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Hadamard Products of Uniformly Starlike and Convex Functions Associated with  

Deniz-Özkan Differential Operator 
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Abstract 

In this paper we introduce the subclasses ( )m

 −  and ( )m

 −  of analytic functions defined by 

Deniz- Özkan Differential operator ( )m f z . We obtain modified Hadamard products of functions belonging to the subclasses 

( )m

 −  and ( ).m

 −  

          Keywords: Univalent function, Uniformly starlike, Uniformly convex, Differential Operator, Modified Hadamard 

product. 

 

1. Introduction and Definitions 

 

Let  denote the class of functions of the form  

                                
2

( ) n

n

n

f z z a z


=

= +                                                         (1) 

which are analytic in the open disc  : : 1 .z z C z=    Suppose that  denote the subclass of  

consisting of functions that are the univalent in . Also denote by  the subclass of  consisting of 

functions of the form  

2

( ) , ( 0).n

n n

n

f z z a z a


=

= −                                               (2) 

A function f   is said to be in the class of uniformly convex functions of order  and type ,  denoted 

by ( ) −   (see [1]) if  

( ) ( )
Re 1 , ,

( ) ( )

zf z zf z
z

f z f z
 

  
+ −   

  
                                    (3) 

where 1 1−    and 0.   

A function f   is said to be in the class of   uniformly starlike functions of order  and type ,  denoted 

by ( ) −   (see [1]) if  

( ) ( )
Re 1 , ,

( ) ( )

zf z zf z
z

f z f z
 

  
−  −  

 
                                      (4) 

where and 1 1−    and 0.   

1
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These classes generalize various other classes which are worth mentioning here. The class 

(0) − = −  is the class of  − uniformly convex functions [4].  

Indeed it follows from (3) and (4) that  

( )( ) ( ) ( ) ( ).m mf z z f z    
 −   −  

Especially the classes 1 (0)− =  and 1 (0) ,− =  defined by Goodman 3 and Ronning  6 , 

respectivelly. 

For a functions f  in ,  Deniz and Özkan [2] (see also [5]) introduced the following differential operatör 

m

  as follows: 

Definition 1. Let f  . For the parametres 0   and  0 0m =   the differential operatör 
m

  

on  defined by  

                                                         
0 ( ) ( )f z f z =  

                                    
1 3 2( ) ( ) (2 1) ( ) ( )f z z f z z f z zf z    = + + +  

                                                     
1( ) ( ( )m mf z f z 

−=  

for z . 

For a function  f  in ,  from the definition of the differential operatör 
m

 , we can easily see that                                                                                                                                                                                             

2

2

( ) ( ( 1) 1) .m m m n

n

n

f z z n n a z 


=

= + − +                                     (5) 

Also, ( ) .m f z   

For f   given by (1) and ( )g z   given by 
2

( ) ,n

n

n

g z z b z


=

= +  the Hadamard product (or 

Convolution) of f  and g  defined by   

2

( )( ) ( )( ), .n

n n

n

f g z z a b z g f z z


=

 = + =    

Special cases of this operator include the Salagean derivative operator m  (see [7]) as follows: 

                                                   
2

0 ( ) ( ) ( ) ( )m m m mf z f z f z f z=  =  

and 

                                                 
3

1 ( ) ( ) ( ) ( ) ( )m m m m mf z f z f z f z f z=   = . 

For 1 1−   , 0  ,  0 0m =   and 0  , let  ( )m

 −  be the subclass of ,  consising 

of functions of the form (1) and satisfying the analytic criterion  

2
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( ) ( )( ) ( )
Re 1

( ) ( )

m m

m m

z D f z z D f z

D f z D f z

 

 

 

  
 

−  − 
 
 

, 

where ( )m f z  is given by (5). We also let ( ) ( ) .m m

    − = −   

Not that ( )mf   −  if and only if ( ) ( )m f z   − . Using the Alexander type relation, we 

define the class ( )m

 −  as follows  

( )( ) ( ) ( ) ( ).m m m mD f z z D f z      
 −   −  

We also let ( ) ( ) .m m

    − = −   

We note that by specializing the parameters , ,    and m, the subclasses ( )m

 −  and 

( )m

 −  reduces to several well-known subclasses of analytic functions. This subclasses are:  

i. 
0 0( ) ( ), ( ) ( )SP        − = − − = −  

ii. 
0 0(0) , (0)    − = − − = −  

iii. 
0 01 (0) , 1 (0) − = − = .  

In [5], authors obtained the following results: 

Theorem 1. A function ( )f z  of the form (1) is in ( )m

 −  if  

                             ( )2

2

(1 ) ( ) ( 1) 1 1
mm

n

n

n n n a    


=

+ − + − +  −                                 (6) 

where 1 1−   , 0  ,  0 0m =   and 0  . 

Theorem 2. A necessary and sufficient condition for ( )f z  of the form (2) to be in the class  ( )m

 −  

for 1 1−   , 0  ,  0 0m =   and 0   is that  

                           ( )2

2

(1 ) ( ) ( 1) 1 1 .
mm

n

n

n n n a    


=

+ − + − +  −                                  (7) 

Theorem 3. A function ( )f z  of the form (1) is in ( )m

 −  if  

                             ( )2 1

2

(1 ) ( ) ( 1) 1 1
mm

n

n

n n n a    


+

=

+ − + − +  −                                 (8) 

where 1 1−   , 0  ,  0 0m =   and 0  . 

Theorem 4. A necessary and sufficient condition for ( )f z  of the form (2) to be in the class  ( )m

 −  

for 1 1−   , 0  ,  0 0m =   and 0   is that  

3
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                           ( )2 1

2

(1 ) ( ) ( 1) 1 1 .
mm

n

n

n n n a    


+

=

+ − + − +  −                                  (9) 

2. Main Results  

 Hadamard Products of the functions classes ( )m

 − and ( )m

 −  

Let the functions  ( ) ( 1,2)jf z j =  be defined by  

,

2

( ) n

j n j

n

f z z a z


=

= −  for , 0, .n ja z                                          (10) 

The modified Hadamard product of  1( )f z  and  2( )f z  is defined by  

( )1 2 ,1 ,2

2

( ) .n

n n

n

f f z z a a z


=

 = −  

Using the techniques of Schild and Siverman [8], we prove the following results.  

Theorem 5. For functions ( ) ( 1,2)jf z j =  defined by (10), let 1( ) ( )mf z   −  and 

2( ) ( ).mf z   −  Then ( )1 2 ( )mf f    −  where  

( )
 2

(1 )(1 )(1 )
, , 1 ,

(2 )(2 )2 1 (1 )(1 )
mm

  
    

      

− − +
= = −

+ − + − + − − −
        (11) 

and  01 1, 0 , 1 1; .m z −    =  −       The result is best possible for  

 
2

1 2

(1 )
( )

(2 )2 1
mm

f z z z


  

−
= −

+ − +
 

 
2

2 2

(1 )
( )

(2 )2 1
mm

f z z z


  

−
= −

+ − +
 

Proof: In view of Theorem 2, it suffice to prove that  

( )  ( )2

,1 ,2

2

(1 ) ( 1) 1
1, ( 1 1)

1

mm

n n

n

n n n
a a

   






=

+ − + − +    −  
−

  

where   is defined by (11). On the other hand, under the hypothesis, it follows from (7) and the Cauchy’s- 

Schwarz inequality that  

( ) ( )  ( )
( )( )

1 1
2 2 2

,1 ,2

2

(1 ) (1 ) ( 1) 1
1.

1 1

mm

n n

n

n n n n
a a

      

 



=

+ − + + − + − +       
− −

     (12) 

Thus we need to find the largest    such that  

4
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( )  ( )

( ) ( )  ( )

1
2

1 1
2 2

2

,1 ,2

2

2

,1 ,2

2

(1 ) ( 1) 1

1

(1 ) (1 ) ( 1) 1

(1 )(1 )

mm

n n

n

mm

n n

n

n n n
a a

n n n n
a a

   



      

 



=



=

+ − + − +  

−

+ − + + − + − +      
− −





 

or, equivalently that 

( ) ( )

( )
( )

1 1
2 2

,1 ,2 1
2

(1 ) (1 )1
, 2 .

(1 )(1 ) (1 )
n n

n n
a a n

n

     

    

+ − + + − +   −     
− − + − +  

 

By view of (12) it is sufficient to find largest   such that  

( ) ( )  

( ) ( )

( )

1 1
2 2

1 1
2 2

1
2

2

(1 )(1 )

(1 ) (1 ) ( 1) 1

(1 ) (1 )1

(1 )(1 ) (1 )

mmn n n n

n n

n

 

      

     

    

− −

+ − + + − + − +      

+ − + + − +   −    
− − + − +  

 

which yields  

( )

( ) ( ) ( ) ( )  2

1 (1 )(1 )(1 )
1 ( 2).

1 (1 ( 1) 1 (1 )(1 )
mm

n
n

n n n n

  


        

− − − +
= − 

+ − + + − + − + − − −      

 

Since 

         
( )

( ) ( ) ( ) ( )  2

( 1) 1 (1 )(1 )
( ) 1 , ( 2)

1 1 ( 1) 1 (1 )(1 )
mm

n
n n

n n n n

  

        

− − − +
 = − 

+ − + + − + − + − − −      

 (13) 

is an increasing function of n , for 1 1, 1 1 −   −    and 0,   letting 2n =  in (13), we 

have  

    2

(1 )(1 )(1 )
(2) 1

2 2 2 1 (1 )(1 )
mm

  


      

− − +
  = −

+ − + − + − − −
 

which completes the proof. 

Theorem 6. Let the functions ( ) ( 1,2)jf z j =  defined by (10), be in the class  ( )m

 −  with 

1 1, 0. −     Then ( )1 2 ( )mf f    −  where  

( ) ( )

    ( )

2

2 22

1 1
1 .

2 2 1 1
mm

 


   

− +
= −

+ − + − −
 

 

Proof: By taking  =  in the Theorem 5, the result follows.  
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Theorem 7. Let the functions ( )f z  defined by (2) be in the class  ( ).m

 −  Also let 

2

( ) n

n

n

g z z b z


=

= −  for 1.nb   Then ( )( ) ( ).mf g z    −  

Proof: Since  

( )  

( )  

( )  

2

2

2

2

2

2

(1 ) ( 1) 1

(1 ) ( 1) 1

(1 ) ( 1) 1

1 .

mm

n n

n

mm

n n

n

mm

n

n

n n n a b

n n n a b

n n n a

   

   

   





=



=



=

+ − + − +  

 + − + − +  

 + − + − +  

 −







 

It follows that ( )( ) ( ),mf g z    − by the view of Theorem 1. 

Theorem 8.  Let the functions ( ) ( 1,2)jf z j =  defined by (14) be in the class  ( ).m

 −  Then the 

function ( )h z  defined by ( )2 2

,1 ,2

2

( ) n

n n

n

h z z a a z


=

= − +  is in the class ( ),m

 −  where  

( ) ( )

( )   ( )

2

2 22

2 1 1
1 .

2 2 1 2 1
mm

 


   

− +
= −

+ − + − −
 

Proof. By virtue of Theorem 2, it is sufficient to prove that  

( ) ( )

( )
( )

2

2 2

,1 ,2

2

(1 ) 1 1
1

1

mm

n n

n

n n n
a a

   





=

+ − + − +       + 
−

               (14)             

where  ( ) ( ) ( 1,2)m

jf z j  − =  we find from (14) and Theorem 1, that  

( ) ( )

( )

( ) ( )

( )

2 2
2 2

2

, ,

2 2

(1 ) 1 1 (1 ) 1 1

1 1

m mm m

n j n j

n n

n n n n n n
a a

       

 

 

= =

   + − + − + + − + − +                   
− −      

                                                                                                                                                                                                                                   

(15) 

which yields  

 

 

                                 (16) 

 

 

On comparing (15) and (16), it is easily seen that the inequality (14) will be satisfied if  

( ) ( )

( )
( )

2
2

2 2

,1 ,2

2

(1 ) 1 11
1.

2 1

mm

n n

n

n n n
a a

   





=

 + − + − +        +  
−  
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( ) ( )

( )

( ) ( )

( )

2
2 2(1 ) 1 1 (1 ) 1 11

1 2 1

m mm mn n n n n n       

 

 + − + − + + − + − +                 
− −  

 

for 2.n   That is,  

( )( ) ( )

( ) ( ) ( ) ( )

2

2 22

2 1 1 1
1 .

1 1 1 2 1
mm

n

n n n

 


    

− − +
 −

+ − + − + − −      

                          (17) 

The function  

 

  

 

is an increasing function of  ( )2 .n n   Therefore 2n =  in (17), we have,  

( ) ( )

( )   ( )

2

2 22

2 1 1
(2) 1 ,

2 2 1 2 1
mm

 
 

   

− +
 = −

+ − + − −
 

which completes the proof. 

Corollary 1. For functions ( ) ( 1,2)jf z j =  defined by (10), let 1( ) ( )mf z   −  and 

2( ) ( ).mf z   −  Then ( )1 2 ( )mf f    −  where  

( )
 2 1

(1 )(1 )(1 )
, , 1 ,

(2 )(2 )2 1 (1 )(1 )
mm

  
    

      +

− − +
= = −

+ − + − + − − −
 

and  01 1, 0 , 1 1; .m z −    =  −        

The result is best possible for  

 
2

1 2 1

(1 )
( )

(2 )2 1
mm

f z z z


  +

−
= −

+ − +
 

 
2

2 2 1

(1 )
( )

(2 )2 1
mm

f z z z


  +

−
= −

+ − +
 

Corollary 2. Let the functions ( ) ( 1,2)jf z j =  defined by (10), be in the class ( )m

 −  with 

1 1, 0. −     Then ( )1 2 ( )mf f    −  where  

( ) ( )

    ( )

2

2 22 1

1 1
1 .

2 2 1 1
mm

 


   +

− +
= −

+ − + − −
 

Corollary 3. Let the functions ( )f z  defined by (2) be in the class  ( )m

 −  Also let 

2

( ) n

n

n

g z z b z


=

= −  for 1.nb   Then ( )( ) ( ).mf g z    −  

( )( ) ( )

( ) ( ) ( ) ( )

2

2 22

2 1 1 1
( ) 1

1 1 1 2 1
mm

n
n

n n n

 


    

− − +
= −

+ − + − + − −      
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Corollary 4. Let the functions ( ) ( 1,2)jf z j =  defined by (10) be in the class  ( )m

 −  Then the 

function ( )h z  defined by ( )2 2

,1 ,2

2

( ) n

n n

n

h z z a a z


=

= − +  is in the class ( ),m

 −  where  

( ) ( )

( )   ( )

2

2 22 1

2 1 1
1 .

2 2 1 2 1
mm

 


   +

− +
= −

+ − + − −
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Abstract 

                In this study, we solve Fekete-Szegö problem for a new subclass ( ), ;m λ β ϕΣ  of bi-univalent 
functions in the open unit disk U  defined by Deniz-Özkan differential operator. 

 
          Keywords: Analytic function, Univalent function, bi-univalent function, Differential operatör, 
Fekete- Szegö problem. 

 
1. Introduction and Preliminaries 
 
Let A  denote the class of functions of the form: 

                                                                         ( )
2

,n
n

n
f z z a z

∞

=

= +∑                                                   (1) 

which are analytic in the open unit disk { }: 1 .U z z= ∈ <  Further, by S  we shall denote the class of all 

functions in A  which are univalent in .U  It is well known that every function  f S∈  has an inverse 1f − , 
defined by 

( )( ) ( )1      f f z z z U− = ∈  

and 

( )( ) ( ) ( )1
0 0

1      ;
4

f f w w w r f r f−  = < ≥ 
 

 

where 

( ) ( ) ( )1 2 2 3 3 4
2 2 3 2 2 3 42 5 5 ...f w w a w a a w a a a a w− = − + − − − + +  

A function f A∈  is said to be in Σ , the class of bi-univalent functions in U , if both  ( )f z and  ( )1f z− are 
univalent in U . Lewin [11] showed that 2 1.51a <  for every function  f ∈∑  given by (1). Posteriorly, 
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Brannan and Clunie [1] improved Lewin’s result and conjectured that 2 2a ≤  for every function f ∈∑  

given by (1.1). Later, Netanyahu [13] showed  that 2
4max .
3f

a
∈∑

=  The coefficient estimate problem for each 

of the following Taylor-Maclaurin coefficients: 

{ }( )   1,2,... ; 4na n N n∈ = ≥  

is still an open problem (see, for details, [15]). Since then, many researchers (see [2,4,8,9,16]) investigated 
several interesting subclasses of the class Σ  and found non-sharp estimates on the first two Taylor-
Maclaurin coefficients 2a and 3a .  One of the most important problem on coefficients of univalent 
functions as known Fekete-Szegö problem. Very recently, some results have obtained by [3,7,9,10,14] for 
this problem. 

  Let P denote the class of function of p  analytic in U such that ( )0 1p = and ( ){ }Re 0p z > , where 

( ) ( )2
1 21 ... .p z p z p z z U= + + + ∈  

If f  and g  are analytic in ,U  we say that f  is subordinate to ,g  written symbolically as  

f g    or   ( ) ( )f z g z    ( ) ,z U∈  

if there exists a Schwarz function ( ),w z  which (by definition) is analytic in U  with (0) 0w =  and 

( ) 1w z <  in U  such that ( ) ( ( )), .f z g w z z U= ∈   

In particular, if the function ( )g z  is univalent in ,U then we have that: 

( ) ( )f z g z    ( )z U∈    if and only if  (0) (0)f g=   and ( ) ( ).f U g U⊆  

Let ϕ  be an analytic function with positive real part in the unit disk U  such that 

( ) ( )0 1, 0 0ϕ ϕ′= >  

and ( )Uϕ  is symmetric with respect to the real axis and has a series expansion of  the form (see  [12]): 

( ) ( )2 3
1 2 3 11 ... 0 .z B z B z B z Bϕ = + + + + >  

Let ( )u z  and ( )v z be two analytic functions in the unit disk U  with ( ) ( )0 0 0u v= =  ( ) ( )1, 1u z v z< < , 

and suppose that 

( ) ( )2 3 2 3
1 2 3 1 2 31 ... and v 1 ...u z b z b z b z w c w c w c w= + + + + = + + + + ⋅                      (2) 

For above functions, well-known inequalities are 
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2 2
1 2 1 1 2 11, 1 , 1 and 1 .b b b c c c≤ ≤ − < ≤ −                                  (3) 

Further we have 

( )( ) ( ) ( )2 2
1 1 1 2 2 11 ... 1u z B b z B b B b z zϕ = + + + + <                               (4) 

and 

              

                                      ( )( ) ( ) ( )2 2
1 1 1 2 2 11 ... 1 .v w B c w B c B c w wϕ = + + + + <                                (5)                                                             

In [5] (see also [6]), Deniz and Özkan defined the differential operator mDλ  (say: Deniz-Özkan differential 
operator) as follows: 

For the parametres 0λ ≥  and { }0 0m N N∈ = ∪  the differential operatör mDλ  on A  defined by  

0 ( ) ( )D f z f zλ =  

1 3 2( ) ( ) (2 1) ( ) ( )D f z z f z z f z zf zλ λ λ′′′ ′′ ′= + + +  

1( ) ( ( )m mD f z D D f zλ λ
−=  

for z U∈ . 

For a function  f  in A , from the definition of the differential operatör mDλ , we can easily see that                                                                                                                                                                                             

                                                      2

2
( ) ( ( 1) 1) .m m m n

n
n

D f z z n n a zλ λ
∞

=

= + − +∑                                                     (6) 

Also, ( ) .mD f z Aλ ∈  

The main object of this paper is to introduce the following new subclass of bi-univalent functions involving 

Deniz-Özkan differential operator mDλ  and  discuss Fekete–Szegö functional problem for functions in this 

new class (see [7]).  

 

2. Fekete-Szegö problem for the functions class ( ), ;mB λ β ϕ∑  
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Definition 1. A function ( )f z ∈∑  is said to be in the class ( ), ;mB λ β ϕ∑   if and only if 

( ) ( ) ( )( ) ( )1
m

mD f z
D f z z

z
λ

λβ β ϕ′− +   

and 

( ) ( ) ( )( ) ( )1
m

mD g w
D g w w

w
λ

λβ β ϕ′− +   

where ( ) ( )10 1, ,  and .z w U g w f wβ −≤ ≤ ∈ =  

Now, we are ready to find the sharp bounds of Fekete–Szegö functional 2
3 2a aδ−  defined for ( ), ;mf B λ β ϕ∑∈

given by (1). 

Theorem 1.  Let ( )f z  given by (1) be in the class ( ), ;mB λ β ϕ∑ . Then 

             
( ) ( )

( )
( ) ( )

( ) ( )
( ) ( )

1

2
3 2

1

1          for        0
1 2 9 2 1 2 1 2 9 2 1

     
1           2B                   for     

2 1 2 9 2 1

m m

m

B h

a a
h h

δ
β λ β λ

δ
δ δ

β λ

 ≤ <
+ + + +       − ≤ 

 ≥
 + +  

         (7) 

where 

 ( )
( ) ( ) ( ) ( )

2
1

222
1 2

.
2 1 2 9 2 1 2 1 4 1

m m

Bh
B B

δ
β λ β λ

=
+ + − + +      

 

 

Proof.  Let ( ) ( ), ; .mf z B λ β ϕ∑∈  By the definition of subordination, there are analytic functions  and u v

with ( ) ( ) ( ) ( )0 0 0, 1, 1u v u z v w= = < < , given by (2) and satisfying the following conditions: 

( ) ( ) ( )( ) ( )( )1
m

mD f z
D f z u z

z
λ

λβ λ ϕ′− + =  

and 

( ) ( ) ( )( ) ( )( )1 ,
m

mD g w
D g w v w

w
λ

λβ β ϕ′− + =  

where ( ) ( )1g w f w−= . Since 
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( ) ( ) ( )( )
( ) ( ) ( ) ( ) 2

2 3

1

       =1+ 1 4 1 1 2 9 2 1 ...

m
m

m m

D f z
D f z

z
a z a z

λ
λβ β

β λ β λ

′− +

+ + + + + +      

                           (8) 

    
and 

( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( )2 2
2 2 3

1

=1- 1 4 1 1 2 9 2 1 2 ...,

m
m

mm

D g w
D g w

w

a w a a w

λ
λβ β

β λ β λ

′− +

 + + + + + − +    

                      (9) 

 

it follows from (4), (5), (8) and (9) that 

                                      ( ) ( ) 2 1 11 4 1 ,
m

a B bβ λ+ + =                                                          (10) 

( ) ( ) 2
3 1 2 2 11 2 9 2 1 ,

m
a B b B bβ λ+ + = +                                               (11) 

( ) ( ) 2 1 11 4 1 ,
m

a B cβ λ− + + =                                                       (12) 
 
and 

( ) ( ) ( )2 2
2 3 1 2 2 11 2 9 2 1 2 .

m
a a B c B cβ λ+ + − = +                                         (13) 

From (10) and (12), we get 

1 1c b= −                                                                          (14) 

( )( ) ( ) ( )
2

2 2 2 2
2 1 1 12 4 1 1 .

m
a B b cλ β + + = +

 
                                          (15) 

By adding (10) to (13), we have 

                                    ( ) ( ) ( ) ( )2 2 2
2 1 2 2 2 1 12 9 2 1 1 2 .

m
a B b c B b cλ β+ + = + + +                                 (16)                   

Therefore, from equalities (15) and (16) we find that 

( ) ( ) ( ) ( )( ) ( )
2

2 2 3
1 2 2 1 2 22 9 2 1 1 2 2 4 1 1 .

m m
B B a B b cλ β λ β + + − + + = +        

              (17) 

 

 

We conclude that, from (17) 
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           ( )

( ) ( ) ( ) ( )( )
3
1 2 22

2 2
2

1 22 9 2 1 1 2 4 1 1
m m

B b c
a

B Bλ β λ β

+
=

 + + − + +        

         (18) 

and subtracting (13) from (11) and using (14) 
 

          ( ) ( ) ( )
( ) ( )

2
2 1 2 2

3

2 1 2 9 2 1
.

2 1 2 9 2 1

m

m

a B b c
a

β λ

β λ

+ + + −  =
+ +  

           (19) 

From the Eqs. (18) and (19), it follows that 

( )
( ) ( )

( ) ( )( )2
3 2 1 2 2

1 9 2 1 ,
2 1 2 9 2 1

m

ma a B h b h cδ δ δ λ
β λ

  
  − = + + − +    + +    

 

where 

 ( ) ( )
( ) ( ) ( ) ( )

2
1

222
1 2

1
.

2 1 2 9 2 1 2 1 4 1
m m

B
h

B B

δ
δ

β λ β λ

−
=

+ + − + +      
 

Since all iB  are real and 1 0B > , which implies the assertion (7). This completes the proof of Theorem 1.                                                                                                                                         

By taking 1β =  in Theorem 1, we have 

Corollary 1. Let ( )f z  given by (1) be in the class ( ),1; .mB λ ϕ∑  Then 

( )
( )

( )

( ) ( )
( )

1

2
3 2

1

1         for        0 ,
3 9 2 1 6 9 2 1

     
12B                  for     

6 9 2 1

m m

m

B h

a a
h h

δ
λ λ

δ
δ δ

λ

 ≤ < + +       − ≤ 
 ≥
 +  

 

where 

( ) ( )
( ) ( )

2
1

22
1 2

1
.

6 9 2 1 8 4 1
m m

B
h

B B

δ
δ

λ λ

−
=

+ − +      
 

Remark 1. Putting 0m =  in Corollary 1, we get Corollary 4 in [17]. 

Putting 0m = in Theorem 1, we have 

Corollary 2. Let ( )f z  given by (1) be in the class ( ) ( )0 , ; ; .B Bλ β ϕ β ϕ∑ ∑=  Then 
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( ) ( )

( ) ( ) ( )

1

2
3 2

1

1         for        0
1 2 2 1 2

     
1 2B    for     

2 1 2

B h
a a

h h

δ
β β

δ
δ δ

β

 ≤ < + +− ≤ 
 ≥
 +

 

where 

( ) ( )
( ) ( )

2
1

22
1 2

1
.

2 1 2 1

B
h

B B

δ
δ

β β

−
=

 + − + 

 

 
3. References 
 
1. Brannan, D.A., Clunie, J.G. 1980. Aspects of Contemporary Complex Analysis, Proceedings of the 

NATO Advanced Study Institute (University of Durham, Durham, July 1–20). Academic Press, New 

York. 

2. Çağlar, M., Deniz, E. 2017. Initial coefficients for a subclass of bi-univalent functions defined by 

Salagean differential operator, Commun, Fac. Sci. Univ. Ank. Sér. A1 Math. Stat., 66, 85-91. 

3. Çağlar, M., Deniz, E., Kazımoğlu, S. 2020. Fekete-Szegö problem for a subclass of analytic functions 

defined by Chebyshev polynomials, In 3rd International Conference on Mathematical and Related 

Sciences: Current Trend and Developments, 114-120. 

4. Deniz, E. 2013. Certain subclasses of bi–univalent functions satisfying subordinate conditions, J. 

Classical Anal., 2, 49-60. 

5. Deniz, E., Özkan, Y. 2014. Subclasses of analytic functions defined by a new differential operator, Acta 

Universitatis Apulansis, 40, 85-95. 

6. Deniz, E., Çağlar, M., Özkan, Y. 2020. Some properties for certain subclasses of analytic functions 

defined by a general differential operator, 13(1), 2050134 (12 pages). 

7. Fekete, M., Szegö, G. 1933. Eine Bemerkung über ungerade schlichte Funktionen, Journal of the london 

mathematical society, 1, 85-89. 

8. Jahangiri, J.M., Hamidi, S.G. 2013. Coefficient estimates for certain classes of bi-univalent functions, 

Int. J. Math. Sci., 2013, 1-4. 

9. Kazımoğlu, S., Mustafa, N. 2020. Bounds for the initial coefficients of a certain subclass of bi-univalent 

functions of complex order, Palestine Journal of Mathematics, 9, 1020-1031. 

15



 
5th INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 
1-3 December 2021, Istanbul, Turkey 

 

 
ICOM 2021 

ISTANBUL / TURKEY 

10. Kazımoğlu, S., Deniz, E. 2020. Fekete-Szegö problem for generalized bi-subordinate functions of 

complex order, Hacet. J. Math. Stat., 49, 1695-1705. 

11. Lewin, M. 1967. On a coefficient problem for bi-univalent functions, Proc. Am. Math. Soc., 18, 63-68. 

12. Ma, W.C., Minda, D. 1994. A Unified Treatment of Some Special Cases of Univalent Functions, 

Proceedings of the Conference on Complex Analysis (Tianjin, 1992), International Press, Cambridge, 

157-169. 

13. Netanyahu, E. 1969. The minimal distance of the image boundary from the origin and the second 

coefficient of a univalent function in 1.z < , Arch. Ration. Mech. Anal., 32, 100-112. 

14. Orhan, H., Deniz, E., Raducanu, D. 2010. The Fekete-Szegö problem for subclasses of analytic 

functions defined by a differential operator related to conic domains, Comput. Math. Appl., 59, 283-

295. 

15. Srivastava, H.M., Mishra, A.K., Gochayat, P. 2010. Certain subclasses of analytic and bi-univalent 

functions, Appl. Math. Lett., 23, 1188-1192. 

16. Tang, G., Deng, G.T., Li, S.H. 2013. Coefficient estimates for new subclasses of Ma-Minda bi-univalent 

functions, J. Inequal. Appl., 2013, 1-10. 

17. Tang, H., Srivastava, H.M., Sivasubramanian, S., Gurusamy, P. 2016. The Fekete–Szegö functional 

problems for some subclasses of m-fold symmetric bi-univalent functions. J. Math. Inequal., 10(4), 

1063–1092. 

16



 

5
th

INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 

1-3 December 2021, Istanbul, Turkey 

 

 

ICOM 2021 

ISTANBUL / TURKEY 

Quasi Focal Curves of Timelike Curves in Minkowski Space 

Talat Körpınar
 1

, Zeliha Körpınar
2  

1
Mathematics, Muş Alparslan University, Turkey 

2
Mathematics, Muş Alparslan University, Turkey 

E-mail(s):  talatkorpinar@gmail.com,  zelihakorpinar@gmail.com 

 

Abstract 

In this study, we firstly characterize focal curves by considering quasi frame in the ordinary 

space. Then, we obtain the relation of each quasi curvatures of curve in terms of focal curvatures. 

Finally, we give some new conditions with constant quasi curvatures in the ordinary space.   

 

Keywords: Quasi frame, focal curve, focal curvatures. 

 

1. Backround on Quasi Frame  

 

By way of design and style, this is model to kind of a moving frame with regards to a particle. In 

the quick stages of regular differential geometry, the Frenet-Serret frame was applied to create a curve in 

location. After that, Frenet-Serret frame is established by way of subsequent equations for a presented 

framework, 

 ,

00

0

00

=























































b

n

t

b

n

t

t

t

t







 

where t=  and   are the curvature and torsion of  , respectively. 

The quasi frame of a regular spacelike curve   is given by, 

 

 ,=,=, qqqqq ntb
kt

kt
nt=t 




 

where k  is the projection vector. 
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For simplicity, we have chosen the projection vector (0,1,0)=k  in this paper. However, the q-

frame is singular in all cases where t  and k  are parallel. Thus, in those cases where t  and k  are parallel 

the projection vector k  can be chosen as (0,1,0)=k  or (1,0,0).=k  

If the pseudo-angle between the quasi normal vector 
qn  and the normal vector n  is choosen as 

,  then following relation is obtained between the quasi and FS frame.  

 

,cossin=

,sincos=

=

bnb

bnn

t,t

q

q

q







  

such that short computation by using above equations yields that the variation of parallel adapted 

quasi frame is given by 

 

,=

,=

,=

32

31

21

qqq
q

t

qqq
q

t

qqq
q

t

ntb

btn

bnt













                                                                              

(1.1) 

where  

 ,=,sin=,cos= 321   '  

 

 .=,=,= qqqqqqqqq ntbtbnbnt   

 

In this paper, we study quasi focal curves in the Euclidean 3-space. We characterize quasi focal 

curves in terms of their focal curvatures. 

 

 

 

2. Quasi Focal Curves with Quasi Frame In Minkowski Space  

 

The focal curve of   is given by  
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 ,= 21 qq bn    (2.1) 

where the coefficients ,1  2  are smooth functions of the parameter of the curve  , called the first 

and second focal curvatures of  , respectively. 

 

Theorem 2.1. Let 3

1: EI  be a unit speed timelike curve and   its focal curve on 3

1E . Then, 

,))(
1

()(=
2

32

31

2

31

2

1

22

32

31

2

31

qq bn Cds

ds

e

ds

eCds

ds

e

ds

e 






 

























 (2.2) 

where C  is a constant of integration. 

 

Proof. Assume that   is a unit speed curve and   its focal curve in .3

1E  

So, by differentiating of the formula (2.1), we get 

 qqq bnt )()()(1= 1322312211   '''
 

From above equation, the first 2  components vanish, we get 

 
0.=

0,=1

231

2211









'
 

Using the above equations, we obtain 

 0,=)1( 11

2

3
1 




 '  

 .=
2

3
1

2

31
1









 '  

By integrating this equation, we find 

 ),(=
2

32

31

2

31

1 ds

ds

eC

ds

e
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 ).(
1

=
2

32

31

2

31

2

1

2

2 ds

ds

eC

ds

e

























 

By means of obtained equations, we express (2.2). This completes the proof of the theorem. 

As an immediate consequence of the above theorem, we have: 

Corollary 2.2. Let 3

1: EI  be a unit timelike speed curve and   its focal curve on 3

1E . Then, 

the focal curvatures of   are 

 ),(=
2

32

31

2

31

1 ds

ds

eC

ds

e
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1

=
2

32

31

2

31

2

1

2

2 ds

ds

eC

ds

e

























 

Proof. From above theorem, we have above system, which completes the proof. 

In the light of Theorem 2.1, we express the following corollary without proof: 

Corollary 2.3. Let 3

1: EI  be a unit speed timelike curve and   its focal curve on 3E . If 

321 ,,   are constant then, the focal curvatures of   are 

 ),
1

(= 2

31

1

1 C

s

e









  

 ).
1

(
1

= 2

31
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Abstract 

Let Σ  denote the class of functions of the form ( )
0

1 k
k

k
f z a z

z

∞

=

= +∑  which are analytic in the 

punctured disc { }: 0 1 .z z= < <  We introduce and study some new families of meromorphic 

functions defined by a differential operator. A number of useful characteristics of functions in these 
families are obtained.  
 
Keywords: Meromorphic,neighborhood,operator,partial sum. 

 

1. Introduction 

 

Let  Σ  denote  the class of functions of the form 

1

0
( ) n

n
n

f z z a z
∞

−

=

= +∑                                                                           (1) 

which  are analytic in the punctured disc { }: 0 1z z= ∈ < < .  

Let f ∈Σ  be of the form (1) and let  ,α β  be real numbers with 0α β≥ ≥ . Raducanu, Orhan and Deniz 

[10] defined the analogue of the differential operator given in as follows  

0
, ( ) ( )D f z f zα β =  

( )2
1 2

, ,

( )
( ) ( ) ( ( )) ( ) (1 ) ( )

z f z
D f z D f z z f z f z

zα β α β αβ α β α β
′

′′= = + − + − +  

( ) { }1
, , ,( ) ( ) , , 1, 2,3,... .m mD f z D D f z z mα β α β α β

−= ∈ ∈ =  
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If f ∈Σ  is given by (1), then from the definition of ,
mDα β  we get 

,
0

1( ) ( , , ) ,m m n
n

n
D f z A n a z z

zα β α β
∞

=

= + ∈∑   

where  

( ) ( ) ( ), , 2 1 1.A n n nα β αβ α β= + + − + +    

When 1α = and 0β = , Uralegaddi and Somanatha [13] investigated certain properties of the operator 

,
mDα β .  

Let 1 1.B A− ≤ < ≤  A function 1

0
( ) n

n
n

f z z a z
∞

−

=

= + ∈Σ∑ is said to be in the class ( ), , ,mT A Bα β  if it 

satisfies the condition  

 , ,

, ,

( ( )) ( )
1

( ( )) ( )

m m

m m

z D f z D f z
Bz D f z AD f z

α β α β

α β α β

′ +
<

′ +
                                                         (2) 

for all { }: 1 .z E z z∈ = <  

Furthermore, a function 1

1
( ) n

n
n

f z z a z
∞

−

=

= + ∈Σ∑  is said  to be  in the class *( , , , )mT A Bα β  if it satisfies  

the condition (2).  

It should be remarked in passing that  the definition (2) is motivated  essentially by the recent work of 

Morga [9] and Srivastava and co-authors [11].  

In recent years, many important properties and characteristics of various  interesting  subclasses of  the 

class Σ of meromorphically functions were inverstigated extensively by (among others ) Aouf et al [1], 

Chen et al. [2], Cho and Owa [3], Dziok et al. [4], El-Ashwah and Aouf [5], He et al. [6], Liu and 

Srivastava [7], Joshi and Srivastava [8], Raducanu et al. [10], Uralegaddi and Somanatha [13] and also 

[12]. 
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The main object  of this paper  is to present neighborhoods and partial sums of functions in the classes  

( ), , ,mT A Bα β  and ( )* , , ,mT A Bα β  which we introduced here.  

2. Properties of the class *( , , , )mT A Bα β   

Theorem 1. Let  1

1
( ) n

n
n

f z z a z
∞

−

=

= +∑  be analytic in { }: 0 1z z= < < . Then *( ) ( , , , )mf z T A Bα β∈  if 

and only if  

 [ ] ( )
1

(1 ) (1 ) , , m
n

n
A n B A n a A Bα β

∞

=

− + − ≤ −∑                                             (3)                                                         

The result is sharp for the function ( )f z given by  

 
( ) ( )

1 ( )( )
, , 1 (1 )

n
m

A Bf z z z
A n A n Bα β

− −
= +

− + −  
        ( 1).n ≥                               (4)   

Proof.  Let 1 *( ) ( , , , ).n
n m

k n
f z z a z T A Bα β

∞
−

=

= + ∈∑  Then  

( )

( )

1

, , 1

1, ,

1

(1 ) , ,( ( )) ( )
.

( ( )) ( ) ( ) ( ) , ,

m n
m m n

n
m m

m n
n

n

n A n a zz D f z D f z
Bz D f z AD f z A B A Bn A n a z

α β α β

α β α β

α β

α β

∞
+

=
∞

+

=

+′ +
=

′ + − + +

∑

∑
                                     (5) 

Since Re z z≤  for any z, choosing z to be real letting 1z −→  throuh real values (5) yields  

( ) ( )
1 1
(1 ) , , ( ) ( ) , , ,m m

n n
n n

n A n a A B A Bn A n aα β α β
∞ ∞

= =

+ ≤ − + +∑ ∑  

which gives (3). 

On the other hand,we have that  
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( )

( )
, , 1

, ,

1

(1 ) , ,( ( )) ( )
1.

( ( )) ( ) ( ) ( ) , ,

m
m m n

n
m m

m
n

n

n A n az D f z D f z
Bz D f z AD f z A B A Bn A n a

α β α β

α β α β

α β

α β

∞

=
∞

=

+′ +
≤ <

′ + − + +

∑

∑
 

This shows that *( ) ( , , , )mf z T A Bα β∈ . 

Next, we prove the following growth and distortion property for the class *( , , , )mT A Bα β .  

Theorem 2. If *( ) ( , , , ),mf z T A Bα β∈  then for 0 1z r< = <   

( ) ( )
1 1( )

(2 ( )) , ,1 (2 ( )) , ,1m m
A B A Br f z r

r rA B A A B Aα β α β
− −

− ≤ ≤ +
− + − +

                           (6) 

and 

( ) ( )2 2

1 1( )
(1 ) , ,1 (1 ) , ,1m m

A B A Bf z
r rB A B Aα β α β

− −′− ≤ ≤ +
− −

                                     (7) 

Proof. Let *( ) ( , , , )mf z T A Bα β∈ . Then, we find from Theorem 1. that  

( ) [ ] ( )
1 1

(2 ( )) , ,1 (1 ) (1 ) , ,m m
n n

n n
A B A a A n B A n a A Bα β α β

∞ ∞

= =

− + ≤ − + − ≤ −∑ ∑            

which yields  

                     
( )1

.
(2 ( )) , ,1n m

n

A Ba
A B A α β

∞

=

−
≤

− +
∑                                                               (8) 

Also, by applying the triangle inequality, we have 

1

0 0

1( ) .nn
n n

n n
f z z a z a z

z

∞ ∞
−

= =

= + ≤ +∑ ∑  

Since  1,z r= <  we can see that .nr r≤  Thus, we have 
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0

1( ) n
n

f z r a
r

∞

=

≤ + ∑  

and 

0

1( ) .n
n

f z r a
r

∞

=

≥ − ∑  

From the inequality (8), we obtain the result of (6). 

On the other hand, we get 

( ) ( ) [ ] ( )
1 1 1

(1 ) , ,1 (1 ) , ,1 (1 ) (1 ) , ,m m m
n n n

n n n
A A a B A n a A n B A n a A Bα β α β α β

∞ ∞ ∞

= = =

− + − ≤ − + − ≤ −∑ ∑ ∑  

and, so from ( )(1 ) , ,1 0mA A α β− ≥  

( ) ( )
1 1

(1 ) , ,1 (1 ) , ,1 .m m
n n

n n
B A n a A B A A a

A B

α β α β
∞ ∞

= =

− ≤ − − −

≤ −

∑ ∑  

Thus, we have 

( )1
.

(1 ) , ,1n m
n

A Bn a
B A α β

∞

=

−
≤

−
∑                                                               (9) 

By applying the triangle inequality, we obtain 

2
0

1( ) n
n

f z n a
r

∞

=

′ ≤ +∑  

and 

2
0

1( ) .n
n

f z n a
r

∞

=

′ ≤ −∑  

From the inequality (9), we obtain the result of (7). 
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Finally, we determine the  radius of meromorphically starlikeness and convexity for functions in the class 
*( , , , ).mT A Bα β  

Theorem 3. Let *( ) ( , , , ).mf z T A Bα β∈  Then  

(i) ( )f z  is meromorphically  starlike of order δ in 1,z r<  that is  

 
( )Re
( )

zf z
f z

δ
′ 

< − 
 

       ( )1z r<                                                        (10) 

where 0 1δ≤ <  and  

( )
1

1

1 1

(1 )[(1 ) (1 )] , ,
inf

( )( )

m n

n

A n B A n
r

A B n
δ α β

δ

+

≥

 − − + − =  − +  
 

(ii) ( )f z  is meromorphically convex of order δ in 2 ,z r<  that is 

                
( )Re 1
( )

zf z
f z

δ
′′ 

+ < − ′ 
             ( )2z r<                                                      (11) 

where 0 1δ≤ <  and  

( )
1

1

2 1

(1 )[(1 ) (1 )] , ,
inf

( )( )

m n

n

A n B A n
r

n A B n
δ α β

δ

+

≥

 − − + − =  − +  
. 

Each of these results is sharp  for the function ( )f z  given by (4). 

    Proof. (i) From Theorem 1. we have  

( )1

1 1

((1 ) (1 )] , ,
1

(1 ) ( )

m
n

n n
n k

A n B A nn a z a
A B

α βδ
δ

∞ ∞
+

= =

− + −+
< ≤

− −∑ ∑    ( )1 .z r<  

Therefore for 1z r<  we have 
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1

1

1

1

( 1)
( ) / ( ) 1 1

( ) / ( ) (1 2 ) 2(1 ) [ (1 2 )]

n
n

n

n
n

n

n a z
zf z f z

zf z f z n a zδ δ δ

∞
+

=
∞

+

=

+
′ +

≤ <
′ − − − − − −

∑

∑
 

which shows that (10) is true       

(ii) It follows from Theorem 1. that  

( )1

1 1

((1 ) (1 )] , ,( ) 1
(1 ) ( )

m
n

n n
n n

A n B A nn n a z a
A B

α βδ
δ

∞ ∞
+

= =

− + −+
< ≤

− −∑ ∑     ( )2z r<  

Thus for   2z r< , we obtain  

1

1

1

1

( 1)
1 ( ) / ( ) 1 1

1 ( ) / ( ) (1 2 ) 2(1 ) [ (1 2 )]

n
n

n

n
n

n

n n a z
zf z f z

zf z f z n n a zδ δ δ

∞
+

=
∞

+

=

+
′′ ′+ +

≤ <
′′ ′+ − − − − − −

∑

∑
 

which shows that (11) is true. 

Sharpness can be verified  easily. 
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Abstract 

In this paper, we invesitigate the energy of timelike spherical magnetic curves associated with 

the given magnetic field   on the De-Sitter 2-space 2

1  . We use completely geometric approach for 

this computationsuch that the energy of each timelike spherical magnetic curve is stated by using the 

geodesic curvature of each magnetic curve. 

 

          Keywords: De-Sitter space, magnetic field, timelike magnetic curve, energy, magnetic force, 

uniform motion. 

 

1. Introduction 

 

A magnetic field on a k-dimensional semi-Riemannian manifold  h, , which has the Levi-

Civita connection ,  is any closed 2-form   on   such that its Lorentz force is a one-to-one anti-

symmetric tensor field   given by     ,,=, h  where ,  are any two vector fields tangent 

to .  

A charged particle follows a trajectory   under the influence of  , which meets the Lorentz 

formula ='

' 


   .  As seen, the natural generalization of geodesics, which meet the Lorentz formula 

without the influence of any magnetic field, is given by magnetic curves. 

A detailed research investigation has been performed to understand the magnetic curves and their 

associated flows. For example, it is proved that Kirchhoff elastic thin rod is classified as one of the 

solution classes of the Lorentz force action. This establishes a correlation among two unrelated physical 

subjects known as the Hall effect and the elastica. Moreover, critical points and the harmonicity of the 

Landau-Hall functional are computed as one of the other solution classes of the Lorentz force action. As a 

result, the subject of magnetic curves is interrelated to many other physical and geometric subjects and it 

has various applications [1-7]. 
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2. Preliminaries 

 

Magnetic Curves 

The trajectories of a charged particle moving under the influence of a magnetic field on any 

manifold are represented by a magnetic curve. A magnetic field on a k-dimensional semi-Riemannian 

manifold  h,  is any closed 2-form  . The Lorentz force of the magnetic field   is an antisymmetric 

one-to-one tensor field   such that it is defined by 

       .,where,,=,  h  

The magnetic trajectories of the magnetic field   correspond to magnetic curves   on R . These curves 

satisfy the following Lorentz formula 

 ).(=
''

' 


  (1) 

Evidently, magnetic curves generalize geodesics due to the following equation, which is satisfied by 

geodesics 

 0.='

' 


  

This formula obviously represents the Lorentz formula in the nonappearance of the magnetic field. 

Consequently, a geodesic corresponds to a trajectory of the moving charged particle when it is free from 

the magnetic field 0)(   [4]. 

A significant feature of magnetic curves is that they have a constant kinetic energy since their 

speed is a constant. This is an obvious result of the antisymmetric property of the Lorentz force. 

In the case of a D3  pseudo-Riemannian manifold  ,,h  vector fields and 2-forms may be 

described thanks to the volume form hdv  and the Hodge star operator   of the manifold. Hence, 

divergence free vector fields and magnetic fields are in  11  correspondence. Therefore, Lorentz 

formula is given for any vector field S  on the D3  pseudo-Riemannian manifold as follows  

 ,=)(    (2) 

where G  is a magnetic field such that )(RXA  with 0=)(div [4]. As a consequence, the magnetic 

flow reduced by the Lorentz formula is written as the following form  

 .= ''

' 


   (3) 
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The Geometry of the De-Sitter Space 2

1  

In this subsection, we present fundamental definitions of the spherical geometry of the Lorentzian 

space form, which corresponds to a De-Sitter space .2

1  Here, we generalize the geometrical 

understanding of the De-Sitter space in order to comprehend the mathematical method that we improve to 

define magnetic curves in the .2

1  

Let 1

1

k  be a  1k -dimensional vector space equipped with the Lorentzian metric 

   ....=, 2

1

2

2

2

1  kdadadah  

In this case,  ),,( 1

1 hk  is named by Minkowski  1k space. The pseudo vector product of 

1

121

 k

k a ..., ,a ,a  is described to be 

 ,

...

...

...

...

=

121

1

2

2

2

1

2

1

1

2

1

1

1

121
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a ... aa  

where =ia  } ..., , ,{ 121 k

iii aaa  and } ..., , ,{ 121 kuuu  is the canonical basis of .1

1

k  A non-zero vector 

1

1

 ka  is called timelike, lightlike or spacelike if   0,<,aah     0=,aah or   0.>,aah  Thus, one can 

give the norm function of the 1

1

 ka  by using the sign  function as follows. 

   ,,= aaaa sign  

where 

  








  timelike.is 1,

lightlike, is 0,

spacelike,is 1,

=

a

a

a

asign  

Let I  be an open interval and 1

1:  kI   be a curve defined on I  with the condition of 0)( p'  for 

any .Ip  The curve   is said to be timelike, lightlike or spacelike if   0,<)(),( pph ''   

  0,=)(),( pph ''   and   0>)(),( pph ''    Ip  respectively. 
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In the previous subsection, we state the advantage of studying in three-dimensional space while 

characterizing magnetic curves. For this reason, we define the De-Sitter 2-space 2

1S  (pseudo spherical 3-

space) by using the argument discussed above as the following manner  

 1}.=:{= 2

3

2

2

2

1

3

1

2

1 aaa  a  

Hereafter, we assume to have a unit speed timelike regular curve lying fully on the .2

1S  In the theory of 

curves, the most effective method using to investigate the intrinsic feature of the curve is to consider its 

orthonormal frame, which is constructed by a number of orthonormal vectors and associated curvatures 

depending on the dimension of the space. For the case of the ,2

1  this orthonormal frame was introduced 

by Sabban [8,9]. The curve satisfying the Sabban frame equation is called a Sabban or spherical curve. 

Finally, we are ready to establish the orthonormal frame of timelike spherical curves lying on the 2

1 . 

Let 2

1: I  be a unit speed timelike regular spherical curve, that is it is an arc-length 

parametrized and sufficiently smooth. Then, Sabban frame is defined along the curve   as follows 

 

,

,=

=

T=N

NT

T,













'

'

'







 (4)

 

where   is a Levi-Civita connection and  'TT,,det=   is the geodesic curvature of .  The following 

identities including pseudo vector product also hold  10 . 

 T.NN,TN,T   ===  

3. Timelike Spherical Magnetic Curves of the De-Sitter Space 2

1  

 

Let   be a moving charged particle under the influence of a magnetic field   on the .2

1  We 

assume for the rest of the manuscript that the worldline of this particle corresponds to a unit speed regular 

timelike spherical curve 2

1: I  to define and investigate timelike spherical magnetic curves lying 

fully on the Lorentzian sphere by using the Sabban orthonormal frame described along with the 

worldline. From Eqs.  ,31  we are able to find three kinds of distinct magnetic trajectories of the   on 

the ,2

1  if it is considered the orthonormal vector fields of the curve   as in the Sabban frame. 
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Definition: Let 2

1: I  be a unit speed regular timelike spherical curve on the De-Sitter 2-space and 

  be the magnetic field on .2

1  Timelike spherical magnetic curves of   are defined via the Lorentz 

force formula given by Eqs.  31  as follows 

 

 

 

  .==

,==

,==

NNN

TTT













'

'

'









 (5)

 

For further references, we call these timelike spherical magnetic curves as a 

,   ,  , curvemagneticandcurvemagneticcurvemagnetic  SNSTS  respectively. In other words,   is 

called as an curvemagnetic S  if the first equation holds;   is called as an curvemagnetic ST  if the 

second equation holds;   is called as an curvemagnetic SN  if the third equation holds.  

Proposition: Let   be an arc-length parametrized timelike spherical magnetic curve together with the 

Sabban frame elements },,,{  NT  on the De-Sitter space .2

1  Then, Lorentz force   of the magnetic 

field   is written in the Sabban frame as follows. 

   In the case of an , curvemagneticS    is defined by  

 

T,N

N,T

T,

1

1

=)(

=)(

=)(

c

c











 (6)

  

where 1c  is an arbitrary smooth function along with the magnetic curve such that it satisfies 

 .),(=1 NThc  

  In the case of an , curvemagneticST    is defined by 

 

T,N

N,T

N,T













2

2

=)(

=)(

=)(

c

c

 (7)

  

where 2c  is an arbitrary smooth function along with the magnetic curve such that it satisfies 

 .),(=2 Nhc  

  In the case of an , curvemagneticSN    is defined by 
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,=)(

=)(

,=)(

3

3

NT

T,

TN













c

c

 (8)

  

where 3c  is an arbitrary smooth function along with the magnetic curve such that it satisfies 

 .),(=3 Thc  

Theorem: Let   be an arc-length parametrized timelike spherical magnetic curve on the De-Sitter space 

.2

1  

   is an S - curvemagnetic  of the magnetic field   on the 2

1  if and only if  

 ,1 Nc  (9) 

where  NT),(=1 hc  along with the curve. 

   is an ST- curvemagnetic  of the magnetic field   on the 2

1  if and only if  

 ,2 NT c   (10) 

where  N),(=2 hc  along with the curve. 

   is an SN- curvemagnetic  of the magnetic field   on the 2

1  if and only if  

 ,3Nc  (11) 

where  ),(=3 Thc  along with the curve. 

 

4. Energy of Timelike spherical Magnetic Curves on the De-Sitter Space 2

1  
 

In this section, we investigate the energy of timelike spherical magnetic curves associated with the 

given magnetic field   on the De-Sitter 2-space .2

1  We use a completely geometrical approach for this 

computation such that the energy of each timelike spherical magnetic curve is stated by using the 

geodesic curvature of each magnetic curve. 

A well-known feature of magnetic curves is that they have a constant kinetic energy since their 

speed is a constant [11]. This is also an obvious result of the antisymmetric property of the Lorentz force. 
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By considering this fact, we also determine the constant energy condition for each timelike spherical 

magnetic curves on the .2

1  

Definition: Let  h,  and ),(  h  be two Riemannian manifolds. Then, the energy of a differentiable 

map   ),(,:  hhr   can be defined as  

        ,,
2

1
=

1=

vedfedfhrnergy aa

n

a
M

  (12) 

where  ae  is a local basis of the tangent space and v  is the canonical volume form in   [12] . 

Proposition: Let   MTMTTQ 11:   be the connection map. Then following two conditions hold. 

i) dccQc  =  and ,=


ccQc   where   MTMTTc 11: 


 is the tangent bundle projection, 

ii) for   MTx  and a section MTM 1:   we have  

    ,=  dQ  (13) 

where   is the Levi-Civita covariant derivative  12 . 

Definition: Let  ,, 1

21 MTT   then we define 

            .,,=, 212121  QQdcdchS   (14) 

This yields a Riemannian metric on TM . As known Sh  is called the Sasaki metric that also makes the 

projection :c  MMT 1  a Riemannian submersion  12 . 

Theorem: Let   be a moving charged particle such that it corresponds to a unit speed timelike spherical 

magnetic curves in the associated magnetic field   on the 2

1 .  

 In the case of an  , curvemagneticS energy of the particle in the magnetic vector field   is 

     ,))(1(
2

1
=

2

1

2

1
0

dsccnergy '
s

  S  

where  NT),(=1 hc  along with the curve. 

 In the case of an  , curvemagneticST energy of the particle in the magnetic vector field   is 
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     ,))(1(
2

1
= 22

2

2

2

2

2
0

dscccnergy ''
s

 ST  

where  N),(=2 hc  along with the curve. 

 In the case of an  , curvemagneticSN energy of the particle in the magnetic vector field   is 

       ,)1)(1(
2

1
=

22

3

22

3
0

dsccnergy ''
s

 SN  

where  ),(=3 Thc  along with the curve. 

Proof: Let   be an S - curvemagnetic  of the magnetic field   on the  .2

1 From the Eq. (12)  and the 

Eq. ,(13)  one gets 

     .,
2

1
=

0
dsddhnergy S

s

(T)(T)S    (15) 

By using also the Eq. (14),  one also has 

 ).(,(((,((=,( (T))(T))(T)))(T))(T))(T)  QQhdcdchddhS   

Since T  is a section, it is obtained that 

 .=)((=)()( TCC ididdcddcd =)   

Moreover, it is clear that 

 .)(==( 11 T(T)) ccQ '

'  

  

Thus, we find from Eqs. (4,9)  

 
  .)(1=

,(),(=,(

2

1

2

1

'

''S

cc

hhdd










)TT(T))(T) 
 

This final identity gives the desired result if it is plugged into the Eq.  15 . The rest of the proof is 

completed if one follows similar steps for other cases. 

Altough this calculation seems to contain abstract mathematical tools it tells us significant facts 

about the state of a system. For example, Euler-Lagrange equations determine the dynamics of a system 
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considering its simple motion once one computes the energy of the given system. For a given vector field 

the following formula is used to describe bending energy of elastica: 

 ,
2

1
=

2

ds' T
  (16) 

where s  is an arclength [12]. Once the elastic features of timelike spherical magnetic curves are 

determined we can state the energy of each timelike spherical magnetic curve in terms of the bending 

energy functional. However, this is the topic of another research that we plan to handle later. 

At the beginning of the section, we assert that magnetic curves have a constant energy. Now, we 

give the constant energy condition that has to be satisfied for each timelike spherical magnetic curve in 

terms of its geodesic curvature. 

 Constant energy condition of the   curvemagneticS in the magnetic vector field   on the ;2

1   

   .)(=1
2

1

2

1

'cc    

 Constant energy condition of the   curvemagneticST in the magnetic vector field   on the ;2

1   

   .)(=1 22

2

2

2

2

2  ccc ''   

 Constant energy condition of the   curvemagneticSN in the magnetic vector field   on the ;2

1  

                                                                  .1)(=1
22

3

22

3

'' cc    
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Abstract 

This work study the commutativity and alongside with the sensitivity of second-order Euler 

differential equation. The conditions for commutativity of second-order Euler differential equation are 

investigated. Example will be given to support the results.  

 

          Keywords: : Commutativity, Euler Differential Equation and analogue system. 

 

1. Introduction 

 

When the sensitivity, stability, linearity, noise disturbance, robustness effects are considered the change of 

the order of connection without changing the main function of the total systems (commutativity) may lead 

positive results. Therefore, the commutativity is very important from the practical point of view. 

The first commutativity appeared in 1977 for the first-order time-varying systems [1], and then the results 

there in are extended to higher-order systems [2-7] the non-zero initial conditions (ICs) and its effects on 

the sensitivity was studied in [8] while the realization of a fourth-order LTVSs with nonzero ICs by 

Cascaded two Second-Order Commutative Pairs was introduced in [9]. 

In this presentation, the commutativity and alongside with the sensitivity of second-order Euler 

differential equation are studied. The results are illustrated by an example.   

. 

2. System Description 

 

Considering the cascade connection of second-order systems 𝐴 and 𝐵 described as  

𝐴: 𝑎2(𝑡)𝑦𝐴
″(𝑡) + 𝑎1(𝑡)𝑦𝐴

′ (𝑡) + 𝑎0(𝑡)𝑦𝐴(𝑡)  = 𝑥𝐴(𝑡),                (1) 

 

B: 𝑏2(𝑡)𝑦𝐵
″(𝑡) + 𝑏1(𝑡)𝑦𝐵

′ (𝑡) + 𝑏0(𝑡)𝑦𝐵(𝑡)  = 𝑥𝐵(𝑡),                                                                       (2) 

 

where 𝑎2(𝑡) ≠ 0 and 𝑏2(𝑡) ≠ 0. Also, 𝑎𝑖, 𝑏𝑖, 𝑥𝐴, 𝑥𝐵 ∈ 𝑃[𝑡0, ∞). The connections are abbreviated as 𝐴𝐵 or 

𝐵𝐴 according to their sequence of connection. 
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Figure 1. Cascade connection of the differential systems 𝐴 and 𝐵. 

 

The propose is to find the subsystems 𝐴 and 𝐵  such that each one of the connections 𝐴𝐵  and 𝐵𝐴 are 

equivalent (the case in which 𝐴  and 𝐵  are called commutative subsystems [2]); the found results are 

expressed by a theorem presented in the next section 

 

3. Main Results 

 

Theorem 1 (See [2]). The formula for a second-order LTVS 𝐴 to be commutative with another LTVS 𝐵 

under zero ICs is that the coefficients of 𝐵 are  

 [

𝑏2

𝑏1

𝑏0

]  = [

𝑎2 0 0

𝑎1 𝑎2
0.5 0

𝑎0 𝑓32 1
] [

𝑘2

𝑘1

𝑘0

] ,    𝑓32 =
1

4
[𝑎2

−0.5(2𝑎1 − 𝑎′2)]; (3a) 

 −𝑎2
0.5

𝑑

𝑑𝑡
[𝑎0 − 𝑓32

2 − 𝑎2
0.5𝑓′32]𝑘1  = 0, (3b) 

 

where 𝑘2, 𝑘1, 𝑘0 are constants and it must satisfy (3𝑏). 

 

Theorem 2 The commutativity for second-order LTVS 𝐴 with non-zero ICs with another second or lower-

order LTVS 𝐵 are that: 

i) Eq.(3a) and Eq. (3b) must be satisfied. 

ii) The ICs at the initial time (IT) 𝒕𝟎 ≤ 𝒕 must hold: 

 

{( 2
𝑚
) [

1 0
−𝐴2

−1𝐴1 𝐴2
−1]  − (𝑚

2
) [

0 1
𝐵2

−1 −𝐵2
−1𝐵1

]} [
𝑌𝐴
𝑌𝐵

]  = [0],     (4) 

 

where 

𝑌𝐴 = [𝑦𝐴(𝑡),  𝑦′𝐴(𝑡)]𝑇 , 
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 𝑌𝐵 = [𝑦𝐵(𝑡),  𝑦′𝐵(𝑡)]𝑇 and the matrix 𝐴1 (𝐴2, 𝐵1, 𝐵2) are described by there entries 𝑎′𝑖𝑗 (𝑎″𝑖𝑗, 𝑏′𝑖𝑗, 𝑏″𝑖𝑗) 

respectively: 

 

 

 𝑎′𝑖𝑗 = ∑
(𝑖 − 1)!

𝑠! (𝑖 − 1 − 𝑠)!

𝑖−1

𝑠=𝑚𝑎𝑥(0,𝑖−𝑗)

𝑎𝑗−𝑖+𝑠
𝑠 ;    𝑖 = 1,𝑚, 𝑗 = 1,2,

𝑎″𝑖𝑗 = ∑
(𝑖 − 1)!

𝑠! (𝑖 − 1 − 𝑠)!

