repeating these on and on, we can easily get the following two famous iterated exponents, (for
more on continued exponents or leaning towers of powers see for example [2] and the references
within):

N
2 V2
2:'\/2 :'\/i and 3=E{/§

Interestingly, if we go one more step further we will get a big contradiction! Because, similar to
the above process, from 4 = (V/4)* and repeating this we obtain

But we know that /4 = v/Z and so the above tower of powers is not equal to 4 but its value is
equal to 2. Overall, for any positive integer M # 4 we have (see [2]),
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.

n .

n Vn
vVn

n=-4vyn
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Ozet

Bu calismanin amaci Ogretmen adaylarinin Bloom taksonomisinin basamaklarina
uygun, soru hazirlama yeterliliklerinin incelenmesidir. Aragtirmada nitel arastirma
desenlerinden biri olan durum calismasi benimsenmistir. Calismaya ilkdgretim
Matematik ve Fen Bilimleri boliimii 6gretmen adaylarindan toplam 67 kisi katilmistir.
Uygulamada, 6gretmen adaylarindan 5., 6., 7. ve 8. simif matematik ve fen bilimleri
miifredati dogrultusunda konu siirlandirmasi olmaksizin Bloom taksonomisinin her
bir basamagina uygun soru hazirlamalar1 istenmistir. Hazirlanan sorular Bloom
taksonomisine uygunluk yoniinden alaninda uzman kisiler tarafindan incelenmis ve
her bir sorunun basamaklara uygunlugu dogru ya da yanlis olusuna gore frekansi
alinarak tablolastirilmigtir. Elde edilen sonuglara gore 6gretmen adaylarinin alt bilissel
basamaklara uygun soru hazirlama yeterliliklerinin {ist biligsel basamaklara gore daha
fazla oldugu belirlenmistir.

Anahtar Kelimeler: Bloom Taksonomisi, Ogretmen Adayi, Matematik, Fen
1. Giris

Biligsel alan, bilgilerle ve bilgilerden dogan zihinsel yeteneklerle ilgili zihinsel 6grenmelerin
yogunlukta oldugu, zihinsel yetilerin gelistirildigi ve zihinsel faaliyetlerin ortaya cikarilmaya
calisildig1 bir alan olup ayni zamanda 6gretimin tasarlanmasina hizmet etmektedir (Yesilyurt
& Eser, 2010). Biligsel siirecler; tanima, yorumlama, akil yiiriitme, iliski bulma, genelleme
yapma ve sonug¢ ¢ikarma gibi bazi biligsel yeterliliklerden olugmaktadir (Aydemir & Ciftei,
2008). Bu anlamda egitim hedefleri arasinda bilgiyi tanima ve hatirlama, bilgiyi kullanarak
islemler yapma, kavramlar, genellemeler ve kuramlar gelistirme siirecinde bilissel yeterlilikler
onemli bir yer tutmaktadir (Mutlu, Usak & Aydogdu, 2003). Bu yiizden, bilissel siireglerin
cesitliliginin olusturulmasi ve 6lgme-degerlendirme faaliyetleri sonunda dgrencilerin gercek
basar1 seviyelerinin belirlenmesi i¢in 6gretmenlerin sinavlarda tiim biligsel diizeyde sorulara

yer vermesi gerekmektedir (Baysen, 2006; Kégce & Baki, 2009).
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Biligsel alan {izerine yogunlasan bazi egitim bilimciler bilissel alam1 farkli kategorilerde
incelemislerdir (Filiz, 2004). Bunlardan bir tanesi de bilim diinyasinda en ¢ok kabul edilen ve
Bloom tarafindan gelistirilen Bloom Taksonomisidir (Ralph, 1999). Bloom ve arkadaslari
1956 yilinda yayinlanan ve orijinal ad1 “Taxonomy of Educational Objectives: Cognitiveand
Affective Domains” olan eserde ilgili taksonomiyi “Bilgi, kavrama, uygulama, analiz, sentez
ve degerlendirme” seklinde hiyerarsik bir Gslupla ele almislardir (Bloom, Engelhart, Furst,
Hill, & Krathwohl, 1956). Basitten karmasiga dogru siralanan bu taksonomide iist basamaklar

alt basamaklardan daha fazla zihinsel bilgi ve beceri gerektirmektedir.