𝑖−𝑗

𝑠=0

𝑎𝑗−𝑖+𝑛+𝑠
𝑠 ;    𝑖 = 1,𝑚, 𝑗 = 1,𝑚;

= 0  𝑓𝑜𝑟  𝑖 = 1, … ,𝑚 − 1, 𝑗 = 𝑖 + 1,… ,𝑚,

𝑏′𝑖𝑗 = ∑
(𝑖 − 1)!

𝑠! (𝑖 − 1 − 𝑠)!

𝑖−1

𝑠=𝑚𝑎𝑥(0,𝑖−𝑗)

𝑏𝑗−𝑖+𝑠
𝑠 ;    𝑖 = 1,2, 𝑗 = 1,𝑚,

𝑏″𝑖𝑗 = ∑
(𝑖 − 1)!

𝑠! (𝑖 − 1 − 𝑠)!

𝑖−𝑗

𝑠=𝑚𝑎𝑥(0,𝑖−𝑗−𝑚)

𝑏𝑗−𝑖+𝑚+𝑠
𝑠 ;    𝑖 = 1,2, 𝑗 = 1,… , 𝑖;

= 0  𝑓𝑜𝑟   𝑖 = 1, 𝑗 = 𝑖 + 1,… ,2.

    (5)                   ( 

 

4. Example 

 

In this section, we make use of the formular and conditions obtained from the previous section and 

illustrate the commutativity of second-order LTVs. 

 

Example 1. Let us first consider the following second-order Euler LTVs  

𝐴: 𝑡2𝑦𝐴
′′(𝑡) + √2t 𝑦𝐴

′ (𝑡)  +  
17

11
𝑦𝐴(𝑡) = 𝑥𝐴(𝑡).                                                    (6) 

 

By applying the coefficient of Eq. (6) to Eq. (3a), we obtain  

 
[

𝑏2

𝑏1

𝑏0

]  =

[
 
 
 
 

1 0 0

√2t t 0

17

11

1

4
(
−2𝑡 + 2√2t

𝑡
) 1

]
 
 
 
 

[

𝑘2

𝑘1

𝑘0

] ,
 (7) 

 

where 𝑘2, 𝑘1, 𝑘0 are constants. 

Considering the matrix in Eq. (7) at 𝑘1 = 0, we have 
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𝐵: 𝑡2𝑘2𝑦𝐵
′′(𝑡) + √2t 𝑘2 𝑦𝐵

′ (𝑡) + (𝑘0 + 
17

11
𝑘2)𝑦𝐵(𝑡) = 𝑥𝐵(𝑡).                                          (8) 

 

Substituting the coefficient of Eq. (6) in Eq. (3b) lead to 

  𝑘0 → 1 − 𝑘2.    (9) 

 

For commutativity of 𝐴 and 𝐵 with non-zero ICs to exist, the equation below must be satisfy 

  𝑦𝐴
′ = −

3√2

11
𝑦𝐴. (10) 

 

Considering a sinusoid of amplitude 200 , frequency 25  and phase 
𝜋

30
rad with ODE 23  [Bogacki - 

Shampine] as the solver. For 𝑘2 = 𝑘0 = 0.5 and 𝑘1 = 0. The IT at 𝑡0 = 1 and the ICs as 𝑦𝐴(1) = 𝑦𝐵(1) =

1, 𝑦′𝐴(1) = 𝑦′𝐵(1) = −
3√2

11
, 𝐴𝐵  and 𝐵𝐴  (solid blue curve) gives the same output. With response to 

sensitivity toward ICs, by changing 𝑦𝐴(1) = −1, 𝐴𝐵1 (doted-dash red curve) and 𝐵𝐴1  

(dashed-green curve) deviated from each other, this is because Eq. (10) is not obeyed. 

 
Figure 2. Simulation results for 𝑘2 = 𝑘0 = 0.5 and 𝑘1 = 0. 

 

6. Conclusion 

 

   This presentation shows the results for second-order Euler LTVS 𝐴  cascaded connected with it 

commutative pairs of second-order LTVS 𝐵. The result obtained shows that the subsystems 𝐴 and 𝐵 are 
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said to be commutative under some conditions and are very sensitive toward change in ICs. The results are 

verified to be correct by an example which is simulated by Simulink toolbox of MATLAB.   
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Abstract 

 We deal with the considered results comparing the obtained solutions with the exact ones. 

Expanding the proposed concepts on generating the system of linear equations through matrix as 

unimodular or unimodular matrix with compound structures, we give in particular the method of 

generating SLEs. Our work shows the way for this problem on Determined SLEs. We give the 

solution for students. In this context, our work gives the method in providing exercises on the topic 

of SLEs for solutions with integers. For this fact we provide the unimodularity of matrix. We claim 

that a square matrix is said to be unimodular if it has a determinant value of 1 or -1. The inverse 

of a unimodular matrix and the product of two unimodular matrices is also unimodular. Those 

facts are used in our article for determining the solution of system of linear equations (SLEs), 

because it does not involve fractions at all. In particular, we give the method for generating an SLE 

via a unimodular matrix with Latex. We consider the result and any example of determined SLE 

with solution in the form of integers. By using Latex and python programs, we provide and 

generalize the way for generating a finite SLEs easily in (Arifin and Muktyas[11]-Uka and 

Hajrulla[12]). Some conclusions help to understand the process. 

Keywords: unimodular matrix, latex, python, solution, system of linear equations, transformation, 
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Introduction  

A System of Linear Equation (SLE) that has the same number of equations as the number of 

variables is called the Determined SLE. Algebra is a branch of mathematics, one of which studies 

the System of Linear Equation (SLE) and the matrix. A finite collection of linear equations in a 

variable is called the System of Linear Equation. There are several ways to determine the solution 

of a System of Linear Equation, such as using the Elementary Row Operation. However, the 

methods can only be used for a square matrix and nonsingular. On the other hand, there are often 

problems regarding whether a matrix has an inverse. One of the important theorems concerning 

states that matrix A has an inverse if only if det  ( A)  0  (see Anton [1]). Another problem arises 

if the entries of the inverse matrix are not integers, so it will take longer if done by hand manually. 

For this, we need a matrix that has a determinant value of 1 or -1 to produce an inverse matrix with 

all entries being integers. Matrices that have a determinant value of 1 or -1 are called unimodular 

matrices in Guy[3]. The notion of unimodular matrices can be studied in Born [2] and Guy [3]. 

The steps in generating a unimodular matrix can also be studied in Hanson [4]. We chose Python 

to makes the code because it has many advantages. Python is a multipurpose programming 

language and is easy to learn. Python can also run on various operating system platforms, such as 

Windows, Linux, Mac OS, Android, and others in (QPythonLab, QPython OL[5]). By using the 

Python program, a unimodular matrix can be generated so that it can produce a System of Linear 

Equation with a single solution of all integers. In this paper, we want to provide an application of 

unimodular matrices in Determined SLE, which is generating a Determined SLE of n variables 

and n equations with integer solutions. In solving the Determined SLE, it only uses integers, so 

that it can be a bridge and a first step for students to learn the notion of Determined SLE much 

deeper and easier. Moreover, we will study the method for generating a System of Linear Equation 

Determined using Python, in the form AX=B where A is a unimodular matrix, and using LaTex 

generates a pdf file format containing drill questions with the number of questions and the variable 

is adjusted to the user's wishes in (Arifin and Muktyas [11]). We will discuss the notion of 

Determined SLE, unimodular matrix, and Python, and LaTex in session 2 in (Arifin and Muktyas 

[11]). The results and discussion about the outputs of the resulting program are discussed in session 

3. This paper concludes with a conclusion in session 4. METHOD In general, the research 

methodology used here is a method of exploration and adaptation of pre-existing results, which 

was examined from the study of literature. The following is a study of the theories used in this 

research. Systems of Linear Equations In this session, the System of Linear Equation (SLE) will 

be discussed. For the future, the term system of linear equations is enough to be written with the 

SLE. Note that the general form of a SLE with n equations and n variables is as follows: AX=B. 

Looking for solutions to the SLE with n equations and n variables, we can use an elementary row 

operation. On the other hand, based on the comparison of the values of n (many equations) and n 

(many variables), one type of SLE is the Determined SLE, which is the SLE with the same 

variables and equations. In this paper, it is assumed that all SLE provided is a Determined SLE. 

Consider the following theorem. 
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Theorem 1. Anton [1] 

 1. Let 𝐴𝑛𝑥𝑛 be a matrix. A is invertible if and only if det  ( A )   0  . 2. If A is invertible, then 

𝐴−1 =
𝑎𝑑𝑗(𝐴)

det (𝐴)
 3. A System of Linear Equations with n equations and n variables written in the 

form 𝐴𝑛𝑛𝑥𝑛1 = 𝐵𝑛1 has a single solution if and only if matrix A has an inverse. Unimodular Matrix 

In this session, we will examine the understanding of the unimodular matrix and how to generate 

it. In Guy [3], it is stated that a matrix 𝐴𝑛𝑥𝑛 with each entry being an integer is called unimodular 

if det (A) = -1 or det (A) = 1. Other terms of the unimodular matrix are stated in Hanson [4], using 

the term "Nice Matrix". Examples of unimodular matrices are identity matrices, upper triangles, 

or lower triangles with diagonals of 1 or -1. Consider the following theorem. 

Theorem 2. Anton [1] 

Let 𝐴𝑛𝑥𝑛 is a triangle matrix such that 𝑎11,𝑎22, … . , 𝑎𝑛𝑛 are on the main diagonal. Then 

det(A)=𝑎11. 𝑎22 … . 𝑎𝑛𝑛. The following dilemma explains the steps in generating a unimodular 

matrix or the Nice Matrix. Note that Lemma 3. below which will be used as a reference in making 

a program to generate a unimodular matrix using Python. 

Lemma 3. Hanson [4] 

A unimodular matrix 𝐴𝑛𝑥𝑛 can be constructed in the following way: 1. First, make a diagonal 

matrix with the diagonal entry 𝑎𝑖𝑖 = 1 or 𝑎𝑖𝑖 = -1. 2. Second, fill in any random integers at each 

entry with i < j. From this, it has formed a top triangular matrix whose determinants are 1 or -1. 

This is a unimodular matrix. 3. Third, to be a complete matrix, use ERO/ECO downward from the 

last row/column to the initial row/column. 

Lemma 4.Python and LaTeX [11] 

In this session, we will examine the Python and TeX / LaTeX programs that we use. We generating 

an nxnsized unimodular matrix using Python 2.7.14, then produce output in the form of a pdf file 

format that is ready for the user to use in (https://www.python.org/   [18]). This Python program 

code is the main result of this paper. The things that become the basis in making the program are 

Lemma 3 Hanson[4]. above. But before that, it should be noted that the Python program used must 

be equipped with a "NumPy" plugin. The steps to install NumPy in Windows OS is very easy. On 

the other hand, the application of Python in group theory and linear algebra can be found in Arifin 

[6,7], Muktyas [8,9], and Rahman [10], as well as their use in the dimensional theory of a ring and 

modules, can be studied in Arifin [11,12]. Another application of Python in other fields, that is 

Data Mining in Demsar [13], Scatterplot matrices in Foreman-Mackey [14], Scientific computing 

in Oliphant [15], Machine learning in Pedregosa, etc [16], and Image processing in Van der Walt 

[17]. Python is a popular programming language (https://www.python.org/   [18]). As of 

September 2018, Python is ranked as the 3rd most popular programming language in the world. 
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Python is relatively easier to learn and use than other programming languages. The syntax is 

simple, easy to read, and remember because the philosophy of python itself emphasizes the aspect 

of readability. Python code is easy to write and easy to read, making it easier to fix if there are 

errors, and also easy to maintain. Besides being easier to read, python is also more efficient than 

other languages such as C, C ++, and Java in (Pedregosa [16]). To do something with 5 lines of 

code in another language, maybe in Python only one line of code is needed. This causes the 

creation of programs in Python to be more concise and faster than other languages. Python is a 

multifunctional language. With python you can do a variety of things from text processing, 

creating websites, creating network programs, robotics, data mining, to artificial intelligence see 

in (https://www.python.org/[18]). With Python, you can create desktopbased and smartphone-

based applications. Python is rich in standard library support. There are a lot of modules and 

program extensions that you are ready to use to make the program according to your needs. Python 

community is a community that is very active in developing python so it becomes a very reliable 

language. Python can interact with other languages. Python code can be called by C, C ++, and 

vice versa can also be called from other languages(Oliphant [15]). In short, the reason we use 

Python is that Python is a powerful language and can be run on multiple platforms, but it's also 

very easy to understand. On the other hand, the reason we use LaTex is that it is freeware, supports 

writing mathematical formulas, and can run on different OS like Windows and Ubuntu. Another 

plus is that our program can make many drill questions in a short time. The weakness of the System 

0f Linear Equation produced by the program is that there will always be coefficients or matrix 

entries that are worth one in the first column in a particular row. But actually, this entry of 1 is for 

the key, which will be 1 main, so that it will be easier for users to use An Elementary Row 

Operation because this is only as a bridge user to better understand An Elementary Row Operation. 

Another weakness is that this System of Linear Equation can be generated by first installing 

Python, the NumPy package, and LaTex. Next, we will discuss LaTeX. MiKTeX is an up-to-date 

implementation of TeX / LaTeX and related programs [19]. TeX is a typesetting system written 

by Donald Ervin Knuth who says that it is intended for the creation of beautiful books - and 

especially for books that contain a lot of mathematics. Moreover, you can learn more about 

TeX/LaTeX at Kanigoro [20]. Following is the display of the programming used, which is the 

main result of this paper. This Python program code will close this session. 

Now, we will mention that, there are many codes prepared with pyhton programme.In the 

beginning of the article, mathematical formulas are written not only with LaTex but also phyton 

programme. 

In mathematics, a system of linear equations (or linear system) is a collection of two or more linear 

equations involving the same set of variables see in (solving systems of linear equations [21]). 

Now if we look at many linear equations then we will writes as a figure below: 

1.Example: 1.Step:  4x+3y = 20 

                                    -5x+ 9y= 26 
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To solve the above system of linear equations, we need to find the values of 

the x  and y  variables. There are multiple ways to solve such a system, such as Elimination of 

Variables, Cramer's Rule, Row Reduction Technique, and the Matrix Solution. In this article we 

will cover the matrix solution see in (Arifin and Muktyas[11]) . 

In the matrix solution, the system of linear equations to be solved is represented in the form of 

matrix AX = B . For instance, we can represent Equation 1 in the form of a matrix as follows: 

A=[[4   3]      

      [-5   9]] 

X= [[x] 

       [y]] 

 

B= [[20] 

       [26]] 

If we use two matrices dot product with together then this code will be below see in(Python, 

Python TM [18]): 

x=inverse(A).B 

we need to use inverse function. 

Also, we need to add new information in phyton program. 

Solving a System of Linear Equations with Numpy 

We know that need to do two operations for solving linear equation system such as: matrix 

inversion and matrix dot products.Numphy library supports both two operations in phyton 

program see in (https://www.python.org/  [18]): 

Exampe code:       $ pip install numpy   

Using the inv() and dot() Methods  (https://www.python.org/  [18]) 

First of all, we will find inverse matrix A that we defined previous part.Firstly, let’s we create A 

matrix in phyton.The method of the Numphy module can used to constitute A matrix. A matrix 

can be considered as a list of lists where each list represents a row.Also “(m_list)” code must be 
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used:  [4,3]  and [-5,9]. This 2 list are rows of matrix A.  To create the matrix A  with Numpy, 

the m_list  is passed to the array  method as shown below: 

import numpy as np 

 

m_list = [[4,3], [-5,9]] 

A = np.array(m_list) 

 

Matrix is passed to the linalg.inv() method in Numpy module for finding inverse of a matrix.  

 

inv_A = np.linalg.inv(A) 

print(inv_A) 

The next step we find dot product of between inverse matrix A and inverse matrix B. 

It is important to mention that matrix dot product is only possible between the matrices if the 

inner dimensions of the matrices are equal i.e. the number of columns of the left matrix must 

match the number of rows in the right matrix.At the same time, lingalg.dot() function is used to 

find dot product with Numphy Library. The following script finds the dot product between the 

inverse of matrix A  and the matrix B , which is the solution of the Equation 1. 

B = np.array([20,26]) 

X = np.linaglg.inv(A).dot(B) 

 

print(x) 

 

OUTPUT: [2. 4.] 

 

This output value x=2 and y=4. 
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If we give new example of system of linear equation with matrix solution in Numphy Library in 

Phyton code then we will interprete in shown below: 

 

 4x+3y+2z = 25 

     -2x+2y+3z = -10 

 3x-5y+2z = -4 

 

Code: 

A = np.array([[4, 3, 2], [-2, 2, 3], [3, -5, 2]]) 

B = np.array([25, -10, -4]) 

X = np.linalg.inv(A).dot(B) 

 

print(x) 

In the script below linalg.inv() and linalg.dot() methods are chained with together. X variable has 

include solution of equation 2 and is printed as follows: 

[5. 3. -2.] 

Therefore, x=5, y=3, z=-2. 

Using the solve() Method 

In the previous two examples, we used linalg.inv()  and linalg.dot()  methods to find the solution 

of system of equations. However, the Numpy library contains the linalg.solve()  method, which 

can be used to directly find the solution of a system of linear equations:  

A = np.array([[4, 3, 2], [-2, 2, 3], [3, -5, 2]]) 

B = np.array([25, -10, -4]) 
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X2 = np.linalg.solve(A,B) 

print(X2) 

Output: 

[5. 3. -2.] 

            

 

 

Example for Through Unimodular Matrix Using Python see in(QPythonLab, QPython [5]): 

import numpy as np  

import random  

import os  

import time  

print "="*90  

print "Generate A Linear Equations System AX=B With A Coefficient Matrix is A 
Unimodular Matrix"  

print "="*90 

 print "Notes: please make sure you have LaTex and pdf reader installed on your 

laptop."  

print "-"*90  

def r_ij(m, baris_i, baris_j, r):  

return m[baris_i] + r*m[baris_j]  

def tukar(m, baris_i, baris_j):  

m[baris_i] = m[baris_i] + m[baris_j] 

 m[baris_j] = m[baris_i] - m[baris_j] 

 m[baris_i] = m[baris_i] - m[baris_j]  

def buat_soal_SPL(n): 

 a = np.eye(n)  

for i in range(n):  

#buat entri diagonalnya 1 atau -1 
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 if random.randint(0,1) == 0: 

 a[i,i] = -1  

else: 

 a[i,i] = 1  

#acak entri2 di segitiga atasnya (di atas diagonal utama)  

for j in range(i+1,n):  

a[i,j] = random.randint(-3,3) 

 

 

 

#OBE mundur dari baris terakhir  

for j in range(n-1,-1,-1): 

 for i in range(j+1,n):  

if random.randint(0,1) == 0:  

a[i] = r_ij(a, i, j, random.randint(-3,1))  

else: 

 a[i] = r_ij(a, i, j, random.randint(1,4)) 

 tukar(a, 0, random.randint(1, n-1)) 

 #~ x = np.zeros((n,1)) 

 #~ for i in range(n) 

: #~ x[i] = random.randint(-5,5)  

#~ b = np.dot(a,x) 

 b = np.zeros((n,1))  

for i in range(n): 

 b[i] = random.randint(-5,5) 

 a_invers = np.linalg.inv(a) 

 x = np.dot(a_invers, b) 

 return a.astype(int), x.astype(int), b.astype(int)  
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os.system('rm soal_SPL.tex') 

 #tulis ke file 

 fileku = open('soal_SPL.tex', 'a')  

fileku.write('\documentclass{article}\n')  

fileku.write('\\begin{document}\n')  

fileku.write('Find the solutions of Linear Equations System below:\n') 

 fileku.write('\\begin{enumerate}\n')  

n = input('Number of variables: ') 

 soal = input('Number of questions: ')  

waktu_mulai = time.time()  

for i in range(soal): 

 fileku.write('\item \n') 

 # tulis soalnya di sini  

aku, xku, bku = buat_soal_SPL(n)  

print "\nFor Unimodular Matrix A:"  

print aku  

print "\nA Column (Solution) Matrix X is Generated:"  

print xku 

 print "\nand A Column Matrix B is Also Generated:"  

print bku fileku.write('$\\begin{array}{') for i in range(n+1):  

fileku.write('r@{\ }c@{\ }') 

 fileku.write('}\n') 

 print "\nTherefore We Will Get A Linear Equations System as Follow:"  

for baris in range(n): 

 tulisan = ""  

for kolom in range(n):  

if aku[baris, kolom] < 0:  

if kolom == 0:  
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tanda = '-'  

else:  

 

tanda = ' -& ' 

 if aku[baris, kolom] == -1:  

bil_asli = ""  

else:  

bil_asli = str(abs(aku[baris, kolom])) 

 bil = bil_asli + 'x_{' + str(kolom+1) + '}&' 

 elif aku[baris, kolom] == 0:  

if kolom == 0:  

tanda = '' 

 

 

else:  

tanda = '&'  

bil = '&'  

else: 

 if kolom == 0:  

tanda = '' 

 else: 

 tanda = ' +& '  

if aku[baris, kolom] == 1: 

 bil_asli = ""  

else:  

bil_asli = str(abs(aku[baris, kolom]))  

bil = bil_asli + 'x_{' + str(kolom+1) + '}&' 

 tulisan = tulisan + tanda + bil  
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if kolom + 1 == n:  

tulisan = tulisan + '=&' + str(bku[baris, 0]) + ' \\\\\n '  

#print "\nSPL-SPL yang dihasilkan:" 

 print tulisan 

 fileku.write(tulisan)  

fileku.write('\\end{array}$\n')  

fileku.write('\end{enumerate}\n')  

fileku.write('\end{document}\n') 

 fileku.close() os.system('pdflatex soal_SPL.tex') 

 # ~ os.system('defaultpdfviewer soal_SPL.pdf')  

lama = time.time() - waktu_mulai  

print "-"*90 print "This application runs for: ", lama," seconds (after you 

input the number of questions)" print "Please open the .pdf file with a name 

soal_SPL.pdf in the same folder with this program"  

print "-"*90 

 #os.system('pdfviewer soal_SPL.pdf') 

 

Output of code: 

 

56



 

 

 

 

 

 

 

 

 

 

 

 

Conclusions 

The conclusions of this paper are as follows: 

 1. If we use the code in this article, all the solutions of Determined SLE are integers (Arifin and 

Muktyas[11]) and (Uka and Hajrulla[12]). 

 2. The Python program can be used to generate a Determined SLE with a coefficient matrix in 

the form of a unimodular matrix, in a short time with the number of equations and variables 

determined by the user (Pedregosa[16]- https://www.python.org/ [Online][18]) . 

 3. By using a unimodular matrix, a Determined SLE can be formed that is sure to have a 

solution and is easy to do because it does not need to involve fractions(Anton and Rorres[1], 

Guy[3] Arifin and Muktyas[11], https://www.python.org/ [18]) . 

. 
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Abstract 

             In this paper, we investigate a new subclass ( ), ;m λ β ϕΣ  of bi-univalent functions in the open unit 
disk U  defined by Deniz-Özkan differential operator. We obtain initial coefficients bounds. 

 
          Keywords: Analytic function, Univalent function, Bi-univalent function, Coefficient inequality.  
 
1. Introduction 
 
Let A  denote the class of functions of the form:  

                                                           ( )
2

,n
n

n
f z z a z

∞

=

= +∑                                                         (1)  

which are analytic in the open unit disk { }: 1 .U z z= ∈ <  Further, by S  we shall denote the class of all 

functions in A  which are univalent in U . It is well known that every function  f S∈  has an inverse 1f − , 
defined by  

                                                          ( )( ) ( )1      f f z z z U− = ∈                                                   
and 

( )( ) ( ) ( )1
0 0

1      ;
4

f f w w w r f r f−  = < ≥ 
 

 

where 

 ( ) ( ) ( )1 2 2 3 3 4
2 2 3 2 2 3 42 5 5 ...f w w a w a a w a a a a w− = − + − − − + +  

A function f A∈  is said to be in ∑, the class of bi-univalent functions in U , if both  ( )f z and  ( )1f z−

are univalent in .U  Lewin [14] showed that 2 1.51a <  for every function  f ∈∑  given by (1). 

Posteriorly, Brannan and Clunie [1] improved Lewin’s result and conjectured that 2 2a ≤ for every 
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function  f ∈∑  given by (1). Later, Netanyahu [16] showed that 2
4max
3f

a
∈∑

=   The coefficient estimate 

problem for each of the following Taylor-Maclaurin coefficients: 

{ }( )   1,2,... ; 4na n N n∈ = ≥  
is still an open problem (see, for details, [21]). Since then, many researchers (see [2,5,8-11,22,23]) 
investigated several interesting subclasses of the class ∑ and found non-sharp estimates on the first two 
Taylor-Maclaurin coefficients 2a  and 3a . Also, many researchers (see [3,4,13,17,18]) investigated the 

upper bounds of combination of initial coefficients. In fact, its worth to mention that by making use of the 
Faber polynomial coefficient expansions Jahangiri and Hamidi [12] have obtained estimates for the 
general coefficients na  for bi-univalent functions subject to certain gap series.  

  Let P  denote the class of function of p  analytic in U such that ( )0 1p =  and ( ){ }Re 0p z > , where 

( ) ( )2
1 21 ... .p z p z p z z U= + + + ∈  

If f  and g  are analytic in ,U  we say that f  is subordinate to ,g  written symbolically as  

f g    or   ( ) ( )f z g z    ( ) ,z U∈  

if there exists a Schwarz function ( ),w z  which (by definition) is analytic in U  with (0) 0w =  and 

( ) 1w z <  in U  such that ( ) ( ( )), .f z g w z z U= ∈   

In particular, if the function ( )g z  is univalent in ,U then we have that: 

( ) ( )f z g z    ( )z U∈    if and only if  (0) (0)f g=   and ( ) ( ).f U g U⊆  

Let ϕ  be an analytic function with positive real part in the unit disk U  such that 

( ) ( )0 1, 0 0ϕ ϕ′= >  

and ( )Uϕ  is symmetric with respect to the real axis and has a series expansion of  the form (see  [15]): 

( ) ( )2 3
1 2 3 11 ... 0 .z B z B z B z Bϕ = + + + + >  

Let ( )u z  and ( )v z be two analytic functions in the unit disk U  with ( ) ( )0 0 0u v= =  ( ) ( )1, 1u z v z< < , 

and suppose that 

( ) ( )2 3 2 3
1 2 3 1 2 31 ... and v 1 ...u z b z b z b z w c w c w c w= + + + + = + + + + ⋅                      (2) 

60



 
5th INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 
1-3 December 2021, Istanbul, Turkey 

 

 
ICOM 2021 

ISTANBUL / TURKEY 

For above functions, well-known inequalities are 

2 2
1 2 1 1 2 11, 1 , 1 and 1 .b b b c c c≤ ≤ − < ≤ −                           (3) 

Further we have 

( )( ) ( ) ( )2 2
1 1 1 2 2 11 ... 1u z B b z B b B b z zϕ = + + + + <                           (4) 

and              

                                      ( )( ) ( ) ( )2 2
1 1 1 2 2 11 ... 1v w B c w B c B c w wϕ = + + + + <                           (5)                                                             

In [6] (see, also [7]), Deniz and Özkan defined the differential operator mDλ  (say: Deniz-Özkan 
differential operator) as follows: 

For the parametres 0λ ≥  and { }0 0m N N∈ = ∪  the differential operatör mDλ  on A  defined by  

0 ( ) ( )D f z f zλ =  

1 3 2( ) ( ) (2 1) ( ) ( )D f z z f z z f z zf zλ λ λ′′′ ′′ ′= + + +  

1( ) ( ( )m mD f z D D f zλ λ
−=  

for z U∈ . 

For a function  f  in A , from the definition of the differential operatör mDλ , we can easily see that                                                                                                                                                                                             

2

2
( ) ( ( 1) 1) .m m m n

n
n

D f z z n n a zλ λ
∞

=

= + − +∑                                                 (6) 

Also, ( ) .mD f z Aλ ∈  For the special cases of 0,1λ =  we obtain Salagean differential operatör (see [20]). 

The main object of this paper is to introduce the following new subclass of bi-univalent functions 

involving Deniz-Özkan differential operator mDλ  [6] and to obtain initial bounds for the Taylor- 

Maclaurin coefficients 2a  and 3a  of the functions belonging to this class. 
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2. Preliminaries and Definitions 

The function class ( ), ;mB λ β ϕ∑  defined as follows: 

Definition 1. A function ( )f z ∈∑  is said to be in the class ( ), ;mB λ β ϕ∑   if and only if 

( ) ( ) ( )( ) ( )1
m

mD f z
D f z z

z
λ

λβ β ϕ′− +   

and  

( ) ( ) ( )( ) ( )1
m

mD g w
D g w w

w
λ

λβ β ϕ′− +   

where ( ) ( )10 1, ,  and .z w U g w f wβ −≤ ≤ ∈ =  

Theorem 1. If  ( )f z  given by (1) is in the class ( ), ;mB λ β ϕ∑ , then 

( ) ( )( )
1 1

2 22
1 1 4 1

m

B B
a

Bχ β λ
≤

+ + +
                                                    (7) 

 

and 

( ) ( )
( ) ( )
( ) ( )

( ) ( )
( ) ( ) ( ) ( )( )

( ) ( )
( ) ( )

22

1
1

3 223
1 1

122
1

1 4 1
         if      

1 2 9 2 1 1 2 9 2 1
     

1 2 9 2 1 1 4 1
    if     

1 2 9 2 11 2 9 2 1 1 4 1

m

m m

m m

mm m

B B

a
xB B

B
x B

β λ

β λ β λ

β λ β λ

β λβ λ β λ

 + +   <
 + + + +      ≤ 

+ + + + +       ≥
+ + + + + + +        

       (8) 

                                                                                                                                                 
where 

 ( ) ( ) ( ) ( ) 222
1 21 2 9 2 1 1 4 1 .

m m
B Bχ β λ β λ= + + − + +        

Proof: Let ( ) ( ), ; .mf z B λ β ϕ∑∈ Then, there are analytic functions  and u v  with

( ) ( ) ( ) ( )0 0 0, 1, 1u v u z v w= = < < , given by (2) and satisfying the following conditions: 
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( ) ( ) ( )( ) ( )( )1
m

mD f z
D f z u z

z
λ

λβ λ ϕ′− + =                                       (9) 

and 

( ) ( ) ( )( ) ( )( )1 ,
m

mD g w
D g w v w

w
λ

λβ β ϕ′− + =                                   (10) 

where ( ) ( )1g w f w−= . Since 

 
( ) ( ) ( )( )

( ) ( ) ( ) ( ) 2
2 3

1

       =1+ 1 4 1 1 2 9 2 1 ...

m
m

m m

D f z
D f z

z
a z a z

λ
λβ β

β λ β λ

′− +

+ + + + + +      

             (11) 

    
and 

 
( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( )

'

2 2
2 2 3

1

       =1- 1 4 1 1 2 9 2 1 2 ...,

m
m

mm

D g w
D g w

w

a w a a w

λ
λβ β

β λ β λ

− +

 + + + + + − +    

(12) 

                                              
it follows from (4), (5), (11) and (12) that 

                                      ( ) ( ) 2 1 11 4 1 ,
m

a B bβ λ+ + =                                                          (13) 

( ) ( ) 2
3 1 2 2 11 2 9 2 1 ,

m
a B b B bβ λ+ + = +                                               (14) 

( ) ( ) 2 1 11 4 1 ,
m

a B cβ λ− + + =                                                       (15) 
 
and 

( ) ( ) ( )2 2
2 3 1 2 2 11 2 9 2 1 2 .

m
a a B c B cβ λ+ + − = +                                         (16) 

From (13) and (15), we get 

1 1c b= −                                                                          (17) 

( )( ) ( ) ( )
2

2 2 2 2
2 1 1 12 4 1 1 .

m
a B b cλ β + + = +

 
                                          (18) 

By adding (13) to (16), we have 

                                    ( ) ( ) ( ) ( )2 2 2
2 1 2 2 2 1 12 9 2 1 1 2 .

m
a B b c B b cλ β+ + = + + +                                 (19)                   

Therefore, from equalities (18) and (19) we find that 
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( ) ( ) ( ) ( )( ) ( )
2

2 2 3
1 2 2 1 2 22 9 2 1 1 2 2 4 1 1

m m
B B a B b cλ β λ β + + − + + = +        

              (20) 

Then, in view of (13), (17) and (3), we obtain 

 
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

2 22
1 2 2

22 23 3 3
1 2 2 1 1 1 1 2

2 9 2 1 1 2 2 4 1 1

2 1 2 2 4 1 1 .

m m

m

B B a

B b c B b B B a

λ β λ β

λ β

+ + − + +      

≤ + ≤ − = − + +  

 

Thus, we get 

( ) ( )
1 1

2 22
1

,
1 4 1

m

B B
a

Bχ β λ
≤

+ + +  

  

where  

 ( ) ( ) ( ) ( ) 222
1 21 2 9 2 1 1 4 1 .

m m
B Bχ β λ β λ= + + − + +        

 Next, in order to find the bound on 3a , subtracting (16) from (14) and using (17), we get  

                 ( ) ( ) ( ) ( ) ( )2
3 2 1 2 22 1 2 9 2 1 2 1 2 9 2 1 .

m m
a a B b cβ λ β λ+ + = + + + −                       (21)  

Then in view of (3) and (7), we have 

                               
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
2

3 2 1 2 2

2 2
2 1 1

2 1 2 9 2 1 2 1 2 9 2 1

                                         2 1 2 9 2 1 2 1 .

m m

m

a a B b c

a B b

β λ β λ

β λ

+ + ≤ + + + +      

≤ + + + −  
 

From (13), we immediately have 

( ) ( )

( ) ( ) ( ) ( )
1 3

22 2
1 2 1

1 2 9 2 1

  1 2 9 2 1 1 4 1 .

m

m m

B a

B a B

β λ

β λ β λ

+ +  

≤ + + − + + +      
   

Now the assertion (8) follows from (7). This evidently completes the proof of Theorem 1.  

By taking 1β =  in Theorem 1, we have 

Corollary 1. If ( )f z given by (1) is in the class ( ),1;mB λ ϕ∑ , then 

( )
1 1

2 2
14 4 1

m

B B
a

Bτ λ
≤

+ +  

                                             (22) 

and 
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( )
( )
( )

( )
( ) ( )( )

( )
( )

2

1
1

3 23
1 1

12
1

4 4 1
         if       

3 9 2 1 3 9 2 1
     

3 9 2 1 4 4 1
    if     

3 9 2 13 9 2 1 4 4 1

m

m m

m m

mm m

B B

a
B B

B
B

λ

λ λ

τ λ λ

λλ τ λ

 +   <
 + +      ≤ 

+ + +       ≥
+ + + +        

                (23) 

                                                                                                                                                 
  

where 

 ( ) ( ) 22
1 23 9 2 1 4 4 1 .

m m
B Bτ λ λ= + − +        

Putting 0m = in Theorem 1, we have 

Corollary 2. [19] If  ( )f z given by (1) is in the class ( ) ( )0 , ; ;B Bλ β ϕ β ϕ∑ ∑= , then 

( ) ( ) ( )
1 1

2 2 22
1 2 11 2 1 1

B B
a

B B Bβ β β
≤

+ − + + +
                                (24) 

and 

   
( )

( )

( ) ( ) ( )

( ) ( ) ( ) ( )( )
( )

2
1

1

22 33 2
1 2 1 1

12 22
1 2 1

1
         if    

1 2 1 2
     1 2 1 1 2 1

    if    
1 21 2 1 2 1 1

B B

a B B B B
B

B B B

β
β β

β β β β
ββ β β β

 +
<

+ +≤  + − + + + + ≥ ++ + − + + +

        (25) 

                                                                                                                                                 
  

Putting 0m =  in Corollary 1, we have 

Corollary 3. [19] If  ( )f z  given by (1) is in the class ( ) ( )0 ,1;B Hλ ϕ ϕ∑ ∑= , then 

                                                       1 1
2 2

1 2 13 4 4

B B
a

B B B
≤

− +
                                                       (26) 

and 
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( )

1
1

2 33
1 2 1 1

12
1 2 1

4                               if   
3 3

     3 4 3 4    if   
33 3 4 4

B B

a B B B B
B

B B B

 <
≤  − +
 ≥
 − +

                                      (27) 

                                                                                                                                                   
Remark 1. If 

( ) ( )2 21 1 2 2 ... 0 1
1

zz z z
z

α

ϕ α α α+ = = + + + < ≤ − 
                                (28) 

in Corollary 2, then we have Theorem 2.2 in [9]. 

 If 

( ) ( ) ( ) ( ) ( )2 21 1 2
1 2 1 2 1 ... 0 1 ,

1
z

z z z
z

α
α

ϕ α α α
+ − 

= = + − + − + < ≤ − 
                     (29) 

then we have Theorem 3.2 in [9]. 

   Also, if 0β =  and  1β = , we have Theorem 2.1 in [19]. 
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On The Spherical Projection of Dual Bézier Curves  
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Abstract 

In this paper  the projection curve  of a given Bézier curve in the dual vector space 𝐷   to the 
dual unit sphere is studied.  The first and second derivatives, norms and cross products of the first 
and second derivatives of the projection curve taken in this study were studied. 

 
Keywords: Dual Spherial Curves, Derivatives, Ruled surfaces. 
 

1. Introduction: 
The dual vector space expresses the duality of a vector space in the literature. However, It is 

necessary to make the following distinction: the word "dual vector" is defined in this study is an 
element of a vector space defined as the cartesian set of dual numbers which denoted by D and were 
introduced in 1873 by William Clifford [1], and developed by Eduard Study [2].  

After E.Study, with a dual spherical point corresponding to a directed line in R3 to study of a ruled 
surface is reduced to study of a spherical curve, many scientists studied in this area. Especially 
Hoschek [3] investigated integral invariants for characterization of the closed ruled surfaces. Gürsoy, 
Gürsoy and Küçük [4-9], Hacisalihoğlu [10,11] were studied the ruled surfaces with integral invariants 
which are stated as dual quantities. 

Bézier curves and ruled surfaces have been studied by [11-19]. Especially dual spherical curves 
corresponding to a ruled surface were studied before by [20], [21], [22], [23].  
 

2. Materials and method 

2.1. Dual Numbers and D-module 
 Let two dual vectors 𝑈 and 𝑉 be given as 𝑈 = 𝑈 + 𝜀𝑈∗ and 𝑉 = 𝑉 + 𝜀𝑉∗. Then the inner product 

of two dual vectors 𝑈 and 𝑉 is 〈𝑈, 𝑉〉 = 〈𝑈, 𝑉〉 + 𝜀(〈𝑈∗, 𝑉〉 + 〈𝑈, 𝑉∗〉). The norm of a dual vector 
𝑈 = 𝑈 + 𝜀𝑈∗ is a dual number such that  

 𝑈 = 〈𝑈, 𝑈〉 = 〈𝑈, 𝑈〉 + 2𝜀〈𝑈, 𝑈∗〉 = ‖𝑈‖ + 𝜀
〈 , ∗〉

‖ ‖
= 𝑢 + 𝜀𝑢∗ ∈ 𝐷  (1) 

if the real part of the dual vector is different from zero. i.e. 𝑈 ≠ 0. If the norm of a dual vector 𝑈 is 
1 + 𝜀0 = 1 then the vector 𝑈 is called dual unit vector [9]. 
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Proposition 2.1 [9]:Let a dual vector 𝑈 = 𝑈 + 𝜀𝑈∗ be given. If 𝑈 = 1 then ‖𝑈‖ = 1 and 〈𝑈, 𝑈∗〉 =

0.  

Proposition 2.2 [9]:Let a dual vector 𝑈 = 𝑈 + 𝜀𝑈∗ be given. If 𝑈 ≠ 1 and 𝑈 ≠ 0 then 

            𝑈 =
‖ ‖

=
‖ ‖

+ 𝜀
∗ 〈 , ∗〉

‖ ‖

‖ ‖
=

‖ ‖
+ 𝜀

∗

‖ ‖
−

〈 , ∗〉

‖ ‖
= �̇� + 𝜀�̇�∗  (2) 

is a dual unit vector with direction of 𝑈.  

2.2. Bézier Curves 
 

Let n+1 control points b0,b1,...,bnR3 be given. The Bézier curve of degree n is defined by 

 𝐵(𝑡) = ∑ 𝑏 𝐵 (𝑡) (3) 

where t∈[0,1] and the functions 𝐵 (𝑡) are called Bersntein polynomials or Bernstein basis functions 

and defined by such that if 0 ≤ 𝑖 ≤ 𝑛 then 𝐵 (𝑡) =
𝑛
𝑖

(1 − 𝑡) 𝑡  ; orherwise 𝐵 (𝑡) = 0 [15]. 

The first and second derivatives of the Bernstein basis functions 𝐵 (𝑡)  of degree n satisfy 

 𝐵 (𝑡) = n
i

i nt
B (t)

t(1 t)




= n n 1 n 1
i 1 iB (t) B (t) 
    (4) 

 𝐵 (𝑡) = n(n − 1) n 2 n 2 n 2
i i 1 i 2B (t) 2B (t) B (t)  

      (5) 

  

           =
2

n
i2 2

i(i 1) 2i(n 1)t n(n 1)t
B (t)

t (1 t)

     
  

 (6) 

[15]. 

Theorem 2.1: The first derivative of a Bézier curve of degree n given formed by (3) is 

 

n 1
(1) n 1
i i

i 0

B'(t) b B (t)






  (7) 

where (1)
i i 1 ib n(b b )  [15]. 
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It is clear that the first derivative B'(t)  of a Bézier curve 𝐵(𝑡) is also a Bézier curve of degree n-1 that 

its control points are (1)
i i 1 ib n(b b )  .  

 

Figure 1: A cubic Bézier curve with control points b0, b1 , b2, and b3. 

Corollary 2.1: The second derivative of a Bézier curve of degree n is 

 

n 2
(2) n 2
i i

i 0

B''(t) b B (t)






  (8) 

where (2)
i i 2 i 1 ib n(n 1)(b 2b b )     [15]. 

Corollary 2.2: The rth derivative of a Bézier curve of degree n is 

 

n r
(r) (r) n r

i i
i 0

B (t) b B (t)






  (9) 

where 
r

(r) r j r
i j i j

j 0

b n(n 1)...(n r 1) ( 1) ( )b




    
  
[15]. 

Theorem 2.2: A Bézier curve B(t) of degree n with control points b0, ..., bn  satisfies the following 
properties. 

1- B(0) = b0  ,     B(1) = bn            (Endpoint Interpolation Property) (10) 

         2-  '
t 0

dB
B (0)

dt  =  n( b1 – b0 )          (Endpoint Tangent Property)                (11) 

    '
t 1

dB
B (1)

dt  =  n( bn – bn-1 )  (12) 
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        3-     0 1 nt 0,1  için ,  B(t)  CH( b ,b ,..., b )    (Convex Hull Property (CHP)) (13) 

 (Thus every point of a Bézier curve lies inside the convex hull of its defining control points.) 

4- Let F be an (affine) transformation (for example, a rotation, reflection, translation, or 

scaling). Then  

              
n n

n n
i i i i

i 0 i 0

F B(t) F b B (t) F b B (t)
 

 
  

 
   (14) 

[15]. 

Theorem 2.3 : (de Casteljau Algorithm) Let a Bézier curve  B(t) of  degree  n  with control points  b0 

, b1 , b2 , ..., bn  be given. Then n
0 0B(t ) b  is satisfied for a specified parameter value t = t 0 ∈  [0, 1], 

where n
0b  is obtained by the de Casteljau algorithm as follows: 

 
0
i i

j j 1 j 1
i 0 i 0 i 1

b b

b (1 t )b t b    




  
 (15) 

for   j = 1,...,n  and  i = 0, 1, ...,n-j  [15]. 

 

Figure 2: The subdivision of a Bézier curve 

Consider a Bézier curve B(t) defined on  t 0,1 . Let [0,1] be any parameter. Then the Bézier  

curve B(t) can be divided two curve segments defined over the interval  [0, ] and [,1]. So obtained 
two curve segments is called Bleft(t) and Bright(t). Since Bleft(t) and Bright(t) are polynomial curves 
they can be represented in Bézier form over the interval [0, 1]. 
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Theorem 2.4 : (Subdivision) Let a Bézier curve  B(t) of  degree  n  with control points  b0 , b1 , b2 , ..., 
bn  be given. Two curve segments Bleft(t) and Bright(t) obtained by subdivision of  Bézier curve B(t) 
at parameter value [0,1]  are also Bézier curves and their control points are 0

0b , 1
0b , ..., n 1

0b  , n
0b  for 

Bleft ;  n
0b , n 1

1b  , ..., 1
n 1b  , 0

nb  for Bright, where j
ib  are the points computed in the de Casteljau 

algorithm.[15]. 

3. Results 

Let 𝐵(𝑡) be a dual Bézier curve with control points 𝑃 , 𝑃 , … , 𝑃 ∈ 𝐷  where 𝑃 = 𝑃 + 𝜀𝑃 ∗, 𝑃 , 𝑃 ∗ ∈

𝑅  for 𝑖 = 0,1, … , 𝑛.   𝑃 = 𝑃 + 𝜀𝑃 ∗ ∈ 𝐷  Then for 𝑡 ∈ [0,1], the dual Bézier curve can be defined as  

𝐵(𝑡) = ∑ 𝐵 (𝑡)𝑃  (16) 
Since each control point 𝑃 = 𝑃 + 𝜀𝑃 ∗ then for 𝑡 ∈ [0,1] the dual Bézier curve can be written as  

𝐵(𝑡) = ∑ 𝐵 (𝑡)𝑃 + 𝜀 ∑ 𝐵 (𝑡)𝑃 ∗        (17) 
     = 𝐵(𝑡) + 𝜀𝐵∗(𝑡)         

where 𝐵(𝑡) and 𝐵∗(𝑡) are real Bézier curves of degree n with control points 𝑃 , 𝑃 , … , 𝑃  and 
𝑃 ∗, 𝑃 ∗, … , 𝑃 ∗ respectively.    

Let the coordinate frame in R3 be denoted as {𝑒 , 𝑒 , 𝑒 }. Then the j.th coordinat element of any control 
point 𝑃 = 𝑃 , 𝑃 , 𝑃  in R3 for j = 1,2,3 is the inner product 𝑃 = 〈𝑃 , 𝑒 〉. So any control point 𝑃  is 
stated as 

𝑃 = ∑ 〈𝑃 , 𝑒 〉 𝑒 . (18) 

Similarly since any control point of 𝑃  in D3 is stated as  𝑃 = 𝑃 + 𝜀𝑃 ∗ = 𝑃 , 𝑃 , 𝑃 +

𝜀 𝑃 ∗, 𝑃 ∗, 𝑃 ∗  where 𝑃 , 𝑃 ∗ ∈ 𝑅  then  
𝑃 = ∑ 〈𝑃 , 𝑒 〉 𝑒 + 𝜀 ∑ 〈𝑃 ∗, 𝑒 〉 𝑒   (19) 

can be stated. The norm of the curve B(t) at any time t is 

‖𝐵(𝑡)‖ = 𝐵 (𝑡)𝑃 = 𝐵 (𝑡)𝑃  

          = ∑ ∑ 𝐵 (𝑡)〈𝑃 , 𝑒 〉 = ∑ 〈∑ 𝐵𝑖
𝑛(𝑡)𝑃𝑖

𝑛
𝑖=0 , 𝑒 〉 = ∑ 〈𝐵(𝑡), 𝑒 〉  (20) 

 Now for 𝑡 ∈ [0,1] the dual Bézier curve 𝐵(𝑡) can be expressed as  
      𝐵(𝑡) = ∑ 𝐵 (𝑡)𝑃 + 𝜀 ∑ 𝐵 (𝑡)𝑃 ∗ 
          = ∑ 𝐵 (𝑡) ∑ 〈𝑃 , 𝑒 〉 𝑒 + 𝜀 ∑ 𝐵 (𝑡) ∑ 〈𝑃 ∗, 𝑒 〉 𝑒  
          = ∑ ∑ 𝐵 (𝑡)〈𝑃 , 𝑒 〉 𝑒 + 𝜀 ∑ ∑ 𝐵 (𝑡)〈𝑃 ∗, 𝑒 〉 𝑒  

 (21) 
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Figure 3: Unit dual Sphere and Projection curve 𝐵(𝑡) of the Bézier curve 𝐵(𝑡) to unit dual sphere 

The projection of the dual Bézier curve 𝐵(𝑡) to unit dual sphere D-module is a curve in Fig. 3 denoted 
by 𝐵(𝑡) and defined by  

𝐵(𝑡) =
( )

‖ ( )‖
=

∑ ( )

∑ ( )
=

∑ ( )( ∗)

∑ ( )
= 𝐵(𝑡) + 𝜀𝐵∗(𝑡) (22) 

Since  the norm of the curve 𝐵(𝑡) is 

𝐵(𝑡) = ‖𝐵(𝑡) + 𝜀𝐵∗(𝑡)‖ = ‖𝐵(𝑡)‖ + ε
〈 ( ), ∗( )〉

‖ ( )‖
 (23) 

the projection curve 𝐵(𝑡) can be stated as  

𝐵(𝑡) =
( )

‖ ( )‖
=

( )

‖ ( )‖
〈 ( ), ∗( )〉

‖ ( )‖

=
‖ ( )‖

− ε
〈 ( ), ∗( )〉

‖ ( )‖
𝐵(𝑡) (24) 

When (16) and (19) is also replaced by (24) the projection curve 𝐵(𝑡) of the dual Bézier curve 𝐵(𝑡) to 
unit dual sphere  

𝐵(𝑡) =
‖ ( )‖

− ε
〈 ( ), ∗( )〉

‖ ( )‖
∑ 𝐵 (𝑡) ∑ 〈𝑃 , 𝑒 〉 𝑒 + 𝜀 ∑ 𝐵 (𝑡) ∑ 〈𝑃 ∗, 𝑒 〉 𝑒   (25) 

                      =

⎝

⎜
⎛ 1

∑ ∑ 𝐵𝑖
𝑛

(𝑡)〈𝑃𝑖, 𝑒𝑗〉𝑛
𝑖=0

2
3
𝑗=1

− ε
∑ ∑ 𝐵𝑖

𝑛
(𝑡)𝐵𝑗

𝑛
(𝑡)〈𝑃𝑖, 𝑃𝑗

∗
〉𝑛

𝑗=0
𝑛
𝑖=0

∑ ∑ 𝐵𝑖
𝑛

(𝑡)〈𝑃𝑖, 𝑒𝑗〉𝑛
𝑖=0

2
3
𝑗=1

/

⎠

⎟
⎞

〈𝑃 , 𝑒 〉 𝑒 𝐵 (𝑡) + 𝜀 〈𝑃 ∗, 𝑒 〉 𝑒 𝐵 (𝑡)  

                      

=
∑ ∑ 〈𝑃 , 𝑒 〉 𝑒 𝐵 (𝑡)

∑ ∑ 𝐵𝑖
𝑛

(𝑡)〈𝑃𝑖, 𝑒𝑗〉𝑛
𝑖=0

2
3
𝑗=1

+ ε

⎝

⎜
⎛ ∑ ∑ 〈𝑃 ∗, 𝑒 〉 𝑒 𝐵 (𝑡)

∑ ∑ 𝐵𝑖
𝑛

(𝑡)〈𝑃𝑖, 𝑒𝑗〉𝑛
𝑖=0

2
3
𝑗=1

−
∑ ∑ 𝐵𝑖

𝑛
(𝑡)𝐵𝑗

𝑛
(𝑡)〈𝑃𝑖, 𝑃𝑗

∗
〉𝑛

𝑗=0
𝑛
𝑖=0

∑ ∑ 𝐵𝑖
𝑛

(𝑡)〈𝑃𝑖, 𝑒𝑗〉𝑛
𝑖=0

2
3
𝑗=1

/
〈𝑃 , 𝑒 〉 𝑒 𝐵 (𝑡)

⎠

⎟
⎞
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                  = 𝐵(𝑡) + 𝜀𝐵∗(𝑡)  

can be written. Therefore this theorem can be stated as follows 

Theorem 3.1: Let 𝐵(𝑡) = 𝐵(𝑡) + 𝜀𝐵∗(𝑡) be a dual Bézier curve with control points 𝑃 , 𝑃 , … , 𝑃 ∈ 𝐷  
where 𝑃 = 𝑃 + 𝜀𝑃 ∗, 𝑃 , 𝑃 ∗ ∈ 𝑅  for 𝑖 = 0,1, … , 𝑛. Then the projection curve 𝐵(𝑡) of the dual Bézier 
curve 𝐵(𝑡) to unit dual sphere is  

      𝐵(𝑡) = 𝐵(𝑡) + 𝜀𝐵∗(𝑡)  

where  

   𝐵(𝑡) =
∑ ∑ 〈 , 〉 ( )

∑ ∑ ( )〈 , 〉

 (26) 

and  

    𝐵∗(𝑡) =
∑ ∑ 〈 ∗, 〉 ( )

∑ ∑ ( )〈 , 〉

−
∑ ∑ ( ) ( )〈 , ∗〉

∑ ∑ ( )〈 , 〉
/ ∑ ∑ 〈𝑃 , 𝑒 〉 𝑒 𝐵 (𝑡) (27) 

It can be written more simply as  

          𝐵(𝑡) =  
( )

‖ ( )‖
      and       𝐵∗(𝑡) =

∗( )

‖ ( )‖
−

〈 ( ), ∗( )〉

‖ ( )‖
𝐵(𝑡) (28) 

From Proposition 2.1  the inner product these vectors 〈𝐵(𝑡), 𝐵∗(𝑡)〉 = 0 satisfies.  

According to E.Study’s theorem any dual unit vector corresponds to a oriented line in R3. Since for 
every 𝑡 ∈ [0,1] the projection curve 𝐵(𝑡) of the dual Bézier curve 𝐵(𝑡) to unit dual sphere is a dual 
unit vector, for any 𝑡 ∈ [0,1], the projection curve 𝐵(𝑡 ) also corresponds to a oriented line in R3. So 
the projection curve 𝐵(𝑡) corresponds to a ruled surface in R3. The oriented line corresponding to 
𝐵(𝑡 ) is a line with direction of the vector 𝐵(𝑡 ) and its distance from origine is ‖𝐵∗(𝑡 )‖.   

If 𝐵∗(𝑡) is denoted from (36) as 𝐵∗ =
∗

‖ ‖
−

〈 , ∗〉

‖ ‖
𝐵 for shortness, the magnitude ‖𝐵∗‖ of the dual 

part of the projection curve 𝐵(𝑡) of the dual Bézier curve 𝐵(𝑡) is obtained as follows:  

          ‖𝐵∗‖ =
𝐵∗

‖𝐵‖
−

〈𝐵,𝐵∗〉

‖𝐵‖3 𝐵  

              = 
‖ ‖

‖(‖𝐵‖ 𝐵∗ − 〈𝐵, 𝐵∗〉𝐵)‖ 

               = 1

‖𝐵‖3
〈 ‖𝐵‖2𝐵

∗
− 〈𝐵, 𝐵∗〉𝐵 , ‖𝐵‖2𝐵

∗
− 〈𝐵, 𝐵∗〉𝐵  〉  

               = 1

‖𝐵‖3
‖𝐵‖4〈𝐵∗, 𝐵∗〉 − 2‖𝐵‖2〈𝐵, 𝐵∗〉2 + 〈𝐵, 𝐵∗〉2〈𝐵, 𝐵〉    
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               = 1

‖𝐵‖3
‖𝐵‖4〈𝐵∗, 𝐵∗〉 − 2‖𝐵‖2〈𝐵, 𝐵∗〉2 + 〈𝐵, 𝐵∗〉2‖𝐵‖2 

             = 1

‖𝐵‖2
‖𝐵‖2〈𝐵∗, 𝐵∗〉 − 〈𝐵, 𝐵∗〉2  

            =
‖ ‖

〈𝐵, 𝐵〉〈𝐵∗, 𝐵∗〉 − 〈𝐵, 𝐵∗〉  

            =
‖ ‖

〈𝐵 × 𝐵∗, 𝐵 × 𝐵∗〉 =
‖ × ∗‖

‖ ‖
=

‖ ∗‖

‖ ‖
 (29) 

where 𝜃 is an angle between the vectors 𝐵 and 𝐵∗.  

Now the vector 𝐵(𝑡) and the magnitude of the vector 𝐵∗(𝑡) for 𝑡 = 0 and  𝑡 = 1  can be easily stated 
by end point interpolation property of Bézier curves from (18). In case for 𝑡 ≠ 0 or 𝑡 ≠ 1 they can 
be calculated by the de Casteljau algorithm (theorem 2.3) as follows: 

Theorem 3.2: From (29) the projection curve 𝐵(𝑡) of the dual Bézier curve 𝐵(𝑡) for 𝑡 = 0 and  
𝑡 = 1 are 

𝐵(𝑡) = 𝐵(𝑡)| + 𝜀𝐵∗(𝑡)| =
‖ ‖

+ 𝜀
∗

‖ ‖
−

〈 , ∗〉

‖ ‖3 𝑃   (30)    

𝐵(𝑡) = 𝐵(𝑡)| + 𝜀𝐵∗(𝑡)| =
‖ ‖

+ 𝜀
∗

‖ ‖
−

〈 , ∗〉

‖ ‖3 𝑃      (31) 

 

Theorem 3.3: The projection curve 𝐵(𝑡) of the dual Bézier curve 𝐵(𝑡) for any 𝑡 ∈ (0,1) is    

    𝐵(𝑡) = 𝐵(𝑡)| + 𝜀𝐵∗(𝑡)| = + 𝜀
∗

−
〈 ,

∗
〉

3 𝑃   (32)    

where 𝑃  and 𝑃 ∗ are the points computed in the de Casteljau algorithm. 

Theorem 3.3:  Let the dual spherical projection curve 𝐵(𝑡) of the given the dual Bézier curve 𝐵(𝑡) to 
dual unit sphere for every 𝑡 ∈ [0,1] be given. For shortness, if the curves  𝐵(𝑡) and 𝐵∗(𝑡) are denoted 

by 𝐵 and 𝐵∗ respectively then the derivative of the curve 𝐵 and magnitude is 
 

𝐵 =
𝐵 ‖𝐵‖ − 〈𝐵, 𝐵′〉𝐵

‖𝐵‖
+ 𝜀

𝐵∗′

‖𝐵‖
−

𝐵∗〈𝐵, 𝐵 〉

‖𝐵‖
−

〈𝐵∗, 𝐵 〉 + 〈𝐵∗′, 𝐵〉

‖𝐵‖
−

〈𝐵∗, 𝐵〉〈𝐵, 𝐵 〉

‖𝐵‖
𝐵 −

〈𝐵∗, 𝐵〉

‖𝐵‖
𝐵  

So the magnitude of this derivative is 

𝐵 =
‖(𝐵 ‖𝐵‖ − 〈𝐵, 𝐵′〉𝐵)‖

‖𝐵‖
+ 𝜀

‖𝐵‖ 〈𝐵∗ , 𝐵′〉 − 〈𝐵∗, 𝐵 〉〈𝐵, 𝐵 〉 − 〈𝐵∗, 𝐵〉‖𝐵 ‖ +
〈 ∗, 〉〈 , 〉

‖ ‖

‖(𝐵 ‖𝐵‖ − 〈𝐵, 𝐵′〉𝐵)‖
 

 Theorem 3.4:  Let the dual spherical projection curve 𝐵(𝑡) of the given the dual Bézier curve 𝐵(𝑡) to 
dual unit sphere for every 𝑡 ∈ [0,1] be given. For shortness, if the curves  𝐵(𝑡) and 𝐵∗(𝑡) are denoted 

by 𝐵 and 𝐵∗ respectively then the second order derivative of 𝐵 is 
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𝐵 =
𝐵′

‖𝐵‖
−

2〈𝐵, 𝐵 〉𝐵

‖𝐵‖
−

‖𝐵 ‖ + 〈𝐵 , 𝐵〉

‖𝐵‖
+

3〈𝐵, 𝐵 〉

‖𝐵‖
𝐵 +

+𝜀

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝐵∗′′

‖𝐵‖
−

2〈𝐵, 𝐵 〉𝐵∗

‖𝐵‖
−

‖𝐵 ‖ + 〈𝐵 , 𝐵〉

‖𝐵‖
+

3〈𝐵, 𝐵 〉

‖𝐵‖
𝐵∗ −

〈𝐵∗, 𝐵〉

‖𝐵‖
𝐵

+ −
〈𝐵∗, 𝐵 〉 + 2〈𝐵∗ , 𝐵 〉 + 〈𝐵, 𝐵∗ 〉

‖𝐵‖
+

4〈𝐵∗, 𝐵 〉〈𝐵, 𝐵 〉

‖𝐵‖
+

4〈𝐵∗ , 𝐵〉〈𝐵, 𝐵 〉

‖𝐵‖
𝐵

+
〈𝐵∗, 𝐵〉‖𝐵 ‖ + 〈𝐵∗, 𝐵〉〈𝐵 , 𝐵〉

‖𝐵‖
−

5〈𝐵∗, 𝐵〉〈𝐵, 𝐵 〉

‖𝐵‖
𝐵 − 2

〈𝐵∗, 𝐵 〉 + 〈𝐵∗′, 𝐵〉

‖𝐵‖
− 4

〈𝐵∗, 𝐵〉〈𝐵, 𝐵 〉

‖𝐵‖
𝐵

+ ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

The cross product of the vectors 𝐵 × 𝐵  is as follows 

Theorem 3.5: Let 𝐵(𝑡) = 𝐵(𝑡) + 𝜀𝐵∗(𝑡) be a dual Bézier curve with control points 𝑃 , 𝑃 , … , 𝑃 ∈ 𝐷  

where 𝑃 = 𝑃 + 𝜀𝑃 ∗, 𝑃 , 𝑃 ∗ ∈ 𝑅  for 𝑖 = 0,1, … , 𝑛. Then The cross product of the vectors 𝐵 × 𝐵  of 

the projection curve 𝐵(𝑡) of the dual Bézier curve 𝐵(𝑡) to unit dual sphere is 

𝐵  ×  𝐵 =
1

‖𝐵‖
𝐵 ×  𝐵′ +

‖𝐵 ‖ + 〈𝐵 , 𝐵〉

‖𝐵‖
+

5〈𝐵, 𝐵 〉

‖𝐵‖
𝐵 × 𝐵 −

〈𝐵, 𝐵 〉

‖𝐵‖
𝐵 × 𝐵

+𝜀

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1

‖𝐵‖
𝐵 × 𝐵∗′′ −

2〈𝐵, 𝐵 〉

‖𝐵‖
𝐵 × 𝐵∗ −

‖𝐵 ‖ + 〈𝐵 , 𝐵〉

‖𝐵‖
+

3〈𝐵, 𝐵 〉

‖𝐵‖
𝐵 × 𝐵∗ −

〈𝐵∗, 𝐵〉

‖𝐵‖
𝐵 × 𝐵

+ −
〈𝐵∗, 𝐵 〉 + 2〈𝐵∗ , 𝐵 〉 + 〈𝐵, 𝐵∗ 〉

‖𝐵‖
+

4〈𝐵∗, 𝐵 〉〈𝐵, 𝐵 〉

‖𝐵‖
+

4〈𝐵∗ , 𝐵〉〈𝐵, 𝐵 〉

‖𝐵‖
𝐵 × 𝐵

+
〈𝐵∗, 𝐵〉‖𝐵 ‖ + 〈𝐵∗, 𝐵〉〈𝐵 , 𝐵〉

‖𝐵‖
−

5〈𝐵∗, 𝐵〉〈𝐵, 𝐵 〉

‖𝐵‖
𝐵 × 𝐵 +

−
〈𝐵, 𝐵 〉

‖𝐵‖
𝐵 × 𝐵∗ +

2〈𝐵, 𝐵 〉

‖𝐵‖
𝐵 × 𝐵∗ −

〈𝐵, 𝐵 〉

‖𝐵‖
𝐵∗ × 𝐵 +

2〈𝐵, 𝐵 〉

‖𝐵‖
𝐵∗ × 𝐵

+
2〈𝐵, 𝐵 〉〈𝐵∗, 𝐵〉

‖𝐵‖
𝐵 × 𝐵 + 2

〈𝐵, 𝐵 〉〈𝐵∗, 𝐵 〉 + 〈𝐵, 𝐵 〉〈𝐵∗′, 𝐵〉

‖𝐵‖
− 7

〈𝐵∗, 𝐵〉〈𝐵, 𝐵 〉

‖𝐵‖
𝐵 × 𝐵

+
1

‖𝐵‖
𝐵∗ × 𝐵 −

2〈𝐵, 𝐵 〉

‖𝐵‖
𝐵∗′ × 𝐵 −

‖𝐵 ‖ + 〈𝐵 , 𝐵〉

‖𝐵‖
+

3〈𝐵, 𝐵 〉

‖𝐵‖
𝐵∗ × 𝐵

−
〈𝐵∗, 𝐵〉

‖𝐵‖
𝐵 × 𝐵 +

〈𝐵∗, 𝐵〉‖𝐵 ‖ + 〈𝐵∗, 𝐵〉〈𝐵 , 𝐵〉

‖𝐵‖
𝐵 × 𝐵

−
〈𝐵∗, 𝐵 〉 + 〈𝐵∗′, 𝐵〉

‖𝐵‖
𝐵 × 𝐵 + 2

〈𝐵, 𝐵 〉〈𝐵∗, 𝐵 〉 + 〈𝐵, 𝐵 〉〈𝐵∗′, 𝐵〉

‖𝐵‖
−

2〈𝐵∗, 𝐵〉〈𝐵, 𝐵 〉

‖𝐵‖
𝐵 × 𝐵

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤
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Abstract 

In this work, all rings have unity and all modules are unitary left modules. Let M be an R-

module. If every cofinite submodule of M has a g-radical supplement that is a direct summand in M, 

then M is called a cofinitely -g-radical supplemented (briefly, cofinitely -g-Rad-supplemented) 

module. In this work, some properties of these modules are investigated. 

Keywords: Small Submodules, g-Small Submodules, Supplemented Modules, g-Supplemented Modules. 

 

2020 Mathematics Subject Classification: 16D10, 16D80. 

 

1. INTRODUCTION 

Throughout this paper all rings will be associative with identity and all modules will be unital left 

modules. 

Let M be an R-module and N≤M. If M/N is finitely generated, then N is called a cofinite 

submodule of M. Let M be an R-module and N≤M. If L=M for every submodule L of M such that M=N+L, 

then N is called a small submodule of M and denoted by NM. Let M be an R-module and N≤M. If there 

exists a submodule K of M such that M=N+K and NK=0, then N is called a direct summand of M and it 

is denoted by M=NK. The intersection of all maximal submodules of M is called the radical of M and 

denoted by RadM. If M have no maximal submodules, then it is defined by RadM=M. A submodule N of 

an R-module M is called an essential submodule of M and denoted by NM in case KN≠0 for every 

submodule K≠0, or equivalently, K=0 for every K≤M with NK=0. Let M be an R-module and K be a 

submodule of M. K is called a generalized small (or briefly, g-small) submodule of M if for every 

essential submodule T of M with the property M=K+T implies that T=M, then we write KgM  (in [16], it 

is called an e-small submodule of M and denoted by KeM). Let M be an R-module. M is called a hollow 

module if every proper submodule of M is small in M. M is called a generalized hollow (or briefly, g-

hollow) module if every proper submodule of M is g-small in M. Here it is clear that every hollow module 

is generalized hollow. The converse of this statement is not always true. M is called a local module if M 

has the largest submodule, i.e. a proper submodule which contains all other proper submodules. M is 

called a generalized local (briefly, g-local) if M has the large proper essential submodule which contain 

all proper essential submodules of M or M have no proper essential submodules. Let U and V be 
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submodules of M. If M=U+V and V is minimal with respect to this property, or equivalently, M=U+V and 

UVV, then V is called a supplement of U in M. M is said to be supplemented if every submodule of M 

has a supplement in M. M is said to be cofinitely supplemented if every cofinite submodule of M has a 

supplement in M. If every submodule of M has a supplement that is a direct summand in M, then M is 

called a -supplemented module. M is said to be -cofinitely supplemented if every cofinite submodule 

of M has a supplement that is a direct summand in M. Let M be an R-module and U,V≤M. If M=U+V and 

M=U+T with TV implies that T=V, or equivalently, M=U+V and UVgV, then V is called a g-

supplement of U in M. M is said to be g-supplemented if every submodule of M has a g-supplement in M. 

M is said to be cofinitely g-supplemented if every cofinite submodule of M has a g-supplement in M. M is 

said to be -g-supplemented if every submodule of M has a g-supplement that is a direct summand in M 

(see [11]). M is said to be cofinitely -g-supplemented if every cofinite submodule of M has a g-

supplement that is a direct summand in M (see [12]). A module M is said to have the Summand Sum 

Property (SSP) if the sum of two direct summands of M is again a direct summand of M (see [15, 

Exercise 39.17 (3)]). We say that a module M has (D3) property if M1M2 is a direct summand of M for 

every direct summandsM1 and M2 of M with M=M1+M2 (see [3]). Let M be an R-module and U,V≤M. If 

M=U+V and UV≤RadV, then V is called a generalized (radical) supplement (briefly, Rad-supplement) 

of U in M. M is said to be generalized (radical) supplemented (briefly, Rad-supplemented) if every 

submodule of M has a Rad-supplement in M. M is said to be cofinitely Rad-supplemented if every cofinite 

submodule of M has a Rad-supplement in M. M is said to be generalized (radical) -supplemented 

(briefly, Rad--supplemented) if every submodule of M has a Rad-supplement that is a direct summand 

in M. M is said to be cofinitely Rad--supplemented if every cofinite submodule of M has a Rad-

supplement that is a direct summand in M. The intersection of all essential maximal submodules of an R-

module M is called the generalized radical of M and denoted by RadgM (in [16], it is denoted by RadeM). 

If M have no essential maximal submodules, then we denote RadgM=M. Let M be an R-module and 

U,V≤M. If M=U+V and UV≤RadgV, then V is called a generalized radical supplement (or briefly, g-

radical supplement) of U in M. M is said to be generalized radical supplemented (briefly, g-radical 

supplemented) if every submodule of M has a g-radical supplement in M. M is said to be cofinitely g-

radical supplemented if every cofinite submodule of M has a g-radical supplement in M. M is said to be 

-g-Rad-supplemented if every submodule of M has a g-radical supplement that is a direct summand in 

M (see [13]). 

More informations about supplemented modules are in [2] and [15]. More results about -

supplemented modules are in [6]. More details about cofinitely supplemented modules are in [1]. More 

informations about -cofinitely supplemented modules are in [3]. More details about generalized 

(radical) supplemented modules are in [14]. More details about generalized (radical) -supplemented 

modules are in [4] and [5]. More results about cofinitely Rad--supplemented modules are in [5]. More 

informations about g-supplemented modules are in [8]. More details about cofinitely g-supplemented 
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modules are in [7]. More informations about g-radical supplemented modules are in [9]. More details 

about cofinitely g-radical supplemented modules are in [10]. 

 

2. COFINITELY -G-RADICAL SUPPLEMENTED MODULES 

Definition 1.1. Let M be an R-module. If every cofinite submodule of M has a g-radical supplement 

that is a direct summand in M, then M is called a cofinitely -g-radical supplemented (briefly, 

cofinitely -g-Rad-supplemented) module. 

 

Proposition 2.2. Every -g-Rad-supplemented module is cofinitely -g-Rad-supplemented. 

Proof. Clear from definitions. 

 

Proposition 2.3. Every fintely generated cofinitely -g-Rad-supplemented module is -g-Rad-

supplemented. 

Proof. Let M be a finitely generated cofinitely -g-Rad-supplemented module and U≤M. Since M is 

finitely generated, M/U is also finitely generated and U is a cofinite submodule of M. Since M is 

cofinitely -g-Rad-supplemented, U has a g-radical supplement that is a direct summand in M. Hence M 

is -g-Rad-supplemented, as desired. 

 

Proposition 2.4. Every cofinitely -g-supplemented module is cofinitely -g-Rad-supplemented. 

Proof. Let M be a cofinitely -g-supplemented module and U be a cofinite submodule of M. Then U has 

a g-supplement V that is a direct summand in M. Since V is a g-supplement of U in M, M=U+V and 

UVgV. Then UVRadgV and V is a g-radical supplement of U in M. Hence M is cofinitely -g-

Rad-supplemented, as desired. 

 

Proposition 2.5. Every -cofinitely supplemented module is cofinitely -g-Rad-supplemented. 

Proof. Let M be a -cofinitely supplemented module and U be a cofinite submodule of M. Then U has a 

supplement V that is a direct summand in M. Here M=U+V and UVV. Since UVV, UVgV. 

Then V is a g-supplement of U in M. Then M is cofinitely -g-supplemented and by Proposition 2.4, M is 

-g-Rad-supplemented. 

 

Proposition 2.6. Every -g-supplemented module is cofinitely -g-Rad-supplemented. 

Proof. Since every -g-supplemented module is cofinitely -g-supplemented, by Proposition 2.4, every 

-g-supplemented module is cofinitely -g-Rad-supplemented. 

 

Proposition 2.7. Every -supplemented module is cofinitely -g-Rad-supplemented. 

Proof. Clear from Proposition 2.6, since every -supplemented module is -g-supplemented. 
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Proposition 2.8. Hollow and local modules are cofinitely -g-Rad-supplemented. 

Proof. Clear from Proposition 2.7, since hollow and local modules are -supplemented. 

 

Proposition 2.9. Every (D1) module is cofinitely -g-Rad-supplemented. 

Proof. Clear from Proposition 2.7, since every (D1) module is -supplemented. 

 

Proposition 2.10. Every g-hollow module is cofinitely -g-Rad-supplemented. 

Proof. Let M be a g-hollow module. Then M is -g-supplemented and by Proposition 2.6, M is cofinitely 

-g-Rad-supplemented, as desired. 

 

3. CONCLUSION 

Cofinitely  -g-Rad-supplemented modules are special parts of -g-Rad-supplemented modules. 
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Abstract 

In this study, the properties of the eigenvalues of the boundary value problem, the 

oscillation properties of the eigenfunctions, and the asymptotic formulas of the eigenvalues 

and eigenfunctions are obtained. For these conditions, definitions suitable for the boundary 

value problem and auxiliary hypotheses are used.  

Keywords: Eigenvalue, Eigenfunction, Oscillation Theorem, Asymptotic formula, 

Boundary Value Problem. 

 

1. Introduction  

We consider the following boundary value problem with a spectral parameter in the 

equation and the boundary conditions.   

                                                         
2( ) , 0 1,u q x u u x                                                        (1.1) 

    0 1( λ)u 0 0 0,u     (1.2)   

      0 1β β 1 1 0.u u     (1.3) 

Here   is a spectral parameter,      is a nonnegative continuous function on the interval [0,1]  

and     and    reel constants (i=0,1). The present article is devoted to studying the properties 

of the eigenvalues and eigenfunctions of the boundary value (1.1)-(1.3). The boundary value 

problem involving parameters in boundary conditions is considered in        and other 

statements are studied in      .  

In this article, the eigenvalues and eigenfunctions for the boundary value problem 

(1.1)-(1.3) are examined and the oscillation theorem about the zeros of eigenfunction is 

proved. 

Throughout the article, we assume that the following conditions are met. 
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                                                                           (1.4) 

 

2. Some Properties of the Eigenvalues of the Boundary Value Problem   

Lemma 2.1. The eigenvalues of the boundary value problem (1.1)-(1.3) are real. 

Proof:        is the eigenfunction of the boundary value problem (1.1)-(1.3)  and   is the 

eigenvalue satisfying this function. Multiply both sides of equation  (1.1) by       ̅̅ ̅̅ ̅̅ ̅̅ ̅ and take 

the integral from 0 to 1 corcerning for to x . 

  ∫                ̅̅ ̅̅ ̅̅ ̅̅ ̅  
 

 
 ∫                  ̅̅ ̅̅ ̅̅ ̅̅ ̅  

 

 
   ∫              ̅̅ ̅̅ ̅̅ ̅̅ ̅   

 

 
 (2.1) 

By using the formula of integration by part, 

              ̅̅ ̅̅ ̅̅ ̅̅ ̅  ∫           
 

 

       ∫             
 

 

   ∫              

 

 

 

              ̅̅ ̅̅ ̅̅ ̅̅ ̅               ̅̅ ̅̅ ̅̅ ̅̅ ̅  ∫           
 

 

       ∫             
 

 

   ∫             

 

 

 

Using the boundary conditions , 

      ̅̅ ̅̅ ̅̅ ̅̅ ̅ (      )             ̅̅ ̅̅ ̅̅ ̅̅ ̅  
 
            ∫           

 

 

  

     ∫             
 

 

    ∫            

 

 

 

                                                 ∫ |       |
 

 

 

       ∫             
 

 

  

   ∫            

 

 

   

Put it in appropriate parentheses as the quadratic equation connected to the λ: 

 (   
                     )    

                      ∫           
 

 

     ∫             
 

 

   ∫             

 

 

 

     ∫             
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                      ∫           

 

 

     ∫             
 

 

  

Hence, the eigenvalue   is a root of the quadratic equation 

                                   .                                                         (2.2)            

By (1.4),        and       ; so,                >0. The equation (2.2) has only 

real roots. Lemma 2.1 is proved. 

Lemma 2.2. The eigenvalues of the boundary value problem (1.1)-(1.3) constitute an at most 

countable set without finite limit points. All eigenvalues of the boundary value problem (1.1)-(1.3) are 

simple. 

2. Oscillatory Properties of the Eigenfunctions of Problem (1.1)-(1.3) 

Lemma 3.1. Let u(x) is a solution to the equation 

                                                                                (3.1) 

where  the initial conditions  

                                                                               (3.2) 

and      is a solution to the equation 

                                                                                (3.3)                  

 where th initial conditions 

                                                                              (3.4)                              

Assume that 

                    

     has m zeros while      has at least m zeros in some interval. Additionally, the kth zero 

of v(x) is less than one kth zero of     . 

Lemma 3.2 The number     is not an eigenvalue of the boundary value problem (1.1)-

(1.3). 

Proof: Denote by      a solution to the initial problem 

                                                                              (3.5) 

                                                                         (3.6) 

Prove that                . 
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Assume the opposite 

             . 

Then we hold 

    
     

    
                                                                      (3.7) 

Conversely (3.5) multiply by       and integrate from 0 to 1,  

∫            

 

 

 ∫            

 

 

 

                    ∫        

 

 

 ∫            

 

 

 

Using the conditions      and       , the right-hand side of the equation is positive. 

From (3.6) and (3.7) the left side becomes negative. Since the acceptance is wrong, the proof 

is completed. 

Lemma 3.3.           If   (0<  <1) is a zero of the function         then for every 

suffıciently small     there is     such that, for         , the function      ) has 

exactly are zero in the interval           

Corollary 3.1. The solution      ) may lose a zero or acquire a new zero under the variation 

of   if and only if the zero enters or exists the interval through the boundary points 0 and 1. 

The following oscillatory theorem proves the existence of a countable set of eigenvalues of 

the boundary value problem (1.1)-(1.3). 

Theorem 3.1. (Oscillation Theorem) There are an unboundedly decreasing sequence of 

negative eigenvalues         
  and an unboundedly increasing sequence of positive 

eigenvalues         
  of the boundary value problem (1.1)-(1.3) 

                                 

There are exist number         and     
        such that the eigenfunctions 

corresponding to the eigenvalues            and          have         and 

       simple zeros in the interval (1,1) respectively. 

4. The Definition and Properties of the Function      (        . Some Auxiliary 

Assertions 

Let       be an eigenfunction of the boundary value problem (1.1)-(1.3) which 

corresponds to an eigenvalue   , where        . 
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     {
    

    
 
    

    
}                                                              (4.1) 

The following inequality is clear for      , 

                                                                                        (4.2) 

and  

               ,                                                                         (4.3) 

Let      be a natural number such that 

  
                     and             

      

Since it is        , such that          

            
     

  
    

  

Let’s define below the equality 

             (  
           )                                                              (4.4)  

and from the conditions (1.2)-(1.3) we get 

            [
  

       
]     

                            [
  

        
]      

The function is obtained by adding    multiples of (4.2)-(4.3) for other x’s. The       and 

  
     cannot vanish simultaneously. 

Lemma 4.1. The function       satisfies the differential equation  

  
               (  

      )           

 and increases on the interval        

Denote by            
̅̅ ̅̅ ̅̅ ̅  the zeros of the eigenfunction       in the interval (0,1). 

The oscillatory Theorem 3.1 implies that the equalities                and       

          are valid for all          large enough. 

Lemma 4.2. The following estimates are valid for the eigenvalues             

                ,                                             (4.5) 

where    and    are some positive constants. 
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Lemma 4.3 Suppose that             and                      

Then we get  

∫       
 

 
 ∑         

   
     (    )                                            (4.6)                            

where                                       and       is the modulus of 

continuity of the function      on the interval        Moreover, if      const, then we can 

replace      in (4.6) by      . 

It is easy to verify that  

            
 

        
       

 

5. Asymptotic Formulas for the Eigenvalues and Eigenfunctions of the Boundary Value 

Problem (1.1)-(1.3) 

Throughout this section, we suppose that        ,       , where     is a natural 

number. 

Suppose that       s an eigenfunction of the boundary value problem (1.1)-(1.3) with 

    zeros in interval (1.1). Denote by    the eigenvalue that corresponds to        Theorem 

3.1 of oscillation implies that             for     and            
 for      

 Denote zeros of       by                               

Theorem 5.1. The following asymptotic formulas are valid: 

      (
      

            
*          

    

             
(∫      

 

 

)

          
     

         [   ((
      

            
*          

    

             
(∫      

 

 

)

  (       
   ))      ]  
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Abstract 

In this paper, we obtain conditions for the normalized Rabotnov function to belong to the Hardy 
space .∞  

 
          Keywords: Analytic function, starlike and convex functions, Rabotnov function, Hardy space. 

 
1. Introduction 
 

Denote by { }: 1z z= ∈ <  the open unit disk and   be set of all analytic functions on .  Let 

  be a class of functions f  in   which satisfy the usual normalization conditions ( ) ( )0 0 1 0.f f ′= − =

Traditionally, the subclass of   consisting of univalent functions is denoted by . The classes of starlike 
and convex functions in   are two important [ )( )0,1κ κ ∈  in   are defined by 

( ) ( ) ( )( ){ }* : :  and /f f zf z f zκ κ′= ∈ ℜ >   and ( ) ( ) ( )( ){ }: :  and 1+ / ,f f zf z f zκ κ′′ ′= ∈ ℜ > 

respectively. The familiar classes ( )* *: 0=   and ( ): 0=   are known, respectively, as the classes of 
starlike and convex functions in .  In [1], for 1,γ <  the author introduced the classes:  

( ) ( ) ( ){ }: :  such that 0 1,  ,  ip p e p z zηγ η γ = ∈ ∃ ∈ = ℜ > ∈      

and ( ) ( ){ }: : .g gγ γ′= ∈ ∈    

 When 0,η =  the classes ( )γ  and ( )γ  will be denoted by ( )0 γ  and ( )0 ,γ   respectively. 

Also, for 0γ =  we denote ( )0 γ  and ( )0 γ   simply  and ,  respectively. Moreover, the Hadamard 

product (or convolution) of two power series belongs to the class   given by ( )
2

n
n

n
f z z a z

∞

=

= +∑   and  

( )
2

n
n

n
g z z b z

∞

=

= +∑  defined as  

( )( ) ( )( ) ( )
2

: : ,    .n
n n

n
f g z z a b z g f z z

≥

∗ = + = ∗ ∈∑   

Let ( )0p p< ≤ ∞  denote the Hardy space of all analytic functions ( )f z  in   and define the integral 

means ( ),pM r f  by  

91

mailto:srcnkzmglu@gmail.com


 
5th INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 
1-3 December 2021, Istanbul, Turkey 

 

 
ICOM 2021 

ISTANBUL / TURKEY 

( )
( ) ( )

( ) ( )

1
2

0

0 2

1 0
2, .

sup

p pi

p
i

f re d p
M r f

f re p

π θ

θ

θ π

θ
π

≤ ≤


  < < ∞ =  
 = ∞

∫  

An analytic function ( )f z  in ,  is said to belong to the Hardy space ( )0 ,p p< ≤ ∞  if the set 

( ) [ ){ }, : 0,1pM r f r∈  is bounded. It is important to remind here that p  is Banach space with the norm 
defined by (see [2, p. 23]) 

( )
1

lim ,pp r
f M r f

−→
=  

for 1 .p≤ ≤ ∞  On the other hand, we known that ∞  is the class of bounded analytic functions in ,  while 
2  is the class of power series n

na z∑  such that 2 .na < ∞∑  In addition, it is known from [2] that q  is 

a subset of p  for 0 .p q< ≤ ≤ ∞  Also, two well-known results about the Hardy space p  are the 
following (see [2]): 

                                                 ( ){ }
( )

( )( )1

1
0 .

0,1

q

q
qq

f q
f z

f q−

′ ∈ <
′ℜ > ⇒ 
 ∈ ∈




                                                       (1) 

 
2. Preliminaries  
 
 The Rabotnov [9] function ( ), ,R zα β  defined by  

                                ( ) ( )( )( )
( ) ( )1

,
0

,    1,  ,  .
1 1

n
n

n
R z z z z

n
αα

α β
β α β

α

∞
+

=

= > − ∈ ∈
Γ + +∑                                (2) 

The Rabotnov function ( ),R zα β  does not belong to the class  . Therefore, we consider the following 

normalization for the function ( ),R zα β : 

                            ( ) ( ) ( ) ( )( ) ( )
( )( ) ( )

1
1/ 1 1/ 1

, ,
2

1
1 ,   .

1

n
n

n
z z R z z z z

n
α α

α β α β

β α
α

α

−∞
+ +

=

Γ +
= Γ + = + ∈

Γ +∑                           (3) 

In this recent years, the authors in [1,4,5,7-8,10,13,14] studied the Hardy space of some special functions 
as normalized; Hypergeometric, Bessel, Struve, Lommel, Wright and Mittag-Leffler. Motivated by above 
studies, our main aim is to determine some conditions on the parameters such that the Rabotnov function 

( ), zα β  is convex of order ,κ  Also, we find some conditions for the Hadamard products ( ) ( ), z f zα β ∗  

to belong to ,∞ ∩   where f  is an analytic function in . Moreover, we investigate the Hardy space 
of the mentioned the normalized Rabotnov function ( ), .zα β  
 In order to prove the main results we need the following preliminary results.  
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Lemma 1. (Silverman [11]) Let ( )
2

.n
n

n
f z z a z

∞

=

= + ∈∑   If  

( )
2

1 ,n
n

n aκ κ
∞

=

− ≤ −∑  

then the function ( )f z  is in the class ( ).κ  

Lemma 2. (Eenigenburg and Keogh, [3]) Let [ )0,1 .κ ∈  If the function f ∈  is not of the form  

                                                       
( ) ( )

( ) ( )

2 1 11
2
1log 1
2

i

i

f z k lz ze

f z k l ze

κθ

θ

κ

κ

−  = + − ≠   


  = + − =   

                                                     (4) 

for some ,k l∈  and ,θ ∈  then the following statements hold: 

a: There exist ( ) 0fδ δ= >  such that ( )
1

2 1 .f
δ

κ
+

−′∈  

b: If 10, ,
2

κ  ∈  
 then there exist ( ) 0fτ τ= >  such that 

1
1 2 .f

τ
κ

+
−′∈  

c: If 1 ,
2

κ ≥  then .f ∞∈  

Lemma 3. (Stankiewich and Stankiewich, [12]) ( ) ( ) ( )0 0 0 ,λ µ γ∗ ⊂    where ( )( )1 2 1 1 .γ λ µ= − − −  

The value of γ  is the best possible. 
 
2. Main Results  
 
In this section, we present our main results related to the some geometric properties and Hardy class of 
normalized Rabotnov function ( ), .zα β   

Theorem 1. Let [ )0,1 ,κ ∈  1,α > −  β ∈  and 11 2.
1

e
β
α

β
α

+
 
+ > + 

 The following inequality is true: 

                                                           
( )

2

1
2

1

3
1 2

1 1

1 2
1

e

e

β
α

β
α

β β
α α

κ
β
α

+

+

 
+ + − 

+ +   ≤
 
+ − + 

                                                                 (5) 

holds, then the normalized Rabotnov function ( ), zα β  is convex of order κ  in .  
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Proof. By virtue of the Silverman’s result which is given in Lemma 1, in order to prove the convex of 
order κ  of the function, ( ), zα β  it is enough to show that the following inequality  

                                                              ( ) ( )
( )( )

1

2

1
1

1

n

n
n n

n
β α

κ κ
α

−∞

=

Γ +
− ≤ −

Γ +∑                                                          (6) 

is satisfied under our assumptions. According to the hypothesis of theorem, by using the inequality 

( ) ( ) ( ) ( )( )11 1 ! 1 1n n nα α α−+ − Γ + ≤ Γ +  

and thus   

                                                     ( )
( )( ) ( ) ( )1

1 1 ,    ,
1 1 1 !n n

n n
α
α α −

Γ +
≤ ∈

Γ + + −
                                                              (7) 

we have  

( ) ( )
( )( ) ( ) ( )

( )( )

( )
( ) ( )

( ) ( ) ( ) ( )

( )

11

2 2

1

1
2

1 1
2

1 1
2 2

2

1 1
2

11
1 1

1 1 !

1 1 ! 1 1 !

3
1 1 1.

1 11

nn

n n

n

n
n

n n

n n
n n

n n n n
n n

n n
n

n n
n n

e e
β β
α α

β αβ α
κ κ

α α

β
κ

α

β β
κ

α α

β β β
κ κ

α αα

−−∞ ∞

= =

−∞

−
=

− −∞ ∞

− −
= =

+ +

Γ +Γ +
− = −

Γ + Γ +

≤ −
+ −

= −
+ − + −

   
=  + +  − + + −  + ++   

∑ ∑

∑

∑ ∑
 

The inequality (5) implies that the last sum is bounded above by 1 .κ−  Therefore the inequality (6) is 
satisfied, that is, ( ), zα β  is convex of order κ  in .  

Theorem 2. Let [ )0,1 ,κ ∈  1,α > −  .β ∈  If inequality  

                                                                             12 e
β
ακ +< −                                                                          (8) 

holds, then ( ) ( ),
0 .

z
z

α β κ∈


  

Proof. In order to prove ( ) ( ),
0 ,

z
z

α β κ∈


  it is enough to show that ( ) 1 1,p z − <  where 

( ) ( ),1 .
1

z
p z

z
α β κ

κ
 

= − −  


 Now, using the inequalities (7), we have  
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( ) ( )
( )( )

( )
( )( )

( ) ( )

1
1

2

1

2

1

1
1

2

111 1 1
1 1

11
1 1

1 1 1 .
1 11 1 !

n
n

n

n

n

n

n
n

p z z
n

n

e
n

β
α

β α
κ

κ α

β α
κ α

β
κ κα

−∞
−

=

−∞

=

−∞
+

−
=

 Γ +
− = + − −  − Γ + 

Γ +
≤

− Γ +

 
≤ = −  − −+ −  

∑

∑

∑

 

Consequently, from (8) ( ), z
z

α β
 is in the class ( )0 ,κ  and the proof is completed. 

Theorem 3. Let [ )0,1 ,κ ∈  1,α > −  .β ∈  If the inequality (5) is satisfied, then  

( )

1
1 2

,

1, 0,
2

1, ,1 .
2

z

κ

α β

κ

κ

−

∞

  ∈   ∈
  ∈   





 

Proof. It is known that Gauss hypergeometric function is defined by 

                                                     ( ) ( ) ( )
( ) ( )2 1

0
, , ;    .

!

n
n n

n

a b zF a b c z z
c n≥

= ∈∑                                                 (9) 

Now, using the equality (9) it is possible to show that the function ( ), zα β  can not be written in the forms 

which are given by (4) for corresponding values of .κ  More precisely, we can write that the following 
equalities: 

                                                     ( ) ( )2 1 1

0

1 2
1

!
i in nn

n
k lz ze k l e z

n
κθ θκ− +

≥

−
+ − = + ∑                                           (10) 

and  

                                                         ( ) 1

0

1log 1
1

i in n

n
k l ze k l e z

n
θ θ +

≥

+ − = −
+∑                                                (11) 

hold true for ,k l∈  and .θ ∈  If we consider the series representation of the function ( ), zα β  which is 

given by (3), then we see that the function ( ), zα β  is not of the forms (10) for 1
2

κ ≠  and (11) for 1 ,
2

κ =  

respectively. On the other hand, Theorem 1, states that the function ( ), zα β  is convex of order under 

hypothesis. Therefore, the proof is completed by applying Lemma 2. 
Theorem 4. Let 1,α > −  β ∈  and ( ) .f z ∈  If the inequality    
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                                                                            1 3 .
2

e
β
α+ <                                                                        (12) 

holds, then the Hadamard product ( ) ( ) ( ), .u z z f zα β
∞= ∗ ∈ ∩    

Proof. Since ( ) ,f z ∈  then we can say that ( ) .f z′ ∈  Also, from properties of Hadamard product we 

can write ( ) ( ) ( ), .
z

u z f z
z

α β′ ′= ∗


 It is known from Theorem 2 that the function 
( ),

0
1
2

z
z

α β  ∈  
 


  under 

the condition (12). So, it follows from Lemma 3 that ( ) .u z′ ∈  This means that ( ) .u z ∈  If we consider 

the result which is given by (1), then we have ( ) qu z′ ∈  for 1q <  and ( ) 1
q
qu z −∈  for 0 1,q< <  or 

equivalently, ( ) qu z ∈  for all 0 .q< < ∞  

Now, from the known upper bound for the Caratheodory functions (see [6, Theorem 1, p.533]), we have 

that, if the function ( ) ,f z ∈  then 2
na

n
≤  for 2.n ≥  Using this fact together with the inequality (7), we 

get  

( ) ( ) ( ) ( )
( )( )

( ) ( )

1

,
2

1

1
1

2

1
1

11 1 .
1 !

n
n

n
n

n
n

n
n

u z z f z z a z
n

z e
n

α β

β
α

β α
α

β α
βα

−∞

=

−∞
+

−
=

Γ +
= ∗ = +

Γ +

  +
≤ + = −    +   

∑

∑



 

This means that the function ( )u z  is convergent absolutely for 1z =  under the hypothesis. On the other 

hand, we known from [2, Theorem 3.11, p.42] that ( ) qu z′ ∈  implies the function ( )u z  is continuous in 

,  where   is closure of .  Since   is a compact set, ( )u z  is bounded in ,  that is, ( ) .u z ∞∈  Thus, 
the proof is completed.  
Theorem 5. Let 1,α > −  ,β ∈  [ )0,1 ,λ∈  1µ <  and ( )( )1 2 1 1 .γ λ µ= − − −  Suppose that the function 

( ) ( )0 .f z µ∈  If the inequality  

                                                                                 12 ,e
β
αλ +< −                                                                     (13) 

holds, then ( ) ( ) ( ), 0 .z f zα β γ∗ ∈   

Proof. If ( ) ( )0 ,f z µ∈  then this implies that ( ) ( )0 .f z µ′ ∈  We know from the Theorem 2 that the 

function ( ) ( ),
0 .

z
z

α β λ∈


  Since ( ) ( ) ( ), ,
z

u z f z
z

α β′ ′= ∗


 taking into account the Lemma 3 we may 

write that ( ) ( )0 .u z γ′ ∈  This implies that ( ) ( )0 .u z γ∈  
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Abstract 

In this paper, authors found a new interesting integral identity regarding Gauss-Jacobi type quadrature 

formula using generalized fractional integral operators. By using this identity as an auxiliary result, some 

new bounds with respect to Gauss-Jacobi type quadrature formula pertaining to s-convex functions are 

established. It is pointed out that several special cases are deduced from the main results for suitable choices 

of function inside the generalized fractional integral operators. Some basic fractional integral operators of 

important interest that we investigated in details are Riemann-Liouville fractional integral operator, k-

Riemann-Liouville fractional integral operator and conformable fractional integral operator. The Gauss-

Jacobi type quadrature formula has remained an area of great interest due to its wide applications in the 

field of mathematical analysis.  We believe that this new results are crucial and of great interest for 

interested readers working in the fields of inequalities, fractional calculus, quantum calculus, numerical 

analysis and applied mathematics. These ideas and techniques of this paper may stimulate further research 

in these directions for different class of functions. 

Keywords: Gauss-Jacobi type quadrature formula, s -convex functions, generalized fractional integral 

operators, Hölder’s inequality, power-mean inequality. 

 

1. Introduction and Preliminaries 

 
Definition A function ψ: I ⊆ ℝ ⟶ ℝ is said to be convex on I, if  

ψ(τx + (1 − τ)y) ≤ τψ(x) + (1 − τ)ψ(y)                                          (1) 

holds for all x, y ∈ I and τ ∈ [0,1]. 

 

In their paper [1], Hudzik and Maligranda considered, among others, the class of functions which are s-

convex in the second sense. This class is defined in the following way:  

 

Definition A function ψ: [0, +∞[ ⟶ ℝ is said to be s-convex in the second sense, if 

 

ψ(τx + (1 − τ)y) ≤ τsψ(x) + (1 − τ)sψ(y)                                      (2) 

 

holds for all x, y ∈ [0, +∞[, τ ∈ [0,1] and for some fixed s ∈ ]0,1]. 
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Authors of recent decades have studied convex and  s-convex in the second sense function, see  [2] - [8]. 

The Gauss-Jacobi type quadrature formula has the following representation: 

∫ (x − a1)p

a2

a1

(a2 − x)qψ(x)dx = ∑ Bm,kψ(γk)

+∞

k=0

+ Rm
∗ |ψ|,                      (3) 

for certain Bm,k,  γk and rest Rm
∗ |ψ|, see [9, 10].  

 

The Gauss-Jacobi type quadrature formula has remained an area of great interest due to its wide applications 

in the field of mathematical analysis. Recently in [11], Liu obtained several integral inequalities for the 

left-hand side of (3). Also in [12], Özdemir et al. established several integral inequalities concerning the 

left-hand side of (3) via some kinds of convexity. 

 

Let us recall some special functions and evoke some basic definitions as follows: 

Definition For a1, a2 > 0 the beta function is defined by 

β(a1, a2) = ∫ τa1−1(1 − τ)a2−1dτ.                                                     (4)

1

0

 

Definition For k ∈ ℝ+and α > 0,  the integral representation of k-gamma function is given as 

Γk(α) = ∫ τα−1e−
τk

k dτ.                                                             (5)

+∞

0

 

One can note that 

Γk(α + k) = αΓk(α)                                                                    (6) 

For k = 1, (5) gives integral representation of the well-known gamma function. 

Remark The function ς: [0, +∞[ ⟶ [0, +∞[, which is constructed from the work of Sarikaya et al. [13], 

has the following four conditions: 

∫
ς(τ)

τ
dτ < +∞,

1

0

 

1

A1
≤

ς(τ1)

ς(τ2)
≤ A1 for 

1

2
≤

τ1

τ2
≤ 2,                                                       (7) 
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ς(τ2)

τ2
2 ≤ A2

ς(τ1)

τ1
2  for τ1 ≤ τ2 

and  

|
ς(τ2)

τ2
2 −

ς(τ1)

τ1
2 | ≤ A3|τ2 − τ1|

ς(τ2)

τ2
2  for 

1

2
≤

τ1

τ2
≤ 2, 

where A1, A2 and A3 > 0 are independent of τ1, τ2 > 0.  

Moreover, Sarikaya et al. [13] used the above function ς in order to define the following fractional integral 

operators. 

Definition The generalized left-side and right-side fractional integrals are given as follows: 

Iςa1
+
 ψ(x) = ∫

ς(x − τ)

x − τ
ψ(τ)dτ       (x > a1)                                               (8)

x

a1

 

and 

Iςa2
−
 ψ(x) = ∫

ς(τ − x)

τ − x
ψ(τ)dτ       (x < a2)

a2

x

,                                             (9) 

respectively. 

Furthermore, Sarikaya et al. [13]  noticed that the generalized fractional integrals given by Definition  may 

contain some types of fractional integrals such as the Riemann-Liouville and other fractional integrals for 

some special choices of function ς.  

Motivated by the above results and literature, the aim of this paper is to establish in the next section, a new 

interesting integral identity regarding Gauss-Jacobi type quadrature formula using generalized fractional 

integral operators. By using this identity as an auxiliary result, some new bounds with respect to Gauss-

Jacobi type quadrature formula pertaining to s-convex functions will be obtain. It is pointed out that several 

special cases will be given from the main results for suitable choices of function inside the generalized 

fractional integral operators. Some basic fractional integral operators of important interest that we will 

investigate in details are Riemann-Liouville fractional integral operator, k-Riemann-Liouville fractional 

integral operator and conformable fractional integral operator.  

2. Main Results 

Throughout this remaining study for a1 < a2, let us denote P = [a1, a2] with the interior P∘ = (a1, a2), and 
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Φ(τ) ∶= ∫
ς((a2 − a1)u)

u
du < ∞

τ

0

,     ∀ τ ∈ [0, 1],                                 (10) 

where ς is the function defined as in above Remark. 

For establishing some new bounds integral inequalities for Gauss-Jacobi type quadrature formula, we need 

the following basic lemma. 

 

Lemma Let P ⊆ ℝ and assume that ψ: P ⟶ ℝ be a continuous function on P∘. Then for any fixed p, q >
0, we have 

∫ [Φ (
x − a1

a2 − a1
)]

p
a2

a1

[Φ (
a2 − x

a2 − a1
)]

q

ψ(x)dx 

= (a2 − a1) ∫[Φ(τ)]p

1

0

[Φ(1 − τ)]qψ((1 − τ)a1 + τa2)dτ.                   (11) 

We denote 

Tψ,Φ
p,q (a1, a2): = (a2 − a1) ∫[Φ(τ)]p

1

0

[Φ(1 − τ)]qψ((1 − τ)a1 + τa2)dτ.                    (12) 

Proof. By using (12) and changing the variable 𝑥 = (1 − τ)a1 + τa2, we have 

 

Tψ,Φ
p,q (a1, a2) = (a2 − a1) ∫ [Φ (

x − a1

a2 − a1
)]

p
a2

a1

[Φ (1 −
x − a1

a2 − a1
)]

q

ψ(x)
dx

a2 − a1
                    

= ∫ [Φ (
x − a1

a2 − a1
)]

p
a2

a1

[Φ (
a2 − x

a2 − a1
)]

q

ψ(x)dx, 

which completes the proof. 

 

Remark Taking ς(u) = u in above Lemma, we get the following identity: 

 

∫ (x − a1)p

a2

a1

(a2 − x)qψ(x)dx = (a2 − a1)p+q+1 ∫ τp(1 − τ)q

1

0

ψ((1 − τ)a1 + τa2)dτ.     (13) 

With the help of above Lemma, we have the following new results via the frame of s-convexity of function 

in the second sense. 
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Theorem Let P ⊆ ℝ and assume that ψ: P ⟶ ℝ be a continuous function on P∘. If |ψ|
k

k−1  is s-convex 

function in the second sense on P for k > 1, then for any fixed p, q > 0, we have 

 

|Tψ,Φ
p,q (a1, a2)| ≤ (a2 − a1)[AΦ

p,q(k)]
1

k [
|ψ(a1)|

k

k−1 + |ψ(a2)|
k

k−1

s + 1
]

k−1

k

,           (14) 

where 

AΦ
p,q(k) ≔ ∫[Φ(τ)]kp

1

0

[Φ(1 − τ)]kqdτ.                                                   (15) 

Proof. Since |ψ|
k

k−1 is s-convex function in the second sense on P, combining with above Lemma, Hölder’s 

inequality and properties of the modulus, we get 

 

|Tψ,Φ
p,q (a1, a2)| ≤ (a2 − a1) ∫[Φ(τ)]p

1

0

[Φ(1 − τ)]q|ψ((1 − τ)a1 + τa2)|dτ           

≤ (a2 − a1) [∫[Φ(τ)]kp

1

0

[Φ(1 − τ)]kqdτ]

1

k

[∫|ψ((1 − τ)a1 + τa2)|
k

k−1

1

0

dτ]

k−1

k

 

≤ (a2 − a1)[AΦ
p,q(k)]

1

k [∫ ((1 − τ)s|ψ(a1)|
k

k−1 + τs|ψ(a2)|
k

k−1)

1

0

dτ]

k−1

k

               

  = (a2 − a1)[AΦ
p,q(k)]

1

k [
|ψ(a1)|

k

k−1 + |ψ(a2)|
k

k−1

s + 1
]

k−1

k

, 

which completes the proof. 

 

We point out some interesting special cases of above Theorem. 

 

Corollary Under the assumptions of above Theorem with ς(u) = u, we have 

|Tψ
p,q(a1, a2)| ≤ (a2 − a1)p+q+1[β(kp + 1, kq + 1)]

1

k [
|ψ(a1)|

k

k−1 + |ψ(a2)|
k

k−1

s + 1
]

k−1

k

.         (16) 

Corollary Under the assumptions of above Theorem with ς(u) =
u𝛼

Γ(𝛼)
 and α > 0, we get 
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|Tψ
p,q(a1, a2)| ≤

(a2 − a1)α(p+q)+1

Γp+q(α + 1)
[β(kαp + 1, kαq + 1)]

1

k [
|ψ(a1)|

k

k−1 + |ψ(a2)|
k

k−1

s + 1
]

k−1

k

.     (17) 

Corollary Under the assumptions of above Theorem with ς(u) =
u

α
k1

k1Γk1
(α)

 and α, k1 > 0, we obtain 

|Tψ
p,q(a1, a2)| ≤

(a2 − a1)
α(p+q)

k1
+1

[k1Γk1

 (α + k1)]
p+q [β (

kαp

k1
+ 1,

 kαq

k1
+ 1)]

1

k

[
|ψ(a1)|

k

k−1 + |ψ(a2)|
k

k−1

s + 1
]

k−1

k

.    (18) 

Corollary Under the assumptions of above Theorem with ς(u) = u(a2 − u)α−1, α > 0  and  ψ(x)  is 

symmetric to x =
a1+a2

2
, we have 

|Tψ
p,q(a1, a2)| ≤

(a2 − a1)
k−1

k
(p+q)+1

αp+q
[Cp,q(α, k)]

1

k [
|ψ(a1)|

k

k−1 + |ψ(a2)|
k

k−1

s + 1
]

k−1

k

,       (19) 

where 

Cp,q(α, k) ≔ ∫ ([a2
α − τα]kp[a2

α − (a1 + a2 − τ)α]kq)

a2

a1

dτ.                           (20) 

Theorem Let P ⊆ ℝ  and assume that ψ: P ⟶ ℝ  be a continuous function on P∘.  If |ψ|𝑙  is s-convex 

function in the second sense on P for l ≥ 1, then for any fixed p, q > 0, we have 

 

|Tψ,Φ
p,q (a1, a2)| ≤ (a2 − a1)[AΦ

p,q(1)]
l−1

l [BΦ
p,q(s)|ψ(a1)|l + BΦ

q,p(s)|ψ(a2)|l]
1

l ,           (21) 

where 

BΦ
p,q(s) ≔ ∫(1 − τ)s[Φ(τ)]p

1

0

[Φ(1 − τ)]qdτ                                          (22) 

and AΦ
p,q(1) is defined as in first Theorem for value k = 1. 

 

Proof. Since |ψ|𝑙 is s-convex function in the second sense on P, combining with above Lemma, the well-

known power mean inequality and properties of the modulus, we get 

 

|Tψ,Φ
p,q (a1, a2)| ≤ (a2 − a1) ∫[Φ(τ)]p

1

0

[Φ(1 − τ)]q|ψ((1 − τ)a1 + τa2)|dτ   
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                          ≤ (a2 − a1) [∫[Φ(τ)]p

1

0

[Φ(1 − τ)]qdτ]

l−1

l

 

                          × [∫[Φ(τ)]p[Φ(1 − τ)]q|ψ((1 − τ)a1 + τa2)|
l

1

0

dτ]

1

l

 

≤ (a2 − a1)[AΦ
p,q(1)]

l−1

l [∫[Φ(τ)]p[Φ(1 − τ)]q((1 − τ)s|ψ(a1)|l + τs|ψ(a2)|l)

1

0

dτ]

1

l

           

                         = (a2 − a1)[AΦ
p,q(1)]

l−1

l [BΦ
p,q(s)|ψ(a1)|l + BΦ

q,p(s)|ψ(a2)|l]
1

l , 

which completes the proof. 

 

We point out some interesting special cases of  above Theorem. 

 

Corollary Under the assumptions of above Theorem with ς(u) = u, we have 

 

|Tψ
p,q(a1, a2)| ≤ (a2 − a1)

p+q

l
+1[β(p + 1, q + 1)]

l−1

l                                      (23) 

× [β(p + 1, s + q + 1)|ψ(a1)|l + β(q + 1, s + p + 1)|ψ(a2)|l]
1

l . 

 

Corollary Under the assumptions of above Theorem with ς(u) =
u𝛼

Γ(𝛼)
 and α > 0, we get 

                                      |Tψ
p,q(a1, a2)| ≤

(a2 − a1)
α(p+q)

l
+1

Γ
p+q

l (α + 1)
[β(αp + 1, α q + 1)]

l−1

l                                     (24) 

× [β(αp + 1, s + αq + 1)|ψ(a1)|l + β(αq + 1, s + αp + 1)|ψ(a2)|l]
1

l . 

 

Corollary Under the assumptions of above Theorem with ς(u) =
u

α
k

kΓk(α)
  and α, k > 0, we obtain 

                             |Tψ
p,q(a1, a2)| ≤

(a2 − a1)
α(p+q)

kl
+1

[kΓk
 (α + k)]

p+q

l

[β (
αp

k
+ 1,

α q

k
+ 1)]

l−1

l
                                  (25) 

× [β (
αp

k
+ 1, s +

αq

k
+ 1) |ψ(a1)|l + β (

αq

k
+ 1, s +

αp

k
+ 1) |ψ(a2)|l]

1

l
. 
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Corollary Under the assumptions of above Theorem with ς(u) = u(a2 − u)α−1, α > 0  and  ψ(x) is 

symmetric to x =
a1+a2

2
, we have 

|Tψ
p,q(a1, a2)| ≤ (a2 − a1)[AΦ

p,q(1)]
l−1

l                                                                                               (26) 

× [D 
p,q(s, α; a1, a2)|ψ(a1)|l + D 

q,p(s, α; a1, a2)|ψ(a2)|l]
1

l , 

where 

D 
p,q(s, α; a1, a2) ≔

1

αp+q
 

× ∫(1 − τ)s

1

0

[a2
α − (τ(a1 − a2) + a2)α]p[a2

α − ((1 − τ)(a1 − a2) + a2)
α

]
q

dτ.   (27) 

3. Conclusion 

In this paper, we found a new interesting integral identity regarding Gauss-Jacobi type quadrature formula 

using generalized fractional integral operators. By applied this identity as an auxiliary result, some new 

bounds with respect to Gauss-Jacobi type quadrature formula pertaining to s -convex functions are 

established. Furthermore, several special cases are deduced from the main results for suitable choices of 

function inside the generalized fractional integral operators, like Riemann-Liouville fractional integral 

operator, k-Riemann-Liouville fractional integral operator and conformable fractional integral operator. 

These ideas and techniques of this paper may stimulate further research in these directions for different 

class of convex functions for interested readers. 
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Abstract 

 

          Differential equations theory gives the facility needed to understand and analyze a wide range of real-

world events in a number of fields. This theory has been significantly explored and extended to new kinds 

of differential equations, such as differential equations with piecewise constant arguments. The purpose of 

this study is to use differential equations with piecewise constant argument of generalized form to simulate 

a nonautonomous prey-predator system with Beddington-DeAngelis functional response. We also discuss 

some of the system's properties, such as positive invariance. 

 

          Keywords: Differential Equations with Piecewise Constant Argument of Generalized Form, 

Nonautonomous Prey-Predator Model, Positive Invariance, Functional Response. 

 

1. Introduction and Preliminaries 

 

Since differential equations are so closely linked to so many disciplines of mathematics, they have evolved 

quickly. Solving differential equations can be done in a variety of ways. Several analytical and numerical 

methodologies are used in these procedures. Differential equations can predict the real-world situations 

around us. They are used in many different fields from biology, economics, physics, chemistry and 

engineering. Moreover, differential equations have a great advantage to perceive many complex phenomena 

such as electromagnetic waves, motion of celestial bodies, absorption of vitamins by the human body, sound 

produced by musical instruments, movement of vehicles over land and water, traffic jams and many other 

problems. 

 

The piecewise constant argument was first proposed in differential equations theory in 1980s [8, 9]. These 

differential equations known as differential equations with piecewise constant arguments (EPCA) have 

since been substantially developed [1, 15, 21, 24, 25]. Because of their wide variety of applications, this 

class of differential equations has attracted a lot of attention and studied extensively. In most of these 

studies, the present method for examining EPCA is based on reducing them to discrete equations [1, 24]. 

However, Akhmet has given a new and alternative method for dealing with these equations having 

piecewise constant arguments of generalized form (EPCAG) [2]-[4]. The results on EPCA and on EPCAG 

are widely available in the literature [1]-[12], [14]-[16], [18]-[25]. 

 

The generic model for EPCA is defined as follows: 
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𝑥′(s) =  𝑓(𝑠, 𝑥(𝑠), 𝑥([𝑠])) (1) 

 

In (1), s ∈ ℝ and x ∈  ℝ𝑛 and [.] shows the largest integer function. Many exciting discoveries have been 

made in the EPCA theory, as well as a wide range of applications have been studied. In addition to 

mathematical analysis, these systems have been used to develop a variety of models in different fields [9, 

14, 16, 25]. Later, Akhmet has generalized differential equations with piecewise constant arguments by 

using arbitrary piecewise constant functions as arguments [2]-[3]. These differential equations have been 

proposed by the form 

 

x′(s) =  𝑓(𝑠, 𝑥(𝑠), 𝑥(𝛽(𝑠))) (2) 

 

A function x(s) is a solution to the previous equation (2) on the interval [𝜃𝑘 , 𝜃𝑘+1), k 𝜖 𝑁, and with the 

potential exception of the places 𝜃𝑘 ,  k 𝜖 𝑁 , the derivative appears everywhere. If there are one-sided 

derivatives. Note that 𝛽(𝑠) is not continuous, in fact, the equation (2) is really part of the delay differential 

or functional differential equations paradigm, where delays are a series of discrete functions. It is also worth 

mentioning that (2) is a nonautonomous equation since the delays alter with 𝑠 [24]. Akhmet has developed 

a new strategy based on forming an analogous integral equation to study EPCAG such as (2). This 

development is crucial as it allows researchers to analyze systems including piecewise constant arguments, 

which are nonlinear as well in terms of solution values at discrete points 𝜃𝑘 in time, with greater precision. 

The momentous book of Akhmet is suggested for more information on more theoretical and practical 

problems [4]. 

 

If a function of 𝑥 is evaluated at s and in argument [s]...[s-N], it is possible that it will be designated as a 

delayed type, where N is a positive number. In fact, there exist three categories which can be classified as 

follows [23]: 

(i) If the arguments are 𝑠 and [𝑠 + 1] . . . [𝑠 + 𝑁], the equation is of advanced kind. 

(ii) The equation can be called as of mixed kind if it contains both retarded and advanced arguments. 

(iii) The equation is said to be of neutral kind if the derivative of largest order occurs at t and another point. 

 

In this paper, we aim to consider a nonautonomous prey-predator system with functional response of 

Beddington-DeAngelis type and also with generalized piecewise constant argument of retarded type. 

Before defining the issue model, some information about prey-predator systems will be given. Ordinary 

differential equations are utilized to tackle a variety of mathematical biology problems. There are three 

basic types of interactions in an ecological system. The following are the classifications for these types: (i) 

"Predator-Prey (+, -)", (ii) "Competition (-, -)" and (iii) "Mutualism (+, +)". 

 

Predator-prey population dynamics are one of the most important and exciting issues in mathematical 

biology, as well as one of the most important topics in mathematical ecology. Lotka and Volterra developed 

a set of nonlinear differential equations to model the simplest example of a predator-prey system [13, 23]. 

This two species "prey-predator" model is known as the "Lotka-Volterra prey-predator model". The model 

is made up of two connected nonlinear differential equations.  
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The following is a generic description of a prey-predator model. Assume we have two species, whose sizes 

are given by 𝑥(𝑠) and 𝑦(𝑠), respectively, at a reference time s. The following differential equations may be 

used to identify the generic model for defining the dynamics of prey-predator populations in continuous 

time: 
ⅆ𝑥

ⅆ𝑠
= 𝜀𝐻(𝑥) − 𝜏𝐻(𝑥, 𝑦), 

ⅆ𝑦

ⅆ𝑠
= 𝜇𝐻(𝑥, 𝑦) − 𝜔𝐻(𝑦). 

 

(3) 

                                                  

In equation (3), 𝑥 and 𝑦 are the densities of prey and predators at time 𝑠.  
ⅆ𝑥

ⅆ𝑠
 and 

ⅆ𝑦

ⅆ𝑠
 are the instantaneous 

growth rates of the two species, respectively. The interaction of the two species is described by the positive 

real parameters 𝜀, 𝜏, 𝜇, and 𝜔. The Lotka-Volterra equations system is a Kolmogorov model. A functional 

response describes the intake rate of consumers as a function of the amount of food available in a specific 

habitat. 

In terms of prey or predator reliance, we may divide the functional response into three groups: 

 

1. Prey-dependent functions: The phrase prey-dependent functional response alludes to how only the 

density of prey influences the consumption rate of predators. The most frequent forms of prey-dependent 

functional responses are  

(i) Lotka-Volterra type, 

(ii) Holling type I, 

(iii) Holling type II, 

(iv) Holling type III. 

2. Predator-dependent functions, 

3. Ratio-dependent functions. 

 

In the literature, see, for instance, [15] and the references cited therein, results on predator-prey systems 

involving two species have been published employing Lotka Volterra models with ratio-dependent 

functional responses and introducing piecewise constant argument of generalized type into the models. For 

two biological models with generalized piecewise constant arguments, these conclusions include positive 

invariance, permanence, and other features [5]. Moreover, local stability and Hopf bifurcation were 

presented for the autonomous delayed predator prey system with Beddington-DeAngelis functional 

response [8]. The local stability of the positive equilibrium and local Hopf bifurcation were investigated 

using a Beddington-DeAngelis functional response predator-prey model with two delays [6]. In the present 

paper, we will suggest a system that is almost identical but has a generalized piecewise constant delay, and 

then look at positive invariance for the proposed model. Before we go into detail about our model, consider 

the following prey-predator scenario: 

  𝑥′ = 𝑥(𝑟 − 𝑤𝑥) −
𝑎𝑥𝑦

𝑏 + 𝑥 + 𝑐𝑦
 ,

𝑦′ =  𝑚𝑦 (−𝑑 +
𝑎𝑥

𝑏 + 𝑥 + 𝑐𝑦
) .

 

 

(4) 
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In (4), prey and predator densities are represented by the letters 𝑥  and 𝑦 , respectively. The model 

parameters  r > 0, w > 0, a > 0, b >  0, c > 0, m > 0  and ⅆ > 0 all have positive values. See [17] for 

further information and specifics on the coefficients of system (4). There is a ratio dependent response 

function in this model. According to the findings, "ratio dependent models" tend to provide more acceptable 

dynamics. Because the bulk of these studies assume constant model parameters, the majority of the results 

are for models with a constant environment. This implies that the models are self contained, with all 

biological and environmental parameters maintaining constant across time. The majority of biological and 

environmental characteristics, on the other hand, change throughout time. When this is taken into account, 

a model must be nonautonomous, which complicates things. The nonautonomous version of (4) is given by 

 

 𝑥′ = 𝑥(𝑟(𝑠) − 𝑤(𝑠)𝑥) −
𝑎(𝑠)𝑥𝑦

𝑏(𝑠) + 𝑥 + 𝑐(𝑠)𝑦
 , 

𝑦′ =  𝑚(𝑠)𝑦 (−𝑑(𝑠) +
𝑎(𝑠)𝑥

𝑏(𝑠) + 𝑥 + 𝑐(𝑠)𝑦
). 

 

 

(5) 

 

In above system (5), 𝑥, 𝑦 and factors r(s) > 0, w(s) > 0, a(s) > 0, b(s) > 0, c(s) > 0, m(s) > 0 and 

ⅆ(s) > 0  contain biological connotations that are similar to those in (4) except that the factors are now 

dependent on time. 

 

We shall propose a separate analog from the Lotka-Volterra system in this work. Behavior of the biological 

systems over time or in equilibrium is described by the analytical or numerical solutions of the equations. 

The purpose of theoretical biological organization techniques is to understand how organism components 

interact. We will suppose that the models average growth rates, as well as other associated characteristics, 

change over time, and we will account for this in order to create a redesigned system. The reduction of 

differential equations including piecewise constant arguments to discrete equations is a common technique 

for examining them. The impact of inserting a generalized piecewise constant delay into a biological model 

will be examined in this paper. 

 

The following model will be the major emphasis of this paper 

 

𝑥′ = 𝑥(𝑟(𝑠) − 𝑤(𝑠)𝑥(𝛽(𝑠))) −
𝑎(𝑠)𝑥𝑦

𝑏 + 𝑥 + 𝑐𝑦
),

                        𝑦′ =  𝑚(𝑠)𝑦 (−𝑑(𝑠) +
𝑎(𝑠)𝑥(𝛽(𝑠)) 

𝑏(𝑠) + 𝑥 (𝛽(𝑠)) + 𝑐(𝑠)𝑦 (𝛽(𝑠))
) ,

                                    (6) 

 
where s ∈  R, 𝛽(𝑠) = 𝜃𝑖  , if 𝜃𝑖  ≤  s <  𝜃𝑖+1, i ∈  Z, is a function of identification, 𝜃𝑖 , i ∈ 𝑧  is a well-

ordered series of real numbers with the property |𝜃𝑖|  → ∞ as |i|  → ∞. 

 

We will need certain hypotheses for this paper, which are listed below. 

 

(B1) variable coefficients of the system, r(s), w(s), a(s), b(s), c(s), m(s) and ⅆ(s)  are continuous and are 

bounded from below and above by positive constants.  
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(B2) The requirement 𝜃𝑖+1 −  𝜃𝑖  ≤  𝜃, , i ∈  Z, is satisfied by a positive number 𝜃.  

 

 

2. Main Results 

 

We will use the following definition which is identical to [18] but changed for our case as in [5, 8].  

 

Definition 2.1: If a pair of functions (𝑥(𝑠), 𝑦(𝑠)) satisfies the following requirements, it is a solution of 

equation (6) on the interval [𝜃0, ∞): 
   

(i) on [𝜃0, ∞), pair of functions (𝑥(𝑠), 𝑦(𝑠)) is continuous, 

(ii) with the potential exception of the locations 𝜃𝑖 , 𝑖 ≥ 0, where one-sided derivatives exist, the 

derivatives 𝑥′(𝑠) and 𝑦′(𝑠) exist for 𝑡 ∈ [𝜃0, ∞), 
(iii) (6) holds true for (𝑥(𝑠), 𝑦(𝑠)) on every interval [𝜃𝑖 , 𝜃𝑖+1), 𝑖 ≥ 0. 

 

Since we cope with a predator-prey model given by (6), we will only look at solutions (x(s), y(s)) where 

𝑥(𝜃0) = 𝑥0 > 0 and 𝑦(𝜃0) = 𝑦0 > 0. Furthermore, it is assumed that the system (6) has a unique solution 

in the sense of Definitions 2.1 for any initial value (𝑥0, 𝑦0). 

 

We explore solutions that begin at 𝜃0 for the purpose of simplicity. 

 

Lemma 2.1: Assume (B1) is true. The following system of integral equations is equivalent to system (6) 

with x(𝜽0) = x0 and y(𝜽0) = y0 

 

                                      𝑥(𝑠) =  x0 𝑒𝑥𝑝 (∫ 𝜁 (𝑡, 𝑥(𝑡), 𝑦(𝑡), 𝑥(𝛽(𝑡)))𝑑𝑡
𝑠

𝜽0

) ,

                                 𝑦(𝑠) = y0  𝑒𝑥𝑝 (∫ 𝜂 (𝑡, 𝑥(𝛽(𝑡), 𝑦(𝛽(𝑡)))𝑑𝑡
𝑠

𝜽0

) ,

                                     

 

where  𝜁(𝑠, 𝑥, 𝑦, 𝑧) = 𝑟(𝑠) − 𝑤(𝑠)𝑧 −
𝑎(𝑠)𝑦

𝑏(𝑠)+𝑥+𝑐(𝑠)𝑦
 and 𝜂(𝑠, 𝑥, 𝑦) =  𝑚(𝑠)(−𝑑(𝑠) +

𝑎(𝑠)𝑥

𝑏(𝑠)+𝑥+𝑐(𝑠)𝑦
). 

 
Proof: See Lemma 2.2.1 in [5]. 

 

Theorem 2.1: For system (6), the set 𝑖𝑛𝑡(ℝ+
2 ) = {(𝑥, 𝑦)  ∈  ℝ2| x > 0, y > 0} is positively invariant. 

 

The result of the Theorem 2.1 is an immediate consequence of Lemma 2.1. 