Biligsel basamaklar igerisinde yer alan Bilgi, herhangi bir nesne veya olguyla ilgili 6zelliklerin
goriince taninmasi, sorunca sdylenmesi veya herhangi bir yorum getirilmeden ezberden tekrar
edilmesidir. Kavrama, bilgi seviyesinde kazanilan davranislarin 6ziimsenmesi, kendine mal
edilmesi ve anlaminin yakalanmasidir. Uygulama, bilgi ve kavrama seviyesinde elde edilen
bilgilerin yeni bir problemin ¢dziimiinde kullanilmasidir. Analiz, herhangi bir bilgi biitiiniiniin
oncelik-sonralik veya sebep-sonug iliskisi i¢erisinde dgelerine ayrilarak ortaya konulmasidir.
Sentez, bilgi, kavrama, uygulama ve analiz seviyelerinde elde edinilen bilgilerin belli iligki ve
kurallara gore birlestirilerek yeni ve orijinal bilgilerin/iiriinlerin tiretilmesidir. Degerlendirme,

iiretilen bilgilerin sebep ve sonugclarla birlikte yorumlanmasi, savunulmasi ve yargilanmasidir.

Ogrenmeyi 6lgme ve basariyr belirlemede sorular 6nemli birer aractir. Basariyr etkili bir
sekilde Olgmek icin ise, Ogretim siirecinde nitelikli ve amaca uygun sorular kullanmak
gereklidir. Etkili sorular kullanmanin yolu da, bilissel seviyenin biitiin basamaklarinin dikkate
alinmasiyla gergeklesmektedir. Taksonomi basamaklarina gore hazirlanan sorular, 6gretmene
egitimde kolaylik saglamanin yaninda 6grencinin iist diizey becerilerini kuvvetlendirmekte
ayni zamanda sorularin yalnizca bir ya da iki basamakla sinirlanmasini 6nlemektedir. Ayrica
[Ikdgretim Kurumlari Yonetmenligi genel esaslarinda; grencinin basarisini belirlemek
amaciyla hazirlanan 6lgme araglarinda sadece bilginin 6l¢iilmesinin degil, kavrama, kendini
ifade edebilme, yorumlayabilme, uygulama, analiz, sentez ve degerlendirme diizeyinde
edindikleri davranislarin da Olgiilmesinin gerekli oldugu belirtilmektedir. Bu dogrultuda,
mevcut ¢alisma Matematik ve Fen Bilimleri 6gretmen adaylarinin Bloom taksonomisinin

basamaklarina uygun, soru hazirlama yeterliliklerinin incelenmesini amaglamaktadir.
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2. Yontem

Arastirma Olgme ve Degerlendirme dersi kapsaminda durum ¢alismasi niteliginde
gerceklestirilmistir. Calismaya Mus Alparslan Universitesi [lkogretim Matematik ve Fen
Bilimleri boliimii 6gretmen adaylarindan toplam 67 kisi katilmistir. Uygulamada, 6gretmen
adaylarindan 5., 6., 7. ve 8. simif matematik ve fen bilimleri miifredat1 dogrultusunda konu
sinirlandirmast  olmaksizin Bloom taksonomisinin ~ her bir basamagma uygun soru
hazirlamalar1 istenmistir. Hazirlanan toplam 402 soru Bloom taksonomisine uygunluk
yoniinden alaninda uzman kisiler tarafindan incelenmistir. Basamaklarin tanimlari, anahtar
sozciikleri ve bu basamaklara uygun farkli tiirde soru Ornekleri, 6gretmen adaylarinin
hazirladiklar1 sorularin Bloom taksonomisine uygunluklari yoniinden gilivenilir bir bicimde
¢cozlimlenmesine yardimci olmustur. Uzmanlar ilgili basamagi yansitan sorular1t D (Dogru),
yansitmayanlart ise Y (Yanlis) seklinde kodlamislardir. Daha sonra uzmanlarin kodladiklari
sorular karsilagtirilmis ve uyum yiizdesi %90 olarak belirlenmistir. Farkli kodlamalarin ortaya
ciktigr sorular iizerinde ortak goriis elde edilene kadar tartismis ve kodlamalara son hali
verilmistir. Son olarak, oOgretmen adaylarinin her bir basamak i¢in olusturduklart dogru ve

yanlis sorularin frekans ve yiizdeleri hesaplanarak tablolastirilmis ve yorumlanmustir.

3. Bulgular ve Yorum

Ogretmen adaylarmin olusturduklart sorularin biligsel alanin basamaklarina uygunluk

yoniinden frekans ve ylizdelik dagilimlar1 Tablo 1’de sunulmustur.