 

Assuming that requirements (B1) and (B2) are fulfilled, positive invariance for the proposed model (6) is 

analyzed in the following theorem. 
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Theorem 2.2: Let 𝑟𝑙 𝑐𝑙  >  𝑎𝑢 , 𝑟𝑢 𝑤𝑢𝜃 <  𝑤𝑙, 𝑎𝑢 𝑚𝑢 <  4 and 𝑎𝑙 𝑚𝑙  >  𝑑𝑢𝑚𝑢. Then, the set defined by 

 

𝜇 =  {(𝑥, 𝑦) ∈  ℝ2|𝑛1 ≤ 𝑥 ≤ 𝑁1, 𝑛2 ≤ 𝑦 ≤ 𝑁2 }                                               (7) 

 

is positively invariant for system (6), where 

 

   𝑛1 =
𝑟𝑙𝑐𝑙−𝑎𝑢

𝑤𝑢𝑐𝑙 , 

 

𝑁1 =
𝑟𝑢

𝑤𝑙
, 

𝑛2 =
𝑛1(𝑎𝑙𝑚𝑙 − 𝑑𝑢𝑚𝑢) − 𝑏𝑢 ⅆ𝑢𝑚𝑢

𝑐𝑢𝑑𝑢𝑚𝑢
, 

 

𝑁2 =
𝑛1(𝑚𝑢𝑎𝑢 − 𝑚𝑙 ⅆ𝑙) − 𝑚𝑙 ⅆ𝑙𝑏𝑙

𝑚𝑙𝑐𝑙𝑑𝑙
. 

 

Proof: Suppose that (x(s), y(s)) be the solution of (6) starting from the point (𝑥(𝜃0), 𝑦(𝜃0)) = (𝑥0, 𝑦0) with 

 

𝑛1 ≤ 𝑥𝑜 ≤ 𝑁1, 𝑛2 ≤ 𝑦0 ≤ 𝑁2. 

 

First, we consider the prey equation in (6). It follows from the positivity of the solutions of (6) that 

 

𝑥′(𝑠) ≤ 𝑥(𝑠)(𝑟𝑢(𝑠) − 𝑤𝑙𝑥(𝛽(𝑠))),    𝑠 ≥ 𝜃0. 
 

For 𝑠 ∈ [𝜃0, 𝜃1), 
 

𝑥′(𝑠) ≤ 𝑥(𝑠)(𝑟𝑢(𝑠) − 𝑤𝑙𝑥0)) = 𝑤𝑙𝑥(𝑠)(𝑁1 − 𝑥0), 
 

which implies together with (B2) that 

 

𝑥(𝑠) ≤ 𝑥0 exp(𝑁1 − 𝑥0)(𝑠 − 𝜃0) ≤ 𝑥0 exp(𝑤𝑙(𝑁1 − 𝑥0)𝜃) = 𝐻(𝑥0). 
 

 

Now, we want to find the maximum value of the continuous function 𝐻(𝑥0) on the closed interval [𝑛1, 𝑁1]. 
The supposition 𝑟𝑢𝑤𝑢𝜃 < 𝑤𝑙  shows that 𝐻′(𝑥0) > 0  on the closed interval [𝑛1, 𝑁1] . Hence 𝐻(𝑥0) ≤
 𝐻(𝑁1) =  𝑁1. All of these discussions lead to 

 

𝑥(𝑠) ≤ 𝑁1 for 𝑠 ∈ [𝜃0, 𝜃1) whenever 𝑛1 ≤ 𝑥0 ≤ 𝑁1.  (8) 

 

From the prey equation in the other direction, we obtain for 𝑠 ∈ [𝜃0, 𝜃1) 

 

𝑥′(s) ≥ 𝑥(𝑠) (𝑟𝑙 − 𝑤𝑢𝑥0 −
𝑎𝑢

𝑐𝑙
) = 𝑤𝑢𝑥(𝑠)(𝑛1 − 𝑥0), 

 

which clearly implies that 
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𝑥(𝑠) ≥ 𝑥0 exp(𝑤𝑢(𝑛, −𝑥0)(𝑠 − 𝜃)) ≥ 𝑥0 exp(𝑤𝑢(𝑛1 − 𝑥0) 𝜃) = ℎ(𝑥0). 
 

By using the same way that we have used for 𝐻(𝑥0), we find that the function ℎ(𝑥0) attains its minimum 

value at 𝑛1. This means that ℎ(𝑥0) ≥ ℎ(𝑛1)= 𝑛1 on the interval [𝑛1, 𝑁1]. Thus, 

 

𝑥(𝑠) ≥ 𝑛1 for 𝑠 ∈ [𝜃0, 𝜃1) whenever 𝑛1 ≤ 𝑥0 ≤ 𝑁1.   (9) 

 

When we combine (8) and (9), we obtain  

 

  𝑛1 ≤ 𝑥0 ≤ 𝑁1 ⇒ 𝑛1 ≤ 𝑥(𝑠) ≤ 𝑁1 for  𝑠 ∈ [𝜃0, 𝜃1).       (10) 

 

This, together with the continuity of 𝑥(𝑠)  implies that 𝑛1 ≤ 𝑥(𝜃1) = 𝑥1 ≤ 𝑁1.  Hence, when the same 

technique used for the interval [𝜃0, 𝜃1) is repeated for  𝑠 ∈ [𝜃1, 𝜃2) it can be easily seen that 

 

𝑛1 ≤ 𝑥1 ≤ 𝑁1 ⇒ 𝑛1 ≤ 𝑥(𝑠) ≤ 𝑁1  for  𝑠 ∈ [𝜃1, 𝜃2). 

 

This now implies that  𝑠1 ≤ 𝑥(𝜃2) = 𝑥 ≤ 𝑁1. Continuing the process on each interval [𝜃𝑖 , 𝜃𝑖+1), 𝑖 =
1,2,3, …, in a similar manner, we can conclude that 

 

𝑛1 ≤ 𝑥1 ≤ 𝑁1 ⇒ 𝑛1 ≤ 𝑥(𝑠) ≤ 𝑁1 for every 𝑠 ≥ 𝜃0. 

 

From the predator equation in (6) and the positiveness of 𝑦(𝑠), we have 

 

𝑦′(𝑠) < 𝑦(𝑠) (−𝑚𝑙𝑑𝑙 +
𝑚𝑢𝑎𝑢𝑦(𝛽(𝑠))

𝑏𝑙 + 𝑥(𝛽(𝑠)) + 𝑐𝑙𝑦(𝛽(𝑠))
) ,      𝑠 ≥ 𝜃0 

 

For 𝑠 ∈ [𝜃0, 𝜃1), this inequality takes the form 

 

𝑦′(s) ≤ 𝑦(𝑠) (−𝑚𝑙𝑑𝑙 +
𝑚𝑢𝑎𝑢𝑦0

𝑏𝑙 + 𝑥0 + 𝑐𝑙𝑦0
) ≤ (−𝑚𝑙𝑑𝑙 +

𝑚𝑢𝑎𝑢𝑁1

𝑏𝑙 + 𝑁1 + 𝑐𝑙𝑦0
 (𝑁2 − 𝑦0))  

=  
𝑐𝑙𝑚𝑙𝑑𝑙𝑦(𝑠)

𝑏𝑙 + 𝑁1 + 𝐶𝑙𝑞0

(𝑁2 − 𝑦0), 

 

which produces 

 

𝑦′(𝑠)  ≤  𝑦(𝑠) exp (
𝑐𝑙𝑚𝑙𝑑𝑙

𝑏𝑙 + 𝑁1 + 𝐶𝑙𝑦0

(𝑁2 − 𝑦0) (s − 𝜃0)]  ≤  𝑦(𝑠) exp [
𝑐𝑙𝑚𝑙𝑑𝑙

𝑏𝑙 + 𝑁1 + 𝐶𝑙𝑦0

(𝑁2 − 𝑦0) θ)  

=  B (𝑦0). 
 

 

By using the supposition 𝑎𝑢𝑚𝑢 ≤ 4 we find that the derivative of the function B (𝑦0) is always positive. 

That being the case B (𝑦0)  ≤  𝐵(𝑁2)  =  𝑁2 on the interval [𝑛2  , 𝑁2]. Then, 
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𝑦(𝑠) ≤ 𝑁2 for 𝑠 ∈ [𝜃1, 𝜃2) whenever  𝑛2 ≤ 𝑦0 ≤ 𝑁2.  (11) 

 

Next, we continue with the other direction of the predator equation on the interval [𝜃1, 𝜃2): 

 

𝑦′(𝑠)  ≥  𝑦(𝑠) [− ⅆ𝑢𝑚𝑢  +  
𝑎𝑙𝑚𝑙𝑥0

𝑏𝑢+𝑥0+𝑐𝑢𝑦0
] ≥  [− ⅆ𝑢𝑚𝑢  +  

𝑎𝑙𝑚𝑙𝑛1

𝑏𝑢+𝑛1+𝑐𝑢𝑦0
] =  

𝑐𝑢𝑑𝑢𝑚𝑢𝑦(𝑠)

𝑏𝑢+𝑛1+𝑐𝑢𝑦0
 (𝑛2 − 𝑦0). 

 

and through this inequality we get to 

 

𝑦′(𝑠)  ≥  𝑦0 exp [
𝑐𝑢𝑑𝑢𝑚𝑢

𝑏𝑢 + 𝑛1 + 𝑐𝑢𝑦0
 (𝑛2 − 𝑦0) (s −  θ0)] )  ≥  𝑦0 exp [

𝑐𝑢𝑑𝑢𝑚𝑢

𝑏𝑢 + 𝑛1 + 𝑐𝑢𝑦0
 (𝑛2 − 𝑦0) θ]  

=  b(y0). 
 

For the reason that 𝑎𝐿𝑚𝐿𝜃1 < 𝑎𝑢𝑚𝑢𝜃 < 4, we get b(y0)  ≥  𝑏(𝑛2)  =  𝑛2  on the interval [𝑛2  , 𝑁2] by 

simply evaluating b′(y0). Consequently, we have 

 

𝑦(𝑠)  ≥  𝑛2   𝑓𝑜𝑟   𝑠 ∈ [𝜃0, 𝜃1)    whenever    𝑛2 ≤ 𝑦0 ≤ 𝑁2.  (12) 

 

From (11) and (12), it follows that 

 

𝑛2 ≤ 𝑦0 ≤ 𝑁2   ⇒   𝑛2 ≤ 𝑦(𝑠) ≤ 𝑁2 for 𝑠 ∈ [𝜃0, 𝜃1). 
 

Since y(s) is continuous, we can construct the desired result on each interval  [𝜃𝑖 , 𝜃𝑖+1) , 𝑖 = 1,2,3, …, 
following the same way discussed previously for x(s). That is to say, 

 

𝑛2 ≤ 𝑦0 ≤ 𝑁2   ⇒   𝑛2 ≤ 𝑦(𝑠) ≤ 𝑁2 for all 𝑠 ≥  𝜃0. 
 

 3. Conclusion 

 

       In this paper, we concentrated on the prey and predator systems and proposed a different parallel to the 

Lotka-Volterra system. We investigated the dynamical behavior of a biological system using differential 

equations with piecewise constant arguments of generalized form and a functional response of Beddington-

DeAngelis type. We address positive invariance for the resultant system by including the piecewise constant 

argument of generalized type. 
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Abstract 

  In this paper, there are proved some results which garantee the existence and the uniqueness of a common 

fixed point for generalized Meir-Keeler contraction, using 𝛼-admissible and 𝜇-subadmissible mappings 

using a comparison function in quasi 2-normed spaces. The main theorem generalizes some known results. 

Keywords: Meir-Keeler contraction, quasi 2-normed space, comparison function, fixed point 

 

1. Introduction  

      The normed spaces are generalized to 2-normed spaces by Gahler [1]. Many authors have worked in 

these spaces [2], [3]. Furthermore, some topological properties and fixed point theorems are studied by 

many authors ([4], [5],[7]),  in 2-normed spaces.  

       In 2006, 2-normed spaces are extended to quasi 2-normed spaces by Park [8]. The study of fixed point 

in quasi two normed space have been the object of some research papers [9,10].  

Meir-Keleer [11] in 1969 introduced a new contraction and proved the existence of a fixed point in metric 

spaces.  Samet et al. [12] presented the concept of 𝛼-admissible mappings and generalized many known 

contractions. Many researchers ([13], [14],…[20]) have worked on these contractions creating new ones 

and they have studied fixed point of them.    

       Inspired by above mentioned works, in this paper we present a new generalized Meir-Keleer 

contraction and prove a theorem for common fixed point. 

 

2. Preliminaries  

Definition 2.1[1] Let 𝐸 be a linear space with dim 𝐸 ≥ 2. The function ‖. , . ‖: 𝐸 → 𝑅+ is called 2-norm, if 

it satisfies the following conditions: 

(1) ‖𝑥, 𝑦‖ = 0 if and only if the vectors {𝑥, 𝑦} are dependent in 𝐸; 

(2) For every (𝑥, 𝑦) ∈ 𝐸2, ‖𝑥, 𝑦‖ = ‖𝑦, 𝑥‖; 
(3) For every (𝛼, 𝑥, 𝑦) ∈ 𝑅 × 𝐸2, ‖𝛼𝑥, 𝑦‖ = |𝛼|‖𝑥, 𝑦‖; 

(4) For all (𝑥, 𝑦, 𝑧) ∈ 𝐸3, ‖𝑥 + 𝑦, 𝑧‖ ≤ ‖𝑥, 𝑧‖ + ‖𝑦, 𝑧‖. 

The couple (𝐸, ‖. , . ‖) is called a quasi 2-normed space. 
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Definition 2.2[8] Let 𝐸 be a linear space with dim 𝐸 ≥ 2. The function ‖. , . ‖: 𝐸 → 𝑅+ is called a quasi 2-

norm, if it satisfies the following conditions: 

(1)  ‖𝑥, 𝑦‖ = 0 if and only if the vectors {𝑥, 𝑦} are dependent in 𝐸; 

(2) For every (𝑥, 𝑦) ∈ 𝑋2, ‖𝑥, 𝑦‖ = ‖𝑦, 𝑥‖; 
(3) For every (𝛼, 𝑥, 𝑦) ∈ 𝑅 × 𝑋2, ‖𝛼𝑥, 𝑦‖ = |𝛼|‖𝑥, 𝑦‖; 

(4) There exists 𝑠 ≥ 1, such that for all (𝑥, 𝑦, 𝑧) ∈ 𝐸3, ‖𝑥 + 𝑦, 𝑧‖ ≤ 𝑠(‖𝑥, 𝑧‖ + ‖𝑦, 𝑧‖). 

The couple (𝐸, ‖. , . ‖) is called quasi 2-normed space. 

Example 2.3 Let 𝐸 be a linear space with dim 𝐸 ≥ 2 and (𝑝𝑖)𝑖=1
2  are  two norms defined in 𝐸 and 𝑠 ≥ 1. 

The function ‖∙,∙‖: 𝐸2 → 𝑅+ such that ‖𝑥1, 𝑥2‖ = 𝑠 ∙ 𝑝1(𝑥1) ∙ 𝑝2(𝑥2) is a quasi  2-norm. The pair (𝐸, ‖. , . ‖) 

is called quasi 2-normed space.  

Definition 2.4 [8] A sequence {𝑥𝑘}𝑘∈𝑁  in a quasi 2-normed space (𝐸, ‖. , . ‖)  is said to be a Cauchy 

sequence if for every 휀 > 0, there exists 𝑝 ∈ 𝑁, such that for every 𝑘, 𝑙 ∈ 𝑁, 𝑘. 𝑙 > 𝑝, ‖𝑥𝑘 − 𝑥𝑙 , 𝑒‖ < 휀, 

where 𝑒 ∈ 𝐸. (It is denoted lim
𝑘,𝑙→+∞

‖𝑥𝑘 − 𝑥𝑙 , 𝑒‖ = 0.) 

Definition 2.5 [8] Let (𝐸, ‖. , . ‖)  be a quasi 2 -normed space. The sequence {𝑥𝑘}𝑘∈𝑁  in 𝐸  is called 

convergent to 𝑥 ∈ 𝐸 , if for every 휀 > 0,  there exists 𝑝 ∈ 𝑁 , such that for every 𝑘 ∈ 𝑁, 𝑘 > 𝑝, ‖𝑥𝑘 −

𝑥, 𝑒‖ < 휀, where 𝑒 ∈ 𝐸. 

Definition 2.6 [8] The quasi 2-normed space (𝐸, ‖. , . ‖) is called complete if every Cauchy sequence in 𝐸 

is convergent in 𝐸. It is called quasi 2-Banach space. 

Definition 2.7 [12] Let (𝐸, ‖. , . ‖) be a quasi 2-normed space and 𝛼: 𝐸 × 𝐸 → 𝑅 be a map. The function 

𝑇: 𝐸 → 𝐸 is called 𝛼-admissible if for every (𝑥, 𝑦) ∈ 𝐸2, 𝛼(𝑥, 𝑦) ≥ 1 then 𝛼(𝑇𝑥, 𝑇𝑦) ≥ 1. 

Definition 2.8 [20] Let (𝐸, ‖. , . ‖) be a quasi 2-normed space and 𝜇: 𝐸 × 𝐸 → 𝑅 be a map. The function 

𝑇: 𝐸 → 𝐸 is called  𝜇-subadmissible if for every (𝑥, 𝑦) ∈ 𝐸2, 𝜇(𝑥, 𝑦) ≤ 1 then 𝜇(𝑇𝑥, 𝑇𝑦) ≤ 1. 

Theorem 2.9 [11] Let (𝑋, 𝑑)be a metric space and 𝑇: 𝐸 → 𝐸  a function. If the function 𝑇satisfies the 

following implication: for every 휀 > 0 , there exist 𝛿 > 0 such that 휀 ≤ 𝑑(𝑥, 𝑦) < 휀 + 𝛿  implies 

𝑑(𝑇𝑥, 𝑇𝑦) < 휀, then it has a unique fixed point in 𝑋. 

Definition 2.10 Let (𝐸, ‖. , . ‖)  be a quasi 2 -normed space and 𝛼: 𝐸 × 𝐸 → 𝑅  be a map. The pair of 

functions 𝑓: 𝐸 → 𝐸  and 𝑔: 𝐸 → 𝐸  is called 𝛼 -admissible if for every (𝑥, 𝑦) ∈ 𝐸2 , 𝛼(𝑥, 𝑦) ≥ 1  then 

𝛼(𝑓𝑥, 𝑔𝑦) ≥ 1. 

Example 2.11 Let 𝐸 = 𝑅3 and 𝛼: 𝐸 × 𝐸 → 𝑅, 𝛼(𝑥, 𝑦) = {
5, 𝑥 ≠ 𝑦
0, 𝑥 = 𝑦

 and 𝑓: 𝐸 → 𝐸, 𝑓(𝑥) =
𝑥

3
, 𝑔: 𝐸 → 𝐸, 

𝑔(𝑥) = 2𝑥. The pair of functions 𝑓 and 𝑔 is 𝛼-admissible. 
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Definition 2.12 Let (𝐸, ‖. , . ‖)  be a quasi 2 -normed space and 𝜇: 𝐸 × 𝐸 → 𝑅  be a map. The pair of 

functions 𝑇: 𝐸 → 𝐸  and 𝑆: 𝐸 → 𝐸  is called 𝜇 -subadmissible if for every (𝑥, 𝑦) ∈ 𝐸2 ,  𝜇(𝑥, 𝑦) ≤ 1 then  

𝜇(𝑇𝑥, 𝑆𝑦) ≤ 1. 

Example 2.13 Let 𝐸 = 𝑅3 and 𝜇: 𝐸 × 𝐸 → 𝑅,𝜇(𝑥, 𝑦) = {
1

3
, 𝑥 ≠ 𝑦

0, 𝑥 = 𝑦
 and 𝑓: 𝐸 → 𝐸, 𝑓(𝑥) =

2𝑥

3
, 𝑔: 𝐸 → 𝐸, 

𝑔(𝑥) = −𝑥. The pair of functions 𝑓 and 𝑔 is 𝛼-admissible. 

Definition 1.14 [21] The function 𝜑: 𝑅+ → 𝑅+ is called a comparison function if it satisfies the following 

conditions: 

a) 𝜑 is a nondeacreasing function;  

b)  For every 𝑡 > 0, 0 < 𝜑(𝑡) < 𝑡; 

c) For each 𝑡 > 0, lim
𝑛→+∞

𝜑𝑛(𝑡) = 0. 

The set of comparison function is denoted by Φ. 

3. Main results 

Let (𝐸, ‖. , . ‖) be a quasi 2-normed space and 𝑓: 𝐸 → 𝐸 and 𝑔: 𝐸 → 𝐸 be two functions.  

Denote 𝑀𝑓,𝑠 = max {‖𝑥 − 𝑦, 𝑒‖, ‖𝑥 − 𝑓𝑥, 𝑒‖, ‖𝑦 − 𝑔𝑦, 𝑒‖,
‖𝑥−𝑓𝑦,𝑒‖+‖𝑦−𝑓𝑥,𝑒‖

2𝑠
}  and 𝑀𝑓,𝑔,𝑠 = max {‖𝑥 −

𝑦, 𝑒‖, ‖𝑥 − 𝑓𝑥, 𝑒‖, ‖𝑦 − 𝑔𝑦, 𝑒‖,
‖𝑥−𝑔𝑦,𝑒‖+‖𝑦−𝑓𝑥,𝑒‖

2𝑠
}, for every 𝑥, 𝑦 ∈ 𝐸 and 𝑠 > 1 

Definition 3.1 Let (𝐸, ‖. , . ‖) be a quasi 2-normed space, 𝛼: 𝐸 × 𝐸 → 𝑅, 𝜇: 𝐸 × 𝐸 → 𝑅  two maps. The 

function 𝑓: 𝐸 → 𝐸 is said that completes the (𝛼, 𝜇, 𝜑)-generalized Meir-Keeler contraction if it satisfies the 

following implication: 

for every 휀 > 0 , there exist 𝛿 > 0 such that 휀 ≤ 𝜇(𝑥, 𝑦)𝜑(𝑀𝑓,𝑠(𝑥, 𝑦)) < 휀 + 𝛿  implies 𝛼(𝑥, 𝑦)‖𝑓𝑥 −

𝑓𝑦, 𝑒‖ < 휀 

for every 𝑥, 𝑦 ∈ 𝑋 and 𝜑 ∈ Φ. 

Definition 3.2 Let (𝐸, ‖. , . ‖) be a quasi 2-normed space, 𝛼: 𝐸 × 𝐸 → 𝑅, 𝜇: 𝐸 × 𝐸 → 𝑅  two maps. The 

couple  of functions 𝑓: 𝐸 → 𝐸 and 𝑔: 𝐸 → 𝐸 is said that completes the (𝛼, 𝜇, 𝜑)-generalized Meir-Keeler 

contraction if it satisfies the following implication: 

for every 휀 > 0, there exists 𝛿 > 0 such that 휀 ≤ 𝜇(𝑥, 𝑦)𝜑(𝑀𝑓,𝑔,𝑠(𝑥, 𝑦)) < 휀 + 𝛿  implies 𝛼(𝑥, 𝑦)‖𝑓𝑥 −

𝑔𝑦, 𝑒‖ < 휀 

for every 𝑥, 𝑦 ∈ 𝑋 and 𝜑 ∈ Φ. 
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Theorem 3.3 Let (𝐸, ‖. , . ‖)  be a quasi 2-normed space with 𝑠 > 1. If 𝑓, 𝑔: 𝐸 → 𝐸  two function that 

satisfies (𝛼, 𝜇, 𝜑) -generalized Meir-Keeler contraction and 𝑓  is continuous then there exits a unique 

common fixed point for 𝑓 and 𝑔. 

Proof. Let 𝑥0 be an arbitrary point from the quasi 2-normed space 𝐸. Denote 𝑥2𝑛 = 𝑓𝑥2𝑛−1 and 𝑥2𝑛+1 =

𝑔𝑥2𝑛. 

If there exists any 𝑝 ∈ 𝑁  such that 𝑥2𝑝 = 𝑥2𝑝+1 , we have ‖𝑥2𝑝+1 − 𝑥2𝑝+2,𝑒‖ = ‖𝑔𝑥2𝑝 − 𝑓𝑥2𝑝+1,𝑒‖ ≤

 𝛼(𝑥2𝑝, 𝑥2𝑝+1)‖𝑓𝑥2𝑝+1 − 𝑔𝑥2𝑝,𝑒‖ < 휀 ≤ 𝜇(𝑥2𝑝, 𝑥2𝑝+!)𝜑 (𝑀𝑓,𝑔,𝑠(𝑥2𝑝+1, 𝑥2𝑝)) ≤ 𝜑 (𝑀𝑓,𝑔,𝑠(𝑥2𝑝+1, 𝑥2𝑝)) 

𝑀𝑓,𝑔,𝑠(𝑥2𝑝+1, 𝑥2𝑝)

= max{‖𝑥2𝑝+1 − 𝑥2𝑝,𝑒‖, ‖𝑥2𝑝+1 − 𝑓𝑥2𝑝+1,𝑒‖, ‖𝑥2𝑝

− 𝑔𝑥2𝑝,𝑒‖,
‖𝑥2𝑝+1 − 𝑔𝑥2𝑝,𝑒‖ + ‖𝑥2𝑝 − 𝑓𝑥2𝑝+1,𝑒‖

2𝑠
}

= max{‖𝑥2𝑝+1 − 𝑥2𝑝,𝑒‖, ‖𝑥2𝑝+1 − 𝑥2𝑝+2,𝑒‖, ‖𝑥2𝑝

− 𝑥2𝑝+1,𝑒‖,
‖𝑥2𝑝+1 − 𝑥2𝑝+1,𝑒‖ + ‖𝑥2𝑝 − 𝑥2𝑝+2,𝑒‖

2𝑠
}

= max{‖𝑥2𝑝+1 − 𝑥2𝑝+1,𝑒‖, ‖𝑥2𝑝+2 − 𝑥2𝑝+1,𝑒‖,
‖𝑥2𝑝 − 𝑥2𝑝+1,𝑒‖ + ‖𝑥2𝑝+1 − 𝑥2𝑝+2,𝑒‖

2
}

= ‖𝑥2𝑝+2 − 𝑥2𝑝+1,𝑒‖ 

As a result we take the inequality ‖𝑥2𝑝+1 − 𝑥2𝑝+2,𝑒‖ < 𝜑(‖𝑥2𝑝+1 − 𝑥2𝑝+2,𝑒‖), which contradicts the 

condition 2 of the comparison function. It remains that ‖𝑥2𝑝+1 − 𝑥2𝑝+2,𝑒‖ = 0  and  𝑥2𝑝+1 = 𝑥2𝑝+2 . 

Consequently, the sequence  {𝑥𝑛}𝑛∈𝑁 is constant and 𝑥0 is the common fixed point of the pair of functions 

𝑓 and 𝑔. 

Suppose that 𝑥2𝑛 ≠ 𝑥2𝑛+1 for each 𝑛 ∈ 𝑁. 

‖𝑥2𝑛 − 𝑥2𝑛+1,𝑒‖ = ‖𝑓𝑥2𝑛−1 − 𝑔𝑥2𝑛,𝑒‖ ≤  𝛼(𝑥2𝑛−1, 𝑥2𝑛)‖𝑓𝑥2𝑛−1 − 𝑔𝑥2𝑛,𝑒‖ < 휀

≤ 𝜇(𝑥2𝑛−1, 𝑥2𝑛)𝜑 (𝑀𝑓,𝑔,𝑠(𝑥2𝑛−1, 𝑥2𝑛)) ≤ 𝜑 (𝑀𝑓,𝑔,𝑠(𝑥2𝑛−1, 𝑥2𝑛)) 
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𝑀𝑓,𝑔,𝑠(𝑥2𝑛−1, 𝑥2𝑛)

= max{‖𝑥2𝑛−1 − 𝑥2𝑛,𝑒‖, ‖𝑥2𝑛−1 − 𝑓𝑥2𝑛−1,𝑒‖, ‖𝑥2𝑛

− 𝑔𝑥2𝑛,𝑒‖,
‖𝑥2𝑛−1 − 𝑔𝑥2𝑛,𝑒‖ + ‖𝑥2𝑛 − 𝑓𝑥2𝑝−1,𝑒‖

2𝑠
}

= max{‖𝑥2𝑛−1 − 𝑥2𝑛,𝑒‖, ‖𝑥2𝑛−1 − 𝑥2𝑛,𝑒‖, ‖𝑥2𝑛

− 𝑥2𝑛+1,𝑒‖,
‖𝑥2𝑛−1 − 𝑥2𝑛+1,𝑒‖ + ‖𝑥2𝑛 − 𝑥2𝑛,𝑒‖

2𝑠
}

= max{‖𝑥2𝑛−1 − 𝑥2𝑛,𝑒‖, ‖𝑥2𝑛 − 𝑥2𝑛+1,𝑒‖,
‖𝑥2𝑛−1 − 𝑥2𝑛+1,𝑒‖

2𝑠
} 

Case 1. If we take  𝑀𝑓,𝑔,𝑠(𝑥2𝑛−1, 𝑥2𝑛) = ‖𝑥2𝑛−1 − 𝑥2𝑛,𝑒‖,  the inequality ‖𝑥2𝑛 − 𝑥2𝑛+1,𝑒‖ ≤ 𝜑(‖𝑥2𝑛−1 −

𝑥2𝑛,𝑒‖) holds. Using the condition 2 of the comparison function 𝜑 we have:  

‖𝑥2𝑛 − 𝑥2𝑛+1,𝑒‖ < 𝜑(‖𝑥2𝑛−1 − 𝑥2𝑛,𝑒‖) ≤ 𝜑 (𝜑(‖𝑥2𝑛−3 − 𝑥2𝑛−2,𝑒‖)) ≤ ⋯ ≤ 𝜑2𝑛(‖𝑥1 − 𝑥0,𝑒‖). 

Case 2. Taking 𝑀𝑓,𝑔,𝑠(𝑥2𝑛−1, 𝑥2𝑛) = ‖𝑥2𝑛 − 𝑥2𝑛+1,𝑒‖, we have ‖𝑥2𝑛 − 𝑥2𝑛+1,𝑒‖ < 𝜑(‖𝑥2𝑛 − 𝑥2𝑛+1,𝑒‖) 

which is not true. As a result Case 2 does not hold. 

Case 3.We note that 𝑀𝑓,𝑔,𝑠(𝑥2𝑛−1, 𝑥2𝑛) = 

=
‖𝑥2𝑛−1 − 𝑥2𝑛+1,𝑒‖

2𝑠
≤

𝑠(‖𝑥2𝑛−1 − 𝑥2𝑛,𝑒‖ + ‖𝑥2𝑛 − 𝑥2𝑛+1,𝑒‖)

2𝑠
=

‖𝑥2𝑛−1 − 𝑥2𝑛,𝑒‖ + ‖𝑥2𝑛 − 𝑥2𝑛+1,𝑒‖

2

≤ max {‖𝑥2𝑛−1 − 𝑥2𝑛,𝑒‖, ‖𝑥2𝑛 − 𝑥2𝑛+1,𝑒‖} 

which results that we are in Case 1 and Case 2. 

From the above relations we have that for every 𝑛 ∈ 𝑁, ‖𝑥𝑛 − 𝑥𝑛+1,𝑒‖ < 𝜑𝑛(𝑐) where 𝑐 = ‖𝑥0 − 𝑥1,𝑒‖. 

Let prove that the sequence {𝑥𝑛}𝑛∈𝑁 is Cauchy. Taking 𝑛, 𝑘 ∈ 𝑁, we have 

‖𝑥𝑛+𝑘 − 𝑥𝑛,𝑒‖ ≤ 𝑠(‖𝑥𝑛+𝑘 − 𝑥𝑛+1,𝑒‖ + ‖𝑥𝑛+1 − 𝑥𝑛,𝑒‖) ≤ 𝑠2(‖𝑥𝑛+𝑘 − 𝑥𝑛+2,𝑒‖ + ‖𝑥𝑛+2 − 𝑥𝑛+1,𝑒‖) +

𝑠‖𝑥𝑛+1 − 𝑥𝑛,𝑒‖ ≤ 𝑠𝑘‖𝑥𝑛+𝑘 − 𝑥𝑛+𝑘−1,𝑒‖ + 𝑠𝑘−1‖𝑥𝑛+𝑘−1 − 𝑥𝑛+𝑘−2,𝑒‖ + ⋯ + 𝑠‖𝑥𝑛+1 − 𝑥𝑛,𝑒‖ ≤

𝑠𝑘𝜑𝑛+𝑘−1(𝑐) + 𝑠𝑘−1𝜑𝑛+𝑘−2(𝑐) + ⋯ + 𝑠𝜑𝑛(𝑐) = 𝑠𝜑𝑛(𝑐)(𝑠𝑘−1𝜑𝑘−1(𝑐) + ⋯ + 1) = 𝑠𝜑𝑛(𝑐)
1−(𝑠𝜑(𝑐))𝑘

1−𝑠𝜑(𝑐)
  

Taking the limit of both sides in ‖𝑥𝑛+𝑘 − 𝑥𝑛,𝑒‖ ≤ 𝑠𝜑𝑛(𝑐)
1−(𝑠𝜑(𝑐))𝑘

1−𝑠𝜑(𝑐)
 when 𝑛, 𝑘 → +∞ we have that 

 lim
𝑛,𝑘→+∞

‖𝑥𝑛+𝑘 − 𝑥𝑛,𝑒‖ = 0. As a result the sequence {𝑥𝑛}𝑛∈𝑁 is Cauchy. 
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Since the 2-normed space (𝐸, ‖. , . ‖) is complete, the Cauchy sequence {𝑥𝑛}𝑛∈𝑁 converges to a point 𝑥• ∈

𝑋. 

Firstly, we prove that 𝑥• is a fixed point for the function 𝑓, 𝑥• = 𝑓𝑥•. Using the continuity of 𝑓 we obtain 

lim‖𝑥• − 𝑥2𝑛, 𝑒‖
𝑛→+∞

= lim
𝑛→+∞

‖𝑥• − 𝑓𝑥2𝑛−1, 𝑒‖ = ‖𝑥• − 𝑓𝑥•, 𝑒‖ and lim‖𝑥• − 𝑥2𝑛, 𝑒‖
𝑛→+∞

= 0. 

It yields that ‖𝑥• − 𝑓𝑥•, 𝑒‖ = 0 and 𝑥• = 𝑓𝑥•.  

Secondly, we assure that 𝑥• is also a fixed point for the function 𝑔, 𝑥• = 𝑔𝑥•. 

Let suppose that 𝑥• ≠ 𝑔𝑥•, which means that ‖𝑥• − 𝑔𝑥•, 𝑒‖ ≠ 0 

‖𝑥• − 𝑔𝑥•, 𝑒‖ = ‖𝑓𝑥• − 𝑔𝑥•, 𝑒‖ ≤ 𝛼(𝑥•, 𝑥•)‖𝑓𝑥• − 𝑔𝑥•, 𝑒‖ < 휀 ≤ 𝜇(𝑥•, 𝑥•)𝜑(𝑀𝑓,𝑔,𝑠(𝑥•, 𝑥•))

≤ 𝜑(𝑀𝑓,𝑔,𝑠(𝑥•, 𝑥•)) 

𝑀𝑓,𝑔,𝑠(𝑥•, 𝑥•) = max {‖𝑥• − 𝑥•, 𝑒‖, ‖𝑥• − 𝑓𝑥•, 𝑒‖, ‖𝑥• − 𝑔𝑥•, 𝑒‖,
‖𝑥• − 𝑓𝑥•, 𝑒‖ + ‖𝑥• − 𝑔𝑥•, 𝑒‖

2𝑠
}

= ‖𝑥• − 𝑔𝑥•, 𝑒‖ 

‖𝑥• − 𝑔𝑥•, 𝑒‖ < 𝜑(‖𝑥• − 𝑔𝑥•, 𝑒‖) 

which contradicts the condition 2 of the comparison function. It yields that 𝑥• = 𝑔𝑥•. 

Consequently, 𝑥• is a common fixed point of 𝑓 and 𝑔, 𝑓𝑥• = 𝑥• = 𝑔𝑥•. 

Finally, we prove that the fixed point 𝑥• of 𝑓 and 𝑔, is unique. 

Suppose that there exists another point 𝑥•• ∈ 𝐸 such that 𝑥• ≠ 𝑥••, and  𝑓𝑥•• = 𝑥•• = 𝑔𝑥••. 

‖𝑥• − 𝑥••, 𝑒‖ = ‖𝑓𝑥• − 𝑔𝑥••, 𝑒‖ ≤ 𝛼(𝑥•, 𝑥••)‖𝑓𝑥• − 𝑔𝑥••, 𝑒‖ < 휀 ≤ 𝜇(𝑥•, 𝑥••)𝜑(𝑀𝑓,𝑔,𝑠(𝑥•, 𝑥••))

≤ 𝜑(𝑀𝑓,𝑔,𝑠(𝑥•, 𝑥••)) 

𝑀𝑓,𝑔,𝑠(𝑥•, 𝑥••) = max {‖𝑥• − 𝑥••, 𝑒‖, ‖𝑥• − 𝑓𝑥••, 𝑒‖, ‖𝑥• − 𝑔𝑥••, 𝑒‖,
‖𝑥•• − 𝑓𝑥•, 𝑒‖ + ‖𝑥• − 𝑔𝑥••, 𝑒‖

2𝑠
}

= ‖𝑥• − 𝑥••, 𝑒‖ 

‖𝑥• − 𝑥••, 𝑒‖ < 𝜑(‖𝑥• − 𝑥••, 𝑒‖) 

which is a contradiction. It remains that 𝑥• = 𝑥••. 
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Theorem 3.4 Let (𝐸, ‖. , . ‖)  be a quasi 2 -normed space with 𝑠 > 1 . If function 𝑓: 𝐸 → 𝐸   satisfies 

(𝛼, 𝜇, 𝜑)-generalized Meir-Keeler contraction and 𝑓 is continuous then there exits a unique fixed point for 

𝑓. 

Proof. Taking the function 𝑔: 𝐸 → 𝐸, 𝑔𝑥 = 𝑓𝑥 for each 𝑥 ∈ 𝑋, we are in the conditions of Theorem 2.1, 

which garantees that 𝑓 has a unique fixed point 𝑥• ∈ 𝑋, 𝑓𝑥• = 𝑥•. 

Corollary 3.5 Let (𝐸, ‖. , . ‖) be a quasi 2-normed space with 𝑠 > 1. If function 𝑓: 𝐸 → 𝐸  satisfies the 

following condition: 

for every 휀 > 0 , there exist 𝛿 > 0 such that 휀 ≤ 𝜇(𝑥, 𝑦)𝜑(𝑁𝑓,𝑠(𝑥, 𝑦)) < 휀 + 𝛿  implies 𝛼(𝑥, 𝑦)‖𝑓𝑥 −

𝑓𝑦, 𝑒‖ < 휀 , for every 𝑥, 𝑦 ∈ 𝑋  and 𝜑 ∈ Φ , where 𝑁𝑓,𝑠(𝑥, 𝑦) = max {‖𝑥 −

𝑦, 𝑒‖,
‖𝑥−𝑓𝑥,𝑒‖+‖𝑦−𝑓𝑦,𝑒‖

2𝑠
,

‖𝑥−𝑓𝑦,𝑒‖+‖𝑦−𝑓𝑥,𝑒‖

2𝑠
}, then it has a unique fixed point in 𝑋. 

Proof. Since 𝑁𝑓,𝑠(𝑥, 𝑦) ≤ 𝑀𝑓,𝑠(𝑥, 𝑦) for every 𝑥, 𝑦 ∈ 𝑋 then we are in conditions of Theorem 2.2. 

Corollary 3.6 Let (𝐸, ‖. , . ‖) be a quasi 2-normed space with 𝑠 > 1. If function 𝑓: 𝐸 → 𝐸  satisfies the 

following condition: 

for every 휀 > 0, there exist 𝛿 > 0 such that 휀 ≤ 𝜑(𝑀𝑓,𝑠(𝑥, 𝑦)) < 휀 + 𝛿 implies 𝛼(𝑥, 𝑦)‖𝑓𝑥 − 𝑓𝑦, 𝑒‖ < 휀, 

for every 𝑥, 𝑦 ∈ 𝑋 and 𝜑 ∈ Φ, then it has a unique fixed point in 𝑋. 

Proof. Taking 𝜇(𝑥, 𝑦) = 1 for every 𝑥, 𝑦 ∈ 𝑋, 𝑓 has a unique fixed point from Theorem 2.2. 

Corollary 3.7 Let (𝐸, ‖. , . ‖) be a quasi 2-normed space with 𝑠 > 1. If function 𝑓: 𝐸 → 𝐸  satisfies the 

following condition 

for every 휀 > 0 , there exist 𝛿 > 0 such that 휀 ≤ 𝜑(‖𝑥 − 𝑦, 𝑒‖) < 휀 + 𝛿  implies ‖𝑓𝑥 − 𝑓𝑦, 𝑒‖ < 휀 , for 

every 𝑥, 𝑦 ∈ 𝑋 and 𝜑 ∈ Φ, 

then it has a unique fixed point in 𝑋. 

Proof. If we take 𝛼(𝑥, 𝑦) = 1 for every 𝑥, 𝑦 ∈ 𝑋 and since ‖𝑥 − 𝑦, 𝑒‖ ≤ 𝑀𝑓,𝑠(𝑥, 𝑦) then it easy to prove 

that the function 𝑓 has a unique fixed point. 

Example 3.8 Let (𝐸, ‖. , . ‖) be the quasi 2-normed space given in Example 2.3. Define 𝛼: 𝐸 × 𝐸 → 𝑅, 

𝛼(𝑥, 𝑦) = {
5, 𝑥 ≠ 𝑦
0, 𝑥 = 𝑦

, 𝜇: 𝐸 × 𝐸 → 𝑅,𝜇(𝑥, 𝑦) = {
1

3
, 𝑥 ≠ 𝑦

0, 𝑥 = 𝑦
, 𝜑: 𝑅+ → 𝑅+, 𝜑(𝑡) =

𝑡

2
. Let take the function 

𝑓: 𝐸 → 𝐸, 𝑓(𝑥) =
𝑥

42
. 
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Suppose that for every 휀 > 0, there is 𝛿 > 0 such that 휀 ≤ 𝜇(𝑥, 𝑦)𝜑(‖𝑥 − 𝑦, 𝑒‖) < 휀 + 𝛿. Taking 𝛿 =
𝜀

6
, 

we have 휀 ≤
1

6
‖𝑥 − 𝑦, 𝑒‖ <

7

6
휀. 

We see that 𝛼(𝑥, 𝑦)‖𝑓𝑥 − 𝑓𝑦, 𝑒‖ = 6 ‖
𝑥

42
−

𝑦

42
, 𝑒‖ =

6

7
(

1

6
∙ ‖𝑥 − 𝑦, 𝑒‖) <

6

7
∙

7

6
휀 = 휀 . Since we are in 

condition of Corollary 3.7, 𝑓 has a unique fixed point, the vector 𝑥 = 0.  

Conclusions In this paper are presented and proved some new results on generalized Meir-Keleer 

contractions. Theorem 3.3 is the highlight of the paper where there are proved the existence and uniqueness 

of a common fixed point for a pair of functions that satisfies a new generalized Meir-Keleer condition in 

which a comparison function is used. Theorem 3.4 assures that a function under a new generalized Meir-

Keller contraction has a unique fixed point. Some important corollaries are obtained.  
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Abstract 
In this work, we introduce and examine differential geometric properties of the astro-rotational 

hypersurface which its profile curve has astroid curve in the four dimensional Euclidean space 𝔼 . We 
reveal the curvatures ℭ , ,  of the astro-rotational hypersurface, that is the first (ie. the mean) curvature 

ℭ , the second curvature ℭ , the third (ie. the Gaussian) curvature ℭ . Moreover, projecting the astro-
rotational hypersurface into 3-spaces, we indicate surfaces, visually. 
          

 Keywords: 4-space, curvature, Gauss map, astro-rotational hypersurface. 

 
 
1. Introduction 
 

We find following papers about hyper-surfaces in the literature: Arslan et al. [1], Ganchev and 
Milousheva [3], Güler et al. [5,7], Güler and Turgay [8], and also some books: Eisenhart [2], Gray et al. 
[4], Hacısalihoglu [9], Nitsche [10]. 

 
In this paper, we introduce the astro-rotational hypersurface in Euclidean 4-space 𝔼 . We give the 

fundamental notions of the four dimensional Euclidean geometry in Section 2. In Section 3, we define 
rotational hypersurface. We obtain astro-rotational hypersurface, and calculate its curvatures in the last 
section.  
 
2. Preliminaries 
 

In 𝔼 , to find the 𝑖-th curvature formulas ℭ , where 𝑖 = 0,1, … , 𝑛, we use characteristic polynomial of 
shape operator 𝐒: 

 

𝑃𝐒(𝜆) = 0 = det(𝐒 − 𝜆𝐼 ) = (−1) 𝑠 𝜆 , 

 

where 𝐼  denotes the identity matrix of order 𝑛 . Then, we get curvature formulas 
𝑛
𝑖

ℭ = 𝑠 . Here, 
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𝑛
0

ℭ = 𝑠 = 1 by definition. 𝑘-th fundamental form of hypersurface 𝑀  is defined by  

 
I(𝐒 (𝑋), 𝑌) = 〈𝐒 (𝑋), 𝑌〉. 

 
Therefore, we have 
 

(−1)
𝑛
𝑖

ℭ  I(𝐒 (𝑋), 𝑌) = 0. 

 
In the rest of this paper, we shall identify a vector (a, b, c, d) with its transpose (a, b, c, d) . 

 
Let 𝐱 = 𝐱(𝑢, 𝑣, 𝑤) be an isometric immersion of a hypersurface 𝑀  in 𝔼 . Inner product of vectors �⃗� =

(𝑥 , 𝑥 , 𝑥 , 𝑥 ) and �⃗� = (𝑦 , 𝑦 , 𝑦 , 𝑦 ) in 𝔼  is given by as follows 
 

〈�⃗�, �⃗�〉 = 𝑥 𝑦 + 𝑥 𝑦 + 𝑥 𝑦 + 𝑥 𝑦 . 
 

Vector product �⃗� × �⃗� × 𝑧  of �⃗� = (𝑥 , 𝑥 , 𝑥 , 𝑥 ), �⃗� = (𝑦 , 𝑦 , 𝑦 , 𝑦 ), 𝑧 = (𝑧 , 𝑧 , 𝑧 , 𝑧 ) in 𝔼  is defined 
by as follows 
 

�⃗� × �⃗� × 𝑧 = det

𝑒
𝑥
𝑦
𝑧

𝑒
𝑥
𝑦
𝑧

𝑒
𝑥
𝑦
𝑧

𝑒
𝑥
𝑦
𝑧

. 

 
The Gauss map of a hypersurface 𝐱 is given by 
 

𝑒 =
𝐱 × 𝐱 × 𝐱

‖𝐱 × 𝐱 × 𝐱 ‖
,                                                               (2.1)  

 
where 𝐱 = 𝑑𝐱/𝑑𝑢. For a hypersurface 𝐱 in 𝔼 , we have 
 

  detI = det
𝐸 𝐹 𝐴
𝐹 𝐺 𝐵
𝐴 𝐵 𝐶

= (𝐸𝐺 − 𝐹 )𝐶 − 𝐸𝐵 + 2𝐹𝐴𝐵 − 𝐺𝐴 , 

 

    detII = det
𝐿 𝑀 𝑃
𝑀 𝑁 𝑇
𝑃 𝑇 𝑉

= (𝐿𝑁 − 𝑀 )𝑉 − 𝐿𝑇 + 2𝑀𝑃𝑇 − 𝑁𝑃 , 

 

detIII = det
𝑋 𝑌 𝑂
𝑌 𝑍 𝑅
𝑂 𝑅 𝑆

= (𝑋𝑍 − 𝑌 )𝑆 − 𝑋𝑅 + 2𝑌𝑂𝑅 − 𝑍𝑂 . 
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Here, the coefficients are given by 
 
      𝐸 = 〈𝐱 , 𝐱 〉,   𝐹 = 〈𝐱 , 𝐱𝒗〉,   𝐺 = 〈𝐱 , 𝐱 〉,   𝐴 = 〈𝐱 , 𝐱 〉,   𝐵 = 〈𝐱 , 𝐱𝒘〉,   𝐶 = 〈𝐱 , 𝐱 〉, 
 
      𝐿 = 〈𝐱 , 𝑒〉,    𝑀 = 〈𝐱 , 𝑒〉,    𝑁 = 〈𝐱 , 𝑒〉,      𝑃 = 〈𝐱 , 𝑒〉,     𝑇 = 〈𝐱 , 𝑒〉,    𝑉 = 〈𝐱 , 𝑒〉, 
 
      𝑋 = 〈𝑒 , 𝑒 〉,      𝑌 = 〈𝑒 , 𝑒𝒗〉,       𝑍 = 〈𝑒 , 𝑒𝒗〉,       𝑂 = 〈𝑒 , 𝑒𝒘〉,       𝑅 = 〈𝑒 , 𝑒𝒘〉,       𝑆 = 〈𝑒 , 𝑒𝒘〉, 
 
and 𝑒 is the Gauss map (i.e. the unit normal vector field).  

 
Next, we will obtain the fourth fundamental form matrix for a hypersurface 𝐱(𝑢, 𝑣, 𝑤) in 𝔼 . Using 

characteristic polynomial 𝑃𝐒(𝜆) = 𝑎𝜆 + 𝑏𝜆 + 𝑐𝜆 + 𝑑 = 0, we obtain curvature formulas: ℭ = 1 (by 
definition), 

 

ℭ = −
𝑏

3
1

𝑎
,   ℭ =

𝑐

3
2

𝑎
,   ℭ = −

𝑑

3
3

𝑎
.                                         (2.2) 

 
Theorem 3.1. For any hypersurface M  in 𝔼 , the fundamental forms and the curvatures are related 

by 
 

ℭ IV − 3ℭ III + 3ℭ II − ℭ I = 0. 
 

Proof. See [6] for details. 
 
3. Rotational Hypersurfaces 
 
We introduce a kind of rotational hypersurface which its profile curve has astroid curve in the four 

dimensional Euclidean space 𝔼 . 
 
𝛾: 𝐼 ⟶ Π be a space curve for an open interval 𝐼 ⊂ ℝ, and let ℓ be a line in Π. A rotational hypersurface 

is defined as a hypersurface rotating a curve 𝛾 profile curve around axis ℓ in 𝔼 . 
 
We may suppose that ℓ is the line spanned by the vector (0, 0, 0, 1) . The orthogonal matrix which fixes 

the above vector is 
 

𝐴(𝑣, 𝑤) =

cos𝑣 cos𝑤 −sin𝑣 −cos𝑣 sin𝑤 0
sin𝑣 cos𝑤 cos𝑣 −sin𝑣 sin𝑤 0

sin𝑤 0 cos𝑤 0
0 0 0 1

, 

 
 
where 𝑣, 𝑤 ∈ ℝ.  
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The matrix 𝐴 can be found by solving the following equations, simultaneously, 
 

𝐴ℓ = ℓ,   𝐴 𝐴 = 𝐴𝐴 = ℐ ,   𝑑𝑒𝑡 𝐴 = 1. 
 
When the axis of rotation is ℓ, there is an Euclidean transformation by which the axis ℓ transformed to 

the axis 𝑥  of 𝔼 . Parametrization of the profile space curve 𝛾 is given by 
 

𝛾(𝑢) = 𝑓(𝑢), 0, 0, 𝑔(𝑢) , 
 

where 𝑓(𝑢), 𝑔(𝑢): 𝐼 ⊂ ℝ ⟶ ℝ are differentiable functions for all 𝑢 ∈ 𝐼. Hence, the rotational hypersurface 
spanned by the vector (0, 0, 0, 1) is given by 
 

𝑅(𝑢, 𝑣, 𝑤) =  𝐴(𝑣, 𝑤). 𝛾(𝑢) , 
 
where 0 ≤ 𝑣, 𝑤 < 2𝜋. 

 
Therefore, we can re-write rotational hypersurface as follows 
 

𝑅(𝑢, 𝑣, 𝑤) =

⎝

⎛

𝑓(𝑢) cos𝑣 cos𝑤

𝑓(𝑢) sin𝑣 cos𝑤

𝑓(𝑢) sin𝑤

𝑔(𝑢) ⎠

⎞. 

 

4. Astro-Rotational Hypersurfaces 
 

Now, by using rotational matrix in 𝔼 , and profile curve γ with translation vector on axis 𝑥 , we find 
rotational hypersurface which has astroid curve. Resulting hypersurface that we called it as the astro-
rotational hypersurface ℛ(𝑢, 𝑣, 𝑤). 

 
Considering the astroid curve in 𝔼  
 

𝛾(𝑢) = (𝑎 cos 𝑢, 0, 0, 𝑎 sin 𝑢),   𝑎 ∈ ℝ, 
 

we calculate the Gauss map, and also find the curvatures ℭ , ,  of the astro-rotational hypersurface. 
 
We also draw some figures of the astro-rotational hypersurface, and its Gauss map with projection from 

four dimensional Euclidean space to the three dimensional Euclidean space. 
 
In 𝔼 ,  astro-rotational hypersurface ℛ(𝑢, 𝑣, 𝑤)  spanned by the vector (0, 0, 0, 1),  is defined by as 

follows 
 

129



 
5th INTERNATIONAL ONLINE CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 
1-3 December 2021, Istanbul, Turkey 

 

 
ICOM 2021 

ISTANBUL / TURKEY 

ℛ(𝑢, 𝑣, 𝑤) =

𝑎 cos 𝑢 cos𝑣 cos𝑤
𝑎 cos 𝑢 sin𝑣 cos𝑤

𝑎 cos 𝑢 sin𝑤
𝑎 sin 𝑢

.                                                        (4.1) 

 
Taking 𝑤 =  𝜋/4 in (4.1), we have projection surface into 3-space as in Figure 1. 

 
 

 
 

Figure 1. Projection of ℛ(𝑢, 𝑣, 𝑤) into 𝑥 𝑥 𝑥 -space,  
Left: front view, Right: side view, 

 
 

Using the first differentials of (4.1) with respect to 𝑢, 𝑣, 𝑤, we get the first quantities as follows 
 

I =
9𝑎  sin 𝑢 cos 𝑢 0 0

0 𝑎  cos 𝑢 cos 𝑤 0
0 0 𝑎  cos 𝑢

 

 
where 
 

det I = 9𝑎  sin 𝑢 cos 𝑢 cos 𝑤. 
 

Using the Gauss map formula (2.1)  on (4.1),  we have the Gauss map of the astro-rotational 
hypersurface (4.1), as follows 

 

𝑒 =

sin𝑢 cos𝑣 cos𝑤
sin𝑢 sin𝑣 cos𝑤

sin𝑢 sin𝑤
cos𝑢

. 

 
Computing the second differentials of (4.1) with respect to 𝑢, 𝑣, 𝑤, we have the second quantities as 

130



 
5th INTERNATIONAL ONLINE CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 
1-3 December 2021, Istanbul, Turkey 

 

 
ICOM 2021 

ISTANBUL / TURKEY 

follows 
 

II =
3𝑎 sin𝑢 cos𝑢 0 0

0 −𝑎 sin𝑢 cos 𝑢 cos 𝑤 0
0 0 −𝑎 sin𝑢 cos 𝑢

. 

 
Theorem 4.1. The astro-rotational hypersurface (4.1) in 𝔼  has the following curvature formulas, ℭ =

1 (by definition), 
 

       ℭ =
 7cos2𝑢 − 6

9𝑎 sin𝑢 cos3𝑢
, 

 

     ℭ =
−5cos2𝑢 + 3

9𝑎  cos 𝑢
, 

 

ℭ =
sin𝑢

3𝑎  cos 𝑢
. 

 
Proof. Computing eqs. (2.2) on (4.1), we have the curvatures. 

 
5. Conclusion 
 
Astro-rotational hypersurfaces have not been worked, recently. We have extended some well-known 

results of the astro-helicoidal hypersurfaces with the help of [6]. 
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Abstract 

This paper discusses possible ways of computational technology development 

for segregated/coupled solving the systems of nonlinear partial differential equations in black-box 

software. These systems describe physical and chemical processes in the continuum mechanics 

approximation (multiphysics) [1]. The following requirements for the black-box numerical methods 

are formulated: 

– robustness (the least number of problem-dependent components); 

– efficiency (close-to-optimal algorithmic complexity); 

– parallelism (faster than the best sequential algorithm). 

 

Keywords:High-performance and parallel computing, mathematical modelling, black-box software. 

 

1. Introduction 

 

 Mathematical modeling of physical and chemical processes has always been an important activity 

in science and engineering. Now a scientist or engineer cannot understand all details of the mathematical 

model formulation, numerical algorithms, parallel computing technologies and parallel supercomputer 

architectures. This fact has been motivated the black-box software development.  

 To some extent, attempts to automate mathematical modeling have already been exploited 

in the first black-box computational fluid dynamics (CFD) code. In 1978, great English scientist Brian 

Spalding conceived the idea of a single CFD code capable of handling all fluid-flow processes. 

Consequently, Concentration Heat and Momentum Ltd (CHAM) abandoned the policy of developing 

individual application-specific CFD codes, and during late 1978 the company began creating the world’s 

first general-purpose CFD code PHOENICS, which is an acronym for Parabolic, Hyperbolic Or Elliptic 

Numerical Integration Code Series. The initial creation of PHOENICS was largely the work of Brian 

Spalding and Harvey Rosten, and the code was launched commercially in 1981, and so here for the first 

time, a single CFD code was to be used for all thermo-fluids problems. Clearly, for reasons of robustness, 

each general-purpose code should be based on a robust computational technique for solving a wide class of 

nonlinear (initial-)boundary value problems of continuum mechanics. 
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 CFD software has become an essential modeling tool to study and validate flow problems 

in engineered systems. Many computer-aided engineering (CAE) programs for CFD are available with 

different capabilities, making it difficult to select the best program for a specific application. Really modern 

codes are collections of common building blocks and diagnostic tools, helping users to develop their own 

application-specific software without having to start from scratch. Users will, therefore, need a basic 

knowledge of numerical methods. 

 We define software to be black-box if it does not require any additional input from the user apart 

from the physical problem specification consisting of the domain geometry, boundary and initial conditions, 

source terms, the enumeration of equations to be solved (heat conductivity equation, Navier–Stokes 

equations, Maxwell equations, etc.) and mediums. The user does not need to know anything about 

numerical methods or high-performance and parallel computing. Aim of this book is to relate our 

experience in the development of robust (the least number of problem-dependent components), efficient 

(close-to-optimal algorithmic complexity) and parallel (faster than the fastest sequential algorithm) 

computational technique in the black-box solution of multidimensional nonlinear (initial-)boundary value 

problems of computational physics [2]. 

 Goal of this paper is to analyze opportunity of creating a robust computational technology 

for numerical solution of the nonlinear initial-boundary continuum mechanics problems that we know how 

to solve. 

 

 

2. Auxiliary Space Method 

 

The basic idea of the Auxiliary Space Method is to transfer a nonlinear problem to an auxiliary 

space (grid) where it is simple to solve. The solution in the auxiliary space is then transferred back 

to the original space. The mismatch between the auxiliary space and the full space is corrected by applying 

a few smoothing iteration steps [3]. 

Let us formulate a basic single-grid Gauss-Seidel-type algorithm for the numerical solution 

of discretized linear problems 

0 0 0A b  . 

The linear two-grid algorithm takes the matrix form  

 ( 1) ( )

0 0 0 0 0 0 ,q qb A M b A     

where the iteration matrix M  becomes 

 1 1

0 0 0 0 0A A AM A S A A  

  P R .  

Here 
0AP  and 0 AR  are the intergrid operators (Fig. 1), 0S  is the smoothing iteration matrix,   and q  are 

the smoothing and intergrid iteration counters, respectively.  
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Figure 1. Linear intergrid iteration of the Auxiliary Space Method [5]. 

Summarize main properties of the two-grid algorithm [5]: 

a) If smoothing and approximation property hold, then a fixed (and small) number of appropriate smoothing 

steps is sufficient to guarantee excellent h -independent convergence 

( ) 1,q AC      

where q  is an average reduction factor of the residual defined by 

𝜌𝑞 = (
||𝑏0 − 𝐴0𝜙0

(𝑞)
||

||𝑏0 − 𝐴0𝜙0
(0)

||
)

1/𝑞

  

Here 
AC  is h -independent constant, ( )   is a monotonically decreasing function.  

b) In the two-grid algorithm, the original system 
0 0 0A b   is replaced by an equivalent equation 

1 1

0 0 0P A P b   

where 1 1

0 ( )P A I M   is invertible matrix.  

c) If original grid is structured, then the iteration matrix M  becomes  

 1 1

0 0 0 AM A S A A    . 

If 
0AA A , then the two-grid algorithm transforms to direct single-grid solver ( S I ). 

d) In general, the two-grid algorithm has three extra problem-dependent components (the number 

of smoothing iterations and the intergrid operators). 

 

 

2. Robust Multigrid Technique 

 

We will always choose an auxiliary grid to be structured boundary-(un)fitted grid and choose Robust 

Multigrid Technique (RMT) to solve the auxiliary discrete problem [2,3,5]. The multigrid schedule of RMT 
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is the V-cycle with no presmoothing (a sawtooth cycle). The sawtooth cycle is a special case of the V-

cycle, in which smoothing before the coarse grid correction (pre-smoothing) is deleted (Fig. 2 and 3). The 

cycle is also directly related to the memory requirements. 

 

Figure 2. Sequential multigrid cycle of RMT 

 

Figure 3. Parallel multigrid cycle of RMT 

 RMT can be represented as the iterative method 

 ( 1) ( )

0 0 0 0 0 0 0 0 ,q qb A A Q b A     

where the matrix 
0Q  is defined in recurrence form 

0 1 1 3

0

0 3

( ), 0,1,2, , 2

, 1

l

l

l l l l l l

l l l

S d Q l L

Q
S d l L







   





   


 
 



R P

R
, 

1 1

1 1 1l l l l l l ld A A 

     P R , 
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where lS  is the smoothin iteration matrix (||𝑆𝑙|| ≤ 1), l  is the number of smoothing iterations on grids 

of the level l , 
3L  is the coarsest grid level obtained by the triple coarsening. If smoothing 

and approximation property hold, then a fixed (and small) number of appropriate smoothing steps 

is sufficient to guarantee excellent h -independent convergence 

𝜌𝑞 ≤ ||𝐴0𝑄0|| ≤ 𝐶𝐴𝜂(𝜈0) + 𝐶𝐴𝐶𝑅 ∑ 𝐶𝑙𝜂(𝜈𝑙) < 1

𝐿3
+−1

𝑙=1

 

Note that the additional amount of work compared to standard geometric multigrid is proportional 

to the number of grid levels. 

 

 

3. Conclusion 

 

If the original computational grid is structured, then it is possible to develop RMT-based single-grid 

algorithm having h -independent convergence and 2 3 / 3( )k d

b G MO n N N   arithmetic operations. This algorithm 

has extra problem-dependent component: the number of smoothing iterations. If the original computational 

grid is unstructured, then it is possible to develop RMT-based two-grid algorithm having h -independent 

convergence and 2 3 3 1/( log )d

b G M GO n N N N  arithmetic operations. This algorithm has three extra problem-

dependent components: the number of smoothing iterations and intergrid transfer operators.  
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Abstract 

We analyze the data of French car brands which constitute the first multi-table and the German car brands, 

the second multi-table, by using a duale data analysis method : CONCORGS1D. This method is an 

extension of CONCORGS1 method in the context of two horizontal multi-tables measured on the same set 

of individuals. Each brand is made up of several models and these car models from two vertical multi-tables 

measured on the same number of variables. 

 

 Keywords : CONCORGS, Dual method, Horizontal multi-table, Vertical multi-table. 

 

1. Introduction 

 

When it comes to establishing the link between two paired multi-arrays in line, the CONCORG method of 

Kissita et al (2004) [5] which is the extension of the CONCOR method of Lafosse and Hanafi (1997) [10], 

has made it possible to formalize this link. The idea is to establish the dependency ratios that have certain 

tables which constitute the first multi-table with other tables which constitute the second multi-table. In 

addition, another method like CONCORGS1 of Kissita et al. (2009a) [7] has also established this link. 

These methods have been applied in many fields such as: sensory analysis and ecology (cf. Kissita et al 

(2004)) [5], genomics, metabolomics and proteomics. However, when we have two groups of partitioned 

individuals measured on the same set of variables, for example, when we retrace on the same 

macroeconomic variables the evolution of the macroeconomic situation between two monetary 

communities, the dual methods of the direct methods that are proposed in this work make it possible to 

establish the proximity relationships that several tables of the first multi-table have with other tables of the 

second multi-table while describing the internal structures of each table. These methods are the first to 

formalize this type of link.  

 

This work is organized as follows: in section (2), after having defined the notations and the data, we will 

present the different direct methods allowing to establish the links between two multi-arrays having the 

same number of lines (cf. Figure (1)). In section (3), we will propose the dual methods of the methods 

presented in section (2). Finally, in section (4), we will apply this method to French and German car brands. 
 

2. The link factor analysis methods between two sets of variables paired in rows 

 

In this section, we will first present the data and notations then the methods of factor analysis of link 

between two sets of partitioned variables having the same individuals (called direct methods). 
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2.1 Data and ratings 

𝐴′ denotes the transpose of the matrix 𝐴: We consider M + N statistical triples (𝑋𝑖;𝑄𝑋𝑖
;D) and (𝑌𝑗;𝑄𝑌𝑗

;D) 

where 𝑋𝑖 (i = 1,…,M) of dimension n x 𝑃𝑋𝑖
 and 𝑌𝑗  (j = 1,….,N) of dimension n x 𝑃𝑌𝑗

 (cf. Figure (1)), are 

the tables defined respectively on the products I x 𝐽𝑖
𝑋and I x 𝐽𝑗

𝑌.  We denote by 𝑛 the cardinal of 𝐼,  𝑃𝑖
𝑋 the 

cardinal of 𝐽𝑖
𝑋 and 𝑃𝑗

𝑌 that of  𝐽𝑗
𝑌.  Let 𝑄𝑖

𝑋 (respectivly 𝑄𝑗
𝑌) of dimension 𝑃𝑖

𝑋 x 𝑃𝑖
𝑋 (respectively  𝑃𝑗

𝑌 x 𝑃𝑗
𝑌) 

be the metric defined on the space of individuals 𝑅𝑃𝑖
𝑋

(respectively 𝑅𝑃𝑗
𝑌

). 𝑄𝑏𝑑
𝑋 = diag(𝑄𝑖

𝑋/i=1,…,M) 

(respectively 𝑄𝑏𝑑
𝑌 = diag(𝑄𝑗

𝑌/j = 1,…,N)) of dimension 𝑃𝑋 x 𝑃𝑋 (respectively 𝑃𝑌 x 𝑃𝑌 ) is the block-

diagonal metric defined in 𝑅𝑃𝑋
(respectively 𝑅𝑃𝑌

) with 𝑃𝑋 = ∑ 𝑃𝑖
𝑋𝑀

𝑖=1 (respectively 𝑃𝑌=∑ 𝑃𝑗
𝑌𝑁

𝑗=1 ) is the 

total number of columns in the table X (respectively Y ) and D of dimension n x n is a metric of the 

weights of individuals over 𝑅𝑛, with for example D = (1/n)𝐼𝑑𝑛 where 𝐼𝑑𝑛 is the identity matrix of order 

𝑛. 
 

 

 

 

 

 

 

 

 

X = [𝑋1,…, 𝑋𝑖 ,...,𝑋𝑀] (respectively Y= [𝑌1,…,𝑌𝑗,...,𝑌𝑁])   is a horizontal multi-tables of dimension n x 𝑃𝑋 

(respectively n x 𝑃𝑌), we assume that 𝑋𝑖 and 𝑌𝑗 are centered with respect to D and possibly reduced. If 𝑋 is 

a matrix of dimension n x 𝑃𝑌,  vec(X) is the column vector, formed by the superposition of the columns of  

X. 

𝑃𝑎𝑋𝑖

⊥ =𝐼𝑑𝑃𝑖
𝑋-𝑃𝑎𝑋𝑖

 is the projector 𝑄𝑖
𝑋-orthogonal on the subspace generated by the orthogonal of the vector 

𝑎𝑋𝑖
  in 𝑅𝑃𝑖

𝑋
 which is normalized with respect to 𝑄𝑖

𝑋. 

𝑉𝑋𝑖𝑌𝑗
=𝑋𝑖

′D𝑌𝑗 of dimension 𝑃𝑖
𝑋 x 𝑃𝑗

𝑌 the matrix inter-covariances between the variables of 𝑋𝑖 and those of 

𝑌𝑗. 

The methods that are presented in this section are based on the operator of the inter-covariance matrix 

between two tables. It allows to establish pairs of links between two tables having the same individuals. 

 
Figure 1 - Two horizontal multi-tables 
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2.2 The CONCORGS1 methods 

This method was proposed by Kissita et al [7].The CONCORGS1 method consists of searching for 

orthogonal matrices. 𝐴𝑋 = [𝐴𝑋1

′ /…/𝐴𝑋𝑖

′ /…/𝐴𝑋𝑀

′ ]′ and 𝐴𝑌 = [𝐴𝑌1

′ /…/𝐴𝑌𝑗

′ /…/𝐴𝑌𝑁

′ ]′  of respective dimensions 

𝑃𝑋 x r and 𝑃𝑌 x r where 𝐴𝑋𝑖
=[𝑎𝑋𝑖

(1)
/…/𝑎𝑋𝑖

(𝑠)
/…/𝑎𝑋𝑖

(𝑟)
] (respectively 𝐴𝑌𝑖

=[𝑎𝑌𝑖

(1)
/…/𝑎𝑌𝑖

(𝑠)
/…/𝑎𝑌𝑖

(𝑟)
]) a matrix of 

dimension 𝑃𝑖
𝑋 x r (respectively 𝑃𝑖

𝑌 x r), which maximize three criteria which are equal to the optimum and 

equal to the CONCORG criteria when r = 1, with r ≤ min(𝑃𝑖
𝑋,𝑃𝑗

𝑌), i=1,…,M and j=1,…,N. The first criterion 

consists in maximizing the function 

 

𝑔1(𝐴𝑋,𝐴𝑌)=||diag(𝐴𝑋
′ 𝑄𝑏𝑑

𝑋 𝑉𝑋𝑌𝑄𝑏𝑑
𝑌 𝐴𝑌)||2                                  (1) 

 

under normalization constraints 𝐴𝑋
′ 𝑄𝑏𝑑

𝑋 𝐴𝑋=𝐴𝑌
′ 𝑄𝑏𝑑

𝑌 𝐴𝑌=𝐼𝑑𝑟. The second criterion maximizes  

 

𝑔2(𝐴𝑋,𝐴𝑌)=∑ ||diag(𝐴𝑋𝑖

′ 𝑄𝑖
𝑋𝑉𝑋𝑖𝑌𝑄𝑏𝑑

𝑌 𝐴𝑌)||2 𝑀
𝑖=1                                  (2) 

 

under normalization constraints 𝐴𝑋𝑖

′ 𝑄𝑖
𝑋𝐴𝑋𝑖

=𝐴𝑌
′ 𝑄𝑏𝑑

𝑌 𝐴𝑌=𝐼𝑑𝑟 for all i=1,…,M. And the third 

maximizes 

 

𝑔3(𝐴𝑋,𝐴𝑌)=∑ ||diag(𝐴𝑋
′ 𝑄𝑏𝑑

𝑋 𝑉𝑋𝑌𝑗
𝑄𝑗

𝑌𝐴𝑌𝑗
)||2 𝑁

𝑗=1                                  (3) 

 

under normalization constraints 𝐴𝑋
′ 𝑄𝑏𝑑

𝑋 𝐴𝑋=𝐴𝑌𝑗

′ 𝑄𝑗
𝑌𝐴𝑌𝑗

=𝐼𝑑𝑟, for all j=1,…,N. The solution of 

this method is given by an iterative and convergent algorithm (cf Kissita (2003)) [7]. 
 

3 The duale method 

 

In this section, we propose the dual method of the CONCORGS1 methods presented in section (2) in 

the context where we measure on two groups of partitioned individuals the same set of variables.  

 

3.1 Data and ratings 
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In the context of figure (2), we denote (𝑋𝑖, Q, 𝐷𝑖
𝑋) and (𝑌𝑗, Q, 𝐷𝑗

𝑌), the M + N studies where 𝑋𝑖 (i=1,…,M)  

is an array of dimension 𝑛𝑖
𝑋 x p and 𝑌𝑗 (j =1,…,N) is an array of dimension 𝑛𝑗

𝑌 x p defined respectively on 

the products 𝐼𝑖
𝑋 x J and 𝐼𝑗

𝑌 x J. The set of variables being the same for all arrays. We denote by 𝑛𝑖
𝑋 the 

cardinal of  𝐼𝑖
𝑋, by 𝑛𝑗

𝑌the cardinal of 𝐼𝑗
𝑌 and by p the cardinal of J. Let's also note Q of dimension p x p the 

metric defined on the space of individuals 𝑅𝑝. 

𝐷𝑖
𝑋 of the dimension 𝑛𝑖

𝑋 x 𝑛𝑖
𝑋 is the metric defined on 𝑅𝑛𝑖

𝑋
 and 𝐷𝑗

𝑌 of the dimension 𝑛𝑗
𝑌 x 𝑛𝑗

𝑌 is the metric 

defined on 𝑅𝑛𝑗
𝑌

. 
 

 
 

 
 
 
 

𝐷𝑏𝑑
𝑋 = diag(𝐷𝑖

𝑋/i=1,…,M) of dimension 𝑛𝑋 x 𝑛𝑋 is the block-diagonal metric of individuals defined in 

𝑅𝑛𝑋
of metrics 𝐷𝑖

𝑋  where 𝑛𝑋 = ∑ 𝑛𝑖
𝑋𝑀

𝑖=1  is the total number of rows in table X.   

𝐷𝑏𝑑
𝑌 = diag(𝐷𝑗

𝑌/j=1,…,N) of dimension 𝑛𝑌 x 𝑛𝑌 is the block-diagonal metric of individuals defined in  

𝑅𝑛𝑌
of metrics 𝐷𝑗

𝑌  where 𝑛𝑌 = ∑ 𝑛𝑗
𝑌𝑁

𝑗=1  is the total number of rows in table Y. 

The vertical table X is the superposition of the tables 𝑋𝑖 which are centered and possibly reduced. 

It is the same for the vertical table Y and the tables 𝑌𝑗.  

𝑃𝑢𝑋𝑖

⊥ =𝐼𝑑𝑛𝑖
𝑋-𝑃𝑢𝑋𝑖

 is the projector 𝐷𝑖
𝑋-orthogonal on the subspace generated by the orthogonal of the vector 

𝑢𝑋𝑖
  in 𝑅𝑛𝑖

𝑋
 which is normalized with respect to 𝐷𝑖

𝑋.   

Figure 2- Two vertical multi-tables 
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𝑊𝑋𝑖𝑌𝑗
=𝑋𝑖Q𝑌𝑗

′of the dimension 𝑛𝑖
𝑋 x 𝑛𝑗

𝑌is the matrix of inter - scalar products between the individuals 

of the tables 𝑋𝑖 and those of the tables 𝑌𝑗. This operator is dual of the inter-covariance matrix 𝑉𝑋𝑖𝑌𝑗
=𝑋𝑖

′𝐷𝑌𝑗 

between tables 𝑋𝑖 and 𝑌𝑗 defined above. It is the basis of dual methods. 

 

3.2 The CONCORGS1D method 

The analysis of the dual simultaneous Generalized Concordance 1 (CONCORGS1D) allows to formalize 

the proximities between the individuals of the two vertical multi-tables X and Y (cf. Figure(2)). It consists 

in determining the orthogonal matrices𝑈𝑋  = [𝑈𝑋1

′ /…/𝑈𝑋𝑖

′ /…/𝑈𝑋𝑀

′ ]′  and 𝑈𝑌  = [𝑈𝑌1

′ /…/𝑈𝑌𝑗

′ /…/𝑈𝑌𝑁

′ ]′   of 

respective dimensions 𝑛𝑋 x r and 𝑛𝑌 x r where 𝑈𝑋𝑖
= [𝑢𝑋𝑖

(1)
/ …/𝑢𝑋𝑖

(𝑠)
/ …/𝑢𝑋𝑖

(𝑟)
] respectively 

𝑈𝑌𝑖
=[𝑢𝑌𝑖

(1)
/…/𝑢𝑌𝑖

(𝑠)
/…/𝑢𝑌𝑖

(𝑟)
]) a matrix of dimension 𝑛𝑖

𝑋  x r (respectively 𝑛𝑖
𝑌  x r), which maximize three 

criteria which are equal to the optimum and equal to the CONCORG criteria when r = 1, with r ≤ 

min(𝑛𝑖
𝑋,𝑛𝑗

𝑌), i = 1, … , M and j = 1, … , N. The first criterion consists in maximizing the function 

 

𝑙1(𝑈𝑋,𝑈𝑌)=||diag(𝑈𝑋
′ 𝐷𝑏𝑑

𝑋 𝑊𝑋𝑌𝐷𝑏𝑑
𝑌 𝐷𝑌)||2                                  (4) 

 

under normalization constraints 𝐷𝑋
′ 𝐷𝑏𝑑

𝑋 𝑈𝑋=𝑈𝑌
′ 𝐷𝑏𝑑

𝑌 𝑈𝑌=𝐼𝑑𝑟. The second criterion maximizes  

 

𝑙2(𝑈,𝑈𝑌)=∑ ||diag(𝑈𝑋𝑖

′ 𝐷𝑖
𝑋𝑊𝑋𝑖𝑌𝐷𝑏𝑑

𝑌 𝑈𝑌)||2 𝑀
𝑖=1                                  (5) 

 

under normalization constraints 𝑈𝑋𝑖

′ 𝐷𝑖
𝑋𝑈𝑋𝑖

=𝑈𝑌
′ 𝐷𝑏𝑑

𝑌 𝑈𝑌=𝐼𝑑𝑟 for all i=1,…,M. And the third 

maximizes 

 

𝑙3(𝑈𝑋,𝑈𝑌)=∑ ||diag(𝑈𝑋
′ 𝐷𝑏𝑑

𝑋 𝑊𝑋𝑌𝑗
𝐷𝑗

𝑌𝑈𝑌𝑗
)||2 𝑁

𝑗=1                                  (6) 

under normalization constraints 𝑈𝑋
′ 𝐷𝑏𝑑

𝑋 𝑈𝑋=𝑈𝑌𝑗

′ 𝐷𝑗
𝑌𝑈𝑌𝑗

=𝐼𝑑𝑟, for all j=1,…,N. With respect to the theorem 

of Cliff, N (1966) [1] we set 𝑇𝑋=(𝐷𝑏𝑑
𝑋 )1/2𝑈𝑋 , 𝑇𝑌=(𝐷𝑏𝑑

𝑌 )1/2𝑈𝑌 and  𝐾𝑋𝑌=(𝐷𝑏𝑑
𝑋 )1/2𝑊𝑋𝑌(𝐷𝑏𝑑

𝑌 )1/2 with 
 

𝐸𝑇𝑋𝑇𝑌
= 𝐾𝑋𝑌𝑇𝑌diag(𝑇𝑋

′ 𝐾𝑋𝑌𝑇𝑌)                  (7)                               
 

then, the first criterion becomes 
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𝑙4(𝑈𝑋,𝑈𝑌)=tr((𝑇𝑋
′ 𝐾𝑋𝑌𝑇𝑌)diag(𝑇𝑋

′ 𝐾𝑋𝑌𝑇𝑌)),                                 (8) 

under standardization constraints 𝑇𝑋
′ 𝑇𝑋=𝑇𝑌

′𝑇𝑌=𝐼𝑑𝑟. The algorithm allowing to solve this problem 

compared to the first criterion (7) is presented as follows: 

1. Randomly choose the matrices 𝑇𝑋 and 𝑇𝑌 such that 𝑇𝑋
′ 𝑇𝑋=𝑇𝑌

′𝑇𝑌=𝐼𝑑𝑟 and a number ξ (we can take 

ξ=0.00001) 

2 Determine the update of 𝑇𝑋 by performing the following singular value decomposition:  

 

𝐾𝑋𝑌𝑇𝑌diag(𝑇𝑋
′ 𝐾𝑋𝑌𝑇𝑌)  =P∆𝑆′ 

 

where 𝑃′𝑃=𝑆′𝑆 = 𝑆𝑆′ = 𝐼𝑑𝑟    a diagonal matrix containing singular values classified in 

descending order and  𝑊𝑋𝑌 =XQ𝑌′. The update is set as follows 𝑇𝑋
∗ = 𝑃𝑆′ and 𝑈𝑋

∗ = (𝐷𝑏𝑑
𝑋 )−1

2⁄ 𝑇𝑋
∗    

 

3 Determine the update of 𝑇𝑌 by performing the following singular value decomposition :  

 

𝐾𝑌𝑋𝑇𝑋diag(𝑇𝑋
′ 𝐾𝑋𝑌𝑇𝑌)  =H∆𝐿′ 

 

where 𝐻′𝐻=𝐿′𝐿 = 𝐿𝐿′ = 𝐼𝑑𝑟    a diagonal matrix containing singular values classified in 

descending order and  𝑊𝑌𝑋 =YQ𝑋′. The update is set as follows 𝑇𝑌
∗ = 𝐻𝐿′ and 𝑈𝑌

∗ = (𝐷𝑏𝑑
𝑌 )−1

2⁄ 𝑇𝑌
∗    

 

4 If 𝑙4(𝑈𝑋
∗ , 𝑈𝑌

∗) − 𝑙4(𝑈𝑋, 𝑈𝑌) ≤ ξ , then, the algorithm stops, otherwise go to 2.             

 

 

Proof of monotonicity in relation to the (8): 

 

Note that in this subsection, we will only show the monotonicity of the algorithm with respect to 

with respect to 𝑈𝑋. For monotony compared to 𝑈𝑌, the demonstration proceeds in the same way, just 

exchanging the role of the matrices 𝑈𝑋 and 𝑈𝑌. The aim is to show that: 

 

𝑙4(𝑈𝑋 , 𝑈𝑌) ≤ 𝑙4(𝑈𝑋
∗ , 𝑈𝑌) ≤  𝑙4(𝑈𝑋

∗ , 𝑈𝑌
∗)                    (9) 

 

To establish this monotonicity, it is sufficient to show that 

 

𝑙4(𝑈𝑋 , 𝑈𝑌) ≤ 𝑙4(𝑈𝑋
∗ , 𝑈𝑌)                    (10) 

 

Indeed, from relation (7), we can write 

 

𝑇𝑋
∗𝐸𝑇𝑋𝑇𝑌

= 𝑇𝑋
∗𝐾𝑋𝑌𝑇𝑌diag(𝑇𝑋

′ 𝐾𝑋𝑌𝑇𝑌)                   
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Considering 𝑢𝑋
(𝑠)

=[𝑢𝑋1

(𝑠)′

/ …/𝑢𝑋𝑖

(𝑠)′

/ …/𝑢𝑋𝑀

(𝑠)′

]′  and 𝑢𝑌
(𝑠)

=[𝑢𝑌1

(𝑠)′

/ …/𝑢𝑌𝑗

(𝑠)′

/ …/𝑢𝑌𝑁

(𝑠)′

]′, the s-th vectors 

column blocks of matrices 𝑈𝑋 and 𝑈𝑌 respectively, we can derive the s-th element 

diagonal, then we write 

 

𝑢𝑋
(𝑠)∗𝐾𝑋𝑌𝑢𝑌

(𝑠)
𝑢𝑋

(𝑠)′

𝐾𝑋𝑌𝑢𝑌
(𝑠)

= 𝑢𝑋
(𝑠)∗𝐾𝑋𝑌𝑢𝑌

(𝑠)
𝑢𝑌

(𝑠)′

𝐾𝑌𝑋𝑢𝑋
(𝑠)

= 𝑢𝑋
(𝑠)∗𝐺𝑋𝑌𝑠

𝑢𝑋
(𝑠)

     (11) 

 

where 𝐺𝑋𝑌𝑠
= 𝐾𝑋𝑌𝑢𝑌

(𝑠)
𝑢𝑌

(𝑠)′

𝐾𝑌𝑋 is a positive semi definite symmetric matrix. There fore 

 

‖𝐺𝑋𝑌𝑠

1
2⁄

𝑢𝑋
(𝑠)

− 𝐺𝑋𝑌𝑠

1
2⁄

𝑢𝑋
(𝑠)∗‖

2

≥ 0                                                (12) 

 

Relationship (12) can be written as 

 

  𝑢𝑋
(𝑠)′

𝐺𝑋𝑌𝑠
 𝑢𝑋

(𝑠)
+  𝑢𝑋

(𝑠)∗𝐺𝑋𝑌𝑠
𝑢𝑋

(𝑠)∗
≥ 2𝑢𝑌

(𝑠)∗𝐾𝑋𝑌𝑢𝑌
(𝑠)

𝑢𝑋
(𝑠)′

𝐾𝑋𝑌 𝑢𝑌
(𝑠)

                     (13) 

 

by replacing 𝐺𝑋𝑌𝑠
= 𝐾𝑋𝑌𝑢𝑌

(𝑠)
𝑢𝑌

(𝑠)′

𝐾𝑌𝑋  in (13), we find 

 

𝑢𝑋
(𝑠)′∗𝑢𝑋

(𝑠)′

𝐾𝑋𝑌𝑢𝑌
(𝑠)

𝑢𝑌
(𝑠)′

𝐾𝑌𝑋𝑢𝑋
(𝑠)

+  𝑢𝑋
(𝑠)∗𝐾𝑋𝑌𝑢𝑌

(𝑠)
𝑢𝑌

(𝑠)′

𝐾𝑌𝑋𝑢𝑋
(𝑠)∗

≥ 2 𝑢𝑋
(𝑠)∗𝐾𝑋𝑌𝑢𝑌

(𝑠)
𝑢𝑋

(𝑠)′

𝐾𝑋𝑌𝑢𝑌
(𝑠)

        (14)                    
 

 

    𝑢𝑌
(𝑠)′

𝐾𝑌𝑋𝑢𝑋
(𝑠)∗

  being symmetrical, we have 

 

 

𝑢𝑋
(𝑠)′

𝐾𝑋𝑌𝑢𝑌
(𝑠)

𝑢𝑋
(𝑠)′

𝐾𝑋𝑌𝑢𝑌
(𝑠)

+ 𝑢𝑋
(𝑠)∗𝐾𝑋𝑌𝑢𝑌

(𝑠)
𝑢𝑋

(𝑠)∗′

𝐾𝑋𝑌𝑢𝑌
(𝑠)

≥ 2 𝑢𝑋
(𝑠)∗𝐾𝑋𝑌𝑢𝑌

(𝑠)
𝑢𝑋

(𝑠)′

𝐾𝑋𝑌𝑢𝑌
(𝑠)

        (15) 

 

 

Summing up the relation (15) with respect to s, we find 

 

tr((𝑈𝑋
′ 𝐾𝑋𝑌𝑈𝑌)diag(𝑈𝑋

′ 𝐾𝑋𝑌𝑈𝑌)) + tr ((𝑈𝑋
∗′

𝐾𝑋𝑌𝑈𝑌)diag(𝑈𝑋
∗′

𝐾𝑋𝑌𝑈𝑌))

≥ 2 tr ((𝑈𝑋
∗′

𝐾𝑋𝑌𝑈𝑌)diag(𝑈𝑋
′ 𝐾𝑋𝑌𝑈𝑌))                                     (16) 

 

 

Referring to Cliff (1966) [2], from the update 𝑈𝑋  we have the relation 

 

tr ((𝑈𝑋
∗′

𝐾𝑋𝑌𝑈𝑌)diag(𝑈𝑋
∗′

𝐾𝑋𝑌𝑈𝑌)) ≥  tr((𝑈𝑋
′ 𝐾𝑋𝑌𝑈𝑌)diag(𝑈𝑋

′ 𝐾𝑋𝑌𝑈𝑌))                (17) 

 

144



 

5th INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 

1-3 December 2021, Istanbul, Turkey 

 

 

ICOM 2021 

ISTANBUL / TURKEY 

Combining relations (16) and (17), we find 

 

tr ((𝑈𝑋
∗′

𝐾𝑋𝑌𝑈𝑌)diag(𝑈𝑋
∗′

𝐾𝑋𝑌𝑈𝑌)) ≥  tr((𝑈𝑋
′ 𝐾𝑋𝑌𝑈𝑌)diag(𝑈𝑋

′ 𝐾𝑋𝑌𝑈𝑌)) 

 

which gives 

𝑙4(𝑈𝑋
∗ , 𝑈𝑌) ≥ 𝑙4(𝑈𝑌, 𝑈𝑌)                

 
 
 

Finally, we have demonstrated the monotonicity of the algorithm with respect to 𝑈𝑋 , So, it can be said that 

the 𝑈𝑋  and 𝑈𝑌  monotonically increase the function 𝑓1. Moreover, the function being bounded, continuous 

and monotonically increasing, in particular on the set formed by the normalized vectors constituted by the 

columns of the vectors 𝑈𝑋  and 𝑈𝑌  the algorithm converges. 

 
 

 

4 Example of application 
 

4.1 Presentation of data 

The data processed in this article was collected on the website "www.motorlegend.com". They have been 

grouped into two groups. The first group consists of four German brands, namely : BMW, Mercedes, Opel 

and Volkswagen. Each brand is composed of a number of models (Table (1)) : this is the  first multi-table. 

The second group consists of three French brands, namely : Citroen, Peugeot and Renault. Each brand is 

composed of a certain number of models (Table (2)) : this is the second multi-table. 

Six characteristics have been selected for all models. This finally gives two vertical multi-tables with the 

same number of variables as can be seen in figure (6). 

 

4.2 Objectives 

Establish the performance proximities between : 

French brands, German brands, French and German brands.  Know the best German and French models, 

the most powerful, the most powerful, the fastest, the heaviest, widest and longest. 
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Figure 3 - Two vertical multi-tables of German and French brand data with six variables in common 
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Table 3 shows us that the inertia explained by the first two factorial axes is 86.50. This is quite normal. 

Table 3- The eigenvalues, the inertias of each axis and the cumulative 

inertias 
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In Figure 4, we have first the German models and then the French models. As far as the German models 

are concerned, all the models on axis 1, i.e. B4, V4 and O6, are characterised by length, width, weight and 

engine capacity. On the other hand, we have O1 and O4. In addition, models like V3 are characterised by 

power and speed. Thus, the model like B6 is much less powerful and less fast. As far as the French models 

are concerned, we can see that C2 and P2 located on axis 1 are characterised by length, width, weight and 

displacement. The model like R7 and P3 are less long, less wide and lighter. On the other hand, C3, C6, R3 

and P1 located on axis 2 which is the axis of power and speed unlike C5 and P4.  
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Figures 5 and 6 show the exact positions of the models of each brand. The German models are shown (see 

figure 5) and the French models (see figure 6). 

 

 

Conclusion : 

We have just proposed the extension of the so-called direct method, based on the inter-covariance matrix: 

CONCORGS1 called respectively the method : CONCORGS1D called dual, based on the inter-product 

matrix scalars in the case where on two groups of partitioned individuals are measured the same set of 

variables. In terms of application, it can be seen that the German (B4, V4 and O6) and French (C2 and P2) 

models have the same characteristics on the one hand. Furthermore, the German (V3) and French (C3, C6, 

R3 and P1) models have the same characteristic links. 

 

In other words, from the point of view of power and speed, the choice of models is made between V3, P1, 

R3, C3 and C6. But in terms of length, width and weight, the choice is B4, V4, O6, C2 and P2. 
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Abstract 

In this study, using a differential operator, we define a new subclass of meromorphic 
functions. Some properties neighborhoods and partial sums of functions in this subclass are given. 
 

Keywords: Meromorphic, Neighborhood, Deifferential operator, Partial sum. 

 

1. Introduction 

 

Let  Σ  denote  the class of functions of the form 

1

0
( ) n

n
n

f z z a z
∞

−

=

= +∑                                                                           (1) 

which  are analytic in the punctured disc { }: 0 1z z= ∈ < < .  

Let f ∈Σ  be of the form (1) and let ,α β  be real numbers with 0α β≥ ≥ . Raducanu, Orhan and Deniz 

[8] defined the analogue of the differential operator given in as follows  

0
, ( ) ( )D f z f zα β =  

( )2
1 2

, ,

( )
( ) ( ) ( ( )) ( ) (1 ) ( )

z f z
D f z D f z z f z f z

zα β α β αβ α β α β
′

′′= = + − + − +  

( ) { }1
, , ,( ) ( ) , , 1, 2,3,... .m mD f z D D f z z mα β α β α β

−= ∈ ∈ =  

If f ∈Σ  is given by (1), then from the definition of ,
mDα β  we get 
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 ,
0

1( ) ( , , ) ,m m n
n

n
D f z A n a z z

zα β α β
∞

=

= + ∈∑   

where  

 ( ) ( ) ( ), , 2 1 1.A n n nα β αβ α β= + + − + +     

When 1α = and 0β = , Uralegaddi and Somanatha [12] investigated certain properties of the operator 

,
mDα β .  

Let 1 1.B A− ≤ < ≤  A function 1

0
( ) n

n
n

f z z a z
∞

−

=

= + ∈Σ∑ is said to be in the  class ( ), , ,mT A Bα β  if it 

satisfies the condition  

 , ,

, ,

( ( )) ( )
1

( ( )) ( )

m m

m m

z D f z D f z
Bz D f z AD f z

α β α β

α β α β

′ +
<

′ +
                                                         (2) 

for all { }: 1 .z E z z∈ = <  

Furthermore, a  function 1

1
( ) n

n
n

f z z a z
∞

−

=

= + ∈Σ∑  is said  to be  in the class *( , , , )mT A Bα β  if it satisfies  

the condition (2).  

It should be remarked  in passing  that  the definition (2) is motivated  essentially by the recent work of 

Morga [7] and Srivastava and co-authors [10].  

In recent years, many  important properties and characteristics of various  interesting  subclasses of  the 

class Σ of meromorphically functions were  inverstigated extensively  by (among others ) Aouf et al. [2], 

Dziok et al. [3], El-Ashwah and Aouf [4], He et al. [6], Raducanu et al. [8], Uralegaddi and Somanatha 

[12] and also [11]. 

The main object  of this paper  is to present neighborhoods and partial sums of functions in the classes  

( ), , ,mT A Bα β  and ( )* , , ,mT A Bα β  which we introduced here.  
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2. Neighborhoods and partial sums  

Following the earlier works (based  upon the familiar concept of  neighborhoods of analytic functions) by 

Goodman [5] and Ruscheweyh [9] and (more recently)by Altıntas and Owa [1] and Srivastava and Owa 

[11] ,we begin by introducing here the δ -neighborhood of a function f ∈Σ  of the  form (1)  by means of 

the definition  

[ ] ( )1

0 0

(1 ) (1 )
( ) ( ) : , , , 1 1; 0

( )
mn

n n n
n n

A n B
f g z z b z A n b a B A

A Bδ α β δ δ
∞ ∞

−

= =

 − + −
Ν = = + ∈Σ − ≤ − ≤ < ≤ ≥ − 

∑ ∑  

where 0.α β≥ ≥  

Making use of this definition, we now prove that: 

Theorem 1. Let 0δ >  and 1 0A− < ≤ . If 1

0
( ) n

n
n

f z z a z
∞

−

=

= + ∈Σ∑  satisfies the condition   

1( ) ( , , , )
1 m

f z z T A Bε α β
ε

−+
∈

+
                                                              (3) 

for any complex number ε  such that ε δ< , then ( ) ( , , , ).mf T A Bδ α βΝ ⊂  

Proof. It is obvious from (2) that ( ) ( , , , )mg z T A Bα β∈  if  and only if for any complex number σ with 

1σ =  

, ,

, ,

( ( )) ( )
( ( )) ( )

m m

m m

z D g z D g z
Bz D g z AD g z

α β α β

α β α β

σ
′ +

≠
′ +

    ( )z E∈ , 

which is equivalent to 

 1

( ) ( ) 0g z h z
z−

∗
≠      ( )z E∈  (4)  

where  
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                                  1

0
( ) n

n
n

h z z c z
∞

−

=

= +∑  

 ( )1

0

[(1 ) ( )] , , .
( )

m n

n

n A nBz A n z
B A
σ α β

σ

∞
−

=

+ − +
= +

−∑                                                      (5) 

From (5), we have   

                                             ( )[(1 ) ( ) , ,
( )

m
n

n A nBc A n
B A
σ α β

σ
+ − +

=
−

 

                                                 ( )(1 ) (1 ) , ,
( )

mA n B A n
A B

α β− + −
≤

−
. 

If 1

0
( ) n

n
n

f z z a z
∞

−

=

= + ∈Σ∑  satisfies the condition (3), then (4) yields  

 1

( ) ( )f z h z
z

δ−

∗
≥        ( ).z E∈                                                             (6) 

Now let 1

0
( ) ( )n

n
n

p z z b z fδ

∞
−

=

= + ∈Ν∑ , then  

1
1

0

( ( ) ( )) ( ) ( ) n
n n n

n

p z f z h z b a c z
z

∞
+

−
=

− ∗
= −∑  

( )
0

[(1 ) (1 )] , , .
( )

m
n n

n

A n Bz A n b a
A B

α β δ
∞

=

− + −
≤ − <

−∑  

Thus for any complex number σ  such that 1σ = , we have  

1

( ) ( ) 0p z h z
z−

∗
≠      ( )z E∈ , 

which implies that ( ) ( , , , )mp z T A Bα β∈ . 
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Theorem 2. Let 1 0,A− < ≤ 1

0
( ) n

n
n

f z z a z
∞

−

=

= + ∈Σ∑ , 1
1( )s z z−=  and 

2
1

0
( )

k
n

k n
n

s z z a z
−

−

=

= +∑  ( 2).k ≥

Suppose that  

 
0

1n n
n

c a
∞

=

≤∑                                                                                (7) 

where  

( )(1 ) (1 ) , , .
( )

m
n

A n Bc A n
A B

α β− + −
=

−
 

Then we have  

i. ( ) ( , , , )mf z T A Bα β∈  

ii. 
1

( ) 1Re 1
( )k k

f z
s z c −

 
> − 

 
                                                           (8)       

and   

1

1

( )Re .
( ) 1

k k

k

s z c
f z c

−

−

 
>  + 

                                                                     (9) 

The estimates are sharp. 

Proof. i.  It is obvious that 1 ( , , , )mz T A Bα β− ∈ . Thus from  Theorem 1. and the condition (7), we have 

1
1( ) ( , , , )mz T A Bα β−Ν ⊂ . This gives ( ) ( , , , )mf z T A Bα β∈ . 

ii.  It is easy to see that 1 1n nc c+ > > . Thus  

 
2

1
0 1 0

1.
k

n k n n n
n n k n

a c a c a
− ∞ ∞

−
= = − =

+ ≤ ≤∑ ∑ ∑                                                    (10) 

Let  
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1 1
1

( ) 1( ) 1
( )k

k k

f zh z c
s z c−

−

   = − −  
   

 

1
1

1
2

1

0

1 .
1

n
k n

n k
k

n
n

n

c a z

a z

∞
+

−
= −
−

+

=

= +
+

∑

∑
 

It follows from (10) that  

1
11

2
1

1
0 1

( ) 1 1
( ) 1 2 2

k n
n k

k

n k n
n n k

c a
h z
h z a c a

∞

−
= −

− ∞

−
= = −

−
≤ ≤

+ − −

∑

∑ ∑
          ( )z E∈ . 

From this we obtain the inequality (8). 

If we take  

 
1

1

1

( ) ,
k

k

zf z z
c

−
−

−

= −                                                                            (11) 

then  

1 1

( ) 11 1
( )

k

k k k

f z z
s z c c− −

= − → −  as     1z −→ . 

This  shows  that the bound in (8)is best possible for each k. 

Similarly, if we take  

1
2 1

1

( )( ) (1 )
( ) 1

k k
k

k

s z ch z c
f z c

−
−

−

 
= + − + 
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1
1

1

1

0

(1 )
1

1

n
k n

n k

n
n

n

c a z

a z

∞
+

−
= −

∞
+

=

+
= −

+

∑

∑
 

then we deduce that  

1
12

2
2

1
0 1

(1 )
( ) 1 1
( ) 1 2 2 (1 )

k n
n k

k

n k n
n n k

c a
h z
h z a c a

∞

−
= −

− ∞

−
= = −

+
−

≤ ≤
+ − + −

∑

∑ ∑
       ( )z E∈  

which yields (9).  The estimate (9) is sharp with the extramal function ( )f z  given by (11). 

Theorem 3. Let  1

1
( ) n

n
n

f z z a z
∞

−

=

= +∑  be analytic in { }: 0 1z z= < < . Then ( )*( ) , , ,mf z T A Bα β∈  if 

and only if  

 [ ] ( ) ( )
1

(1 ) (1 ) , , m
n

n
A n B A n a A Bα β

∞

=

− + − ≤ −∑                                    (12) 

The result is sharp for the function ( )f z given by  

( ) ( )
1 ( )( )

, , 1 (1 )
n

m
A Bf z z z

A n A n Bα β
− −

= +
− + −  

        ( 1)n ≥  

Proof.  Let 1 *

1
( ) ( , , , )n

n m
n

f z z a z T A Bα β
∞

−

=

= + ∈∑ . Then  

 
( )

( )

1

, , 1

1, ,

1

(1 ) , ,( ( )) ( )
.

( ( )) ( ) ( ) ( ) , ,

m n
m m n

n
m m

m n
n

n

n A n a zz D f z D f z
Bz D f z AD f z A B A Bn A n a z

α β α β

α β α β

α β

α β

∞
+

=
∞

+

=

+′ +
=

′ + − + +

∑

∑
                     (13) 

Since Re z z≤  for any z, choosing z to be real letting 1z −→  throuh real values (12) yields  

( ) ( )
1 1
(1 ) , , ( ) ( ) , , ,m m

n n
n n

n A n a A B A Bn A n aα β α β
∞ ∞

= =

+ ≤ − + +∑ ∑  
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which gives (13). 

On the other hand, we have that  

( )

( )
, , 1

, ,

1

(1 ) , ,( ( )) ( )
1.

( ( )) ( ) ( ) ( ) , ,

m
m m n

n
m m

m
n

n

n A n az D f z D f z
Bz D f z AD f z A B A Bn A n a

α β α β

α β α β

α β

α β

∞

=
∞

=

+′ +
≤ <

′ + − + +

∑

∑
 

This shows that ( ) ( , , , )mf z T A Bα β∗∈ . 

For 0, 1 1B Aδ ≥ − ≤ < ≤  and 1

0
( ) n

n
n

f z z a z
∞

−

=

= + ∈Σ∑ , we define neighborhood of ( )f z  by 

[ ] ( )* 1

0 0

(1 ) (1 )
( ) ( ) | | : , , | | | |

( )
mn

n n n
n n

A n B
f g z z b z A n b a

A Bδ α β δ
∞ ∞

−

= =

 − + −
Ν = = + ∈Σ − ≤ − 

∑ ∑ . 

Theorem 4. Let 0A B+ ≤ . If ( )1 *
1

1
( ) , , ,n

n m
n

f z z a z T A Bα β
∞

−
+

=

= + ∈∑ , then ( )* *( ) , , ,mN f T A Bδ α β⊂ , 

where 2
3

δ = . The result is sharp. 

Proof. Using the same method as in Theorem 1., we would have  

                                   1

1
( ) n

n
n

h z z c z
∞

−

=

= +∑ ( ) ( )1

1

(1 ) ( ) , , m n

n

n A nBz A n z
B A
σ α β

σ

∞
−

=

+ − +
= +

−∑ . 

Under the hypothesis 0A B+ ≤ , we obtain that  

( )

1
1

1

1

1

( ) ( ) 1

1 [(1 ) (1 )]1 , , .
3 ( )

n
n n

n

m
n

n

f z h z c a z
z

A n B A n a
A B

α β

∞
+

−
=

∞
+

=

∗
= +

− + −
≥ −

−

∑

∑
 

From Theorem 3., we get  
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1

( ) ( ) 2 .
3

f z h z
z

δ−

∗
≥ =  

The remaining  part of the proof is similar to that of Theorem 1. 

To show the sharpness,we consider the function 

( )
1 *

11( ) ( , , , )
2 ( ) 3 mn

A Bf z z z T A B
A B

α β−
++

−
= + ∈

− +
 

and 

1
1

( )( )
(2 ( ))3 (2 ( ))3n n

A B A Bg z z z
A B A B

δ−
+

′ − −
= + + − + − + 

 

where 2
3

δ ′ > . Then the function ( )g z  belong to '
* ( )f
δ

Ν . 

On the other hand, we find from Theorem 3. that ( )g z is not in *( , , , )nT A Bα β . Now the proof is 

complete. 
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Abstract 

In this work, a brief history and development of fractional calculus (FC) in the literature is 

mentioned. Definitions of some fractional derivatives available in the literature are presented. 

Moreover, the use of FC in various disciplines is presented by giving examples from the literature. 

 

          Keywords: Fractional calculus, fractional differential equation, modeling, science, engineering. 

 

1. Introduction 

 

Modern calculus was founded in the 17th century by an English scientist Isaac Newton (1643-1727) and a 

German mathematician Gottfried Wilhelm Leibniz (1646-1716). FC is the generalization of the ordinary 

differentiation and integration to non-integer order. In classical calculus, the derivative has an important 

meaning connected with the concept of a tangent as opposite to what is the case with FC.  

 Leibniz invented the notation 
𝑑𝑛𝑦

𝑑𝑥𝑛
= 𝐷𝑛𝑦 for the 𝑛th-order derivative, where 𝑛 is a non-negative 

integer number. FC has an origin as in the similar meaning of extension of real numbers to complex 

numbers or the extension of factorials to the factorials of complex numbers. In 1965, a French 

mathematician Guillaume François Antoine Marquis de l’Hopital (1661-1704), working under the 

direction of Swiss mathematician Johann Bernoulli (1667-1748), one of the famous mathematicians of the 

period, wrote a letter to Leibniz and asked an important question about the order of derivative. In the 

letter, l’Hopital asked that “What if 𝑛 =
1

2
?”. In 1695, Leibniz replied, “From this apparent paradox, one 

day will be useful consequences will be drawn.” Is it possible to extend the derivative of integer-order 

(IO) 𝐷𝑛𝑦 into the case where 𝑛 is any (rational, irrational and even complex) number? In 1697, Leibniz 

used the notation 𝑑
1

2𝑦 and stated that differential calculus might have been used to achieve the same 

result.  After Leibniz, in 1738, Swiss mathematician and physicist Leonhard Euler (1707-1783) 

introduced the derivative 
𝑑𝑛(𝑥𝑘 )

𝑑𝑥𝑛
, where 𝑛  is an arbitrary (non-integer) order. Later, in 1822, a French 

mathematician and physicist, Jean Baptiste Joseph Fourier (1768-1830) suggested an integral 

representation in order to define the derivative, and his version can be considered the first definition for 

the derivative of arbitrary (positive) order. Euler and Fourier made mention of derivatives of arbitrary 

order, but they gave no application and example. Then, in 1823, a Norwegian mathematician Niels Henrik 

Abel (1802-1829), a pioneer in the development of several branches of modern mathematics, gave the 
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first application of FC by solving an integral equation. After that, in 1832, a French mathematician and 

engineer Joseph Liouville (1809-1882) extended the formula of the IO derivative of the exponential 

function to derivatives of arbitrary order as follows: 𝐷𝛼𝑒𝑎𝑥 = 𝑎𝛼𝑒𝑎𝑥. Moreover, he derived the formula 

𝐷𝛼𝑓(𝑥) = ∑ 𝑐𝑛𝑎𝑛
𝛼

∞

𝑛=0

𝑒 𝑎𝑛𝑥, 

where 

𝑓(𝑥) = ∑ 𝑐𝑛

∞

𝑛=0

𝑒 𝑎𝑛𝑥, 𝑅𝑒𝑎𝑛 > 0. 

The above formula is Liouville’s first definition for a fractional derivative. However, it has a drawback 

such that it is applicable only for the above function. Aware of this advantage, he presented his second 

definition for fractional derivative and obtained [1] 

𝐷𝛼𝑥−𝛽 = (−1)𝛼
Γ(𝛼 + 𝛽)

Γ(𝛽)
𝑥−𝛼−𝛽 , 𝛽 > 0 

where  

Γ(𝛽)𝑥−𝛽 = ∫ 𝑡𝛽−1𝑒−𝑥𝑡𝑑𝑡,

∞

0

       𝛽 > 0. 

Moreover, he applied these definitions to some problems in potential theory.  Nevertheless, his second 

definition has a disadvantage because it is useful for only rational functions. FC originated the Riemann-

Liouville definition of fractional integral in the form 

𝐷𝑎
 

𝑥
−𝛼𝑓(𝑥) =

1

Γ(𝛼)
∫(𝑥 − 𝑡) 𝛼−1𝑓(𝑡)𝑑𝑡.

𝑥

𝑎

 

When 𝑎 = 0, the above expression is the Riemann (a German mathematician Georg Friedrich Bernhard 

Riemann (1826-1866)) definition of fractional integral, and if 𝑎 = −∞,  the expression presents the 

Liouville definition (see [1]). 

In 1867-1868, an Austrian mathematician Anton Karl Grünwald (1838-1920) and a Russian 

mathematician Aleksey Letnikov (1837-1888) introduced the following fractional derivative 

𝐷𝑎
 

𝑥
𝛼𝑓(𝑥) = lim

ℎ→0

1

ℎ𝛼 ∑ (−1)𝑘 (
𝛼
𝑘

) 𝑓(𝑥 − 𝑘ℎ), [𝑥] − 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑝𝑎𝑟𝑡  𝑜𝑓 𝑥,

[𝑥−𝑎

ℎ
]

𝑘=0

 

that allows one to take the derivative a non-integer number of times. 

 In the 20th century, many studies on FC were carried out by various scientists and new derivative 

definitions were proposed. A French mathematician Jacques Salomon Hadamard (1865-1963), a German 

mathematician and physicist Hermann Klaus Hugo Weyl (1885-1955), a Hungarian mathematician 

Marcel Riesz (1886-1969), a French mathematician Andre Marchaud (1887-1973), a German 

mathematician Hermann Kober  (1888-1973), a Polish-born American mathematician Antoni Zygmund 
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(1900-1992), a Hungarian mathematician Arthur Erdelyi (1908-1977), an Italian mathematician Michele 

Caputo (1927-)  are famous known mathematicians studying on FC in the 20 th century. 

 
2. Fractional Derivatives 

 

In this Section, we have listed some of the famous fractional derivatives [2] as follows: 

 

Liouville derivative: 

𝐷𝛼[𝑓(𝑥)] =
1

𝛤(1 − 𝛼)

𝑑

𝑑𝑥
∫ (𝑥 − 𝜉)−𝛼𝑓(𝜉)𝑑𝜉

𝑥

−∞
, −∞ < 𝑥 < +∞ 

Liouvelli left-sided derivative: 

𝐷0+
𝛼 [𝑓(𝑥)] =

1

𝛤(𝑛 − 𝛼)

𝑑𝑛

𝑑𝑥𝑛
∫ (𝑥 − 𝜉)−𝛼+𝑛−1

𝑥

0
𝑓(𝜉)𝑑𝜉 , 𝑥 > 0 

Liouvelli right-sided derivative: 

𝐷−
𝛼[𝑓(𝑥)] =

(−1)𝑛

𝛤(𝑛 − 𝛼)

𝑑𝑛

𝑑𝑥𝑛
∫ (𝑥 − 𝜉)−𝛼+𝑛−1

∞

𝑥
𝑓(𝜉)𝑑𝜉 , 𝑥 < ∞ 

Riemann-Liouvelli left-sided derivative: 

𝐷𝑎+
𝛼𝑅𝐿 [𝑓(𝑥)] =

1

𝛤(𝑛 − 𝛼)

𝑑𝑛

𝑑𝑥𝑛
∫ (𝑥 − 𝜉)𝑛−𝛼−1

𝑥

𝑎
𝑓(𝜉)𝑑𝜉 , 𝑥 ≥ 𝑎 

Riemann-Liouvelli right-sided derivative: 

𝐷𝑏−
𝛼𝑅𝐿 [𝑓(𝑥)] =

(−1)𝑛

𝛤(𝑛 − 𝛼)

𝑑𝑛

𝑑𝑥𝑛
∫ (𝜉 − 𝑥) 𝑛−𝛼−1

𝑏

𝑥
𝑓(𝜉)𝑑𝜉 , 𝑥 ≤ 𝑏 

Caputo left-sided derivate: 

𝐷𝑎+
𝛼

∗ [𝑓(𝑥)] =
1

𝛤(𝑛 − 𝛼)
∫ (𝑥 − 𝜉)𝑛−𝛼−1

𝑑𝑛

𝑑𝜉𝑛

𝑥

𝑎

[𝑓(𝜉)]𝑑𝜉 , 𝑥 ≥ 𝑎 

Caputo right-sided derivate: 

𝐷𝑏−
𝛼

∗ [𝑓(𝑥)] =
(−1) 𝑛

𝛤(𝑛 − 𝛼)
∫ (𝜉 − 𝑥)𝑛−𝛼−1

𝑑𝑛

𝑑𝜉𝑛

𝑏

𝑥

[𝑓(𝜉)]𝑑𝜉 , 𝑥 ≤ 𝑏 

Grünwald-Letnikov left-sided derivative: 

163



 

5th INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 

1-3 December 2021, Istanbul, Turkey 

 

 

ICOM 2021 

ISTANBUL / TURKEY 

𝐷𝑎+
𝛼

𝑣
𝐺𝐿 [𝑓(𝑥)] = 𝑙𝑖𝑚

ℎ→0

1

ℎ𝛼 ∑(−1) 𝑘

[𝑛]

𝑘=0

𝛤(𝛼 + 1)(𝑥 − 𝑘ℎ)

𝛤(𝑘 + 1)𝛤(𝛼 − 𝑘 + 1)
 , 𝑛ℎ = 𝑥 − 𝑎 

Grünwald-Letnikov right-sided derivative: 

𝐷𝑏−
𝛼𝐺𝐿 [𝑓(𝑥)] = 𝑙𝑖𝑚

ℎ→0

1

ℎ𝛼 ∑(−1) 𝑘

[𝑛]

𝑘=0

𝛤(𝛼 + 1)(𝑥 + 𝑘ℎ)

𝛤(𝑘 + 1)𝛤(𝛼 − 𝑘 + 1)
 , 𝑛ℎ = 𝑏 − 𝑥 

Weyl derivative: 

𝐷∞
𝛼

𝑥 [𝑓(𝑥)] = 𝐷−
𝛼[𝑓(𝑥)] = (−1) 𝑚 (

𝑑

𝑑𝜉
)

𝑛

[ 𝑊∞
𝛼[𝑓(𝑥)]𝑥 ] 

Marchaud derivative: 

𝐷+
𝛼[𝑓(𝑥)] =

𝛼

𝛤(1 − 𝛼)
∫

𝑓(𝑥) − 𝑓(𝜉)

(𝑥 − 𝜉)1+𝛼

𝑥

−∞
𝑑𝜉 

Marchaud left-sided derivative: 

𝐷+
𝛼[𝑓(𝑥)] =

𝛼

𝛤(1 − 𝛼)
∫

𝑓(𝑥) − 𝑓(𝑥 − 𝜉)

𝜉1+𝛼

∞

0
𝑑𝜉 

Marchaud  right-sided derivative: 

𝐷−
𝛼[𝑓(𝑥)] =

𝛼

𝛤(1 − 𝛼)
∫

𝑓(𝑥) − 𝑓(𝑥 + 𝜉)

𝜉1+𝛼

∞

0
𝑑𝜉 

Hadamard derivative: 

𝐷+
𝛼[𝑓(𝑥)] =

𝛼

𝛤(1 − 𝛼)
∫

𝑓(𝑥) − 𝑓(𝜉)

[ln(𝑥 ∕ 𝜉)]1+𝛼

𝑥

𝑜

𝑑𝜉

𝜉
 

Chen left-sided derivative: 

𝐷𝑐
𝛼[𝑓(𝑥)] =

1

𝛤(1 − 𝛼)

𝑑

𝑑𝑥
∫ (𝑥 − 𝜉)−𝛼𝑓(𝜉)𝑑𝜉 , 𝑥 > 𝑐 

𝑥

𝑐
  

Chen right-sided derivative: 

𝐷𝑐
𝛼[𝑓(𝑥)] = −

1

𝛤(1 − 𝛼)

𝑑

𝑑𝑥
∫ (𝜉 − 𝑥) −𝛼𝑓(𝜉)𝑑𝜉  , 𝑥 < 𝑐

𝑐

𝑥
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Davidson-Essex derivative: 

𝐷0
𝛼[𝑓(𝑥)] =

1

𝛤(1 − 𝛼)

𝑑𝑛+1−𝑘

𝑑𝑥𝑛+1−𝑘
∫ (𝑥 − 𝜉)−𝛼

𝑑𝑘

𝑑𝜉𝑘

𝑥

0

[𝑓(𝜉)]𝑑𝜉 

Coimbra derivative: 

𝐷0
𝛼(𝑥)

[𝑓(𝑥)] = −
1

𝛤(1 − 𝛼(𝑥))
{∫ (𝑥 − 𝜉)−𝛼𝑥

𝑑

𝑑𝜉

𝑥

0

[𝑓(𝜉)]𝑑𝜉 + 𝑓(0)𝑥−𝛼(𝑥) } 

Canavati derivative: 

𝐷𝑥
𝜈[𝑓(𝑥)] =𝑎

1

𝛤(1 − 𝜇)

𝑑

𝑑𝑥
∫ (𝑥 − 𝜉)𝜇

𝑑𝑛

𝑑𝜉𝑛

𝑥

0

[𝑓(𝜉)]𝑑𝜉 , 𝑛 = ⌊𝜈⌋ , 𝜇 = 𝑛 − 𝜈 

Jumarie derivative, 𝑛 = 1: 

𝐷𝑥
𝛼[𝑓(𝑥)] =

1

𝛤(𝑛 − 𝛼)

𝑑𝑛

𝑑𝑥𝑛
∫ (𝑥 − 𝜉)𝑛−𝛼−1

𝑥

0

[𝑓(𝜉) − 𝑓(0)]𝑑𝜉 

Riesz derivative: 

𝐷𝑥
𝛼[𝑓(𝑥)] = −

1

2 cos(
𝛼𝜋

2
)

1

𝛤(𝛼)

𝑑𝑛

𝑑𝑥𝑛
{∫ (𝑥 − 𝜉)𝑛−𝛼−1

𝑥

−∞
𝑓(𝜉)𝑑𝜉 + ∫ (𝜉 − 𝑥) 𝑛−𝛼−1

∞

𝑥
𝑓(𝜉)𝑑𝜉} 

Cossar derivative:  

𝐷−
𝛼[𝑓(𝑥)] = −

1

𝛤(1 − 𝛼)
lim

𝑁→∞

𝑑

𝑑𝑥
∫ (𝜉 − 𝑥)−𝛼

𝑁

𝑥
𝑓(𝜉)𝑑𝜉 

Local fractional Yang derivative: 

𝐷−
𝛼[𝑓(𝑥)]|𝑥=𝑥0

= 𝑙𝑖𝑚
𝑥→𝑥0

∆𝛼[𝑓(𝑥) − 𝑓(𝑥0)]

(𝑥 − 𝑥0)𝛼  

Left Riemann-Liouville derivative of variable fractional order: 

𝐷𝑥
𝛼(∙,∙)[𝑓(𝑥)] =𝑎

𝑑

𝑑𝑥
∫ (𝑥 − 𝜉)−𝛼(𝜉,𝑥) 𝑓(𝜉)

𝑥

𝑎

𝑑𝜉

𝛤[1 − 𝛼(𝜉, 𝑥)]
 

Right Riemann-Liouville derivative of variable fractional order: 
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𝐷𝑏
𝛼(∙,∙)[𝑓(𝑥)] =𝑥

𝑑

𝑑𝑥
∫ (𝜉 − 𝑥)−𝛼(𝜉,𝑥) 𝑓(𝜉)

𝑏

𝑥

𝑑𝜉

𝛤[1 − 𝛼(𝜉, 𝑥)]
 

Left Caputo derivative of variable fractional order: 

𝐷𝑥
𝛼(∙,∙)[𝑓(𝑥)] =𝑎 ∫ (𝑥 − 𝜉)−𝛼(𝜉,𝑥) 𝑑

𝑑𝜉
𝑓(𝜉)

𝑥

𝑎

𝑑𝜉

𝛤[1 − 𝛼(𝜉, 𝑥)]
 

Right Caputo derivative of variable fractional order: 

𝐷𝑏
𝛼(∙,∙)[𝑓(𝑥)] =𝑥 ∫ (𝜉 − 𝑥) −𝛼(𝜉,𝑥) 𝑑

𝑑𝜉
𝑓(𝜉)

𝑏

𝑥

𝑑𝜉

𝛤[1 − 𝛼(𝜉, 𝑥)]
 

Caputo derivative of variable fractional order: 

𝐷𝑥
𝛼(𝑥)

[𝑓(𝑥)] =∗

1

𝛤(1 − 𝛼(𝑥))
∫ (𝑥 − 𝜉)−𝛼(𝜉,𝑥) 𝑑

𝑑𝜉
𝑓(𝜉)𝑑𝜉

𝑥

0
 

Modified Riemann-Liouville fractional derivative: 

𝐷𝛼[𝑓(𝑥)] =
1

𝛤(1 − 𝛼)

𝑑

𝑑𝑥
∫ (𝑥 − 𝜉)−𝛼

𝑥

0

[𝑓(𝜉) − 𝑓(0)]𝑑𝜉 

Osler fractional derivative: 

𝐷𝑧
𝛼𝑓(𝑧) =

𝛤(𝛼 + 1)

2𝜋𝑖
∫

𝑓(𝜉)

(𝜉 − 𝑧)1+𝛼

 

(𝑎,𝑧+)
𝑎 𝑑𝜉 

𝑘 −fractional Hilfer derivative: 

𝐷 
𝜇,𝜈𝑓(𝑥) 

𝑘 = 𝐼𝑘
𝜈(1−𝜇) 𝑑

𝑑𝑥
𝐼𝑘

(1−𝜇)(1−𝜈)
𝑓(𝑥) 

 

3. Applications of FC 

 

Static models were used until 1695; thereafter, dynamic models appeared until the 1960s; Finally, 

fractional-order (FO) models have also appeared after the 1960s. Geometry and algebra, differential and 

integral calculus are needed for static and dynamic models, respectively. For FO models, FC is needed for 

a more advanced but smaller-scale characterization of our more complex world. 

FO modeling is more accurate than IO modeling sine it takes the history of the system in to 

account; therefore it is a suitable and practical tool for investigating, defining, modeling, analyzing and 
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synthesizing electrical, chemical, biological, environmental and many other systems. Further, FO 

modeling introduces extra freedom in controlling the behavior of the systems; this supplies superior 

properties over the IO models of complex systems and phenomena.  

 

3.1. Applications in Circuit Theory 

Many stability theorems and fundamentals of filters, oscillators, charging circuits are expressed in 

terms of FO circuits. A FO capacitor impedance is defined by  

𝑧(𝑠) =
1

𝐶𝑠𝛼, 

where 𝐶 is a constant, and 𝑠 is the complex frequency, and 𝛼 is a non-integer constant; for 𝛼 = 1 an 

ordinary capacitor results. Attempts for realizing FO elements are constructed by using infinite ladder 

networks and/or by integrated circuit technology. The first attempt leads to bulky realizations and the 

second needs developing fractal structures on silicon.  

Figure 1 and 2 show the synthesis of the FO capacitor using RC elements and the synthesis by 

active circuit elements, respectively.  

 
 

Figure 1. FO capacitor approximated using R-C ladder circuit [3] 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 2. Proposed MOS based second-order FO capacitor emulator with an active inductor [4] 
 

 

3.1. Application in Control Theory 
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Stability and control of many engineering processes are achieved by using the well-known 

conventional proportional-integral-derivative (PID) controller depicted in the following figure. PID 

controller mainly aims to minimize the difference between the desired output and the actual output of a 

physical system. The process is actuated by the signal produced by the controller. The actuating signal 

produced by a PID controller is composed of the error signal itself (P-control), its integral (I-control) and 

its derivative (D-control).  

 
Figure 3. Diagram of PID controller [5] 

 

Similar to the needs of more realistic models by using FO calculus, especially for F behavior of 

many natural phenomena, use of corresponding FO PID (FOPID) controllers considering the effects of 

the history has been employed for control purposes. In addition to three control parameters (Kp ,Ki , Kd) 

used by PID controllers, proposed FOPID controllers uses two more parameters (λ, μ; integral and 

derivative orders); thus, more flexible, suitable and practical controller designs have been achieved.  

 

 
Figure 4. Diagram of FOPID controller [6] 

 

3.3. Applications in Signal and Image Processing 
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FO models are also used in signal and image processing areas. Fractional differential equations are 

used for investigation and more accurate representation of speech signals. For example, the speech signal 

frame is shown in Fig. 5 at the top along with its fractional integrations at the buttom. 