Tablo 1. Ogretmen adaylarinin olusturduklari sorularin bilissel alan basamaklarina gore analizi

Bilissel Alan DY Matematik Fen Bilimleri Toplam
Basamaklar n=37 n=30 n=67

n % n % n %
Bilgi Dogru 35 94,5 27 90 62 92,5
Yanlis 2 54 3 10 5 7,4
Kavrama Dogru 27 72,9 26 86,6 53 79,1
Yanlis 10 27,0 4 13,3 14 20,9
Uygulama Dogru 20 54,0 19 63,3 39 58,2
Yanlis 17 45,9 11 36,6 28 41,8
Analiz Dogru 9 24,3 12 40 21 31,3
Yanlis 28 75,6 18 60 46 68,6
Sentez Dogru 14 37,8 20 66,6 34 50,7
Yanlis 23 62,1 10 33,3 33 49,2
Degerlendirme Dogru 13 351 16 53,3 5 3§9 43,2
Yanlis 24 64,8 14 46,6 8 56,7
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Tablo 1 incelendiginde, matematik 6gretmen adaylarinin yaklasik olarak %95°1 bilgi, %73’
kavrama, %54’0 uygulama, %?24’i analiz, %38’1 sentez ve %35’i degerlendirme
basamaklarinda uygun sorular olusturabilirken, fen bilgisi 6gretmen adaylarinin ise %901
bilgi, %87’si kavrama, %63’ti uygulama, %401 analiz, %67’si sentez ve %537l
degerlendirme basamaklarinda uygun sekilde sorular olusturabilmislerdir. Ogretmen
adaylarinin tamamina yakininin bilgi basamaginda soru olusturmada sorun yasamadigi buna
karsin biiylik ¢ogunlugunun analiz basamagina uygun soru olusturmada sikint1 yasadig tespit
edilmistir. Branglara gore, fen bilimleri 6gretmen adaylarinin genel olarak kategorilere uygun
dogru soru yazma oraninin ilkogretim matematik 6gretmen adaylarina gére daha fazla oldugu
belirlenmistir. Bu farkliligin ortaya ¢ikmasinda, matematik ve fen derslerinin yapisal olarak
farklilik gostermesi ve fen konularinin dogal yasamla iligskilendirilmesinin kolay olmasinin

temel etken olabilecegi diisiiniilmektedir.

Genel olarak 0gretmen adaylarinin basamaklara uygun sorular olusturabilme sayilarinin bilgi,
kavrama, uygulama, sentez, degerlendirme ve analiz basamaklarina gore azalan bir sira ile
devam ettigi goriilmektedir. Her iki programda da bilgi, kavrama ve uygulama basamaklarina
yonelik uygun soru olusturabilme yiizdeleri yiiksek iken; analiz, sentez ve degerlendirme
basamaklarinda bu oranin diisiik oldugu go6zlenmistir. Buradan hareketle Ogretmen
adaylarinin  genellikle iist biligsel soru (analiz, sentez, degerlendirme) hazirlama
yeterliliklerinin alt biligsel soru (bilgi, kavrama, uygulama) hazirlama yeterliliklerine gore
daha zayif oldugu soylenebilir. Ogretmen adaylarinin yasadiklar1 bu gii¢liik onlarin
basamaklar hakkinda genel kavramlar1 iyi Oziimseyememelerinden kaynaklanabilecegi

diistiniilmektedir.

4. Sonug¢ ve Oneriler

Sonuglara gore genel olarak 6gretmen adaylarinin azalan sirayla bilissel alanin bilgi, kavrama,
uygulama, sentez, degerlendirme ve analiz basamaklarina yonelik soru hazirlama
yeterliliklerinin oldugu tespit edilmistir. Ogretmen adaylar1 en zor analiz, en kolay ise bilgi
basamagina yonelik sorular olusturabilmislerdir. Dolayisiyla 6gretmen adaylarinin tamamina
yakininin bilgi basamaginda soru olusturmada sorun yasamadigi buna karsin biiyiik

cogunlugunun analiz basamagina uygun soru olusturamadig: tespit edilmistir. 34
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Branglara gore bakildiginda ise, fen bilimleri 6gretmen adaylarinin genel olarak kategorilere
uygun soru yazma oraninin ilkogretim matematik 6gretmen adaylarina gére daha fazla oldugu
goriilmiistiir. Tim brans Ogretmenlerinin 0grenci basarisini belirlemede ayni seviyedeki
ogrenmeler yerine biligsel siireglerin g¢esitliligini artirmak i¢in degisik seviyedeki 6grenmeleri
belirleyebilecek tiirden sorular sorabilmesinin 6nemli oldugu distintildigiinde ileriki
caligmalarda nedenleri belirlenerek Ogretmen adaylarmin konu ile ilgili eksikliklerinin

giderilmesine yonelik daha fazla ¢alismanin yapilmasi dnerilmektedir.
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