 

Figure 5. Sample speech frame and its fractional integral basis function [7] 

Fractional differentiation methods on image enhancements are capable of preserving high-

frequency contours and improve low-frequency details. Fig. 6 shows that the detail texture is enhanced 

when the original image and image obtained by fractional differentiation using eight direction masks are 

compared.  

 
Figure 6. Fractional differentiation based methods are applied in the field of image enhancement [8] 

 

3.4. Application in Biology 
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As in the above mentioned applications, FC supplies useful mathematical tools for modeling many 

biological processes as well. The methods of FC are used for solving bio heat transfer problems arising in 

peripheral tissue regions. On the other hand, magnetic resonance imaging has been fused as an 

incomparable technology for the judgment of pathological disarrangements in tissues. The FO model 

grapes the appearance of exponential rates in normal and diseased brain tissue. FO models are also used 

as a powerful tool to identify the comportment of premotor neurons in the vestibule-ocular reflex system 

much better than IO models. FO models cover the space in the apprehension of certain patterns, where the 

IO models are not sufficient for a full explanation of relations between immune system, treatment 

compliance, age, and other co-morbidities of individuals for the confection of HIV. 
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Abstract 

In this work, some new properties of socle-supplemented (briefly, s-supplemented) modules 

are studied. Every ring has unity and every module is unitary left module, in this work. It is proved 

that every factor module and every homomorphic image of a s-supplemented module are s-

supplemented. 

Keywords: Small Submodules, Radical, Socle, Supplemented Modules. 
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1. INTRODUCTION 

Throughout this paper all rings will be associative with identity and all modules will be unital left 

modules. 

Let R be a ring and M be an R-module. We will denote a submodule N of M by N≤M. Let M be an 

R-module and N≤M. If L=M for every submodule L of M such that M=N+L, then N is called a small 

submodule of M and denoted by NM. . Let M be an R-module. M is called a hollow module if every 

proper submodule of M is small in M. M is called a local module if M has the largest submodule, i.e. a 

proper submodule which contains all other proper submodules. A submodule N of an R-module M is 

called an essential submodule and denoted by NM in case KN≠0 for every submodule K≠0, or 

eqiuvalently, NL=0 for L≤M implies that L=0. Let M be an R-module and U,V≤M. If M=U+V and V is 

minimal with respect to this property, or equivalently, M=U+V and UVV, then V is called a 

supplement of U in M. M is said to be supplemented if every submodule of M has a supplement in M. M is 

said to be essential supplemented (or briefly, e-supplemented) if every essential submodule of M has a 

supplement in M. Let M be an R-module and U≤M. If for every V≤M such that M=U+V, U has a 

supplement X with X≤V, we say U has ample supplements in M. If every submodule of M has ample 

supplements in M, then M is called an amply supplemented module. The intersection of all maximal 

submodules of an R-module M is called the radical of M and denoted by RadM. If M have no maximal 

submodules, then we denote RadM=M. The sum of all simple submodules of an R-module M is called the 

socle of M and denoted by SocM. Let M be an R-module. It is defined the relation * on the set of 

171

mailto:bernak@omu.edu.tr


 

5th INTERNATIONAL ONLINE CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 

1-3 December 2021, Istanbul, Turkey 

 

 

ICOM 2021 

ISTANBUL / TURKEY 

submodules of an R-module M by X*Y if and only if Y+K=M for every K≤M such that X+K=M and 

X+T=M for every T≤M such that Y+T=M. Let M be an R-module and K≤V≤M. We say V lies above K in 

M if V/KM/K. 

More informations about (amply) supplemented modules are in [2], [6], [7] and [8]. More results 

about essential supplemented modules are in [4] and [5]. The definition of * relation and some 

properties of this relation are in [1]. 

 

Lemma 1.1. Let M be an R-module. 

(1) If K≤L≤M, then KM if and only if KLM. 

(2) Let N be an R-module and f : MN be an R-module homomorphism. If KN, then f 
-1

(K)M. 

(3) For N≤K≤M, if K/NM/N, then KM. 

(4) If K1L1≤M and K2L2≤M, then K1K2L1L2. 

(5) If K1M and K2M, then K1K2M. 

Proof. See [7, 17.3]. 

 

Lemma 1.2. Let M be an R-module. The following assertions hold. 

(1) If K≤L≤M, then LM if and only if KM and L/KM/K. 

(2) Let N be an R-module and f : MN be an R-module homomorphism. If KM, then f(K)N. The 

converse is true if f is an epimorphism and KefM. 

(3) If KM, then (K+L)/LM/L for every L≤M. 

(4) If L≤M and KL, then KM. 

(5) If K1,K2,...,KnM, then K1+K2+...+KnM. 

(6) Let K1,K2,...,Kn,L1,L2,...,Ln ≤M. If KiLi for every i=1,2,...,n, then K1+K2+...+KnL1+L2+...+Ln. 

Proof. See [2, 2.2] and [7, 19.3]. 

 

Lemma 1.3. Let M be an R-module. The following statements hold. 

(i) SocM is equal to the intersection of all essential submodules of M. 

(ii) For K≤M, SocK=KSocM. 

(iii) SocMM if and only if SocK≠0 for every nonzero submodule K of M. 

(iv) Let N be an R-module and f : MN be an R-module homomorphism. Then f(SocM)≤Socf(M). 
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(v) For K≤M, (SocM+K)/K≤Soc(M/K). 

(vi) If M =M, then SocM=SocM. 

Proof. See [7, 21.2]. 

2. s-SUPPLEMENTED MODULES 

Definition 2.1. Let M be an R-module. If every U≤M with SocM≤U has a supplement in M, then M is 

called a socle supplemented (or briefly, s-supplemented) module. (See also [3]) 

 

Clearly we can see that every supplemented module is s-supplemented. 

 

Definition 2.2. Let M be an R-module and X≤M. If X is a supplement of an essential submodule of M, 

then X is called an e-supplement submodule in M. (See [4]) 

 

Proposition 2.3. Every s-supplemented module is essential supplemented. 

Proof. Let M be a s-supplemented R-module and UM. Since UM, by Lemma 1.3, SocM≤U. Since M is 

s-supplemented, U has a supplement in M. Hence every essential submodule of M has a supplement in M 

and M is essential supplemented. 

 

Proposition 2.4. Every factor module of a s-supplemented module is essential supplemented. 

Proof. Let M be a s-supplemented module and K≤M. Since M is s-supplemented, by Proposition 2.3, M is 

essential supplemented. Then M/K is essential supplemented. 

 

Proposition 2.5. Every homomorphic image of a s-supplemented module is essential supplemented. 

Proof. Let M be a s-supplemented module and f : MN be an R-module epimorphism with N an R-

module. Since M is s-supplemented, by Proposition 2.3, M is essential supplemented. Then N is essential 

supplemented. Hence every homomorphic image of a s-supplemented module is essential supplemented. 

 

Proposition 2.6. Every direct summand of a s-supplemented module is essential supplemented. 

Proof. Clear from Proposition 2.5. 

 

Proposition 2.7. Let M=M1+M2. If M1 and M2 are s-supplemented, then M is essential supplemented. 

Proof. Since M1 and M2 are s-supplemented, by Proposition 2.3, these modules are essential 

supplemented. Then N is essential supplemented. 

 

Proposition 2.8. Let Mi≤M for i=1,2,...,n. If Mi is s-supplemented for every i=1,2,...,n, then 

M1+M2+...+Mn is essential supplemented. 

Proof. Clear from Proposition 2.7. 

 

173



 

5th INTERNATIONAL ONLINE CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 

1-3 December 2021, Istanbul, Turkey 

 

 

ICOM 2021 

ISTANBUL / TURKEY 

Proposition 2.9. Let M be an R-module. If M is s-supplemented, then every finitely M-generated module 

is essential supplemented. 

Proof. Let N be a finitely M-generated R-module. Then there exist a finite index set  and an R-module 

epimorphism f : M
()
N. Since M is s-supplemented, by Proposition 2.8, M

()
 is essential supplemented. 

Then N is essential supplemented. 

 

Proposition 2.10. Let R be a ring. If RR is s-supplemented, then every finitely generated R-module is 

essential supplemented. 

Proof. Clear from Proposition 2.9. 

 

Proposition 2.11. Hollow modules are s-supplemented. 

Proof. Clear from definitions. 

 

Proposition 2.12. Every local module is s-supplemented. 

Proof. Since every local module is hollow, by Proposition 2.11, every local module is s-supplemented. 

 

Proposition 2.13. Let M be a s-supplemented R-module. Then M/RadM have no proper essential 

submodules. 

Proof. Since M is s-supplemented, by Proposition 2.3, M is essential supplemented. Then M/RadM have 

no proper essential submodules. 

 

Proposition 2.14. Every supplemented module is s-supplemented. 

Proof. Clear from definitions. 

 

Proposition 2.15. Every factor module of a supplemented module is s-supplemented. 

Proof. Let M be a supplemented R-module and K≤M. Since M is supplemented, M/K is supplemented. 

Then by Proposition 2.14, M/K is s-supplemented. 

 

Proposition 2.16. Every homomorphic image of a supplemented module is s-supplemented. 

Proof. Let M be a supplemented module and f : MN be an R-module epimorphism with N an R-module. 

Since M is supplemented, then N is supplemented. Then by Proposition 2.14, N is s-supplemented. 

 

Corollary 2.17. Every direct summand of a supplemented module is s-supplemented. 

Proof. Clear from Proposition 2.16. 

 

Lemma 2.18. Let M be an R-module. If every submodule of M which contains SocM is * equivalent to a 

e-supplement submodule in M, then M is e-supplemented. 
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Proof. Let UM. Then SocM≤U and by hypothesis, there exists an e-supplement submodule X in M such 

that U*X. Since X is an e-supplement submodule in M, there exists an essential submodule Y of M such 

that X is a supplement of Y in M. Since YM, SocM≤Y and by hypothesis, there exists an e-supplement 

submodule V in M such that Y*V. Since X is a supplement of Y in M and Y*V, by [1, Theorem 2.6(ii)], 

X is a supplement of V in M. Since V is a supplement submodule in M, we can see that V is a supplement 

of X in M and since U*X, by [1, Theorem 2.6 (ii)], V is a supplement of U in M. Hence M is e-

supplemented. 

 

Corollary 2.19. Let M be an R-module. If every submodule of M which contains SocM lies above an e-

supplement submodule in M, then M is s-supplemented. 

Proof. Clear from Lemma 2.18. 

 

3. CONCLUSION 

Supplemented modules are actual subjects in Module Theory and can be studied on these 

modules. 
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Abstract 
 

In this study, we defined a new general p − valent integral operator in the unit disk  . We obtained some 

sufficient conditions for the integral operator ( ), , ,p m l zµ  to be p −valently convex of complex order. 

 

Keywords: Analytic function; Integral operator; β − uniformly p − valent starlike and β −

uniformly p −valent convex function;  complex order.  

 

1. Introduction and Preliminaries 

 
Let pA  denote the class of the form 

{ }( )
1

( ) , 1, 2,...p k
k

k p
f z z a z p

∞

= +

= + ∈ =∑                                                 (1) 

which are analytic in the open disc { }: 1 .z z= ∈ <  

 A function ( )* ,pf S γ α∈ is p −valently starlike of complex order { }( )0γ γ ∈ −  and type  ( )0 ,pα α≤ <  

that is, ( )* ,pf S γ α∈ , if it is satisfies the following inequality; 

  ( )
( ) ( )'1Re ,     .

zf z
p p z

f z
α

γ

   + − > ∈      
                (2) 

Furthermore, a function ( ),pf C γ α∈  is p −valently convex of complex order { }( )0γ γ ∈ −  and type 

( )0 pα α≤ < , that is, ( ),pf C γ α∈ , if it satisfies the following inequality; 
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( )
( ) ( )''1Re 1 ,     .

'
zf z

p p z
f z

α
γ

   + + − > ∈      
                                                 (3) 

In particular cases, for 1p =  in the classes ( )* ,pS γ α  and ( ),pC γ α , we obtain the clases ( ),S γ α∗  and 

( ),C γ α of starlike functions of complex order { }( )0γ γ ∈ −  and type ( )0 pα α≤ <  and convex 

functions of complex order { }( )0γ γ ∈ −  and type ( )0 pα α≤ < , respectively, which were introduced 

and studied by Frasin [11]. Also, for 0α =  in the clases ( )* ,pS γ α  and ( ),pC γ α , we obtain the clases 

( ),S γ α∗  and ( ),C γ α  which are called p − valently starlike of complex order { }( )0γ γ ∈ −  and p −

valently convex of complex order { }( )0γ γ ∈ − , respectively. Setting 1p =  and 0α = , we obtain the 

classess ( )S γ∗ and ( )C γ . The class ( )S γ∗  of starlike functions of complex order { }( )0γ γ ∈ −  was 

defined by Nasr and Aouf (see [15]) while the class ( )C γ  of convex functions of complex order 

{ }( )0γ γ ∈ −  was considered earlier by Wiatrowski (see[22]). Note that ( ) ( )* 1,p pS Sα α∗=  and 

( ) ( )1,p pC Cα α=  are, respectively, the classes of p −valently starlike and p −valently convex functions 

of order ( )0 pα α≤ < in  . Also, we note that ( ) ( )*
1S Sα α∗=  and ( ) ( )1C Cα α=  are, respectively, the 

usual clasess of starlike and convex functions of order ( )0 1α α≤ < in  . In special cases ( )*
1 0S S ∗=  and 

1C C=  are, respectively, the familier classess of starlike and convex functions in  . 

A function ( )pf Sβ α∈ −   is β − uniformly p − valently starlike of order ( )1 ,pα α− ≤ <  that is, 

( )pf Sβ α∈ −  , if it is satisfies the following inequality; 

( )
( )

( )
( ) ( )' '

Re + ,    0,  .
zf z zf z

p z
f z f z

β α β
   > − ≥ ∈ 
  

                                              (4) 

Furthermore a function ( )pf β α∈ −   is β − uniformly p − valently convex of order ( )1 pα α− ≤ < , 

that is, ( )pf β α∈ −  , if it is satisfies the following inequality; 

( )
( )

( )
( ) ( )'' ''

Re 1 1 + ,    0,  .
' '

zf z zf z
p z

f z f z
β α β

  + > + − ≥ ∈ 
  

                                              (5) 

These classes generalize various other classes which are worthly to mention here. For example 1p = , the 

classes ( )Sβ α−   and ( )β α−   introduced by Bharti, Parvatham and Swaminathan (see [2]). Also, the 

classes ( , , )pSβ λ γ α−   and ( )1 0 Cβ β− = −    are the known classes of β − uniformly starlike and 
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convex functions, respectively (see[13]). Using the Alexander type relation, we can obtain the class 
( )pSβ α−   in the following way: 

( ) ( )'
p p

zff S
p

β α β α∈ − ⇔ ∈ −  . 

The class ( )11 0 C− =   of uniformly convex functions was defined by Goodman [12] while the class 

( )11 0 S− =   was considered by Ronning [19].  

For pf ∈  given by ( )1.1  and ( )g z  given by 

( )
1

p k
k

k p
g z z b z

∞

= +

= + ∑                                                                             (6) 

Their convolution (or Hadamard product), denoted by ( )f g∗ , is defined as  

( )( ) ( )( ) ( )
1

,  .p k
k k

k p
f g z z a b z g f z z

∞

= +

∗ = + = ∗ ∈∑                                             (7) 

Shenan et al. [20] introduced the operator :n
p p pD →   is defined by 

( )

0

1

1

( ) ( )
( )( ) ( )

( ) ( ) .

p

p

n n
p

D f z f z
zf zD f z Df z

p

D f z D D f z−

=

′
= =

=

                                                           (8) 

The differential operator n
pD  for analytic and univalent functions was introduced by Salagean ([21]) for 

1.p =  It can be easily seen that the operator n
pD  on the function ( )f z  is given by (1) 

1
( ) .

n
n p k
p k

k p

kD f z z a z
p

∞

= +

 
= +  

 
∑  

By using the operator n
pD defined by (1,9), we introduce the new classes ( , , )pS nβ γ α−   and 

( ), ,P nβ γ α−   as follows: 

Definition 1.  Let 1 ,   0pα β− ≤ < ≥  and { }0γ ∈ − . A function pf ∈  is in the class ( , , )pS nβ γ α−   

if and only if for all z∈  
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( )( )
( )

( )( )
( )

1 1Re .
n n
p p
n n
p p

z D f z z D f z
p p p

D f z D f z
β α

γ γ

    ′ ′
    + − > − +    

        

                                (9) 

 
Definition 2.  Let 1 ,   0pα β− ≤ < ≥  and { }0γ ∈ − . A function pf ∈  is in the class ( , , )p nβ γ α−   

if and only if for all z∈  

( )( )
( )( )

( )( )
( )( )

1 1Re 1 1 .
n n
p p

n n
p p

z D f z z D f z
p p p

D f z D f z
β α

γ γ

    ′′ ′′
    + + − > + − +    ′ ′        

                           (10) 

We note that by specializing the parameters ,  ,  ,   and n p γ β α  in the classes ( , , )pS nβ γ α−   and 

( , , )p nβ γ α−   ,  these classes reduces to several well-known subclasses of analytic functions. For 

example, for 1p =  and 0n =  the classes ( , , )pS nβ γ α−   and ( , , )p nβ γ α−   reduces to the classes 

( , )pSβ γ α−   and ( , )pβ γ α−  , respectively. Someone can find mor information about these classes in 

Deniz, Orhan and Sokol [9] and Orhan, Deniz and Raducanu [16]. 

 Definition 3.  Let ( )1 2 0, ,... m
ml l l l= ∈ , ( )1 2, ,..., m

mµ µ µ µ += ∈  for all 1, ,   .i m m= ∈ we define the 

following general integral operators 

 

( )
( ) ( )

( ) ( )

,
, 1 2

,
, 1 2 , , ,

1
, , ,

10

, ,..., :

, ,..., ,
ii

l m
p m m p p

l
p m m p m l

lz m
p ip

p m l p
i

f f f

f f f z

D f t
z pt dt

t

µ

µ
µ

µ

µ
−

=

→

=

 
=   

 
∏∫

  

 



                                               (11) 

where i pf ∈  for all 1,i m=  and n
pD  is defined by (8). 

Remark 1. We note that  if 1 2 ... 0ml l l= = = =  for all 1,i m= , then the integral operator ( ), , ,p m l zµ  reduces 

to the operator ( )pF z  which was studied by Frasin (see [10]). Upon setting 1p =  in the operator (11), we 

can obtain the integral operator ( )m z  which was studied by Oros and Oros (see [17]). For 1p =  and 

1 2 ... 0ml l l= = = =  in (11), the integral operator ( ), , ,p m l zµ  reduces to the operator ( )m z  which was 
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studied by Breaz and Breaz (see [6]). Observe that when 1 11,   0  and  p m l µ µ= = = = , we obtain the 

integral operator ( )( )I f zµ  which was studied by Pescar and Owa (see [18]), for [ ]1 0,1µ µ= ∈  special case 

of the operator ( )( )I f zµ  was studied by by Miller, Mocanu and Reade (see [14]). For 

1 11,   0  and  1p m l µ µ= = = = =  in (11), we have Alexander integral operator ( )( )I f z  in [1]. 

 In this paper, we consider the integral operator ( ), , ,p m l zµ  defined by (11), and study its properties on the 

classes ( , , )pS nβ γ α−   and ( , , )p nβ γ α−  . As special cases the order of convexity of the operator 

( )
0

z f t
dt

t

µ
 
 
 
∫  are given. 

 

2. Sufficient conditions of the integral operator ( ), , ,p m l zµ  

   First, in this section we prove a sufficient condition for the integral operator ( ), , ,p m l zµ  to be p − valently 

convex. 

Theorem 1. Let ( ) ( ) { }1 2 0 1 2, ,..., ,  , ,..., ,  1 ,  0,  0m m
m m i il l l l pµ µ µ µ α β γ+= ∈ = ∈ − ≤ < ≥ ∈ −   and 

( ), ,i i p i if S lβ γ α∈ −   for all 1,i m= . Moreover, suppose that these numbers satisfy the following 

inequality 

( )
1

0 .
m

i i
i

p p pµ α
=

≤ + − <∑                                                          (12) 

Then the integral operator ( ), , ,p m l zµ  defined by (11) is p − valently convex of complex order 

{ }( )0γ γ ∈ −  and type ( )
1

m

i i
i

p pµ α
=

+ −∑ . 

Proof. From the definition (11), we observe that ( ), , ,p m l pzµ ∈  . On the other hand, it is easy to see that  

( ) ( )1
, , ,

1

iilm
p ip

p m l p
i

D f z
z pz

z

µ

µ
−

=

 
′ =   

 
∏                                                       (13) 

Now we differentiate (13) logarithmically and multiply by z , we obtain  

180



5th INTERNATIONAL CONFERENCE ON MATHEMATICS 
“An Istanbul Meeting for World Mathematicians” 

1-3 December 2021, Istanbul, Turkey 
 

ICOM 2021 
ISTANBUL / TURKEY 

 

( )
( )

( ) ( )
( )( )

, , ,

1, , ,

1 .
ilm
p ip m l

i l
ip m l p i

z D f zz z
p p

z D f z
µ

µ

µ
=

 ′′′  + − = − ′  
 

∑



                                              (14) 

Then multiplying the ralation (14) with 1
γ

, 

( )
( )

( ) ( )
( )( )

, , ,

1, , ,

1 11 .
i

i

lm
p ip m l

i l
ip m l p i

z D f zz z
p p

z D f z
µ

µ

µ
γ γ=

 ′ ′′  + − = −    ′   
 

∑



                                       (15) 

The relation (15) is equivalent to 

( )
( )

( ) ( )
( )( )

, , ,

1 1, , ,

1 11 .
i

i

lm m
p ip m l

i il
i ip m l p i

z D f zz z
p p p p p p

z D f z
µ

µ

µ µ
γ γ= =

  ′ ′′   + + − = + + − −     ′       

∑ ∑



                    (16) 

Lastly, we calculate the real part of both sides of (16) and obtain  

 

( )
( )

( ) ( )
( )( )

, , ,

1 1, , ,

1 1Re 1 Re .
i

i

lm m
p ip m l

i il
i ip m l p i

z D f zz z
p p p p p p

z D f z
µ

µ

µ µ
γ γ= =

   ′  ′′      + + − = + − − +       ′            

∑ ∑



          (17) 

Since ( ), ,i i p i if S lβ γ α∈ −   for all 1,i m=  from (9) and (17), we have  
 

( )
( )

( ) ( )
( )( )

( ), , ,

1 1, , ,

1Re 1 .
i

i

lm m
p ip m l i i

i il
i ip m l p i

z D f zz z
p p p p p

z D f z
µ

µ

µ β µ α
γ γ= =

′  ′′ + + − > − + + −   ′   
∑ ∑




                (18) 

Because  
( ) ( )
( )( )1

0
i

i

lm
p ii i

l
i p i

z D f z
p

D f z
µ β
γ=

′
− >∑ , for all 1,i m= , from (18), we obtain  

 
( )
( ) ( ), , ,

1, , ,

1Re 1 .
m

p m l
i i

ip m l

z z
p p p p

z
µ

µ

µ α
γ =

  ′′ + + − > + −   ′   
∑
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Therefore, the operator ( ), , ,p m l zµ  is p − valently convex of complex order { }( )0γ γ ∈ −  and type 

( )
1

m

i i
i

p pµ α
=

+ −∑ . This evidently completes the proof of Theorem 1. 

Remark 1.  

1. Letting 1γ =  and 0il =  for all 1,i m=  in Theorem 1., we obtain Theorem 2.4 in [10]. 

2. Letting 1,  1p γ= =  and 0il =  for all 1,i m=  in Theorem 1., we obtain Theorem 1 in [4]. 

3. Letting 1,  1p γ= =  and 0i ilα = =  for all 1,i m=  in Theorem 1., we obtain Theorem 2.8 in [7]. 

4. Letting 1,  0p β= =  and 0il =  for all 1,i m=  in Theorem 1., we obtain Theorem 1 in [3]. 

5. Letting 1,  0,  ip β α µ= = =  and 0il =  for all 1,i m=  in Theorem 1., we obtain Theorem 1 in [8]. 

6. Letting 1,  0,  0ip β α= = =  and 0il =  for all 1,i m=  in Theorem 1., we obtain Theorem 1 in [5]. 

Putting 1 1 1 11,  0,  ,  ,  p m l µ µ α α β β= = = = = =  and 1f f=  in Theorem 1., we have  
 
Corollary 1. Let { }0,  1 1,  0,  0µ α β γ> − ≤ < ≥ ∈ −  and ( ),f Sβ γ α∈ −  . If ( )0 1 1 1µ α≤ + − < , then 

( )
0

z f t
dt

t

µ
 
 
 
∫  is convex of complex order { }( )0γ γ ∈ −  and type ( )1 1µ α − +  in  . 

Theorem 2. Let ( ) ( ) { }1 2 0 1 2, ,..., ,  , ,..., ,  1 ,  0,  0m m
m m i il l l l pµ µ µ µ α β γ+= ∈ = ∈ − ≤ < > ∈ −    for all 

1,i m=  and  
 
 

       (19) 

 
 

for all 1,i m= , then the integral operator ( ), , ,p m l zµ  defined by (11) is p − valenty convex of complex 

order { }( )0γ γ ∈ − . 

Proof. From (18) and (19) we easily get ( ), , ,p m l zµ  is p −valenty convex of complex order γ . 

 From Theorem 2., we easily get 

Corollary 2. Let ( ) ( ) { }1 2 0 1 2, ,..., ,  , ,..., ,  1 ,  0,  0m m
m m i il l l l pµ µ µ µ α β γ+= ∈ = ∈ − ≤ < > ∈ −    for all 

1,i m=  and  

( ) ( )
( )( )

( )

( )

1

1

i

i
i

m

l i i
p i i

l m
i pp i

i

p pz D f z
p

D f z α

µ α

µ

γ

=

−

=

′ + −
− > −

∑

∑
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( )
( )( )

( )
1

1

Re
i

i
i i

m

l i i
p i i

ml
p i

i

p pz D f
p

D f z µ β
γ

µ α
=

=

 ′ + −
  > − 
 
 

∑

∑
 

that is ( )* ,il
p i PD f S σ∈  where ( )

1 1
/

m m
i i

i i
i i

p p p µ βσ µ α
γ= =

 = − + − 
 

∑ ∑ ; 0 pσ≤ <  for all 1,i m= , then the 

integral operator ( ), , ,p m l zµ  is p − valently convex of complex order { }( )0γ γ ∈ − . 
Putting 1 1 1 11, 0, , ,p m l µ µ α α β β= = = = = =  and 1f f= in Corollary 2., we have  
 
Corollary 3. Let { }0,  1 1,  0,  0µ α β γ> − ≤ < ≥ ∈ −  and ( )*f S σ∈  where 

 ( )( )1 /σ µ β α γ γ µβ = + − −   , 0 1,σ≤ < then the integral operator  ( )
0

z f t
dt

t

µ
 
 
 
∫  is convex of 

complex order { }( )0γ γ ∈ −  in  . 
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Abstract 

In the present paper, two known theorems dealing with absolute Riesz summability with weaker 

conditions are generalized for , ;  
k

A  summability of  infinite series and Fourier series. 

 

Keywords: Fourier series, infinite series, absolute matrix summability. 

 

 

1. Introduction 
 

Let na  be an infinite series with its partial sums  ns . Let  np  be a sequence of positive  numbers 

such that 

0

, ( 0, 1).
n

n v k k
v

P p as n P p k 


                   

Let  nvA a  be a normal matrix, i.e., a lower triangular matrix of non-zero diagonal entries. Then A  

defines the sequence-to sequence transformation, mapping the sequence ( )ns s  to ( ( ))nAs A s , where 

0

( )
n

n nv v
v

A s a s


        0,1,...n   

Let  n be any sequence of positive real numbers. The series  na is said to be  summable , ;
k

A   ,   

1,k   0    and   is a real number, if (see [1]) 

                                         1

1
1

( ) ( ) .
kk k

n n n
n

A s A s 


 




                                                    (1)            

Further,  two lower semimatrices ( )nvA a and ˆ ˆ( )nvA a  are defined as follows: 

                                        , , 0,1,...
n

nv ni
i v

a a n v


                                                                        (2) 

                                               00 00 00 1,
ˆ ˆ, , 1, 2,...nv nv n va a a a a a n                 (3)   

                                 1
0

ˆ .
n

n n n nv v
v

A s A s A s a a


                                                           (4) 
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By taking 1,   0  , n n nP p   and v
nv

n

p
a

P
  in (1), we get  , n

k
N p   summability method (see [2]). 

Also by taking  1,   0  , n n  , v
nv

n

p
a

P
  and 1np   for all values of  n , then we obtain  ,1

k
C   

summability method (see [3]). 

For any sequence  n , it should be noted that 1n n n      ,  0
n n    and 1k k

n n      for 

1,2,...k    (see [4]). Also, it should be noted that  nt  is the n -th  ,1C  mean of the sequence  nna , 

i.e., 
1

1
.

1

n

n v
v

t v a
n 



  

 
2. Known Result 
 

Bor [5] has proved the following theorem on  , n k
N p  summability by using a positive non-decreasing 

sequence. 
 
Theorem 2.1. Let ( )nX  be a positive non-decreasing sequence. If the sequences ( )nX  , ( )n , ( )n  and 

( )np  satisfy the conditions 

                                                                   ,n n                                                                   (5) 

                                                                   0n    as  ,n                                (6) 

                                                                         
1

,n n
n

n X




                                                                 (7) 

                                                                     | | (1)n nX O    as  .n                                                     (8) 

                                                           
1

1

( )    ,

k
n

v
nk

v v

t
O X as n

vX 


                          (9) 

                                     ,n nP O np                                                                       (10)    

                                                                   1 ,n n n nP p O p p                                                                   (11)           

then the series n n
n

n

P
a

np


   is  summable , n k

N p , 1k  . 

 
3. Main Result 
 

The aim of this paper is to generalize Theorem 2.1 to the , ;
k

A   summability method. For further 

informations, the readers should refer to [6–17] on the subject of this paper. 

 

Now we shall prove the following theorem. 
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Theorem 3.1. Let ( )n n np O P   and ( )n n nP O p . Let ( )nvA a  be a positive normal matrix such that  

 
                                                                       ,...,1,0,10  nan                                                       (12)

         

                                                                     1,n v nva a   for  1,n v                                                        (13) 

                                                                             ,n
nn

n

p
a O

P

 
  

 
                                                              (14) 

                                                                           , 1
ˆ ˆ( ) .n v v nva O v a                                                                 (15) 

Let ( )nX  be a positive non-decreasing sequence.  If the conditions (5)-(8), (10), (11)  and  

                                           1 1

1
1

( )     ,

k
n

k k k v

v nk
v v

t
O X as n

vX

     




                                                      (16) 

                                                1 1 1 1

, 1
1

ˆ ,k k k k k k

n n v v
n v

a O    


       


 

                                                     (17) 

                                                1 1 1

1

ˆ( )k k k k k k

n v nv v
n v

a O    


      

 

                                                     (18) 

are satisfied, then the series n n
n

n

P
a

np


   is  summable  , ;

k
A   , 1,k   0    and 

 1 0.k k k       

 
          We need the following lemmas to prove Theorem 3.1. 
 
Lemma 3.1 ([18]). Let ( )nX  be a positive non-decreasing sequence, then under the condition (6) and (7), 

we have 
 
                                                                     (1)    ,n nnX O as n                                                       (19)   

                                                                            
1

.n n
n

X 




                                                                   (20)       

Lemma 3.2 ([19]). If  the conditions (10) and (11) are satisfied, then 

    
2 2

1
.n

n

P
O

n p n

   
    

  
                                                             (21) 
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4. Proof of Theorem 3.1 
 

Let ( )nI  denotes  the A -transform of the series n n n

n

a P

np


 . Then, we have 

 
2

1 1

ˆ ˆ
n n

v v v v v v
n nv nv

v vv v

a P va P
I a a

vp v p

 

 

        

 
by (4). Then, we get 
 

                                

     

 

1

2 2
1 1 1

1 1
, 1

2 2 2
1 1

1

, 1 1 ,1 ,2 ,3 ,2
1

ˆ ˆ

ˆˆ( )
 1 1 1

ˆ        1

n v n
nv v v nn n n

n v r v
v r vv n

n n
n v v vnn n n v v v nv

n v v
v vn v v

n
v

n v v v n n n n
v v

a P a P
I ra va

v p n p

a Pa P P a
n t v t v t

n p v p v p

P
a v t I I I I

v p

 

 





  

 


 



 


 
    

 


     

 
       

 

  

 

 4

  

by using Abel's transformation,  and  to complete the proof of  Theorem 3.1, it is sufficient to 
show that 

                                     

 1

,
1

,  for 1, 2,3, 4.
kk k

n n r
n

I r 


 



     

First, by using Abel's transformation and the conditions (10),  (14), (8), (16), (5) and (20),  we 
have  

                

     1 1

,1 2
1 1

1

k
m m

kk k k k nn n n
n n n n

n n n

a P
I n t

n p

    
    

 

            

                                             1 1

1

(1) | | | || |

k
m

k k k k kn
n nn n n n

n n
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O a t
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1
1
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(1) | |
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O
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1

1 1 1 1

1 1
1 1 1

 = (1) (1)

k k
m n m

k k k k k kr n
n r m nk k

n r nr n

t t
O O

rX nX

      


       

 
  

     

                                           
1

1

 = (1) (1)
m

n n m m
n

O X O X 




   

                                           
1

1

 = (1) (1) (1)    .
m

n n m m
n

O X O X O as m 
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Now, applying Hölder’s inequality with indices k  and ',k  where 1k   and '1 1 1,k k   we have  

       
1 1 1 1 1

1 1 1

,2 2
2 2 1 2 1

ˆ( )
ˆ1 (1) | ( ) || || |

k k
m m n m n

kk k k k k kv v v nv v
n n n v n v nv v v

n n v n vv v

P a P
I v t O a t

v p vp

     
   

    
     

    

 
    

 
      

                                  
 

11 1 1
1

2 1 1

ˆ ˆ(1) ( ) ( ) .

k km n n
k kk k v

n v nv v v v nv
n v vv

P
O a t a

vp

  
  

 

  

   
    

  
  

 

Now using (2), (3), (12) and (13), we get 

           
1 1 1

1, 1, 1,0 1,0 0 0
1 1 1

ˆ( ) ( ) .
n n n

v nv nv n v n v nv n n n n nn nn
v v v

a a a a a a a a a a a
  

   
  

              

Hence, by using (14), (18), (10) and (8), we get 

        
1

1

,2
2

m
kk k

n n
n

I 


 


  

1 1
1 1

2 1

ˆ(1) ( )

k
m n

k kk k k v
n nn v nv v v

n v v

P
O a a t

vp

  
 

  

 

   
   

   
                              

                                    

 
1

1 1

1 1

1
ˆ(1) ( )

k
m m

k k k k kv
v v n v nvk

v n vv

P
O t a

p v

  


   

  

 
  

 
   

                                      1 1

1
1

(1)

k
m

k k k v
v v k

v v

t
O

vX

     




  (1)    O as m   ,                            

 

as in ,1.nI     

By using (15), (5), (14), (18), (10), (19) and applying Hölder’s inequality, we get            

       
1 1 1 1 1

1 1 1, 1

,3 , 12
2 2 1 2 1

ˆ
ˆ1 (1) | || || |

kk
m m n m n

kk k k k k kn v v v v
n n n v n n v v v

n n v n vv v

a P P
I v t O a t

v p vp

     
   

    
     


    

    
     

   
       

                                   
1 1

1

2 1

ˆ(1) ( )

k
m n

k k v
n v nv v v

n v v

P
O v a t

vp

  
 

 

 

  
    

  
        

                                  
   

11 1 1
1

2 1 1

ˆ ˆ(1) ( ) ( )

k km n n
kkk k v

n v v nv v v nv
n v vv

P
O v a t a

vp

  
  

 

  

   
    

  
           

                               
1 1

1 1

2 1

ˆ(1) ( )

k
m n

kkk k k v
n v v nv v

n v v

P
O v a t

vp
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1

1 1 1

1 1

ˆ(1) ( )

k
m m

kk k k kv
v v v n v nv

v n vv

P
O v v t a

vp

   


    

  

 
  

 
   

                           1 1

1
1

(1) .

k
m

k k k v
v v k

v v

t
O v

vX

     




 
 

Here, by Abel’s transformation and using the conditions (16), (7), (20) and (19), we get 

     
1 1

1 1 1 1 1

,3 1 1
2 1 1 1

(1) ( ) (1)

k k
m m v m

kk k k k k k k kr v
n n v r m vk k

n v r vr v

t t
I O v O m

rX vX

         
 

         

 
   

       

1 1

1 1

                           = (1) (1) (1) (1)    .
m m

v v v v m m
v v

O v X O X O m X O as m  
 

 

       

Now, using the fact that 
2 2

1v

v

P
O

v p v

   
    

  
,  and also using (15), (14), (17), (8), we have  

       
1 1 1 1 1

1 1 1

,4 , 1 1 , 1 12
2 2 1 2 1

1
ˆ ˆ1 (1) | || || |

k km m n m n
kk k k k k kv

n n n n v v v n n v v v
n n v n vv

P
I a v t O a t

v p v

         
    

     

   
    

   
      

  
       

      
11 1 1

1

, 1 1
2 1 1

| |
ˆ ˆ(1) | || | ( )

kkm n n
k k k v

n n v v v nv
n v v

t
O a a

v

  
  

 

 
  

 
  

 
    

                            
1 1

1 1

, 1 1
2 1

| |
ˆ(1) | || |

km n
k k k k v

n n v v
n v

t
O a

v

  
 

   

 
 

     

                            
1

1 11
1 1 , 1

1 1

ˆ(1) | | | | | |

k
m m

k k kvk
v v n n v

v n v

t
O a

v

   


   
  

  

     

                            1 1

1 1
1

(1)

k
m

k k k v
v v k

v v

t
O

vX

     

 


    

                                (1)O  as m  

as in ,1.nI    This completes the proof of  Theorem 3.1. 
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5. An Application 
 

Let f  be a periodic function with period 2  and Lebesque integrable over  ,  . The 

trigonometric Fourier series of f  is defined as    

                         0
1 0

1
( ) cos sin ( )

2
n n n

n n

f x a a nx b nx C x
 

 

      

where  

                          0

1
( )a f x dx






  , 
1

( ) cosna f x nxdx





  , 
1

( )sin .nb f x nxdx





    

Write    
1

( ) ( ) ( )
2

t f x t f x t       and  1

0

1
( ) ( ) .

t

t u du
t

    If  1( ) 0, ,t BV   then ( ) (1)nt x O , 

where ( )nt x   is the n -th  ,1C  mean of the sequence  ( )nnC x  (see [20]). By using this, the following 

theorem has been obtained in [5]. 

Theorem 5.1.  If  1( ) 0, ,t BV  and the sequences    ,  n np  ,  n  and  nX  satisfy the 

conditions of  Theorem 2.1,  then the series ( ) n n
n

n

P
C x

np


  is summable , n k

N p , 1k  .  

Theorem 5.1 is generalized for  , ;
k

A  
 
summability method as in the following form. 

Theorem 5.2.  If  1( ) 0, ,t BV  and the sequences    ,  ,n np    ,n  n  and  nX  satisfy the 

conditions of  Theorem 3.1,  then the series ( ) n n
n

n

P
C x

np


  is summable , ; ,

k
A    1,k   0    and 

 1 0.k k k       

6. Conclusions 

If  we take 1,   0  , n n nP p   and nv v na p P  in Theorem 3.1,  then we get Theorem 2.1. Also, if 

we take 1,   0  , n n nP p   and nv v na p P  in Theorem 5.2, then we get Theorem 5.1. 
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Abstract 

We enunciate Γ𝑘 − Reich type contraction in this study, which is a generalization of 

Reich type contraction in the setting of vector valued metric spaces. We explore fixed 

point outcomes and their uniqueness for a single operator, as well as common fixed 

point findings for two operators. The proposed results enrich and extend a multitude of 

results in the current context of study. 

          Keywords: Vector valued metric space, fixed point, Γ𝑘 − Reich type contraction, semilinear 

operator. 

1. Introduction and Preliminaries 

 

Fixed point theory combines analysis, topology, and geometry in a satisfying way. It has a wide range of 

applications in science, including physics, mathematical engineering, economics, biology, and chemistry. 

Fixed points results on some spaces that satisfies some specific contractive conditions are useful in 

various research activities, see e.g., [12,13,14,15,16,17]. 

Recently, in 2012, a new contraction named as 𝐹-contraction was given by Wardowski [11] and proved 

fixed point theorems using the novel concept of 𝐹-contraction. After that, many researchers worked on 𝐹-

contractive mappings see e.g., [1,3,4,13,16], and proved many convergence results within this approach. 

Reich [6], on the other hand, proposed a unique generalisation of Banach's fixed point theorem for single 

and multivalued mappings. For several authors, Reich type mappings have been the focus of intense 

investigation since then. 
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Motivated by the work mentioned above, in this paper, we introduce a generalization of Reich type 

contractive condition [6,7] named as Γ𝑘 − Reich type contraction to prove some fixed point and common 

fixed point results within the frame work of vector valued metric spaces. We also discuss the existence 

and uniqueness of the results. 

In this manuscript, we denote by ℝ𝑚 , the set of 𝑚 × 1 non-negative real matrices,  𝜃 be 𝑚 × 𝑚 zero 

matrix, �̆� be 𝑚 × 1 zero matrix, 𝐼 be 𝑚 × 𝑚 identity matrix and M(𝑚×𝑚)(ℝ+)be 𝑚 × 𝑚 matrices with 

non-negative elements. The Cauchyness, completeness and convergnce in 𝑉𝑣𝑚𝑠  is same as in the usual 

metric space. 

Definition 1.1. [5] Let ℤ be nonempty set, ℝ𝑚 denotes real matrices of 𝑚 × 1, then 𝑑𝑣: ℤ × ℤ → ℝ𝑚 then 

(ℤ, 𝑑𝑣) is called a vector valued metric space (𝑉𝑣𝑚𝑠), if for all 𝑥1, 𝑥2, 𝑥3 ∈ ℤ, the follwing postulates are 

satisfied: 

1. 𝑑𝑣(𝑥1, 𝑥2) ⪰ �̆� and 𝑑𝑣(𝑥1, 𝑥2) = �̆� if and only if 𝑥1 = 𝑥2, 

2. 𝑑𝑣(𝑥1, 𝑥2) = 𝑑𝑣(𝑥2, 𝑥1), 

3. 𝑑𝑣(𝑥1, 𝑥2) ⪯ 𝑑𝑣(𝑥1, 𝑥3) + 𝑑𝑣(𝑥3, 𝑥2), 

where �̆� represents 𝑚 × 1 real matrices, ⪯ is coordinate wise ordering on ℝ𝑚 , 𝛼 ⪯ 𝛽 iff 𝛼𝑗 ≤ 𝛽𝑗 and 𝛼 ≺

𝛽 iff 𝛼𝑗 ≺ 𝛽𝑗, for all 𝑗 ∈ {1,2,3 … 𝑚} respectively.  

Theorem 1.2. [10] Suppose 𝑃 ∈ 𝕄(𝑚×𝑚)(ℝ+) then: 

1. 𝑃 is convergent to zero. 

2. Eigen values of 𝑃 lies in the open unit disc i.e |𝜇| < 1, for all 𝜇 ∈ ℂ with det (𝑃 − 𝜇𝐼) = 0. 

3. 𝐼 − 𝑃 is nonsingular and 

(𝐼 − 𝑃)−1 = 𝐼 + 𝑃 + ⋯ + 𝑃𝑛 + ⋯ 

where 𝑃 ∈ 𝕄(𝑚×𝑚)(ℝ+), then 𝑃 is convergent to zero iff 𝑃𝑛 → 𝜃 as 𝑛 → ∞. 

Definition 1.3. [10] Suppose that 𝑃 = [𝑝𝑖,𝑗] and 𝑄 = [𝑞𝑖,𝑗] (be two real matrices 𝑛 × 𝑚), then 𝑃 ≥ 𝑄(>

𝑄), if 𝑝𝑖,𝑗 ≥ 𝑞𝑖,𝑗(> 𝑞𝑖,𝑗), for all 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚. If 𝑂 is null matrix then and 𝑃 ≥ 𝑂(> 𝑂), then 𝑃 

is positive matrix. 

Example 1.4. A matrix 𝑃 ∈ 𝕄(𝑚×𝑚)(ℝ+)of the form: 

𝑃 = (
𝑔 ℎ
𝑔 ℎ

)  or 𝑃 = (
𝑔 𝑔
ℎ ℎ

) 
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with 𝑔 + ℎ < 1, then 𝑃 converges to zero. 

Example 1.5. A matrix 𝑃 ∈ 𝕄(𝑚×𝑚)(ℝ+)of the form: 

𝑃 = (

𝛼1 0 … 0
0 𝛼2 … 0
⋮ … ⋱ ⋮
0 0 … 𝛼𝑛

)

𝑛×𝑛

 

if max{𝛼𝑗: 𝑗 ∈ {1,2,3 … 𝑛}} < 1, then 𝑃 is convergent to zero. 

Definition 1.6. [2] Suppose Γ: ℝ+
𝑚 → ℝ𝑚 such as 

1. Γ is strictly increasing i.e for all 

𝛼 = (𝛼𝑗)
𝑗=1

𝑚
, 𝛽 = (𝛽𝑗)

𝑗=1

𝑚
∈ ℝ+

𝑚 with 𝛼 ≺ 𝛽 then Γ(𝛼) ≺ Γ(𝛽),    (1) 

2. For all {𝛼𝑛} = {𝛼𝑛
1 , 𝛼𝑛

2, 𝛼𝑛
3 … 𝛼𝑛

𝑚} ∈ ℝ+
𝑚 such that lim𝑛→∞  𝛼𝑛

𝑗
= 0, iff lim𝑛→∞  𝛽𝑛

𝑗
= −∞ such that 

{𝛽𝑛
1, 𝛽𝑛

2, 𝛽𝑛
3 … 𝛽𝑛

𝑚} = Γ{𝛼𝑛
1 , 𝛼𝑛

2, 𝛼𝑛
3 … 𝛼𝑛

𝑚}                 (2) 

for each 𝑗 ∈ {1,2,3 … 𝑚}. 

3. There exists 𝜔 ∈ (0,1) such as lim𝛼𝑗→0+  𝛼𝑗
𝜔𝛽𝑗 = 0 such that 

{𝛽𝑛
1, 𝛽𝑛

2, 𝛽𝑛
3 … 𝛽𝑛

𝑚} = Γ{𝛼𝑛
1 , 𝛼𝑛

2, 𝛼𝑛
3 … 𝛼𝑛

𝑚}       (3) 

for each 𝑗 ∈ {1,2,3 … 𝑚}, where Γ𝑚 denotes set of all mappings satisfying {1} − {2}. 

Definition 1.7. [2] Let 𝚿: ℤ → ℤ be perov type Γ-operator in 𝑉𝑣𝑚𝑠  denoted as (ℤ, 𝑑𝑣). If there exists Γ ∈

Γ𝑚 and 𝑘 = (𝑘𝑗)
𝑗=1

𝑚
∈ ℝ+

𝑚 for all 𝑥, 𝑦 ∈ ℤ and 𝑑𝑣(𝚿𝑥, 𝚿𝑦) > �̆� such that 

𝑘 + Γ(𝑑𝑣(𝚿𝑥, 𝚿𝑦)) ⪯ Γ(𝑃𝑑𝑣(𝑥, 𝑦)) 

Theorem 1.8. [2] Let 𝚿: ℤ → ℤ be perov type Γ-operator in 𝑉𝑣𝑚𝑠  denoted as (ℤ, 𝑑𝑣), then 𝚿 has a unique 

fixed point. 

 2. New Convergence Results 

 

In this section, we will discuss some fixed point theorems in 𝑉𝑣𝑚𝑠  by using the definition of Γ𝑘 − Reich 

type operator. 
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Definition 2.1. Let 𝚿: ℤ → ℤ be a self-mapping and as (ℤ, 𝑑𝑣) be a 𝑉𝑣𝑚𝑠 . Then the mapping 𝚿  is called a 

Γ𝑘 − Reich type operator, if there exist 𝑃, 𝑄, 𝑆 ∈ 𝕄(𝑚×𝑚)(ℝ+), Γ ∈ Γ𝑚 and 𝑘 = (𝑘𝑗)
𝑗=1

𝑚
∈ ℝ+

𝑚 for all 

𝑥, 𝑦 ∈ ℤ and 𝑑𝑣(𝚿𝑥, 𝚿𝑦) > �̆� such that 

𝑘 + Γ(𝑑𝑣(𝚿𝑥, 𝚿𝑦)) ⪯ Γ(𝑃𝑑𝑣(𝑥, 𝑦) + 𝑄𝑑𝑣(𝑥, 𝚿𝑥) + 𝑆𝑑𝑣(𝑦, 𝚿𝑦)),   (4) 

where 𝑃 + 𝑄 + 𝑆 < 𝐼 and 𝑆 ≠ 𝐼. 

Theorem 2.2. Let 𝜓: ℤ → ℤ be Γ𝑘 − Reich type operator in 𝑉vms  (ℤ, 𝑑𝑣). If there exists 𝑃, 𝑄, 𝑆 ∈

𝕄(𝑚×𝑚)(ℝ+)such that 

1. (𝐼 − 𝑆) is non singular and (𝐼 − 𝑆)−1 ∈ 𝕄(𝑚×𝑚)(ℝ+).                                     (5) 

2. ℍ = (𝑃 + 𝑄)(𝐼 − 𝑆)−1 such that 𝜃 < ℍ ≤ 𝐼.                                                    (6) 

Then there exists a fixed point of 𝜓. 

Proof. Consider 𝑥0 ∈ ℤ defined as 𝑥𝑛 = 𝚿𝑛−1, where {𝑥𝑛} ∈ ℤ for some 𝑛 ∈ 𝑁 ∪ {0}. Suppose 𝑥𝑛0
=

𝑥𝑛0+1 then 𝚿 has a fixed point 𝑛0 for some 𝑛0 ∈ 𝑁 ∪ {0}. Further assume that 𝑥𝑛0
≠ 𝑥𝑛0+1 then 

𝑑𝑣(𝑥𝑛, 𝑥𝑛+1) = {𝛼𝑛
1 , 𝛼𝑛

2, 𝛼𝑛
3 … 𝛼𝑛

𝑚} = 𝛼𝑛, where 𝛼𝑛
𝑗

> 0, for all 𝑛 ∈ 𝑁 ∪ {0} respectively and for each 𝑗 ∈

{1,2,3 … 𝑚}. By using (4), we get 

Γ(𝛼𝑛)  = Γ(𝑑𝑣(𝑥𝑛 , 𝑥𝑛+1)) = Γ(𝑑𝑣(𝚿𝑥𝑛−1, 𝚿𝑥𝑛))

 ⪯ Γ(𝑃𝑑𝑣(𝑥𝑛−1, 𝑥𝑛) + 𝑄𝑑𝑣(𝑥𝑛−1, 𝚿𝑥𝑛−1) + 𝑆𝑑𝑣(𝑥𝑛 , 𝚿𝑥𝑛)) − 𝑘

 = Γ(𝑃𝑑𝑣(𝑥𝑛−1, 𝑥𝑛) + 𝑄𝑑𝑣(𝑥𝑛−1, 𝑥𝑛) + 𝑆𝑑𝑣(𝑥𝑛 , 𝑥𝑛+1)) − 𝑘

 = Γ((𝑃 + 𝑄)𝑑𝑣(𝑥𝑛−1, 𝑥𝑛) + 𝑆𝑑𝑣(𝑥𝑛 , 𝑥𝑛+1)) − 𝑘

 = Γ((𝑃 + 𝑄)𝛼𝑛−1 + 𝑆𝛼𝑛) − 𝑘

 ≺ Γ((𝑃 + 𝑄)𝛼𝑛−1 + 𝑆𝛼𝑛).

 

Since, we can write the above equation as 

Γ(𝛼𝑛) ≺ Γ((𝑃 + 𝑄)𝛼𝑛−1 + 𝑆𝛼𝑛), 

by using equation (1) and equation (5), (6) given in theorem we get 

𝛼𝑛  ≺ (𝑃 + 𝑄)𝛼𝑛−1 + 𝑆𝛼𝑛

𝛼𝑛  ≺ (𝐼 − 𝑆)−1(𝑃 + 𝑄)𝛼𝑛−1 = ℍ𝛼𝑛−1 ⪯ 𝛼𝑛−1,
 

which shows that 
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𝛼𝑛 ≺ 𝛼𝑛−1, for all 𝑛 ∈ 𝑁 ∪ {0}. 

As we know that Γ{𝛼𝑛} = {𝛽𝑛
1, 𝛽𝑛

2, 𝛽𝑛
3 … 𝛽𝑛

𝑚} = 𝛽𝑛, then by using the above equation we can write 

𝛽𝑛 ≺ 𝛽𝑛−1, for all 𝑛 ∈ 𝑁 ∪ {0}.  

Consequently, we have 

𝛽𝑛
𝑗

< 𝛽𝑛−1
𝑗

, for all 𝑛 ∈ 𝑁 ∪ {0} and for each 𝑗 ∈ {1,2,3 … 𝑚}. 

Now, we choose 𝑘𝑗 > 0, then 

𝛽𝑛
𝑗

< 𝛽𝑛−1
𝑗

− 𝑘𝑗, for all 𝑛 ∈ 𝑁 ∪ {0} and for each 𝑗 ∈ {1,2,3 … 𝑚}.  

Hence, we acquire 

𝛽𝑛
𝑗

< 𝛽0
𝑗

− 𝑛𝑘𝑗, for all 𝑛 ∈ 𝑁 ∪ {0}.                                    (7) 

Taking limit 𝑛 → ∞ in equation (7), we obtain 

lim
𝑛→∞

  = −∞.  

By using equation (2), we obtain 

lim
𝑛→∞

 𝛼𝑛
𝑗

= 0, for each 𝑗 ∈ {1,2,3 … 𝑚}. 

Now by using the equation (3), there exists 𝜔 ∈ (0,1) such that 

lim
𝑛→∞

 (𝛼𝑛
𝑗 )

𝜔
𝛽𝑛

𝑗
= 0, for each 𝑗 ∈ {1,2,3 … 𝑚}. 

Utilizing equation (7), we get 

(𝛼𝑛
𝑗 )

𝜔
𝛽𝑛

𝑗
− (𝛼𝑛

𝑗 )
𝜔

𝛽0
𝑗

≤ (𝛼𝑛
𝑗 )

𝜔
𝑛𝑘𝑗 ≤ 0,       (8) 

taking limit 𝑛 → ∞ in equation (8), we get 

lim
𝑛→∞

 𝑛(𝛼𝑛
𝑗 )

𝜔
= 0, for each 𝑗 ∈ {1,2,3 … 𝑚}.            (9) 
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Making use of equation (9), there exists 𝑛𝑗 ∈ {1,2,3 … } for each 𝑛 ≥ 𝑛𝑗 such that 𝑛(𝛼𝑛
𝑗 )

𝜔
≤ 1. 

Furthermore, for 𝑛 ≥ 𝑛0 = max{𝑛𝑗: 𝑗 ∈ {1,2,3 … 𝑚}}, we get 

𝛼𝑛
𝑗

≤
1

𝑛
1

𝜔

. 

Now we have to show that {𝑥𝑛} is a Cauchy sequence in 𝑉𝑣𝑚𝑠  denoted as (ℤ, 𝑑𝑣) for all 𝑛, 𝑚 ∈ ℕ with 

𝑛 < 𝑚, we have 

𝑑𝑣(𝑥𝑛, 𝑥𝑚)  ⪯ 𝑑𝑣(𝑥𝑛, 𝑥𝑛+1) + 𝑑𝑣(𝑥𝑛+1, 𝑥𝑛+2) + 𝑑𝑣(𝑥𝑛+2, 𝑥𝑛+3) … + 𝑑𝑣(𝑥𝑚−1, 𝑥𝑚)

 = 𝛼𝑛 + 𝛼𝑛+1 + 𝛼𝑛+2 + ⋯ + 𝛼𝑚−1

 = (𝛼𝑛
(𝑗)

)
𝑗=1

𝑚

+ (𝛼𝑛+1
(𝑗)

)
𝑗=1

𝑚

+ (𝛼𝑛+2
(𝑗)

)
𝑗=1

𝑚

+ ⋯ + (𝛼𝑚−1
(𝑗)

)
𝑗=1

𝑚

 = ( ∑  

𝑚−1

𝑖=1

 𝛼𝑖
(𝑗)

)

𝑗=1

𝑚

 ⪯ (∑  

∞

𝑖=1

 𝛼𝑖
(𝑗)

)

𝑗=1

𝑚

 ⪯ (∑  

∞

𝑖=1

 
1

𝑖
1

𝜔

)

𝑗=1

𝑚

.

 

By taking limit 𝑛 → ∞, series ∑𝑖=1
∞  

1

𝑖
 is convergent, and we obtain 

lim
𝑛→∞

 𝑑𝑣(𝑥𝑛, 𝑥𝑚) = 0, 

which shows that {𝑥𝑛} is Cauchy sequence in a complete 𝑉𝑣𝑚𝑠 . Therefore, there exists 𝑧∗ ∈ ℤ such that 

𝑥𝑛 → 𝑧∗ as 𝑛 → ∞.  

Furthermore, we have to show that 𝑧∗ is a fixed point of  𝚿. For this, let 𝑥 = 𝑥𝑛 and 𝑦 = 𝑧∗, then by 

using equation (4), we acquire 

Γ(𝑑𝑣(𝚿𝑥𝑛 , 𝚿𝑧∗))  ⪯ Γ(𝑃𝑑𝑣(𝑥𝑛 , 𝑧∗) + 𝑄𝑑𝑣(𝑥𝑛, 𝚿𝑥𝑛) + 𝑆𝑑𝑣(𝑧∗, 𝚿𝑧∗)) − 𝑘

 = Γ(𝑃𝑑𝑣(𝑥𝑛 , 𝑧∗) + 𝑄𝑑𝑣(𝑥𝑛, 𝑥𝑛+1) + 𝑆𝑑𝑣(𝑧∗, 𝚿𝑧∗)) − 𝑘

 ≺ Γ(𝑃𝑑𝑣(𝑥𝑛, 𝑧∗) + 𝑄𝑑𝑣(𝑥𝑛 , 𝑥𝑛+1) + 𝑆𝑑𝑣(𝑧∗, 𝚿𝑧∗)),

 

by using equation (1), we obtain 
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𝑑𝑣(𝑥𝑛+1, 𝚿𝑧∗) ≺ 𝑃𝑑𝑣(𝑥𝑛 , 𝑧∗) + 𝑄𝑑𝑣(𝑥𝑛, 𝑥𝑛+1) + 𝑆𝑑𝑣(𝑧∗, 𝚿𝑧∗).    (10) 

By taking limit 𝑛 → ∞, in equation (10), we get 

𝑑𝑣(𝑧∗, 𝚿𝑧∗) ⪯ 𝑆𝑑𝑣(𝑧∗, 𝚿𝑧∗) < 𝑑𝑣(𝑧∗, 𝚿𝑧∗), 

which is contradiction. Hence 𝑧∗ = 𝚿𝑧∗. 

To show that 𝚿 has a definite fixed point, we formulate the following theorem. 

Theorem 2.3. If the condition of the Theorem (2.2) are satisfied and 𝑃 ≤ 𝐼, then 𝚿 has a unique fixed 

point. 

Proof. According to the Theorem (2.2), there exist a fixed point of 𝚿, 𝑧∗ ∈ 𝚿. Now we have to show that 

𝚿 has a unique fixed point for this let 𝑦∗ be another fixed point of 𝚿 with 𝑦∗ ≠ 𝑧∗, then by using (4) , we 

have 

𝑘 + Γ(𝑑𝑣(𝑦∗, 𝑧∗))  = Γ(𝑑𝑣(𝚿𝑦∗, 𝚿𝑧∗))

 ⪯ Γ(𝑃𝑑𝑣(𝑦∗, 𝑧∗) + 𝑄𝑑𝑣(𝑦∗, 𝚿𝑦∗) + 𝑆𝑑𝑣(𝑧∗, 𝚿𝑧∗))

 = Γ(𝑃𝑑𝑣(𝑦∗, 𝑧∗) + 𝑄𝑑𝑣(𝑦∗, 𝑦∗) + 𝑆𝑑𝑣(𝑧∗, 𝑧∗))

 = Γ(𝑃𝑑𝑣(𝑦∗, 𝑧∗)) ⪯ Γ𝑑𝑣(𝑦∗, 𝑧∗)

 

which is a contradiction, hence 𝑦∗ = 𝑧∗ then 𝑧∗ ∈ 𝚿 has a unique fixed point. 

Corollary 2.4. Let 𝚿: ℤ → ℤ be a complete 𝑉𝑣𝑚𝑠  (ℤ, 𝑑𝑣). If Γ ∈ Γ𝑚 and 𝑘 = (𝑘𝑗)
𝑗=1

𝑚
∈ ℝ+

𝑚 for all 𝑥, 𝑦 ∈

ℤ and 𝑑𝑣(𝚿𝑥, 𝚿𝑦) > �̆� such that 

𝑘 + Γ(𝑑𝑣(𝚿𝑥, 𝚿𝑦)) ⪯ Γ(𝑑𝑣(𝑥, 𝑦)), 

then 𝚿 has a unique fixed point. 

Proof. If we take 𝑃 = 𝐼 and 𝑄 = 𝑆 = 𝜃, in Theorem (2.2) then we get the desired result. 

3. Common Fixed Point for Two Self Operators 

In this section, we present some common fixed point results corcerning Γ𝑘 − Reich type operator for two 

self operators. 

Theorem 3.1. Let 𝚿, Φ: ℤ → ℤ be Γ𝑘 − Reich type operator in 𝑉𝑣𝑚𝑠  (ℤ, 𝑑𝑣). If there exists 𝑃, 𝑄, 𝑆 ∈

M(𝑚×𝑚)(ℝ+)such that 
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1. (𝐼 − 𝑆) is non singular and (𝐼 − 𝑆)−1 ∈ 𝕄(𝑚×𝑚)(ℝ+).       (11) 

2. ℍ = (𝑃 + 𝑄)(𝐼 − 𝑆)−1 such that 𝜃 < ℍ ≤ 𝐼.        (12) 

3. 𝑆, 𝑄 ≤ 𝐼.             (13) 

Then 𝚿 and Φ has a common fixed point. 

Proof. Consider 𝑥0 ∈ ℤ defined as {𝑥𝑛} ∈ ℤ 

𝑥2𝑛+1 = 𝚿𝑥2𝑛

𝑥2𝑛+2 = Φ𝑥2𝑛+1
 

for some 𝑛 ∈ 𝑁 ∪ {0}. Suppose 𝑥2𝑛0
= 𝑥2𝑛0+1 then 𝚿 and Φ has a fixed point 𝑥2𝑛0

 for some 𝑛0 ∈ 𝑁 ∪

{0}. Further assume that 𝑥2𝑛0
≠ 𝑥2𝑛0+1 then 𝑑𝑣(𝑥2𝑛 , 𝑥2𝑛+1) = {𝛼2𝑛

1 , 𝛼2𝑛
2 , 𝛼2𝑛

3 … 𝛼2𝑛
𝑚 } = 𝛼2𝑛, where 

𝛼2𝑛
𝑗

> 0, for all 𝑛 ∈ 𝑁 ∪ {0} respectively and for each 𝑗 ∈ {1,2,3 … 𝑚}. By using equation (4), we get 

Γ(𝛼2𝑛)  = Γ(𝑑𝑣(𝑥2𝑛 , 𝑥2𝑛+1)) = Γ(𝑑𝑣(𝚿𝑥2𝑛−1, Φ𝑥2𝑛))

 ⪯ Γ(𝑃𝑑𝑣(𝑥2𝑛−1, 𝑥2𝑛) + 𝑄𝑑𝑣(𝑥2𝑛−1, 𝚿𝑥2𝑛−1) + 𝑆𝑑𝑣(𝑥2𝑛 , Φ𝑥2𝑛)) − 𝑘

 = Γ(𝑃𝑑𝑣(𝑥2𝑛−1, 𝑥2𝑛) + 𝑄𝑑𝑣(𝑥2𝑛−1, 𝑥2𝑛) + 𝑆𝑑𝑣(𝑥2𝑛 , 𝑥2𝑛+1)) − 𝑘

 = Γ((𝑃 + 𝑄)𝑑𝑣(𝑥2𝑛−1, 𝑥2𝑛) + 𝑆𝑑𝑣(𝑥2𝑛 , 𝑥2𝑛+1)) − 𝑘

 = Γ((𝑃 + 𝑄)𝛼2𝑛−1 + 𝑆𝛼2𝑛) − 𝑘

 ≺ Γ((𝑃 + 𝑄)𝛼2𝑛−1 + 𝑆𝛼2𝑛).

 

Since, we can write the above equation as 

Γ(𝛼2𝑛) ≺ Γ((𝑃 + 𝑄)𝛼2𝑛−1 + 𝑆𝛼2𝑛), 

by using the (1) and using the points (11), (12) given in theorem we get 

𝛼2𝑛  ≺ (𝑃 + 𝑄)𝛼2𝑛−1 + 𝑆𝛼2𝑛

𝛼2𝑛  ≺ (𝐼 − 𝑆)−1(𝑃 + 𝑄)𝛼2𝑛−1 = ℍ𝛼2𝑛−1 ⪯ 𝛼2𝑛−1,
 

which shows that 

𝛼2𝑛 ≺ 𝛼2𝑛−1, for all 𝑛 ∈ 𝑁 ∪ {0}. 

Similarly 
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Γ(𝛼2𝑛+1)  = Γ(𝑑𝑣(𝑥2𝑛+2, 𝑥2𝑛+1)) = Γ(𝑑𝑣(𝚿𝑥2𝑛 , Φ𝑥2𝑛+1))

 ⪯ Γ(𝑃𝑑𝑣(𝑥2𝑛 , 𝑥2𝑛+1) + 𝑄𝑑𝑣(𝑥2𝑛 , 𝚿𝑥2𝑛) + 𝑆𝑑𝑣(𝑥2𝑛+1, Φ𝑥2𝑛+1)) − 𝑘

 = Γ(𝑃𝑑𝑣(𝑥2𝑛 , 𝑥2𝑛+1) + 𝑄𝑑𝑣(𝑥2𝑛 , 𝑥2𝑛+1) + 𝑆𝑑𝑣(𝑥2𝑛+1, 𝑥2𝑛+2)) − 𝑘

 = Γ((𝑃 + 𝑄)𝑑𝑣(𝑥2𝑛 , 𝑥2𝑛+1) + 𝑆𝑑𝑣(𝑥2𝑛+1, 𝑥2𝑛+2)) − 𝑘

 = Γ((𝑃 + 𝑄)𝛼2𝑛 + 𝑆𝛼2𝑛+1) − 𝑘

 ≺ Γ((𝑃 + 𝑄)𝛼2𝑛 + 𝑆𝛼2𝑛+1).

 

Since, we can write the above equation as 

Γ(𝛼2𝑛+1) ≺ Γ((𝑃 + 𝑄)𝛼2𝑛−1 + 𝑆𝛼2𝑛), 

by using the equation (1) and using the points (11), (12) given in theorem we get 

𝛼2𝑛+1  ≺ (𝑃 + 𝑄)𝛼2𝑛 + 𝑆𝛼2𝑛+1

𝛼2𝑛+1  ≺ (𝐼 − 𝑆)−1(𝑃 + 𝑄)𝛼2𝑛 = ℍ𝛼2𝑛+1 ⪯ 𝛼2𝑛 ,
 

which shows that 

𝛼2𝑛+1 ≺ 𝛼2𝑛 , for all 𝑛 ∈ 𝑁 ∪ {0}. 

In general, we get 

𝛼𝑛 ≺ 𝛼𝑛−1, for all 𝑛 ∈ 𝑁 ∪ {0}.  

As we know that Γ{𝛼𝑛} = {𝛽𝑛
1, 𝛽𝑛

2, 𝛽𝑛
3 … 𝛽𝑛

𝑚} = 𝛽𝑛, then by using the above equation we can write 

𝛽𝑛 ≺ 𝛽𝑛−1, for all 𝑛 ∈ 𝑁 ∪ {0}. 

Accordingly, we have 

𝛽𝑛
𝑗

< 𝛽𝑛−1
𝑗

, for all 𝑛 ∈ 𝑁 ∪ {0} and for each 𝑗 ∈ {1,2,3 … 𝑚}. 

Now we choose 𝑘𝑖 > 0, then 

𝛽𝑛
𝑗

< 𝛽𝑛−1
𝑗

− 𝑘𝑗 , for all 𝑛 ∈ 𝑁 ∪ {0} and for each 𝑗 ∈ {1,2,3 … 𝑚}.     

Since, we get 

𝛽𝑛
𝑗

< 𝛽0
𝑗

− 𝑛𝑘𝑗, for all 𝑛 ∈ 𝑁 ∪ {0} and for each 𝑗 ∈ {1,2,3 … 𝑚}.   (14) 
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Taking limit 𝑛 → ∞ in (14), we get 

lim
𝑛→∞

  = −∞. 

By using equation (2), we get 

lim
𝑛→∞

 𝛼𝑛
𝑗

= 0, for each 𝑗 ∈ {1,2,3 … 𝑚}. 

Now by using the equation (3), there exist 𝜔 ∈ (0,1) such that 

lim
𝑛→∞

 (𝛼𝑛
𝑗 )

𝜔
𝛽𝑛

𝑗
= 0, for each 𝑗 ∈ {1,2,3 … 𝑚} 

By using the equation (14), we get 

(𝛼𝑛
𝑗 )

𝜔
𝛽𝑛

𝑗
− (𝛼𝑛

𝑗 )
𝜔

𝛽0
𝑗

≤ (𝛼𝑛
𝑗 )

𝜔
𝑛𝑘𝑗 ≤ 0,       (15) 

taking limit 𝑛 → ∞ in equation (15), we get 

lim
𝑛→∞

 𝑛(𝛼𝑛
𝑗 )

𝜔
= 0, for each 𝑗 ∈ {1,2,3 … 𝑚}.    (16) 

By using the above equation (16), there exists 𝑛𝑗 ∈ {1,2,3 … } for each 𝑛 ≥ 𝑛𝑗 such that 𝑛(𝛼𝑛
𝑗 )

𝜔
≤ 1. 

Furthermore, for 𝑛 ≥ 𝑛0 = max{𝑛𝑗: 𝑗 ∈ {1,2,3 … 𝑚}}, we get 

𝛼𝑛
𝑗

≤
1

𝑛
1

𝜔

. 

Now we have to show that {𝑥𝑛} is a Cauchy sequence in 𝑉𝑣𝑚𝑠  denoted as (ℤ, 𝑑𝑣) for all 𝑛, 𝑚 ∈ ℕ with 

𝑛 < 𝑚, we have 
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𝑑𝑣(𝑥𝑛, 𝑥𝑚)  ⪯ 𝑑𝑣(𝑥𝑛, 𝑥𝑛+1) + 𝑑𝑣(𝑥𝑛+1, 𝑥𝑛+2) + 𝑑𝑣(𝑥𝑛+2, 𝑥𝑛+3) … + 𝑑𝑣(𝑥𝑚−1, 𝑥𝑚)

 = 𝛼𝑛 + 𝛼𝑛+1 + 𝛼𝑛+2 + ⋯ + 𝛼𝑚−1

 = (𝛼𝑛
(𝑗)

)
𝑗=1

𝑚

+ (𝛼𝑛+1
(𝑗)

)
𝑗=1

𝑚

+ (𝛼𝑛+2
(𝑗)

)
𝑗=1

𝑚

+ ⋯ + (𝛼𝑚−1
(𝑗)

)
𝑗=1

𝑚

 = ( ∑  

𝑚−1

𝑖=1

 𝛼𝑖
(𝑗)

)

𝑗=1

𝑚

 ⪯ (∑  

∞

𝑖=1

 𝛼𝑖
(𝑗)

)

𝑗=1

𝑚

 ⪯ (∑  

∞

𝑖=1

 
1

𝑖
1

𝜔

)

𝑗=1

𝑚

.

 

By taking limit 𝑛 → ∞, series ∑𝑖=1
∞  

1

𝑖1 is convergent, we obtain 

lim
𝑛→∞

 𝑑𝑣(𝑥𝑛, 𝑥𝑚) = 0, 

which shows that {𝑥𝑛} is Cauchy sequence in a complete 𝑉𝑣𝑚𝑠 , then there exist 𝑧∗ ∈ ℤ such that 𝑥𝑛 → 𝑧∗ 

as 𝑛 → ∞. Furthermore, we have to show that 𝑧∗ is a fixed point of 𝚿, for this 𝑥 = 𝑥2𝑛 and 𝑦 = 𝑧∗, then 

by using equation (4) we get 

Γ(𝑑𝑣(𝚿𝑥2𝑛 , Φ𝑧∗))  ⪯ Γ(𝑃𝑑𝑣(𝑥2𝑛 , 𝑧∗) + 𝑄𝑑𝑣(𝑥2𝑛 , 𝚿𝑥2𝑛) + 𝑆𝑑𝑣(𝑧∗, Φ𝑧∗)) − 𝑘

 = Γ(𝑃𝑑𝑣(𝑥2𝑛 , 𝑧∗) + 𝑄𝑑𝑣(𝑥2𝑛 , 𝑥2𝑛+1) + 𝑆𝑑𝑣(𝑧∗, Φ𝑧∗)) − 𝑘

 ≺ Γ(𝑃𝑑𝑣(𝑥2𝑛 , 𝑧∗) + 𝑄𝑑𝑣(𝑥2𝑛 , 𝑥2𝑛+1) + 𝑆𝑑𝑣(𝑧∗, Φ𝑧∗))

 

by using equation (1), we get 

𝑑𝑣(𝑥2𝑛+1, Φ𝑧∗) ≺ 𝑃𝑑𝑣(𝑥2𝑛 , 𝑧∗) + 𝑄𝑑𝑣(𝑥2𝑛 , 𝑥2𝑛+1) + 𝑆𝑑𝑣(𝑧∗, Φ𝑧∗),     (17) 

by taking limit 𝑛 → ∞, in equation (17) we get 

𝑑𝑣(𝑧∗, Φ𝑧∗) ⪯ Sd𝑣(𝑧∗, Φ𝑧∗) < 𝑑𝑣(𝑧∗, Φ𝑧∗), 

which is contradiction hence 𝑧∗ = Φ𝑧∗. Similarly 

Γ(𝑑𝑣(𝚿𝑧∗, Φ𝑥2𝑛+1))  ⪯ Γ(𝑃𝑑𝑣(𝑧∗, 𝑥2𝑛+1) + 𝑄𝑑𝑣(𝑧∗, 𝚿𝑧∗) + 𝑆𝑑𝑣(𝑥2𝑛+1, Φ𝑥2𝑛+1)) − 𝑘

 = Γ(𝑃𝑑𝑣(𝑧∗, 𝑥2𝑛+1) + 𝑄𝑑𝑣(𝑧∗, 𝚿𝑧∗) + 𝑆𝑑𝑣(𝑥2𝑛+1, 𝑥2𝑛+2)) − 𝑘

 ≺ Γ(𝑃𝑑𝑣(𝑧∗, 𝑥2𝑛+1) + 𝑄𝑑𝑣(𝑧∗, 𝚿𝑧∗) + 𝑆𝑑𝑣(𝑥2𝑛+1, 𝑥2𝑛+2)),
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by using equation (1), we get 

𝑑𝑣(𝚿𝑧∗, 𝑥2𝑛+2) ≺ 𝑃𝑑𝑣(𝑧∗, 𝑥2𝑛+1) + 𝑄𝑑𝑣(𝑧∗, 𝚿𝑧∗) + 𝑆𝑑𝑣(𝑥2𝑛+1, 𝑥2𝑛+2),       (18) 

by taking limit 𝑛 → ∞, in equation (18) we get 

𝑑𝑣(𝚿𝑧∗, 𝑧∗) ⪯ 𝑄𝑑𝑣(𝑧∗, 𝚿𝑧∗) < 𝑑𝑣(𝑧∗, 𝚿𝑧∗), 

which is contradiction hence 𝑧∗ = 𝚿𝑧∗. Thus, 𝑧∗ is a common fixed point of the mappings 𝚿 and Φ. 

Now, we show that the two operators 𝚿 and Φ have a unique common fixed point. 

Theorem 3.2. If the condition of the Theorem (2.5) are satisfied and 𝑃 ≤ 𝐼, then 𝚿 and Φ has a unique 

common fixed point. 

Proof. According to the Theorem (2.5), there exist a common fixed point 𝑧∗ of 𝚿 and Φ. Now we have 

to show that 𝚿 and Φ has a unique common fixed point. For this let 𝑦∗ be another common fixed point of 

𝚿 and Φ with 𝑦∗ ≠ 𝑧∗, then by using (4), we have 

𝑘 + Γ(𝑑𝑣(𝑦∗, 𝑧∗))  = Γ(𝑑𝑣(𝚿𝑦∗, Φ𝑧∗))

 ⪯ Γ(𝑃𝑑𝑣(𝑦∗, 𝑧∗) + 𝑄𝑑𝑣(𝑦∗, 𝚿𝑦∗) + 𝑆𝑑𝑣(𝑧∗, Φ𝑧∗))

 = Γ(𝑃𝑑𝑣(𝑦∗, 𝑧∗) + 𝑄𝑑𝑣(𝑦∗, 𝑦∗) + 𝑆𝑑𝑣(𝑧∗, 𝑧∗))

 = Γ(𝑃𝑑𝑣(𝑦∗, 𝑧∗)) ⪯ Γ𝑑𝑣(𝑦∗, 𝑧∗),

 

which is a contradiction, hence 𝑦∗ = 𝑧∗, and therefore, 𝑧∗is a unique common fixed point of 𝚿 and Φ. 
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Abstract 

In this paper, we define new Smarandache TNB curves of helices in the Sol³. We obtain 

parametric and vector equations of Smarandache TNB curves.   

 

Keywords: Helix, Sol Space, Smarandache TNB  curve, Sol metric. 

 

1. Introduction  

 

A fundamental advance in theory of curves was the advent of analytic geometry in the seventeenth 

century. This enabled a curve to be described using an equation rather than an elaborate geometrical 

construction. This not only allowed new curves to be defined and studied, but it enabled a formal 

distinction to be made between curves that can be defined using algebraic equations, algebraic curves, and 

those that cannot, transcendental curves. Previously, curves had been described as "geometrical" or 

"mechanical" according to how they were, or supposedly could be, generated. 

In this paper, we study Smarandache TNB  curves of helices in the 3Sol . We characterize 

Smarandache TNB  curves of helices in terms of their curvature and torsion. Finally, we find out their 

explicit parametric equations. 

  2. Riemannian Structure of Sol Space 3Sol  
  

Sol space, one of Thurston's eight 3-dimensional geometries, can be viewed as 3R  provided with 

Riemannian metric 

 ,= 22222

3 dzdyedxeg zz  

Sol
  

where ),,( zyx  are the standard coordinates in 3R . 

Note that the Sol metric can also be written as: 
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 ,=
3

1=

3

ii

i

g ωω 
Sol

  

where 

 ,=,=,= 321 dzdyedxe zz
ωωω

   

and the orthonormal basis dual to the 1-forms is 

 .=,=,= 321
zy

e
x

e zz












eee   

Proposition 2.1. For the covariant derivatives of the Levi-Civita connection of the left-invariant 

metric 3Sol
g , defined above the following is true: 

 ,

000

0

0

= 23

13





















 ee

ee

  

where the ),( ji -element in the table above equals j
i
ee  for our basis 

 }.{=1,2,3}=,{ 321 e,e,ee kk  

Lie brackets can be easily computed as: 

       .=,=0,= 13123221 ee,eee,ee,e   

The isometry group of 3Sol  has dimension 3. The connected component of the identity is 

generated by the following three families of isometries: 

 

   

   

   .,,,,

,,,,,

,,,,,

czyexezyx

zcyxzyx

zycxzyx

cc 







 

3. General Helices in Sol Space 3Sol  

 

Assume that  BN,T,  be the Frenet frame field along  . Then, the Frenet frame satisfies the 

following Frenet-Serret equations: 
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,=

,=

,=

NB

BTN

NT

T

T

T













 

where   is the curvature of   and   its torsion and 

     

      0.===

1,=1,=1,=

333

333

BN,BT,NT,

BB,NN,TT,

SolSolSol

SolSolSol

ggg

ggg
 

With respect to the orthonormal basis },{ 321 e,e,e  we can write 

 

.==

,=

,=

332211

332211

332211

eeeNTB

eeeN

eeeT

BBB

NNN

TTT







  

Theorem 3.1. Let 3: SolI   be a unit speed non-geodesic general helix. Then, the parametric 

equations of   are 

 

     

     

  ,cos=

,]sincoscos[
cos

sin
=

,]sincoscos[
cos

sin
=

3

52121122

1

3
cos

42112122

1

3
cos

CP

CCCPCCC
PC

P

CCCCCCP
PC

P

CP

CP













ssz

ss
e

sy

ss
e

sx

s

s

 

where 54321 ,,,, CCCCC  are constants of integration .  

4. Smarandache TNB  Curves of Helices in Sol Space 3Sol  

Definition 4.1. Let 3: SolI  be a unit speed helix in the Sol Space 3Sol  and }{ BN,T,  be its 

moving Frenet frame. Smarandache TNB  curves are defined by 

  .
222

1
=

22
BNTTNB 
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Theorem 4.2. Let 3: SolI  be a unit speed non-geodesic helix in the Sol Space .3Sol  Then, 

the equation of Smarandache TNB  curve of a unit speed non-geodesic helix is given by 

     

     

   

     

     

   

   

     

      ,]]cossincossinsin
1

[sinsin
1

sinsincoscossin
1

[cossin
1

]cossinsinsin[
1

cos[

]]]cossincossinsin
1

[cos
1

cossinsinsin[cossin
1

[

]sinsincoscossin
1

[
1

sinsin[

]]sinsincoscossin
1

[cos
1

cossinsinsin[sinsin
1

]cossincossinsin
1

[
1

cossin

32121
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1
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1
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22

21
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1

21
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1
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22

21

2121

1

21

e

e

e

[

[=TNB
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P
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where 21,CC  are constants of integration and 

 .
222

1

22  
=W  

Corollary 4.3. Let 3: SolI  be a unit speed non-geodesic helix in the Sol Space .3Sol  Then, 

the parametric equations of Smarandache TNB  curves of a unit speed non-geodesic helix are given by 
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where 21,CC  are constants of integration and 
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Abstract 
Burgers equation is one of the basic and important non-linear partial differential equation 

including diffusive effects and non-linear propagation effects. In this study, the fractional order 
Bernoulli wavelets are adopted to acquire the approximate solution of one dimensional time-
fractional Burger’s equation. For this purpose, the dervetive operational matrices of classic (non 
fractional) and fractional orders are made and employed to transform the nonlinear Burger equation 
into a nonlinear algebraic system, which is solved by Newton iterative method. For analyzing the 
effect of fractional order on the solutions, the problem (1)-(2) has been solved for some different 
values of 𝛼. To validate the proposed method, we have considered some illustrative examples and 
compared with the exact results. 

 
          Keywords: fractional Burger equation, fractional Bernoulli wavelets, collocation method. 

1. Introduction 
 
In recent years ,  most of the practical problems arising in different fields of science like 
biology ,  chemistry ,  physics ,  engineering ,  and mathematics lead to nonlinear fractional partial differential 
equations .  Burgers equation is one of the basic and important non-linear partial differential equation 
including diffusive effects and non-linear propagation effects .  Fractional Burgers equation can describe 
the process of unidirectional propagation of weakly nonlinear acoustic waves through a pipe filled with 
gas .  They are also  onnected with applications in acoustic phenomena and have been used to model 
turbulence and certain steady-state viscous flows .  Moreover ,  Burgers equations are used to  model the 
formation and decay of nonplanar shock waves ,  where the variable x is a coordinate moving with the 
wave at the speed of sound and the dependent variable u represents  the velocity fluctuations .  The Burgers 
equations occur in various areas of applied sciences  and physical applications ,  such as modeling of fluid 
mechanics and financial mathematics , and the equation has still interesting applications in physics and 
astrophysics . 
 
Main problem 
 
In this study ,  the fractional order Bernoulli wavelets are adopted to acquire the approximate solution of 
one dimensional time-fractional Burger’s equation .  Burgers’ equation is the diffusive equation : 
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𝐷 𝑢(𝑥, 𝑡) + 𝑢(𝑥, 𝑡)𝑢 (𝑥, 𝑡) − 𝜈𝑢 (𝑥, 𝑡) = 𝐻(𝑥, 𝑡),                      (𝑥, 𝑡) ∈ [0,1] × [0, 𝑇],            (1) 

 
 subject to the following initial and boundary conditions  
 

𝑢(𝑥, 0) =  𝑓(𝑥),             𝑢(0, 𝑡) =  𝑝(𝑡),             𝑢(1, 𝑡) =  𝑞(𝑡).                                 (2) 

 

 where 𝜈 > 0  denotes the coefficient of kinematic viscosity and the prescribed function 𝐻(𝑥, 𝑡)  is 
sufficiently smooth .  Also the fractional order derivative , 𝛾 ,  is considered in the Caputo sense . 
 
2. Preliminaries on fractional calculus 
 
In this section ,  we present some basic   definitions and concepts on fractional calculus that are essential   for 
subsequent discussion .  There are various definitions for   fractional integration and derivative 
operators .  However ,  the fractional   Riemann-Liouville integration and fractional Caputo 
derivative   operators have been used in this study . 
 
Definition 2.1. The Riemann-Liouville fractional integral operator of nonnegative  order  𝛼 is defined as 
[1] 
 

𝐽 𝑓(𝑥) =
1

Γ(𝛼)
(𝑥 − 𝑡) 𝑓(𝑡) 𝑑𝑡 ,           𝑥 > 0,                                                                                (3) 

 
where 𝐽 𝑓(𝑥) = 𝑓(𝑥). 
 
The Riemann-Liouville fractional integrals for the polynomials are   defined as   
 

𝐽 𝑥 =
Γ(𝛽 + 1)

Γ(𝛽 + 𝛼 + 1)
𝑥 ,               𝛽 > −1.                                              (4) 

 
 Also the mentioned operator is   linear ,  that is for real constant 𝜆 we have  
 

𝐽 {𝜆𝑓(𝑥) + 𝑔(𝑥)} = 𝜆𝐽 {𝑓(𝑥)} + 𝐽 {𝑔(𝑥)}.                                  (5) 
 
Definition 2.2. The Caputo fractional derivative operator of nonnegative order  𝛼 is defined as [1] 
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𝐷 𝑓(𝑥) =
1

Γ(𝑛 − 𝛼 )
 

𝑓( )(𝑡)

(𝑥 − 𝑡)
 𝑑𝑡,       𝑛 − 1 < 𝛼 ≤ 𝑛,     𝑛 ∈ ℕ.                         (6) 

 
 For the Caputo derivative we have  ] 2] 
 

𝐷 𝑥 = 0,            𝛽 ∈ ℕ ,         𝛽 < ⌈𝛼⌉, 
and  

𝐷 𝑥 =
Γ(𝛽 + 1)

Γ(𝛽 + 1 − 𝛼)
𝑥 ,        𝛽 ∈ ℕ ,        𝛽 ≥ ⌈𝛼⌉   𝑜𝑟   𝛽 ∈ ℝ − ℕ , 𝛽 > ⌊𝛼⌋ ,  

 
 Similar to the Riemann-Liouville   fractional integral operator ,  the Caputo fractional derivative   operator is 
linear ,  that is ,  for a real constant 𝜆,  we have  
 

𝐷 {𝜆𝑓(𝑥) + 𝑔(𝑥)} = 𝜆 𝐷 {𝑓(𝑥)} + 𝐷 {𝑔(𝑥)}. 
 
 The relations between Reimann-Liouville fractional integral and   Caputo fractional derivative operators 
can be addressed by the   following identities [2]: 
 

𝐷 {𝐽 𝑓(𝑥)} = 𝑓(𝑥),                                                                                            (7) 
and 

𝐽 { 𝐷 𝑓(𝑥)} = 𝑓(𝑥) −
𝑓( )(0)

𝑗!
𝑥  .                                                                     (8) 

 
3. Review on Bernoulli wavelets 
 
In this section   definitions of Fractional Bernoulli   Wavelets (FBWs) and their operational matrix of 
Caputo fractional derivative are described . 
 
3.1. BWs and FBWs 
 
Definition 3.1. BWs of order  𝑚 ,  which are denoted by  𝜓 (𝑡) = 𝜓(𝑘, 𝑛, 𝑚, 𝑡) ,  consist of  four 

arguments , 𝑘 ;  a positive integer , 𝑛 = 1,2, … , 2 , 𝑛 = 𝑛 − 1,  and 𝑡  is the normalized time .  These 
wavelets are   defined on the interval [0 ,  1) as ([3]): 
 

𝜓 (𝑡) = 2 𝐵 (2 𝑡 − 𝑛)𝜒
,   ,                                                      (9) 

 where 𝐵 (𝑡) = 1 and 
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𝐵 (𝑡) =
𝐵 (𝑡)

Λ
,        𝑚 > 0,                                                                       (10) 

 

and Λ =
( ) ( !)

( )!
𝜗  is the normality coefficient. 

 
 The functions 𝐵 , 𝑚 = 0,1, … , 𝑀 − 1 are known Bernoulli  polynomials ,  defined as  
 

𝐵 (𝑡) =
𝑚
𝑗 𝜗 𝑡 ,                                                                                     (11) 

 
 where 𝜗 ≔ 𝐵 (0) are the Bernoulli numbers .  Therefore Bernoulli wavelets for 𝑚 > 0 can be rewritten as 

 

𝜓 (𝑡) = Θ
𝑚
𝑗 𝜗 2 ( ) 𝑡 −

𝑛

2
𝜒

,   ,                                     (12) 

 

where Θ =
( !)

( ) ( !)
 and 𝜓 , = 2 𝜒

,   . 

 
Definition 3.2.  Fractional Bernoulli wavelets are   denoted by 𝜓 ,  and constructed by changing 

the   variable 𝑡 to 𝑥 , (𝛼 > 0) on the BWs  )[3](,   that is  
 

𝜓 , ≔ 𝜓 , (𝑥 ) == 𝛩
𝑚
𝑗 𝜗 2 ( ) 𝑥 −

𝑛

2
𝜒

,   
.                (13) 

Remark: The Bernoulli polynomials satisfies   the following relation: 
 

𝐵 (𝑥)𝐵 (𝑥)𝑑𝑥 =
(−1) 𝑚! 𝑛!

(𝑚 + 𝑛)!
𝜗 ,       𝑚, 𝑛 > 1.                                     (14) 

 
 Thus these polynomials are not   orthogonal ,  consequently the FBWs ,  which are constructed by   Bernoulli 
polynomials ,  are not orthogonal ,  too. 
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Figure 1. FBWs for  𝑀 = 4, 𝑘 = 2 and 𝛼 = 0.5, 0.75, 1.25, 1.5 and 1.75. 

 
3.2. Function approximation by FBW 
 

A function 𝑓 ∈ 𝐿 [0,1] could   be approximated by FBWs ,  as 

𝑓(𝑥) = 𝑐 , 𝜓 , (𝑥),                                                               (15) 

 by truncating the infinite series   (15) in some suitable 𝑘 and 𝑀 ,  we get   
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𝑓(𝑥) ≃ 𝑐 , 𝜓 , (𝑥) = 𝐶 Ψ ,  (𝑥),                                             (16) 

 

 where 𝐶  and Ψ ,  are 2 × 𝑀-dimensional column vectors and defined as  

𝐶 = 𝑐 , , … , 𝑐 , , … , 𝑐 , , … , 𝑐 ,  ,                                             (17) 

Ψ , = 𝜓 , , … , 𝜓 , , … , 𝜓
,

, … , 𝜓
,

 .                                     (18) 

 
  In order to determine the coefficients in (16) ,  we put  
 

𝜂 ≔ 𝑓(𝑥)𝜓 , (𝑥)𝑥 𝑑𝑥,                                                                (19) 

and 

𝜆 ,
,

≔ 𝜓 , (𝑥)𝜓 , (𝑥)𝑥 𝑑𝑥.                                                          (20) 

 Now substituting (16) in (19) ,  we get  
 

𝜂 ≃ 𝑐 , 𝜓 , (𝑥)𝜓 , (𝑥)𝑥 𝑑𝑥 = 𝑐 ,  𝜆 ,
,

= 𝐶 Λ
,

,    

 where 

Λ
,

= 𝜆 ,
,

, … , 𝜆 ,
,

, … , 𝜆
,

,
, … , 𝜆

,

,
, 

 so putting  
 

𝑇 = 𝜂 , , … , 𝜂 , , … , 𝜂 , , … , 𝜂 ,  , 

 and  

Λ = Λ , , … , Λ , , … , Λ , , … , Λ ,

× × ×
, 

 
 the vector 𝐶  is evaluated by  
 

𝐶 = 𝑇 Λ .                                                                                   (21) 
 

𝑣 , , , = 𝛼 〈〈𝑣(𝑥, 𝑡), 𝜓 , (𝑡) 〉 , 𝜓 , (𝑥)〉 ,                                                                  (22) 
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𝑛 = 1,2, … , 2 ,        𝑟 = 1,2, … , 2 ,        𝑚 = 0,1, … , 𝑀 − 1,       𝑠 = 0,1, … , 𝑀 − 1. 

 
  The two variable function 𝑣(𝑥, 𝑡) could be approximated by two   dimensional FBWs as 
 

𝑣(𝑥, 𝑡) = 𝑣 , , , 𝜓 , (𝑥)𝜓 , (𝑡) = Ψ , (𝑥)𝑉 Ψ , (𝑥) ,             (23) 

 
where 𝑉 is dimensional (2 × 𝑀 ) × (2 × 𝑀 ) coefficient matrix . 
 
 It is clear that for 𝑘 = 𝑘 = 𝑘 , 𝑀 = 𝑀 = 𝑀  and 𝑉  is (2 × 𝑀) -dimensional square coefficient 
matrix . 
 
Theorem 3.1. ([3]) Let 𝑢(𝑥, 𝑡) ∈ 𝐶 , (𝐷) be approximated by two dimensional FBWs as  
 

𝑢(𝑥, 𝑡) ≃ 𝑢 , , , (𝑥, 𝑡) = Ψ , (𝑡)𝑉Ψ , (𝑥), 

 
 there exist constants 𝐶 ∈ ℝ , 𝑖 = 1,2,3 such that  
 

𝑢(𝑥, 𝑡) − 𝑢 , , , (𝑥, 𝑡) ≤  
𝐶

𝐴
+

𝐶

𝐴
+

𝐶

𝐴 𝐴
,                                                             (24) 

 

 where 𝐴 = 𝑀 ! 2 ( ) , 𝑖 = 1,2. 
 
3.3. Operational matrix of Riemann-Liouville fractional integration for FBWs 
 
 The Riemann-Liouville fractional integration of Ψ  can be obtained as 
 

𝐽 Ψ (𝑥) = ℱ , Ψ (𝑥),                                                                               (25) 
 

 where ℱ ,  is relative operational square matrix of dimension 2 × 𝑀 and could be evaluated by  using 
equation (4) and (13) as follows   

𝐽 𝜓 , (𝑥) = Θ
𝑚
𝑗 𝜗 2 ( )𝐽 𝑥 −

𝑛

2
,                                          (26) 

     
𝑛

2
≤ 𝑥 ≤

𝑛 + 1

2
.             
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On the other   hand  

𝐽 𝑥 −
𝑛

2
=

𝑗

𝑖
−

𝑛

2

Γ(𝛼𝑖 + 1)

Γ(𝛼𝑖 + 𝜉 + 1)
𝑥 .                                         (27) 

 Thus ,  using equation (26)-(27) ,  we can write  

𝐽 𝜓 , (𝑥) = Θ 𝐴 , 𝑥 ,                                                                                      (28) 

where 

𝐴 , =
𝑚

𝑗
𝜗 2 ( )

𝑗

𝑖
−

𝑛

2

Γ(𝛼𝑖 + 1)

Γ(𝛼𝑖 + 𝜉 + 1)
. 

 Now we expand 𝑥  in   terms of FBWs : 
 

𝑥 ≃ 𝑑 ,
,

𝜓 , (𝑥),                                                                     (29) 

by (28)-(29), we get 

𝐽 𝜓 , (𝑥) = 𝜂 , , ,
,

𝜓 , (𝑥),   

where 

𝜂 , , ,
,

= 𝐴 , 𝑑 ,
,

. 

 Thus we have  
 

ℱ , =

⎝

⎜
⎛

 ℱ
,

      0      ⋯      0    

0          ℱ
,

  ⋯      0  
⋮           ⋮         ⋱        ⋮  

 0          0       ⋯  ℱ
,

⎠

⎟
⎞

2𝑘−1×𝑀 × 2𝑘−1×𝑀

,                                               (30) 

 
 where  

ℱℱ ,
= 𝜂 , , ,

,
, 𝜂 , , ,

,
, … , 𝜂 , , ,

,

×
, 

 
and   𝟎    is a  1 × 𝑀-dimensional row matrix which its all entries are zero . 
 
3.4. Operational matrix of derivative for FBWs 
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The derivative of Ψ  can be obtained as 
 

𝑑

𝑑𝑥
Ψ (𝑥) = 𝒟Ψ (𝑥),                                                                      (31) 

 
 where 𝒟 is relative operational square matrix of dimension 2 × 𝑀 and could be evaluated as follows  
 

𝑑

𝑑𝑥
𝜓 , (𝑥) = Θ

𝑚

𝑗
𝜗 2 ( ) 𝑑

𝑑𝑥
𝑥 −

𝑛

2
,                                                     (32) 

 

𝑛

2
≤ 𝑥 ≤

𝑛 + 1

2
.    

 
On the other hand  

𝑑

𝑑𝑥
𝑥 −

𝑛

2
=

𝑗

𝑖
−

𝑛

2
𝛼𝑖𝑥 .                                        (33) 

 
 Therefore ,  by using equations (32)-(33) ,  we can write  

𝑑

𝑑𝑥
𝜓 , (𝑥) = Θ 𝐵 , 𝑥 ,                                                                            (34) 

where 𝐵 , = 𝜗 2 ( ) − 𝛼𝑖. Now we   expand 𝑥  in terms of FBWs : 

 

𝑥 ≃ 𝑔 , 𝜓 , (𝑥),                                                                       (35) 

 
 by (34)-(35) ,  we get 

𝑑

𝑑𝑥
𝜓 , (𝑥) = 𝜇 , , , 𝜓 , (𝑥),     

 where  𝜇 , , , = Θ ∑ ∑ 𝐵 , 𝑔 , . Therefore ,  we have  
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𝒟 =

 𝒟         0       ⋯        0  
0          𝒟       ⋯        0
⋮            ⋮         ⋱         ⋮ 

   0           0       ⋯   𝒟
2𝑘−1×𝑀 × 2𝑘−1×𝑀

                                       (36) 

 where  

𝒟 = 𝜇 , , , , 𝜇 , , , , … , 𝜇 , , , ×
. 

 
4. Numerical implementation 
 
 By using properties of FBWs ,  their   operational matrices of derivative and Riemann-Liouville 
fractional   integration ,  spectral collocation and Galerkin methods ,  a new   approach is introduced in this 
section for solving Burgers equation .  For   this purpose ,  we first expand  by 𝐷 𝑢(𝑥, 𝑡) FBWs of   order 𝛼 as   
 

𝐷 𝑢(𝑥, 𝑡) ≃ Ψ , (𝑥) 𝑈Ψ , (𝑡),                                                                      (37) 

 

 where 𝑈 is 2 𝑀 × 2 𝑀 -dimensional unknown   coefficients matrix .  By using Riemann-Liouville 
fractional integral   of order 𝛾 with respect to variable 𝑡  ,we get  
 

  𝑢(𝑥, 𝑡) ≃ 𝐽 Ψ𝑘1,𝑀1

𝛼 (𝑥)𝑇𝑈Ψ𝑘2,𝑀2

𝛼 (𝑡) + 𝑓(𝑥) = 𝛹𝑘1,𝑀1

𝛼 (𝑥)𝑇𝑈ℱ𝛾,𝛼𝛹𝑘2,𝑀2

𝛼 (𝑡) + 𝑓(𝑥).           (38) 

      

 by equation (38) and derivative operational matrix for FBWs ,  we get 
 

     
𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
= Ψ𝑘1,𝑀1

𝛼 (𝑥)𝑇𝒟𝑇𝑈ℱ𝛾,𝛼Ψ𝑘2,𝑀2

𝛼 (𝑡) + 𝑓′(𝑥).                                                             (39)     

 

𝜕 𝑢(𝑥, 𝑡)

𝜕𝑥
= Ψ𝑘1.𝑀1

𝛼 (𝑥)𝑇(𝒟2)𝑇𝑈ℱ𝛾,𝛼Ψ𝑘2.𝑀2

𝛼 (𝑡) + 𝑓′′(𝑥),                                (40) 

 
 By substituting equation (37)-(40) in equation   (1) we have   
 

𝐺(𝑥, 𝑡) = Ψ𝑘1.𝑀1

𝛼 (𝑥)𝑇𝑈Ψ𝑘2.𝑀2

𝛼 (𝑥)𝑇 − 𝜈Ψ𝑘1.𝑀1

𝛼 (𝑥)𝑇(𝒟2)𝑇𝑈ℱ𝛾,𝛼Ψ𝑘2.𝑀2

𝛼 (𝑡)                                                         

 

+ Ψ𝑘1.𝑀1

𝛼 (𝑥)𝑇(𝒟2)𝑇𝑈ℱ𝛾,𝛼Ψ𝑘2.𝑀2

𝛼 (𝑡) × Ψ𝑘1.𝑀1

𝛼 (𝑥)𝑇𝒟𝑇𝑈ℱ𝛾,𝛼Ψ𝑘2.𝑀2

𝛼 (𝑡)                      

 

  +𝑓′(𝑥)Ψ . (𝑥) 𝑈ℱ , Ψ . (𝑡) + 𝑓(𝑥)Ψ . (𝑥) 𝒟 𝑈ℱ , Ψ . (𝑡),                                       (41) 

 
where 
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𝐺(𝑥, 𝑡) = 𝐻(𝑥, 𝑡) + 𝜈𝑓 (𝑥) − 𝑓(𝑥)𝑓 (𝑥).  
 
 For solving the obtained equation ,  the double collocation method is employed .  First we define residual 
error function as  
 

𝐑𝐞𝐬(𝑥, 𝑡) ≔ 𝐺(𝑥, 𝑡) − Ψ𝑘1.𝑀1

𝛼 (𝑥)𝑇𝑈Ψ𝑘2.𝑀2

𝛼 (𝑡) + 𝜈Ψ𝑘1.𝑀1

𝛼 (𝑥)𝑇(𝒟2)𝑇𝑈ℱ𝛾,𝛼Ψ𝑘2.𝑀2

𝛼 (𝑡)                 

 

− Ψ𝑘1.𝑀1

𝛼 (𝑥)𝑇𝑈Ψ𝑘2.𝑀2

𝛼 (𝑡) × Ψ𝑘1.𝑀1

𝛼 (𝑥)𝑇𝒟𝑇𝑈ℱ𝛾,𝛼Ψ𝑘2.𝑀2

𝛼 (𝑡)           

 
 −𝑓 (𝑥)Ψ𝑘1.𝑀1

𝛼 (𝑥)𝑇𝑈Ψ𝑘2.𝑀2

𝛼 (𝑡) − 𝑓(𝑥)Ψ𝑘1.𝑀1

𝛼 (𝑥)𝑇𝒟𝑇𝑈ℱ𝛾,𝛼Ψ𝑘2.𝑀2

𝛼 (𝑡). 

 

 now we define the collocation points as 𝑥 =
×

 for 𝑗 = 1,2, … , 2 × 𝑀 − 2  and 𝑡 =

×
𝑇  for 𝑖 = 1,2 … , 2 × 𝑀 . By substituting the collocation points in (42) and forcing the 

residual function to be vanished in the collocation meshes , 𝐑𝐞𝐬 𝑥 , 𝑡 = 0,  we have 

 

𝐺 𝑥 , 𝑡 − Ψ , 𝑥 𝑈Ψ , (𝑡 ) + 𝜈Ψ , 𝑥 (𝒟 ) 𝑈ℱ , Ψ , (𝑡 )                                                    

 

− Ψ , 𝑥 𝑈Ψ , (𝑡 ) × Ψ , 𝑥 𝒟 𝑈ℱ , Ψ , (𝑡 )                                         

 

 
 Further ,  using the   boundary conditions 𝑢(0, 𝑡) = 𝑝(𝑡) and 𝑢(1, 𝑡) = 𝑞(𝑡) ,  we have 
 

Ψ , (0) 𝑈ℱ , Ψ , (𝑡) + 𝑓(0) = 𝑝(𝑡),         𝛹 , (1) 𝑈ℱ , 𝛹 , (𝑡) + 𝑓(1) = 𝑞(𝑡).       (43) 

 
 by collocating the modified boundary conditions in points 

𝑡 =
𝑗

2 × 𝑀
,           𝑗 = 1,2, … , 2 × 𝑀 ,                                                        (44) 

 we also get 2 × 2 × 𝑀  equations .  Combining the obtained equations ,  we achive a 2 𝑀 ×

2 𝑀  nonlinear system of equations .  For solving this system ,  we apply the iterative Newton 
method .  By specifying the unknown matrix   𝑈 ,  we find   the approximate solution of problem (1)-(2) .  
 
5. Numerical example   
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In this section we solve an example for showing the accuracy of the presented method. 
 
Example 1. Consider the problem 

𝐷 𝑢(𝑥, 𝑡) + 𝑢(𝑥. 𝑡)𝑢 (𝑥. 𝑡) − 𝜈𝑢 (𝑥. 𝑡) =
2𝑡 𝑒

Γ(3 − 𝛾)
+ 𝑡 𝑒 − 𝜈𝑡 𝑒 , 

  subject to the initial and boundary conditions 
𝑢(𝑥, 0) = 0,         𝑢(0, 𝑡) = 𝑡 ,         𝑢(1, 𝑡) = 𝑒𝑡 ,         𝑡 ≥ 0, 

 
where the exact solution of thi problem is 𝑢(𝑥, 𝑡) = 𝑡 𝑒 . First, we solved this problem for 𝛾 = 0.5, 𝜈 =

1 ,  𝑘 = 2 and 𝑀 = 2 ,  3,4 .  The numerical results for 𝑡 = 1 and some different values for 𝑀 are tabulated 
in Tables 1, also related   𝜖  and 𝜖  errors are reported in Table 2.  
 

Table 1 .  Numerical solutions of example 1 for 𝛾 = 0.5 ,   𝜈 = 1 ,  𝑡 = 1 ,  𝑘 = 2  and 𝑀 = 2,3,4. 
 

𝑥 𝑀 = 2            𝑀 = 3             𝑀 = 4      𝐸𝑥𝑎𝑐𝑡 
0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 

1.000000      1.000000       1.000000 
1.105287      1.105216       1.105197 
1.221644      1.221493       1.221455 
1.350217      1.349992       1.349935 
1.492287      1.491996       1.491922 
1.649270      1.648922       1.648838 
1.822727      1.822342       1.822247 
2.014378      2.013979       2.013882 
2.226118      2.225747       2.225661 
2.460020      2.459745       2.459680 
2.718282      2.718282       2.718282 

1.000000 
1.105171 
1.221403 
1.349859 
1.491825 
1.648721 
1.822119 
2.013753 
2.225541 
2.459603 
2.718282 

 
Table 2 . 𝜖  and 𝜖   for example 1 for 𝛾 = 0.5 ,   𝜈 = 1 ,  𝑡 = 1 ,  𝑘 = 2  and 𝑀 = 2,3,4. 

 
 𝑀 = 2                 𝑀 = 3                  𝑀 = 4     

𝜖  
 
𝜖    

4.523 × 10     6.008 × 10    2.946 × 10  
 

5.177 × 10     4.383 × 10    4.016 × 10  
 
For analyzing the effect of the fractional order 𝛾 on the numerical solution, we solved the problem for 
𝜈 = 1   ,  𝑘 = 2  , 𝑀 = 3  and some values of 𝛾 and the results for 𝑡 = 1 are given in Table 3. 
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Table 3 .  Numerical solutions of example 1 for 𝜈 = 1 ,  𝑡 = 1 ,  𝑘 = 2  , 𝑀 = 3  and some values of 𝛾. 
 

𝑥 𝛾 = 0.25        𝛾 = 0.75        𝛾 = 0.95    𝐸𝑥𝑎𝑐𝑡 
0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 

1.000000      1.000000       1.000000 
1.105217      1.105206       1.105180 
1.221500      1.221485      1.221415 
1.359995      1.349914       1.349866 
1.492000      1.491982       1.491796 
1.648950      1.648830       1.648735 
1.822337      1.822314       1.822108 
2.013967      2.013822       2.013777 
2.225713      2.225608       2.225570 
2.459759      2.459724       2.459619 
2.718282      2.718282       2.718282 

1.000000 
1.105171 
1.221403 
1.349859 
1.491825 
1.648721 
1.822119 
2.013753 
2.225541 
2.459603 
2.718282 

 
6. Conslusion 
 

In this paper, the fractional Bernoulli wavelets were defined in new settings and applied by collocation 
method for solving an important family of time fractional partial differential equations, the Burger’s 
equation. First, the operational matrices of Caputo fractional and ordinary derivatives were constructed 
and then employed for reducing the time fractional partial equation to an algebraic system. For solving 
the proposed system, collocation method has been used. The proposed approach has promising 
applications as it can be extended and applied to the study of the numerical solutions of some other types 
of fractional integro-differential equations. 
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Abstract 
In this study, we consider and examine the differential geometry of the translation hypersurfaces in 

the four dimensional Euclidean space 𝔼 . We compute the curvatures ℭ , where 𝑖 = 1,2,3, of the 
translation hypersurface. In addition, we give some relations for the curvatures of the hypersurface. 
          

 Keywords: Euclidean space, 4-space, curvature, Gauss map, translation hypersurface. 

 
 
1. Introduction 
 

In the literature, we see some papers about the translation surfaces (TS) and the translation hypersurfaces 
(TH) such as [1-17]. 

 
A translation surface in 𝔼  is a surface generated by translations. For two space curves 𝛼, 𝛽 with a 

common point P, the curve 𝛼 is shifted such that point P is moving on 𝛽. Then the curve 𝛼 generates the 
following TS: 

 
𝐱(𝑢, 𝑣) = 𝛼(𝑢) + 𝛽(𝑣). 

 
So, a translation hypersurface in the four dimensional Euclidean space 𝔼  is a hypersurface generated 

by translations: for three space curves 𝛼, 𝛽, 𝛾 with a common point P, the curve 𝛼 is shifted such that point 
P is moving on 𝛽 and 𝛾, respectively. Therefore, the curve 𝛼 generates a TH in 𝔼 . TH is parametrized by 

 
𝐱(𝑢, 𝑣, 𝑤) = 𝛼(𝑢) + 𝛽(𝑣) + 𝛾(𝑤) = 𝑢, 𝑣, 𝑤, 𝑓(𝑢) + 𝑔(𝑣) + ℎ(𝑤)  .                        

 
where 𝑓(𝑢), 𝑔(𝑣), ℎ(𝑤) are differentiable functions for all 𝑢, 𝑣, 𝑤 ∈ 𝐼 ⊂ ℝ. Moreover, we can define the 
following TH, similarly, 
 

𝐱(𝑢, 𝑣, 𝑤) =

𝑓(𝑢)

0
0
𝑢

+

0
𝑔(𝑣)

0
v

+

0
0

ℎ(𝑤)
w

=

𝑓(𝑢)

𝑔(𝑣)

ℎ(𝑤)
𝑢 + v + w

 .                        (1.1) 
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In this work, we reveal the curvatures of any hypersurface in 𝔼 . We indicate some basic elements of 
the four dimensional Euclidean geometry. In addition, we obtain the curvatures ℭ , ,  of the TH in (1.1). 

 
2. Preliminaries 
 

We have the characteristic polynomial of the shape operator 𝐒, to obtain the 𝑖-th curvature formulas 
ℭ , ,…,  in 𝔼 : 

 

𝑃𝐒(𝜆) = 0 = det(𝐒 − 𝜆ℐ ) = (−1) 𝑠 𝜆 ,                                      (2.1) 

 

where, ℐ  describes the identity matrix. Then, we get the curvature formulas 
𝑛
𝑖

ℭ = 𝑠 , where 
𝑛
0

ℭ =

𝑠 = 1  by definition. 𝑘 -th fundamental form of the hypersurface 𝑀  is given by I(𝐒 (𝑋), 𝑌) =
〈𝐒 (𝑋), 𝑌〉. Hence, we get the following 
 

(−1)
𝑛
𝑖

ℭ  I(𝐒 (𝑋), 𝑌) = 0.                                                  (2.2) 

 
We identify a vector (a, b, c, d) with its transpose in this work. One can assume 𝐌 = 𝐌(𝑢, 𝑣, 𝑤) be an 
isometric immersion of the hypersurface 𝑀  in 𝔼 . The inner product of �⃗� = (𝑥 , 𝑥 , 𝑥 , 𝑥 ) and �⃗� =
(𝑦 , 𝑦 , 𝑦 , 𝑦 ) in 𝔼  is defined by  
 

〈�⃗�, �⃗�〉 = 𝑥 𝑦 + 𝑥 𝑦 + 𝑥 𝑦 + 𝑥 𝑦 . 
 

The triple vector product in 𝔼  is given by 
 

�⃗� × �⃗� × 𝑧 = det

𝑒
𝑥
𝑦
𝑧

𝑒
𝑥
𝑦
𝑧

𝑒
𝑥
𝑦
𝑧

𝑒
𝑥
𝑦
𝑧

. 

 
The Gauss map of the hypersurface 𝐌 is defined by 
 

𝑒 =
𝐌 × 𝐌 × 𝐌

‖𝐌 × 𝐌 × 𝐌 ‖
, 

 
where 𝐌 = 𝑑𝐌/𝑑𝑢 . We give the following fundamental form matrices for a hypersurface 𝐌 in 𝔼 , 
respectively, 
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I =
𝐸 𝐹 𝐴
𝐹 𝐺 𝐵
𝐴 𝐵 𝐶

=

〈𝐌 , 𝐌 〉 〈𝐌 , 𝐌𝒗〉 〈𝐌 , 𝐌 〉

〈𝐌 , 𝐌𝒖〉 〈𝐌 , 𝐌 〉 〈𝐌 , 𝐌 〉

〈𝐌 , 𝐌 〉 〈𝐌 , 𝐌 〉 〈𝑴 , 𝑴 〉
, 

 

II =
𝐿 𝑀 𝑃
𝑀 𝑁 𝑇
𝑃 𝑇 𝑉

=

〈𝐌 , 𝑒〉 〈𝐌 , 𝑒〉 〈𝐌 , 𝑒〉

〈𝐌 , 𝑒〉 〈𝐌 , 𝑒〉 〈𝐌 , 𝑒〉

〈𝐌 , 𝑒〉 〈𝐌 , 𝑒〉 〈𝐌 , 𝑒〉
, 

 

III =
𝑋 𝑌 𝑂
𝑌 𝑍 𝑅
𝑂 𝑅 𝑆

=

〈𝑒 , 𝑒 〉 〈𝑒 , 𝑒𝒗〉 〈𝑒 , 𝑒 〉

〈𝑒 , 𝑒 〉 〈𝑒 , 𝑒𝒗〉 〈𝑒 , 𝑒 〉

〈𝑒 , 𝑒 〉 〈𝑒 , 𝑒 〉 〈𝑒 , 𝑒 〉
. 

 
3. Curvatures 

 
In this section, we compute the curvatures for a hypersurface 𝐌(𝑢, 𝑣, 𝑤)  in the four dimensional 

Euclidean space 𝔼 .  
 
Taking the characteristic polynomial 𝑃𝐒(𝜆) = 𝑎𝜆 + 𝑏𝜆 + 𝑐𝜆 + 𝑑 = 0 , we have the following 

curvature formulas: ℭ = 1 (by definition), and 
 

ℭ = −
𝑏

3
1

𝑎
, 

 

ℭ =
𝑐

3
2

𝑎
, 

 

ℭ = −
𝑑

3
3

𝑎
. 

 
Then, we clearly have the following curvature folmulas: 
 

Theorem 3.1. Any hypersurface M  in 𝔼  has the following curvature formulas, ℭ = 1 (by definition), 
 

ℭ =
(𝐸𝑁 + 𝐺𝐿 − 2𝐹𝑀)𝐶 + (𝐸𝐺 − 𝐹 )𝑉 − 𝐿𝐵 − 𝑁𝐴 − 2(𝐴𝑃𝐺 − 𝐵𝑃𝐹 − 𝐴𝑇𝐹 + 𝐵𝑇𝐸 − 𝐴𝐵𝑀)

3[(𝐸𝐺 − 𝐹 )𝐶 − 𝐸𝐵 + 2𝐹𝐴𝐵 − 𝐺𝐴 ]
, 

(3.1) 
 

ℭ =
(𝐸𝑁 + 𝐺𝐿 − 2𝐹𝑀)𝑉 + (𝐿𝑁 − 𝑀 )𝐶 − 𝐸𝑇 − 𝐺𝑃 − 2(𝐴𝑃𝑁 − 𝐵𝑃𝑀 − 𝐴𝑇𝑀 + 𝐵𝑇𝐿 − 𝑃𝑇𝐹)

3[(𝐸𝐺 − 𝐹 )𝐶 − 𝐸𝐵 + 2𝐹𝐴𝐵 − 𝐺𝐴 ]
,  

(3.2) 
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ℭ =
(𝐿𝑁 − 𝑀 )𝑉 − 𝐿𝑇 + 2𝑀𝑃𝑇 − 𝑁𝑃

(𝐸𝐺 − 𝐹 )𝐶 − 𝐸𝐵 + 2𝐹𝐴𝐵 − 𝐺𝐴
.                                                                                                      (3.3) 

 
Proof. Solving det(𝐒 − 𝜆. ℐ ) = 0 with some computations, we have the coefficients of the polynomial 
𝑃𝐒(𝜆). Here, ℐ  is the identity matrix. 
 

Theorem 3.2. For any hypersurface M  in 𝔼 , its curvatures are given by the following formula 
 

ℭ IV − 3ℭ III + 3ℭ II − ℭ I = 0.                                                    (3.4) 
 

 
4. Curvatures of Translation Hypersurfaces 

 
Using the first differentials of (1.1) depends on 𝑢, 𝑣, 𝑤, we get the first fundamental form matrix of 

(1.1): 
 

I =
1 + 𝑓 1 1

1 1 + 𝑔′ 1

1 1 1 + ℎ′

. 

 
So, we get the Gauss map of (1.1): 
 

𝑒 =
1

(detI) /

⎝

⎛

𝑔 ℎ

𝑓 ℎ

𝑓 𝑔′

−𝑓′𝑔 ℎ ⎠

⎞,                                                        (4.1) 

 
where 
 

detI = 𝑓 𝑔′ + 𝑓 ℎ′ + 𝑔′ ℎ′ + 𝑓 𝑔′ ℎ′ ,  
 
and 𝑓 = 𝑑𝑓/𝑑𝑢,  𝑔 = 𝑑𝑔/𝑑𝑣,  ℎ = 𝑑ℎ/𝑑𝑤. Then, we obtain the second fundamental form matrix of 
(1.1): 
 

II =
1

(detI) /

𝑓 𝑔 ℎ 0 0

0 𝑓 𝑔 ℎ 0

0 0 𝑓′𝑔′ℎ

. 

 
Hence, we obtain the following third fundamental form matrix of (1.1): 
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III =
1

(detI)

𝑓 𝑔′ ℎ′ (𝑔′ ℎ′ + 𝑔′ +ℎ′ ) −𝑓′𝑓′′𝑔′𝑔′′ℎ′ −𝑓 𝑓 ℎ ℎ′′𝑔′

−𝑓′𝑓′′𝑔′𝑔′′ℎ′ 𝑓 𝑔′ ℎ′ (𝑓′ ℎ′ + 𝑓′ +ℎ′ ) −𝑔 𝑔 ℎ ℎ′′𝑓′

−𝑓 𝑓 ℎ ℎ′′𝑔′ −𝑔 𝑔 ℎ ℎ′′𝑓′ 𝑓 𝑔′ ℎ′ (𝑓′ 𝑔′ + 𝑓′ +𝑔′ )

. 

Next, we give the curvature formulasof the TH (1.1) in 𝔼 . 
 
Theorem 4.1. The translation hypersurface (1.1) in 𝔼  has the following curvature formulas, ℭ = 1 

(by definition), 
 

ℭ =
𝑔 ℎ (𝑔 ℎ′ + 𝑔 +ℎ′ )𝑓 + 𝑓 ℎ (𝑓 ℎ′ + 𝑓 +ℎ′ )𝑔 + 𝑓 𝑔 (𝑓 𝑔′ + 𝑓 +𝑔′ )ℎ

3(detI) /
, 

 

ℭ =
𝑓′𝑔′ℎ (1 + ℎ )𝑓 𝑔 + 𝑓′𝑔 ℎ′(1 + 𝑔 )𝑓 ℎ + 𝑓 𝑔′ℎ′(1 + 𝑓 )𝑔 ℎ

3(detI)
, 

 

ℭ =
𝑓 𝑔 ℎ 𝑓 𝑔 ℎ

(detI) /
, 

 
where 
 

detI = 𝑓 𝑔′ + 𝑓 ℎ′ + 𝑔′ ℎ′ + 𝑓 𝑔′ ℎ′ .  
 
Proof. Computing (3.1), (3.2), and (3.3) of (1.1), we have the curvatures, clearly. 
 

Corollary 4.1. The translation hypersurface (1.1) has the following fourth fundamental form matrix 
 

IV =
1

(detI) /

ℷ ℒ ℰ
ℒ ℌ ℴ
ℰ ℴ 𝜘

, 

 
where 
 
detI = 𝑓 𝑔′ + 𝑓 ℎ′ + 𝑔′ ℎ′ + 𝑓 𝑔′ ℎ′ ,  
 

ℷ = 𝑔 ℎ 𝑓 ℎ 𝑔 + 𝑓 𝑔 ℎ + ℎ (1 + 𝑔 )ℎ + 𝑔 𝑓 𝑔 𝑓 , 

 
ℒ = −𝑓′𝑔′ℎ 𝑓′′𝑔′′(((𝑓 + 𝑓′)ℎ + 𝑓 ℎ )𝑔′′ + ( −𝑓 𝑔 ℎ′′ + ℎ ((1 + 𝑔 )ℎ + 𝑔 )𝑓′)𝑔′), 
 
ℰ = ( (𝑓 + 𝑓 )𝑔 + 𝑓 𝑔 ℎ + ( −𝑓 ℎ 𝑔′′ + 𝑔 ((1 + 𝑔 ) ℎ + 𝑔 )𝑓′)ℎ′)𝑓′𝑔 ℎ′𝑓′′ℎ′′,  
 
ℌ = 𝑓 ℎ ( 𝑓′𝑔′ℎ + (𝑓 𝑔′ℎ′′ + 𝑔′′((𝑓 + 1)ℎ + 𝑓 ) ℎ′)𝑓′)𝑔′′ , 
 

ℴ = 𝑓 𝑔 ℎ (−(ℎ + ℎ )𝑓 − 𝑓 ℎ )𝑔 + 𝑔 ( −( 𝑔 + 1)𝑓 − 𝑓 𝑔 )ℎ + 𝑔 ℎ 𝑓 𝑔 ℎ , 
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𝜘 = 𝑓 𝑔 𝑓 𝑔 (𝑓 + 𝑔 + 𝑓 𝑔 ) ℎ + ℎ ( 𝑓 𝑔 + 𝑔 𝑓 ) ℎ . 
 

Corollary 4.2. The curves 𝑓(𝑢), 𝑔(𝑣)  and ℎ(𝑤)  are the constant functions on the translation 
hypersurface (1.1), then the curvatures of (1.1) are equals to zero, ie. ℭ = 0. Therefore, hypersurface 
(1.1) is the 𝑖-minimal translation hypersurface, where 𝑖 = 1,2,3. 

 
Corollary 4.3. The curves 𝑓(𝑢), 𝑔(𝑣)  and ℎ(𝑤)  are the constant functions on the translation 

hypersurface (1.1), then the fourth fundamental form matrix IV is equal to zero matrix. 
 

5. Conclusion 
 
Translation surfaces are generated by two space curves. However, translation hypersurfaces are 

generated by greater than two space curves. We expand the results of the translation hypersurfaces by using 
its curvatures in 𝔼 . Moreover, we find some minimality conditions of the translation hypersurfaces. 
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Abstract 

Sub-Gaussian alpha-stable distributions are a particular sub-class of multivariate alpha-stable distributions, 

which have been used in fields such as finance and signal processing. For these particular distributions, we 

specify three measures of dependance proposed with the aim to quantify the dependence between the 

components of a symmetric alpha-stable random vector: the codifference, the generalized association 

parameter and the signed symmetric covariation coefficient and state a relation between these three 

measures. We also establish a relation which allows us to estimate the generalized association parameter 

without a previous estimation of the spectral measure.  

 

Keywords: Codifference, Covariation, Generalized association parameter, Sub-Gaussian alpha-stable 

random vector. 

 

 

1. Introduction 

 

Stable distributions are a rich class of probability distributions, which includes the Gaussian, Cauchy and 

Lévy distributions in a family that allows for skewness and heavy tails. These laws, characterized by Paul 

Lévy, are the only possible limiting laws for normalized sums of independent, identically distributed 

random variables. Over the years, the interest in these laws has greatly increased and they are now widely 

applied in telecommunications and many other fields such as physics, biology, genetics and geology, see 

Uchaikin and Zolotarev [11]. However, stable non- Gaussian random vectors do not possess moments of 

second order. As a consequence, the concept of the correlation matrix, which allows us to understand the 

association between the coordinates of a finite variance random vector, is meaningless. Over the years, 

several measures of dependence have been proposed with the aim to overcome this drawback. In 1976, 

Paulauskas [8] proposed the generalized association parameter (g.a.p), applicable to general symmetric 

alpha-stable random vector. In 1983, Astrauskas [1] introduced another measure of bivariate dependence 

called the codifference, which is also defined for general symmetric alpha-stable random vector. Based on 

the covariation introduced by Miller [7] and Cambanis and Miller [2]. Kodia and Garel [4] proposed the 

signed symmetric covariation coefficient (scov) for symmetric α-stable random vectors with α> 1. 

 

Sub-Gaussian stable random distributions are a particular sub-class of the multivariate α-stable 

distributions. For instance, Kring et al. [5] fitted these distributions to asset returns and Tsihrintzis and 

Nikias [10] give some algorithms for signal detection in sub-Gaussian impulsive interference. Sub-

Gaussian symmetric alpha-stable random vectors inherit their dependence structure from the underlying 
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Gaussian random vector. In that context, Kodia and Garel [4] established that the matrix of signed 

symmetric covariation coefficients and the matrix of generalized association parameters, called generalized 

covariation matrix, reduce to the correlation matrix of the underlying Gaussian random vector. 

 

In this paper, we state a relation between the codifference, the generalized association parameter and the 

signed symmetric covariation coefficient in the context of sub-Gaussian symmetric alpha-stable random 

vectors. We also establish a relation which allows us to estimate the generalized association parameter 

without a previous estimation of the spectral measure. 

 
This paper is organized as follow: Section 2 gives a brief reminder of basic definitions and properties of 

general stable random variables and vectors and the above-mentioned measures of dependence. We focus 

on sub-Gaussian symmetric α-stable random vectors in Section 3. In this part, we state a relation between 

the codifference, the generalized association parameter and the signed symmetric covariation coefficient. 

We also establish a relation which allows us to estimate the generalized association parameter without a 

previous estimation of the spectral measure. 

 
 

2. Alpha-stable random vectors and some measures of dependence 

 

For our purposes, we define stable random variables and vectors by their characteristic functions. Following 

Samorodnitsky and Taqqu [9], we denote the law of a stable random variable by 𝑆𝛼(γ, β, d), with 0 ˂ α ≤ 

2, γ ≥ 0, -1 ˂ β ≤ 1, and d a real parameter.  

 

A random variable has a stable distribution 𝑆𝛼(γ,β,d) if its characteristic function has the form 
 

𝜙𝑋(t)=E exp(itX)=exp{−𝛾𝛼|𝑡|𝛼[1 + iβsign(t)ω(t, α)] + itd},                                       (1) 

  

where  

 

𝜔(𝑡, 𝛼) = {
  −𝑡𝑎𝑛 

𝜋𝛼

2
   𝑖𝑓  𝛼 ≠ 1,

   
𝜋

2
ln|𝑡|        𝑖𝑓  𝛼 = 1,

 

 

with t a real number, and sign(t)  =  1 if t > 0, sign(t)  =  0 if t =  0 and sign(t)  = −1 if  t˂0.  

 

The parameter α is the characteristic exponent or index of stability, β is a measure of skewness, is a scale 

parameter, and d is a location parameter. The case α = 2 corresponds to the Gaussian distribution, which 

is the only one having a finite variance. When β =  d =  0, the distribution symmetric (i.e X and –X have 

the same law) and is denoted SαS(𝛾) or shortly SαS.  
 
 
 

Let 0˂α˂2. The characteristic function of a bivariate random vector X = (𝑋1,𝑋2) is given by  
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𝜙𝑿(t)=exp{−∫
𝑆2

|〈𝒕, 𝒔〉|𝛼[1 + 𝑖𝑠𝑖𝑔𝑛(〈𝒕, 𝒔〉)𝜔(〈𝒕, 𝒔〉, 𝛼)]Г(𝑑𝒔) + 𝑖〈𝒕, 𝒅〉},                  (2) 

 

 

where Г is a finite symmetric measure on the unit circle 𝑆2 = {𝑠 ∈ 𝑅2 ∶ ∥ 𝑠 ∥= 1}, and d is a vector in  𝑅2. 

Here 〈t, s〉 denotes the inner product of 𝑅2. The measure Г is called the spectral measure of the bivariate α-

stable random vector X, and the pair (Г, d)  is unique. The vector X is symmetric if and only if d = 0 and 

Г is symmetric on 𝑆2. In this case, its characteristic function is given by 
 

𝜙𝑋(t)=exp{−∫
𝑆2

|〈𝑡, 𝑠〉|𝛼Г(𝑑𝑠)} .                 (3) 

 

For any  𝑢 ∈ 𝑅2 , the projection 〈𝑢, 𝑋〉 = ∑ 𝑢2
𝑘=1 𝑘

𝑋𝑘  has a univariate SαS distribution. The spectral 

measure determines the projection parameter function  
 
 

𝛾𝛼(𝑢) = ∫
𝑆2

|〈𝑡, 𝑠〉|𝛼Г(𝑑𝑠).                  (4) 

 

Miller [7] defined the covariation as follows. 
 

Definition 2.1.  Let 𝑋1 and 𝑋2 be jointly SαS with α>1 and let Г be the spectral measure of the random 

vector (𝑋1, 𝑋2). The covariation of 𝑋1 on 𝑋2 is the real number defined by 
 

[𝑋1, 𝑋2]𝛼 = ∫
𝑆2

𝑠1𝑠2
〈𝛼−1〉

Г(𝑑𝑠),                  (5) 

 

where, for real numbers s and a, if a ≠ 0, 𝑠〈𝑎〉 = |𝑠|𝑎𝑠𝑖𝑔𝑛(𝑠) and if a=0, 𝑠〈𝑎〉 = 𝑠𝑖𝑔𝑛(𝑠).  
 

This definition is equivalent to: 

 

[𝑋1, 𝑋2]𝛼 =
1

𝛼

𝜕𝛾𝛼(𝜃1,𝜃2)

𝜕𝜃1
|𝜃1=0 ,   𝜃2=1,                  (6) 

 

where 𝜃1 and 𝜃2 are real numbers and 𝛾(𝜃1, 𝜃2) is the scale parameter of the random variable 
 𝑌 = 𝜃1𝑋1 + 𝜃2𝑋2. 
 

It is well known that although the covariation is linear in its first argument, it is, in general, not linear in 

its second argument and not symmetric in its arguments. We also have 
 

[𝑋1, 𝑋2]𝛼 = ∫
𝑆2

|𝑠1|𝛼Г(𝑑𝑠) = 𝛾𝛼𝑋1                  (7) 

 

where  𝛾𝑋1 is the scale parameter of the 𝑆𝛼𝑆 random variable 𝑋1.  
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The covariation norm is defined by  
 

∥ 𝑋1 ∥𝛼= ([𝑋1, 𝑋2]𝛼)1/𝛼.                      (8) 
 

When 𝑋1 and 𝑋2 are independent, then [𝑋1, 𝑋2]𝛼 = 0. Proofs of these properties and other details are given 

in Samorodnitsky and Taqqu ([9], pp. 87-97). 
 

The codifference is a measure of bivariate dependence introduced by Astrauskas [1] and defined for all 

0˂𝛼 ≤ 2. 
 

Definition 2.2. The codifference of two jointly 𝑆𝛼𝑆, 0˂𝛼 ≤ 2.  random variables 𝑋1 and 𝑋2 quals 
 

𝛾𝑋1,𝑋2=∥ 𝑋1 ∥𝛼
𝛼+∥ 𝑋2 ∥𝛼

𝛼−∥ 𝑋1 − 𝑋2 ∥𝛼
𝛼,                      (9) 

 

where ∥ 𝑋1 ∥𝛼, ∥ 𝑋2 ∥𝛼 and ∥ 𝑋1 − 𝑋2 ∥𝛼  denote, respectively, the scale parameters of 𝑋1, 𝑋2 and 

𝑋1 − 𝑋2. 

 

Like the covariation, the codifference reduces to the covariance when 𝛼 = 2 and vanishes when the random 

variables are independent. However, in contrast to the covariation, the codifference is symmetric in all its 

arguments, namely 𝛾𝑋1, 𝑋2= 𝛾𝑋2, 𝑋1. 

 

The generalized association parameter (g.a.p) is a measure of dependence introduced by Paulauskas [8]. 
 

Definition 2.3. Let (𝑋1, 𝑋2) be 𝑆𝛼𝑆, 0˂ α ≤2 random vector and Г its spectral measure on the unit circle 𝑆2. 

Let (𝑈1, 𝑈2) be a random vector on 𝑆2 with probability distribution   Г̃=Г/Г(𝑆2). Due to the symmetry of 

Г, one has 𝐸𝑈1 = 𝐸𝑈2. The g.a.p. is defined as: 
 

�̃�(𝑋1, 𝑋2) =
𝐸𝑈1𝑈2

(𝐸𝑈1
2𝐸𝑈2

2)1/2
 .                      (10) 

 

 

Proposition 2.1. Let (𝑋1, 𝑋2) be 𝑆𝛼𝑆, 0˂ α ≤2, random vector. Then  

 

a) we always have -1≤ �̃�(𝑋1, 𝑋2)≤1; 

 

b) if 𝑋1 and 𝑋2 are independent  �̃�(𝑋1, 𝑋2)0; 

 

c) |�̃�(𝑋1, 𝑋2)| = 1, if, and only if, the distribution of (𝑋1, 𝑋2) is concentrated on a line; 

 

d) for α= 2, �̃� coincides with the correlation coefficient of the Gaussian random vector; 

 

e) �̃�  is independent of 𝛼 and depends only on the spectral measure. 
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Proof. See Paulauskas [8]. 
 

Kodia and Garel [4] proposed a mesure of dependence of bivariate 𝑆𝛼𝑆 random vectors with 1˂𝛼 ≤ 2, 

based on the covariation and called the signed symmetric covariation coefficient (scov).  
 

Definition 2.4. Let (𝑋1, 𝑋2)  be a bivariate 𝑆𝛼𝑆  random vector with 𝛼 > 1 . The signed symmetric 

covariation coefficient of 𝑋1 and 𝑋2 is the quantity: 
 

𝑠𝑐𝑜𝑣(𝑋1, 𝑋2) = 𝑘(𝑋1,𝑋2) |
[𝑋1,𝑋2]𝛼[𝑋2,𝑋1]𝛼

∥𝑋1∥𝛼
𝛼∥𝑋2∥𝛼

𝛼 |
1/2

,                     (11) 

 

where 
 

𝑘(𝑋1,𝑋2) = {

𝑠𝑖𝑔𝑛([𝑋1, 𝑋2])𝛼   𝑖𝑓     𝑠𝑖𝑔𝑛([𝑋1, 𝑋2])𝛼 = 𝑠𝑖𝑔𝑛([𝑋2, 𝑋1])𝛼 ,

          −1                       𝑖𝑓         𝑠𝑖𝑔𝑛([𝑋1, 𝑋2])𝛼 = −𝑠𝑖𝑔𝑛([𝑋2, 𝑋1])𝛼 .
                 (12) 

 
 
 

Proposition 2.2. Let (𝑋1, 𝑋2) be 𝑆𝛼𝑆, 0˂ α ≤2, random vector. Then  

 

a) we always have -1≤ 𝑠𝑐𝑜𝑣(𝑋1, 𝑋2)≤1; 

 

b) if 𝑋1 and 𝑋2 are independent  𝑠𝑐𝑜𝑣(𝑋1, 𝑋2)= 0; 

 

c) |𝑠𝑐𝑜𝑣(𝑋1, 𝑋2)| = 1, if, and only if, the distribution of (𝑋1, 𝑋2) is concentrated on a line; 

 

d) for α= 2, 𝑠𝑐𝑜𝑣 coincides with the correlation coefficient of the Gaussian random vector. 

 

Proof. See Kodia and Garel [4]. 

 
 
 

3. Measures of dependence in the sub-Gaussian 𝑺𝜶𝑺 case 

 

In general, 𝛼-stable random vectors have a complex dependence structure defined by the spectral measure. 

Since this measure is very difficult to estimate even in low dimensions, we have to retract to certain 

subclasses, where the spectral measure becomes simpler. One of these special classes is the multivariate 𝛼-

stable sub-Gaussian distributions (see Kring et al. [5]). We recall the definition of a sub-Gaussian 𝑆𝛼𝑆 

random vector in 𝑅2, as given in Samorodnitsky and Taqqu ([9], pp. 77-94). 
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Definition 3.1. Let 0˂ 𝛼 ˂2, let 𝑮 = (𝐺1, 𝐺2)  be a zero mean Gaussian random vector in 𝑅2, and let A be 

a positive random variable such that 𝐴~𝑆𝛼
2⁄ ((cos

𝜋𝛼

4
)

2
𝛼⁄

, 1, 0), independent of G. Then the random 

vector 
 

𝑿 = (𝐴
1

2⁄ 𝐺1 , 𝐴
1

2⁄ 𝐺2)                       (3) 

 

is called a sub-Gaussian 𝑆𝛼𝑆 random vector in 𝑅2 with underlying Gaussian vector G. It is also said to be 

subordinated to G. 

 

The characteristic function of X has the particular form: 
 

𝛷𝑋(𝑡) = 𝐸𝑒𝑥𝑝 {𝑖 ∑ 𝑡𝑚𝑋𝑚

2

𝑚=1

} = 𝑒𝑥𝑝 {− |
1

2
∑ ∑ 𝑡𝑗𝑡𝑘𝑅𝑗𝑘

2

𝑘=1

2

𝑗=1

|

𝛼
2⁄

},                                  (14) 

 

where 𝑅𝑗𝑘 = 𝐸𝐺𝑗𝐺𝑘, 𝑗, 𝑘 = 1,2,  are the covariances of the underlying Gaussian random vector G.  

 

From (14), we note that for sub-Gaussian 𝑆𝛼𝑆 random vectors, we do not need the spectral measure in the 

characteristic function. Such vectors inherit their dependence structure from the underlying Gaussian 

random vector. 
 

In the following proposition, we give a simpler form for the signed symmetric covariation coefficient. 
 

Proposition 3.1. Let X be a sub-Gaussian 𝑆𝛼𝑆 random vector with characteristic function (14), 1 < α < 2, 

then the signed symmetric covariation coefficient of the components 𝑋1 and  𝑋2, can simply be written as: 
 

𝑠𝑐𝑜𝑣(𝑋1, 𝑋2) = 𝑠𝑖𝑔𝑛([𝑋1, 𝑋2]𝛼) (
[𝑋1, 𝑋2]𝛼[𝑋2, 𝑋1]𝛼

‖𝑋1‖𝛼
𝛼‖𝑋2‖𝛼

𝛼 )

1
2⁄

.                             (15)   

 

 

Proof. We know that 
 

[𝑋𝑗, 𝑋𝑘]𝛼 = 2−
𝛼

2𝑅𝑗𝑘𝑅
𝑗𝑗

(𝛼−1)

2   𝑎𝑛𝑑  [𝑋𝑘 , 𝑋𝑗]𝛼 = 2−
𝛼

2𝑅𝑗𝑘𝑅𝑘𝑘

(𝛼−1)

2  ,                       (16)      

 

see Samorodnitsky and Taqqu ([9], pp. 89). Then, we always have 𝑠𝑖𝑔𝑛 ([𝑋𝑗, 𝑋𝑘]
𝛼

) = 𝑠𝑖𝑔𝑛(𝑅𝑗𝑘) =

𝑠𝑖𝑔𝑛 ([𝑋𝑘, 𝑋𝑗]
𝛼

). 
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The next result is due to Kodia and Garel [4]. 
 

Proposition 3.2. Let X be a sub-Gaussian random vector with characteristic function (14), 0 < α < 2, then 

the matrix of generalized association parameters of X, called Generalized covariation matrix, reduces to 

the correlation matrix of the underlying Gaussian vector G. In particular, when α> 1, the matrix of signed 

symmetric covariation coefficients of X also reduces to the correlation matrix of the underlying Gaussian 

vector G. 

 

Proof. See Kodia and Garel [4]. 

 

 

The following result establishes a relation between the codifference, the g.a.p. and the scov.  

 

Proposition 3.3. Let X be a sub-Gaussian 𝑆𝛼𝑆 random vector with characteristic function (14), 

0 < α < 2, then 

 

�̃�(𝑋1, 𝑋2) =
‖𝑋1‖𝛼

2 + ‖𝑋2‖𝛼
2 − (‖𝑋1‖𝛼

𝛼 + ‖𝑋2‖𝛼
𝛼 − 𝜏𝑋1,𝑋2

)
2

𝛼

2‖𝑋1‖𝛼‖𝑋2‖𝛼
,                  (17) 

 

where  ‖𝑋1‖𝛼, ‖𝑋2‖𝛼 𝑎𝑛𝑑 𝜏𝑋1,𝑋2
 denote, respectively, the scale parameters of the components 𝑋1 and 𝑋2  

and the codifference between 𝑋1 and 𝑋2. 
 

In particular, if α > 1, then  
 

𝑠𝑐𝑜𝑣(𝑋1, 𝑋2) =
‖𝑋1‖𝛼

2 + ‖𝑋2‖𝛼
2 − (‖𝑋1‖𝛼

𝛼 + ‖𝑋2‖𝛼
𝛼 − 𝜏𝑋1,𝑋2

)
2

𝛼

2‖𝑋1‖𝛼‖𝑋2‖𝛼
  .              (18) 

 
 

Proof. Let X = (𝑋1, … , 𝑋𝑑) be a sub-Gaussian 𝑆𝛼𝑆 random vector with characteristic function (14),          

0 < α< 2 and denote ‖𝑋𝑗‖
𝛼

 the scale parameter of the component 𝑋𝑗,  1 ≤ 𝑗 ≤ 𝑑. Then ‖𝑋𝑗‖
𝛼

=

‖𝐴
1

2⁄ 𝐺𝑗‖
𝛼

= 2−1
2⁄ 𝑅

𝑗𝑗

1
2⁄

, where 𝑅𝑗𝑗 = 𝑉𝑎𝑟(𝐺𝑗) is the variance of the Gaussian random variable 𝐺𝑗, see 

Samorodnitsky and Taqqu, ([9], pp. 20-21). We can write  
 

‖𝑋𝑗 − 𝑋𝑘‖
𝛼

= 2−
1

2[𝑉𝑎𝑟(𝐺𝑗 − 𝐺𝑘)
1

2 = 2−
1

2[𝑅𝑗𝑗 + 𝑅𝑘𝑘 − 2𝑅𝑗𝑘]
1

2                           (19) 

 

 

From (9), we have 
 

‖𝑋𝑗 − 𝑋𝑘‖
𝛼

= (‖𝑋𝑗‖
𝛼

𝛼
+ ‖𝑋𝑘‖𝛼

𝛼 − 𝜏𝑋𝑗,𝑋𝑘
)

1

𝛼.                       (20) 
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By equating the equations (19) and (20), we have  
 

                   2−
1

2[𝑅𝑗𝑗 − 𝑅𝑘𝑘 − 2𝑅𝑗𝑘]
1

2 =  (‖𝑋𝑗‖
𝛼

𝛼
+ ‖𝑋𝑘‖𝛼

𝛼 − 𝜏𝑋𝑗,𝑋𝑘
)

1

𝛼
 

                                       ⇔                [𝑅𝑗𝑗 − 𝑅𝑘𝑘 − 2𝑅𝑗𝑘]
1

2 =  (‖𝑋𝑗‖
𝛼

𝛼
+ ‖𝑋𝑘‖𝛼

𝛼 − 𝜏𝑋𝑗,𝑋𝑘
)

1

𝛼
 

                                       ⇔                [𝑅𝑗𝑗 − 𝑅𝑘𝑘 − 2𝑅𝑗𝑘]
1

2 = 2−
1

2 (‖𝑋𝑗‖
𝛼

𝛼
+ ‖𝑋𝑘‖𝛼

𝛼 − 𝜏𝑋𝑗,𝑋𝑘
)

1

𝛼
 

                                        ⇔                    𝑅𝑗𝑗 − 𝑅𝑘𝑘 − 2𝑅𝑗𝑘=  2 (‖𝑋𝑗‖
𝛼

𝛼
+ ‖𝑋𝑘‖𝛼

𝛼 − 𝜏𝑋𝑗,𝑋𝑘
)

1

𝛼
 

                                     ⇔                                          2𝑅𝑗𝑘=𝑅𝑗𝑗 + 𝑅𝑘𝑘 − 2 (‖𝑋𝑗‖
𝛼

𝛼
+ ‖𝑋𝑘‖𝛼

𝛼 − 𝜏𝑋𝑗,𝑋𝑘
)

1

𝛼
 

                                         ⇔                                     
𝑅𝑗𝑘

𝑅11

1
2⁄

𝑅22

1
2⁄

=
𝑅𝑗𝑗+𝑅𝑘𝑘−2(‖𝑋𝑗‖

𝛼

𝛼
+‖𝑋𝑘‖𝛼

𝛼−𝜏𝑋𝑗,𝑋𝑘
)

1
𝛼

2𝑅11

1
2⁄

𝑅22

1
2⁄

 

                                 ⇔                                         𝑟𝐺1,𝐺2
=

2−1𝑅𝑗𝑗+2−1𝑅𝑘𝑘−2(‖𝑋𝑗‖
𝛼

𝛼
+‖𝑋𝑘‖𝛼

𝛼−𝜏𝑋𝑗,𝑋𝑘
)

1
𝛼

𝑅11

1
2⁄

𝑅22

1
2⁄

 

⇔             �̃�(𝑋1, 𝑋2) =
2−1𝑅𝑗𝑗+2−1𝑅𝑘𝑘−2(‖𝑋𝑗‖

𝛼

𝛼
+‖𝑋𝑘‖𝛼

𝛼−𝜏𝑋𝑗,𝑋𝑘
)

1
𝛼

𝑅11

1
2⁄

𝑅22

1
2⁄

 

                                     ⇔             �̃�(𝑋1, 𝑋2) =
‖𝑋1‖𝛼

2 +‖𝑋2‖𝛼
2 −2(‖𝑋𝑗‖

𝛼

𝛼
+‖𝑋𝑘‖𝛼

𝛼−𝜏𝑋𝑗,𝑋𝑘
)

1
𝛼

2‖𝑋1‖𝛼‖𝑋2‖𝛼
 

 
 

In particular, if α > 1, the equality (18) is a consequence of Proposition 3.2.  
 
 

Remark 3.1. Proposition 3.3 shows clearly that for a sub-Gaussian 𝑆𝛼𝑆 random vector, the g.a.p. and the 

scov of two components of this random vector can be expressed by means of the scale parameters of these 

components and their codifference. 
 

Lemma 3.1. Let 0 < α ≤2. Let X = (𝑋1, 𝑋2) be a sub-Gaussian random vector. Then the g.a.p. between the 

components 𝑋1 and 𝑋2 can be expressed by 
 
 

�̃�(𝑋1, 𝑋2) =
‖𝑋1‖𝛼

2 + ‖𝑋2‖𝛼
2 − ‖𝑋1 − 𝑋2‖𝛼

2

2‖𝑋1‖𝛼‖𝑋2‖𝛼
 ,                 (21) 

 
where ‖𝑋1‖𝛼, ‖𝑋2‖𝛼 and ‖𝑋1 − 𝑋2‖𝛼 denote, respectively, the scale parameters of the random variables 

 𝑋1 and 𝑋2 and 𝑋1 − 𝑋2. 
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In particular, when α> 1, we have 
 

𝑠𝑐𝑜𝑣(𝑋1, 𝑋2) = �̃�(𝑋1, 𝑋2) =
‖𝑋1‖𝛼

2 + ‖𝑋2‖𝛼
2 − ‖𝑋1 − 𝑋2‖

𝛼

2

2‖𝑋1‖𝛼‖𝑋2‖𝛼
 .                 (22) 

 
 

Proof. The relation (21) is deduced from relation (17) in which we replace 𝜏𝑋1,𝑋2
 by its expression, 

i. e. ‖𝑋1‖𝛼
𝛼 + ‖𝑋2‖𝛼

𝛼 − ‖𝑋1−𝑋2‖𝛼
𝛼. The equation (22) is a consequence of Proposition 3.2. 

 

 

Remark 3.2. This is an important result because it establishes that in the case of sub-Gaussian symmetric 

α-stable random vector, we can estimate the generalized association parameter without a previous 

estimation of the spectral measure. We have just to estimate the characteristic exponent α and the scales 

parameter of 𝑋1 , 𝑋2 and 𝑋1 − 𝑋2 . Nowdays, we have several methods which give good results for 

estimating these parameters, see for instance Davidov and Paulauskas [3] and McCulloch [6]. They allow 

us to define several consistent estimators of the generalized association parameter and the signed symmetric 

covaiation coefficient in the case of sub-Gaussian symmetric alpha-stable random vectors. 
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Abstract 

In this paper, we study Smarandache Π₁Π₂B curves of biharmonic new type constant Π₂- 

slope curves according to type-2 Bishop frame in the SOL³. Type-2 Bishop equations of Smarandache 

Π₁Π₂B curves are obtained in terms of base curve's type-2 Bishop invariants.   

 

Keywords: Type-2 Bishop frame, Sol Space, Smarandache BΠΠ 21  curve. 

 

1. Introduction  

 

The theory of biharmonic functions is an old and rich subject. The biharmonic functions were first 

studied by Maxwell and Airy to describe a mathematical model of elasticity in 1862. 

Let ),( hN  and ),( gM  be Riemannian manifolds. A smooth map MN :  is said to be 

biharmonic if it is a critical point of the bienergy functional: 

   ,)(
2

1
=

2

2 h
N

dvE  T  

where the section  dtr:=)(T  is the tension field of  , [5,6]. 

The Euler--Lagrange equation of the bienergy is given by 0=)(2 T . Here the section )(2 T  is 

defined by 

   ,),(tr)(=)(2   ddR TTT    

and called the bitension field of ,  [8]. 

This study is organised as follows: Firstly, we study Smarandache BΠΠ 21  curves of biharmonic new 

type constant 2Π  slope curves according to type-2 Bishop frame in the 3SOL . Secondly, type-2 Bishop 

equations of Smarandache BΠΠ 21  curves are obtained in terms of base curve's type-2 Bishop invariants. 

Finally, we express some interesting relations and illustrate some examples of our main results. 
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  2. Riemannian Structure of Sol Space 3Sol  
  

Sol space, one of Thurston's eight 3-dimensional geometries, can be viewed as 3R  provided with 

Riemannian metric 

 ,= 22222

3 dzdyedxeg zz  

Sol
  

where ),,( zyx  are the standard coordinates in 3R . 

Let   be a unit speed regular curve in 3SOL  and  BN,T,  be its Frenet--Serret frame. Let us 

express a relatively parallel adapted frame: 

 

,=

,=

,=

2211

22

11

ΠΠB

BΠ

BΠ

T

T

T













 

where 

 
     

      0.=,=,=,

1,=,1,=,1,=

2132313

2231133

ΠΠΠBΠB

ΠΠΠΠBB,

SOLSOLSOL

SOLSOLSOL

ggg

ggg
 

We shall call this frame as Type-2 Bishop Frame. In order to investigate this new frame's relation 

with Frenet--Serret frame, first we write 

 .= 2

2

2

1    

The relation matrix between Frenet--Serret and type-2 Bishop frames can be expressed 

 

   

   

B.=B

ΠΠN

ΠΠT

,sincos=

,cossin=

21

21

ss

ss

AA

AA





 

So by Frenet--Serret frame, we may express 

 
 

 .sin=

,cos=

2

1

s

s

A

A
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The frame  BΠΠ ,, 21  is properly oriented, and   and   
s

s
0

=A  dss)(  are polar coordinates for 

the curve  . We shall call the set  2121 ,,, B,ΠΠ  as type-2 Bishop invariants of the curve  , [12]. 

With respect to the orthonormal basis },{ 321 e,e,e  we can write 

 

,=

.=

,=

3

3

2

2

1

1

3

3

22

2

21

1

22

3

3

12

2

11

1

11

eeeB

eeeΠ

eeeΠ

BBB 









 

Theorem 2.1. Let 3: SOLI   be a unit speed non-geodesic biharmonic new type constant 

2Π slope curves according to type-2 Bishop frame in the 3SOL . Then, the parametric equations of   

are 

 

 
   

   
   

 
   

   

   

      ,sinsin
1

coscos
1

=

,]sinsincos

sincossin[=

,]cossincos

coscossin[=

3

21

21

3
sinsin

1
coscos

1

21

21

3
sinsin

1
coscos

1

REE

RRE

RRE

RRE

RRE

REE

REE

















sss

dsss

sses

dsss

sses

ss

ss



























z

y

x

 

where 321 ,, RRR  are constants of integration .  

3. Smarandache BΠΠ 21  Curves of Biharmonic Constant 2Π Slope  

Definition 3.1. Let 3: SOLI  be a unit speed curve in the Sol Space 3SOL  and  BΠΠ ,, 21  be 

its moving type-2 Bishop frame. Smarandache BΠΠ 21  curves are defined by 

  .
22

1
= 21

2

2

2

1

BΠΠ 
 

   

 

Then, we have the following theorem. 
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Theorem 3.2. Let 3: SOLI   be a unit speed non-geodesic biharmonic constant 2Π slope 

curves according to type-2 Bishop frame in the 3SOL . Then, the equation of Smarandache BΠΠ 21  

curves of biharmonic constant 2Π slope curves is given by 

 

       

     

,sincos[
22

1

]sinsincossincos[
22

1

]cossinsincoscos[
22

1
=

3
2

2

2

1

2212121
2

2

2

1

1212121
2

2

2

1

e

e

e

E]E

RRERRRRE

RRERRRRE





















sss

ssss

 

where 21,RR  are constants of integration. 

We have the following corollary of Theorem 3.2. 

Corollary 3.3. Let 3: SOLI   be a unit speed non-geodesic biharmonic constant 2Π slope 

curve according to type-2 Bishop frame in the 3SOL . Then, the parametric equations of Smarandache 

BΠΠ 21  curve of biharmonic constant 2Π slope curve are given by 

 

       

       

  ,sincos[
22

1
=

]sinsincossincos[

sincos[
2

22

1
=

]cossinsincoscos[

sincos[
2

22

1
=

2

2

2

1

212121

2
2

2
1

2

1

2

2

2

1

212121

2
2

2
1

2

1

2

2

2

1

E]E

RRERRRRE

E]E

RRERRRRE

E]E








































sz

sssesy

sssesx

,

,

 

where 21,RR  are constants of integration. 

Proof. According to Theorem 3.2, we have system The conclusion holds. This ends the proof. 

We can now state the main result of the paper. 
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In this section, we shall call the set  BΠΠ ,, 21  as type-2 Bishop frame, 1  and 2  as Bishop 

curvatures of Smarandache BΠΠ 21  curve. 

Theorem 3.4. Let 3: SOLI   be a unit speed non-geodesic biharmonic constant 2Π slope 

curve according to type-2 Bishop frame in the 3SOL . Then, type-2 Bishop frame of Smarandache 

BΠΠ 21  curve of biharmonic constant 2Π slope curve are given by 

 

     

     

       

     

     

       

   

    ,cos]sin)(cos[

sin]cos)(sin[[

]cos]sincos)([

sinsin]cos)(sin[

sincos]cos)(sin[[

]sin]cossin)([

cossin]cos)(sin[

coscos]cos)(sin[[=

32122

2111

221

2

2

2

121

212122

212111

121

2

2

2

121

212122

2121111

e

e

e

Π

E]
W

W

E
W

W

RR
W

W

RRE
W

W

RRE
W

W

RR
W

W

RRE
W

W

RRE
W

W

ss

ss

sss

sss

sss

sss

sss

sss
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    ,cos]sin)(cos[

sin]sin)(cos[[

]cos]sincos)([

sinsin]sin)(cos[

3.5sincos]sin)(cos[[

]sin]sincos)([

cossin]sin)(cos[

coscos]sin)(cos[[=

32122

2111

221

2

2

2

121

212122

212111

121

2

2

2

121

212122

2121112

e

e

e

Π

E]
W

W

E
W

W

RR
W

W

RRE
W

W

RRE
W

W

RR
W

W

RRE
W

W

RRE
W

W

ss

ss

sss

sss

sss

sss

sss

sss

























































 

 

   

 

   

 

  3

2

21

2

211

2
2

2

2

1

2

212

2

221

2

21

2

211

2

21

2

2

2

1

2

212

2

121

2

21

2

211

2

21

2

2

2

1

2

212

2

cos))()((sin))(([[

sinsin))()((

sincos))(([[

cossin))()((

coscos))(([[=

]]e

]]e

]]e

B

E
W

E
W

RRE
W

RRE
W

RRE
W

RRE
W





























s

s

s

s

 

where 21,RR  are constants of integration and 

 .
2

1

2

2

2

1  
=W  

Using the derivative formulae of the type-2 Bishop frame, we get 
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Theorem 3.5. Let 3: SOLI   be a unit speed non-geodesic biharmonic constant 2Π slope 

curve according to type-2 Bishop frame in the 3SOL . Then, type-2 Bishop frame of Smarandache 

BΠΠ 21  curve of biharmonic constant 2Π slope curve are given by 

 

   

 

   

 

 

3

2

21

2

211

2

2

2

2

1

2

212

2

1

221

2

21

2

211

2

21

2

2

2

1

2

212

2

1

121

2

21

2

211

2

21

2

2

2

1

2

212

2

11

cos))()((

sin))(([[

sinsin))()((

sincos))(([[

cossin))()((

coscos))(([[=

]]e

]]e

]]e

Π
T

E
W

E
W

RRE
W

RRE
W

RRE
W

RRE
W





































s

s

s

s

 

 

   

 

   

 

 

3

2

21

2

211

2

2

2

2

1

2

212

2

2

221

2

21

2

211

2

21

2

2

2

1

2

212

2

2

121

2

21

2

211

2

21

2

2

2

1

2

212

2

22

cos))()((

sin))(([[

sinsin))()((

sincos))(([[

cossin))()((

coscos))(([[=

]]e

]]e

]]e

Π
T

E
W

E
W

RRE
W

RRE
W

RRE
W

RRE
W





































s

s

s
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    ,cos]sin)(cos[

sin]cos)(sin[[

]cos]sincos)([

sinsin]cos)(sin[

sincos]cos)(sin[[

]sin]cossin)([

cossin]cos)(sin[

coscos]cos)(sin[[=

32122

21111

221

2

2

2

121

212122

2121111

121

2

2

2

121

212122

2121111

e

e

e

B
T

E]
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E
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W
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W

W
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W

RRE
W

W
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W

W

RRE
W

W

RRE
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W
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]sin]sincos)([
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2

2

2
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2121112
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2
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W
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W
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where 21,RR  are constants of integration and 
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 .
22

1

2

2

2

1  
=W  
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Poisson algebras and Poisson prime ideals 

Maram Alossaimi 
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Abstract 

The concept of Poisson algebra is one of the most important concepts in mathematics that make a link 
between commutative and noncommutative algebra. The Poisson algebra can be defined as a Lie algebra 
that satisfies the Leibniz rule. In this talk, I will give the definition of the Poisson algebra, talk about some 
properties of Poisson algebras, Poisson prime ideals, Poisson spectra, simple Poisson algebras, Skew 
polynomial Poisson algebras and Generalized Weyl Poisson algebras.  

 
          Keywords: Non-commutative Algebras, Poisson prime ideals, Poisson polynomials algebras. 

 
1. Introduction 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                          Figure 1: Algebraic structure 

0e1, e2

Set S

(S0, ·)

Semigroup G0

(S,+)
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(G,+), ·

Ideal I

(G,+),

⇥K

Vector space
V over K

(G,+),

(G0, ·)

Ring R

I, {-, -}

Poisson
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(V,+,⇥K), ·

K-Algebra D

(G\{0}, ·)
(G,+) Field K

(V, [-, -])

Lie algebra L

(D, {-, -})

Poisson algebra A

ei : Element
+ : Addition
· : Multiplication

⇥K : Scalar multiplication
[-, -] : Lie bracket
{-, -} : Poisson bracket

A nonempty set SÕ with binary operator (·)
is a semigroup (SÕ, ·) if for all g, h, k œ SÕ

1. g · h œ SÕ, and
2. g · (h · k) = (g · h) · k.

A nonempty set S with binary operator (+)
is a group (S, +) if for all g, h, k œ S

1. g + h œ S,
2. g + (h + k) = (g + h) + k,
3. ÷ e œ S s.t. e + g = g + e = g, and
4. ÷g≠1 œ S s.t. g + g≠1 = g≠1 + g = e.

5. S is an abelian if g + h = h + g.

A nonempty set V with two binary operators
(+) and (◊) is a vector space over a field C if
for all ⁄1, ⁄2 œ C and v, u œ V.

1. (V, +) is an abelian group,
2. ⁄1 ◊ v œ V,

3. ⁄1 ◊ (u + v) = ⁄1 ◊ u + ⁄1 ◊ v,
4. (⁄1 + ⁄2) ◊ v = ⁄1 ◊ v + ⁄2 ◊ v,

5. ⁄1 ◊ (⁄2 ◊ v) = (⁄1⁄2) ◊ v, and
6. 1 ◊ v = v.
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2. Poisson Algebras  
 

Definition 1:  A (commutative) 𝐾-algebra (𝐷,+, ∙) is called a Poisson algebra if there exists bilinear 
product {∙,∙} on 𝐷, called a Poisson bracket, such that (𝐷, {∙,∙}) is  

1. 1  {𝑎, 𝑏} =  −{𝑎, 𝑏} for all 𝑎, 𝑏 ∈  𝐷	 (anti-commutative),  
2. 					{𝑎, {𝑐, 𝑏}} + {𝑏, {𝑐, 𝑎}} + {𝑐, {𝑏, 𝑎}} = 0  for all 𝑎, 𝑏, 𝑐 ∈  𝐷 (Jacobi identity), and  
3. 3  {𝑎	 ∙ 𝑏, 𝑐} = 𝑎 ∙ {𝑏, 𝑐}  + {𝑎, 𝑐} 	 ∙ 𝑏  for all 𝑎, 𝑏, 𝑐 ∈  𝐷 (Leibniz rule).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                            Figure 2: Poisson algebras structure 
 
 
3. Poisson ideals  
 

Definition 2:  Let 𝐷 be a Poisson algebra. A subset 𝐼 of 𝐷	 is a Poisson ideal of 𝐷 if  

1. 𝐼 is an ideal of the algebra 𝐷, and  
2. {𝑎, 𝑏} ∈  𝐼 for all 𝑑 ∈ 𝐷 and 𝑎 ∈  𝐼. 
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                                             Figure 3: Poisson prime ideals structure 
 
 
Definition 3: Let 𝐷 be a Poisson algebra. The algebra 𝐷 is a simple Poisson algebra if the only Poisson 
ideals of 𝐷 are 𝐷  and  0.  

 
 

4. Poisson prime ideals  

Definition 4:	Let 𝐷 be a Poisson algebra. A Poisson ideal 𝑃 is a Poisson prime ideal of 𝐷 if the      following 
satisfies:  

𝐼𝐽	 ⊆ 𝑃	 ⟹ 𝐼 ⊆ 𝑃	or  𝐽 ⊆ 𝑃, 

 where	𝐼 and 𝐽 are Poisson ideals of 𝐷.  

Definition 5: Let 𝐷 be a Poisson algebra. A set of all Poisson prime ideals of 𝐷 is called the Poisson 
spectrum of 𝐷 and is denoted by PSpec(𝐷).  

5. Poisson centre 

Definition 6: Let 𝐷 be a Poisson algebra then 

PZ(𝐷) ≔ {𝑎 ∈ 𝐷	|	{𝑎, 𝑑} = 0		for	all	𝑑 ∈ 𝐷} 

is called the Poisson centre of 𝐷.  

 

0e1, e2 Set S

(S0, ·) Semigroup G0

(S,+) Group G

(G,+), · Ideal I
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Poisson
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6. Poisson derivations  

 Definition 7: Let 𝐷  be an associative Poisson algebra over K. A K-linear map  𝛼:𝐷 → 𝐷  is called a 
derivation (respectively, Poisson derivation) on 𝐷 if 𝛼 satisfies 1 (respectively, satisfies 1 and 2) of the 
following conditions:  

1. 𝛼 (𝑎	𝑏) = 𝛼 (𝑎)	𝑏 + 𝑎	𝛼(𝑏) for all 𝑎, 𝑏 ∈ 𝐷;  

2. 𝛼 ({𝑎, 𝑏}) = {𝛼 (𝑎), 𝑏} + {𝑎, 𝛼(𝑏)} for all 𝑎, 𝑏 ∈ 𝐷. 

A set of all derivations (respectively, Poisson derivations) on D is denoted by DerK (𝐷) (respectively, 
PDerK (𝐷)).  

7. Poisson polynomial algebras  

Theorem 8 [Oh2]:  Let 𝐷 be a Poisson algebra over 𝐾 and 𝛼, 𝛿 be 𝐾-linear maps on 𝐷. Then the 
polynomial ring 𝐷[𝑦] becomes a Poisson algebra with Poisson bracket: 

                                           		{𝑎, 𝑦} = 𝛼(𝑎)𝑦 + 𝛿(𝑎)		𝑓𝑜𝑟	𝑎𝑙𝑙	𝑑 ∈ 𝐷                                            (1) 

if and only if 𝛼 is a Poisson derivation on 𝐷 and 𝛿 is a derivation on 𝐷 such that    

            𝛿({𝑎, 𝑏}) − {𝛿(𝑎), 𝑏} − {𝑎, 𝛿(𝑏)} = 𝛿(𝑎)𝛼(𝑏) − 𝛼(𝑎)𝛿(𝑏)		𝑓𝑜𝑟	𝑎𝑙𝑙	𝑎, 𝑏 ∈ 𝐷.	             (2) 

The Poisson algebra 𝐷[𝑦] is denoted by 𝐷[𝑦; 	𝛼, 𝛿] and if δ is zero then it is denoted by 𝐷[𝑦; 	𝛼].  

 

 

 

Example 9 [Oh2]:  Let 𝐾[𝑦]	be a polynomial ring. Notice that, 𝐾[𝑦]	is a Poisson algebra with trivial 
Poisson bracket (i.e. {𝑎, 𝑏} = 0 for all 𝑎, 𝑏 ∈ 𝐾[𝑦]). For any f, 𝑔 ∈	 𝐾[𝑦], set  

𝛼 = 𝑓	
𝑑
𝑑𝑦 					and		𝛿 = 𝑔

𝑑
𝑑𝑦	, 

then α is a Poisson derivation, δ is a derivation and (α, δ) satisfies (2). Hence, by Theorem 8 the algebra 
𝐾[𝑦, 𝑥] = 𝐾[𝑦][𝑥; 	𝛼, 𝛿] is a Poisson algebra with Poisson bracket defined by the rule  

{𝑦, 𝑥} = 𝛼(𝑦)𝑥 + 𝛿(𝑦) = 𝑓𝑥 + 𝑔. 

(D, {-, -})
(↵ 2 PDer(D), � 2 Der(D)) (2)

(D[y], (1)) D[y;↵, �]
↵, �

Proof.
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8. Generalized Weyl Poisson algebras  

Definition 10 [Bav2]: Let 𝐷 be a Poisson algebra, 𝜕 = (𝜕!, … , 𝜕") ∈ PDe𝑟#(𝐷)" be an n-tuple of 
commuting Poisson derivations of 𝐷, 𝑎 = (𝑎!, … , 𝑎") ∈ PZ(𝐷)" be an n-tuple of Poisson central 
elements of 𝐷 such that 𝜕$U𝑎%V = 0 for all 𝑖 ≠ 𝑗. The commutative GWA  

𝐴 = 𝐷[𝑋, 𝑌; 𝑎] = 𝐷[𝑋!, … , 𝑋", 𝑌!, … , 𝑌"]/(𝑋!𝑌! − 𝑎!, … , 𝑋"𝑌" − 𝑎") 

is a Poisson algebra with Poisson bracket defined by the rule: For all 𝑖, 𝑗 = 1,… , 𝑛 and 𝑑 ∈ 𝐷,  

{𝑌$ , 𝑑} = 	𝜕$(𝑑)𝑌$ , {𝑋$ , 𝑑} = −𝜕$(𝑑)𝑋$ , {𝑌$ , 𝑋$} = 𝜕$(𝑎$), and	 

_𝑋$ , 𝑋%` = _𝑌$ , 𝑌%` = _𝑋$ , 𝑌%` = 0,		for all 𝑖 ≠ 𝑗. 

This Poisson algebra is denoted by 𝐴 = 𝐷[𝑋, 𝑌; 𝑎, 𝜕}	and is called the generalized Weyl Poisson algebra of 
rank n (GWPA) where 𝑋 = (𝑋!, … , 𝑋") and 𝑌 = (𝑌!, … , 𝑌"). 

Example 11 [Bav2]: The classical Poisson polynomial algebra 𝑃&" = [𝑋!, … , 𝑋", 𝑌!, … , 𝑌"] with Poisson 
bracket _𝑌$ , 𝑋%` = 𝛿$% 	and	_𝑋$ , 𝑋%` = _𝑌$ , 𝑌%` = 0 for all 𝑖, 𝑗	where 	𝛿$% is the Kronecker delta function, is a 
GWPA  

𝑃#" ≅ 𝐾[𝐻!, … , 𝐻"][𝑋, 𝑌; 𝑎, 𝜕}, 

Where 𝐾[𝐻!, … , 𝐻"] is a Poisson polynomial algebra with trivial Poisson bracket, 𝑎 = (𝐻!, … , 𝐻"), 𝜕 =
(𝜕!, … , 𝜕") and 𝜕$ =

'
'(!

 (via the isomorphism of Poisson algebras		

𝑃&" → 𝐾[𝐻!, … , 𝐻"][𝑋, 𝑌; 𝑎, 𝜕}, 𝑋$ → 𝑋$ , 𝑌$ → 𝑌$ , 𝑋$𝑌$ → 𝐻$). 
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                                                                       Abstract 

 
In this paper, we define a new general p − valent integral operator and obtain the properties of 

convexity of this integral operator of p − valent function on some subclasses of analytic functions. 
 
Keywords: Analytic functions; Integral operators; β − uniformly p − valent starlike and β −

uniformly p − valent convex functions; of complex order.  

 

1. Introduction and Preliminaries 

 
Let pA  denote the class of the form 

{ }( )
1

( ) , 1, 2,...p k
k

k p
f z z a z p

∞

= +

= + ∈ =∑                                                 (1) 

which are analytic in the open disc { }: 1 .z z= ∈ < Furthermore, a function ( ),pf C γ α∈  is p −

valently convex of complex order { }( )0γ γ ∈ −  and type ( )0 pα α≤ < , that is, ( ),pf C γ α∈ , if it 
satisfies the following inequality; 

( )
( ) ( )''1Re 1 ,     .
'

zf z
p p z

f z
α

γ

   + + − > ∈      
                                             (2) 

In particular cases, for 1p =  in the class ( ),pC γ α , we obtain the clases ( ),C γ α  of convex functions of 

complex order { }( )0γ γ ∈ −  and type ( )0 pα α≤ < ,  which was introduced and studied by Frasin [7]. 

Also, for 0α =  in the class ( ),pC γ α , we obtain the class ( ),C γ α  which is called p − valently convex 

of complex order { }( )0γ γ ∈ − . Setting 1p =  and 0α = , we obtain the class ( )C γ . The class ( )C γ  of 

convex functions of complex order { }( )0γ γ ∈ −  was considered earlier by Wiatrowski [15]. Note that 
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( ) ( )1,p pC Cα α=  is the class of p − valently convex functions of order ( )0 pα α≤ < in  . Also, we note 

that ( ) ( )1C Cα α=  is the usual class of convex functions of order ( )0 1α α≤ < in  . In special cases 

1C C=  is the familier class of convex functions in  . 

Furthermore a function ( )pf β α∈ −   is β − uniformly p − valently convex of order ( )1 pα α− ≤ < , 

that is, ( )pf β α∈ −  , if it is satisfies the following inequality; 

( )
( )

( )
( ) ( )'' ''

Re 1 1 + ,    0,  .
' '

zf z zf z
p z

f z f z
β α β

  + > + − ≥ ∈ 
  

                                  (3) 

These class generalize various other classes which are worthly to mention here. For example 1p = , the 

class ( )β α−  introduced by Bharti, Parvatham and Swaminathan [1]. Also, the class

( )1 0 Cβ β− = −    is the known class of β − uniformly convex functions [9].  

The class ( )11 0 C− =   of uniformly convex functions was defined by Goodman [8] (see, also [12]). 

For pf ∈  given by (1) and ( )g z  given by 

( )
1

p k
k

k p
g z z b z

∞

= +

= + ∑                                                                 (4) 

Their convolution (or Hadamard product), denoted by ( )f g∗ , is defined as  

( )( ) ( )( ) ( )
1

,  .p k
k k

k p
f g z z a b z g f z z

∞

= +

∗ = + = ∗ ∈∑                                             (5) 

Shenan et al. [14] introduced the operator :n
p p pD →   is defined by 

( )

0

1

1

( ) ( )
( )( ) ( )

( ) ( ) .

p

p

n n
p

D f z f z
zf zD f z Df z

p

D f z D D f z−

=

′
= =

=

                                                           (6) 
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The differential operator n
pD  for analytic and univalent functions was introduced by Salagean ([13]) for 

1.p =  It can be easily seen that the operator n
pD  on the function ( )f z  is given by (1) 

1
( ) .

n
n p k
p k

k p

kD f z z a z
p

∞

= +

 
= +  

 
∑  

By using the operator n
pD  defined by (1.6), we introduce the new class ( ), ,P nβ γ α−   as follows: 

 

Definition 1.1  Let 1 ,   0pα β− ≤ < ≥  and { }0γ ∈ − . A function pf ∈  is in the class ( , , )p nβ γ α−   

if and only if for all z∈  

( )
( )

( )
( )

( ) ( )1 1Re 1 1 .
( ) ( )

n n
p p

n n
p p

z D f z z D f z
p p p

D f z D f z
β α

γ γ

    ′′ ′′
    + + − > + − +    ′ ′        

                           (7) 

We note that by specializingthe parameters ,  ,  ,   and n p γ β α  in the class ( , , )p nβ γ α−  ,  this class 

reduces to several well-known subclasses of analytic functions. For example, for 1p =  and 0n =  the class 

( , , )p nβ γ α−   reduces to the class ( , )β γ α−  .  

 Definition 1.2  Let ( )1 2 0, ,... m
ml l l l= ∈ , ( )1 2, ,..., m

mµ µ µ µ += ∈  for all 1, ,   .i m m= ∈  We define the 

following general integral operators 

( )
( ) ( )

( )
( )( )

,
, 1 2

,
, 1 2 , , ,

1
, , , 1

10

, ,..., :

, ,..., ,
i

i

l m
p m m p p

l
p m m p m l

lz m
p ip

p m l p
i

g g g

g g g z

D g t
z pt dt

pt

µ

µ
µ

µ

µ
−

−
=

→

=

 ′
 =  
 
 

∏∫

  

 



                                           (8) 

where i pg ∈  for all 1,i m=  and l
pD  is defined by (6). 
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Remark 1.3  For 1 2 ... 0ml l l= = = =  in (8) the integral operator , , , ( )p m l zµ  reduces to the operator ( )pG z  

which was studied by Frasin (see [6]). For 1 21,   ... 0mp l l l= = = = =  in (8)  the integral operator 

( )
1 2, ,..., m

G zµ µ µ  which was studied by Breaz,Owa and Breaz (see [4]). If 1 11,   0  and  p m l µ µ= = = = , we 

obtain tha integral operator ( )G z  which was introduced and studied by Pfaltzgraff (see [11]) and Kim and 

Merkes (see [10]). 

      In this paper, we consider the integral operator ( ), , , ,p m n l zµ  defined by (8) and study its properties on 

the class ( , , )p nβ γ α−  . As special cases the order of convexity of the operator  ( )( )
0

'
z

g t dt
µ

∫  are given. 

2. Sufficient conditions of the integral operator ( ), , ,p m l zµ  
 
Next, in this section we give a sufficient condition for the integral operator ( ), , ,p m l zµ  to be p − valently 

convex. 

Theorem 1. Let ( ) ( ) { }1 2 0 1 2, ,..., ,  , ,..., ,  1 ,  0,  0m m
m m i il l l l pµ µ µ µ α β γ+= ∈ = ∈ − ≤ < > ∈ −    and  

( ), ,i i P i if lβ γ α∈ −   for all 1,i m= . Moreover, suppose that these numbers satisfy the following 

inequality 

( )
1

0 .
m

i i
i

p p pµ α
=

≤ + − <∑  

Then, the integral operator ( ), , ,p m l zµ  defined by (1.8) is p − valently convex of complex order  

{ }( )0γ γ ∈ −  and type ( )
1

0 .
m

i i
i

p p pµ α
=

≤ + − <∑  

Proof. From the definition (1.13), we observe that ( ), , ,p m l zµ .p∈  On the other hand, it is easy to see that  

 ( ), , ,p m l zµ
( )( )1

1
1

.

i

ilm
p ip

p
i

D g z
pz

pz

µ

−
−

=

 ′
 =  
 
 

∏                                                   (9)  
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Now, we differentiate (9) logarithmically, we have 

 
( )
( )

( ) ( )

( ) ( )
, , ,

1, , ,

1 1 .
i

i

lm
p ip m l

i
lip m l
p i

D g zG z p p
G z z zD g z

µ

µ

µ
=

 ′′′′ − − = + − ′ ′ 
 

∑  (10) 

Then multiplying this relation (10) with 
z
γ

, we obtain  

( )
( )

( ) ( )

( ) ( )
, , ,

1, , ,

1 11 1
i

i

lm
p ip m l

i
lip m l
p i

z D g zG z
p p

G z D g z

µ

µ

µ
γ γ=

 ′′ ′′  + − = + −    ′ ′  
 

∑  

or  

                         
( )
( )

( ) ( )

( ) ( )
, , ,

1, , ,

1 11 1 .
i

i

lm
p ip m l

i
lip m l
p i

z D g zG z
p p p p

G z D g z

µ

µ

µ
γ γ=

 ′′ ′′  + + − = + + −    ′ ′  
 

∑                            (11) 

Taking the real part of both sides of (11), we have 

 

 

 

  (12) 

 

Since ( ), ,i i P i ig lβ γ α∈ −   for all  1,i m=  from (7) and (12), we have  

( )
( )

( ) ( )

( ) ( )

( )
( )

, , ,

1, , ,

, , ,

1 , , ,

1 1Re 1 Re 1

1Re 1 .

i

i

lm
p ip m l

lip m l
p i

m
p m l

i
i p m l

z D g zzG z
p p p p

G z D g z

zG z
p p p p

G z

µ

µ

µ

µ

γ γ

µ
γ

=

=

 ′′  ′′   + + − = + + −     ′ ′       
  ′′ = − + + + −   ′   

∑

∑
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( )
( )

( ) ( )
( )( )

( ) ( ) ( )

( ) ( )
( )

, , ,

1, , ,

1 1 1

1 1Re 1 1

1 .

i

i

i

i

lm
p ip m l

i i il
ip m l p i

lm m m
p ii i

i i i i
li i i
p i

z D g zz z
p p p p p

z D g z

z D g z
p p p p p

D g z

µ

µ

µ β α
γ γ

µ βµ α µ α
γ

=

= = =

  ′  ′′     + + − > − + − +      ′         

′′
= + − + + − > + −

′

∑

∑ ∑ ∑




        (13) 

Therefore, the operator ( ), , ,p m l zµ  is p − valently convex of complex order { }( )0γ γ ∈ −  and type 

( )
1

m

i i
i

p pµ α
=

+ −∑ . This evidently completes the proof of Theorem 1. 

Remark 2.2 

1. Letting 1γ =  and 0il =  for all 1,i m=  in Theorem 1., we obtain Theorem 3.1 in [6]. 

2. Letting 1,  0p β= =  and 0il =  for all 1,i m=  in Theorem 1., we obtain Theorem 3 in [2]. 

3. Letting 1,  0,  ip β α µ= = =  and 0il =  for all 1,i m=  in Theorem 1., we obtain Theorem 3 in [5]. 

4. Letting 1,  0,  0ip β α= = =  and 0il =  for all 1,i m=  in Theorem 1., we obtain Theorem 2 in [3]. 

Putting 1 1 1 11,  0,  ,  ,  p m l µ µ α α β β= = = = = =  and 1g g=  in Theorem 1., we have  

Corollary 1. Let { }0,  1 1,  0,  0µ α β γ> − ≤ < ≥ ∈ −  and ( ),g β γ α∈ −  . If ( )0 1 1 1µ α≤ + − < , then 

( )( )
0

z

g t dt
µ

′∫  is convex of complex order { }( )0γ γ ∈ −  and type ( )1 1µ α − +  in  . 

 
Theorem 2. Let ( ) ( ) { }1 2 0 1 2, ,..., ,  , ,..., ,  1 ,  0,  0m m

m m i il l l l pµ µ µ µ α β γ+= ∈ = ∈ − ≤ < > ∈ −    and  

( ), ,i i P i if lβ γ α∈ −   for all 1,i m=  and  
                      

 

                          (14) 

 

( ) ( )

( ) ( )

( )
1

1

1
i

i

m

l i i
p i i

m
l i i
p i

i

p pz D f z
p

D f z

µ α

µ β
γ

=

=

′′ + −
+ − > −

′

∑

∑
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for all 1,i m= , then the integral operator ( ), , ,p m l zµ  defined by (8) is p − valently convex of complex order 

{ }( )0γ γ ∈ − . 

Proof. From (13) and (14) we easily get ( ), , ,p m l zµ  is p − valently convex of complex order γ . 

      From Theorem 2., we easily get 

Corollary 2. Let ( ) ( ) { }1 2 0 1 2, ,..., ,  , ,..., ,  1 ,  0,  0m m
m m i il l l l pµ µ µ µ α β γ+= ∈ = ∈ − ≤ < > ∈ −    for all 

1,i m=  and ( ) ,il
p i pD g σ∈  where ( )

1 1
/ ;0

m m
i i

i i
i i

p p p pµ βσ µ α σ
γ= =

 = − + − ≤ < 
 

∑ ∑  for all 1,i m= , then 

the integral operator ( ), , ,p m l zµ  is p − valently convex of complex order { }( )0γ γ ∈ − . 
 
Putting 1 1 1 11, 0, , ,p m l µ µ α α β β= = = = = =  and 1g g= in Corollary 2., we have  
 
Corollary 3. Let { }0,  1 1,  0,  0µ α β γ> − ≤ < > ∈ −  and ( )g ρ∈  where 

 ( )( )1 /ρ µ β α γ γ µβ = + − −   , 0 1,ρ≤ <  then the integral operator  ( )( )
0

z

g t dt
µ

′∫  is convex of complex 

order { }( )0γ γ ∈ −  in  . 
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Abstract 

In this paper, we define a normal magnetic curve ( fN magnetic curve) geometrically, which is 

associated with the magnetic field   on the D3  Riemannian manifold by considering a normal force on 

the particle. Moreover, we obtain the energy on the fN magnetic curves in the   magnetic field. 

 

          Keywords: Magnetic field, normal force, fN -magnetic curve, energy, magnetic force, Riemannian 

manifold. 

1. Introduction 

 

Lorentz force action and Maxwell equations are the basis for classical optics, electric circuits, and 

classical electrodynamics. Gauss law for electromagnetism also includes important relation, i.e. 0.  

It shows the diveregence freeness of the  . This feature allows one to determine magnetic field   in a 

given space .  The trajectory of the magnetic charged particle is influenced by action of the magnetic field. 

A magnetic field   defined on a n dimensional Riemannian manifold is a closed 2-form such that its 

Lorentz force is a one-to-one tensor field   given by 

   ).(,,,=)),(( nMX   (1) 

The magnetic trajectories associated with the magnetic field   are magnetic curves   in  ,nM  such 

that they satisfy  

 ).(= ''

' 


  (2) 

The Lorentz force ( ) is associated with a magnetic field   in the following manner  

 .=)(    (3) 

Finally, the Lorentz force equations of magnetic curves   is calculated as follows  
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 .=)(= '''

' 


   (4) 

Details of the derivation of the aforementioned formulae and some important results related to magnetic 

curves can be foun [1-15]. 

In electrodynamical perspective, the attitude of the charged particle is investigated with the help of 

the Lorentz force law and the 2
nd

 law of the Newton, which is given as the following 

 ,)(   v=F=a qm  (5) 

where v  is velocity, m  is mass, and q  is electric charge under the magnetic field   and electric field ,  

for the particle. 

2. Kinematics of the Particle 

 

Let   be a moving particle such that its coordinate is showed by  ,= t  where t  is a time 

parameter. By changing the time parameter with the arc-lentgh parameter, it is obtained that  

 ,== v
dt

ds
v  

where  
dt

d
t


=v=v  and 0

dt

d
. The Frenet-Serret system is established by orthonormal vectors  ,


e  

provided that the curve is smooth at each point. In particular,  

0e  is the unit tangent vector,  


1e ,  


2e  are 

unit normal and binormal vectors of the curve ,  respectively. Orthonormality conditions are 

summarized by     ,= 




 ee  where   is Euclidean metric such that: diag  .1,1,1  For non-negative 

coefficients ,,  and vectors   0,1,2=ii


e  following equations and properties satisfy [15]: 

 

   

     

   .=

,=

,=

12

201

10



















ee

eee

ee







'

'

'

 (6)

 

It can also be deduced that 

     ,== 0


ev

dt

ds

dt

d
s  (7) 

and 
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      .== 1

2

02

2
  ee

v
a 










dt

ds

dt

sd

dt

d
s  (8) 

Finally, for any particle sliding down on a surface with a mass ,m  the normal force is  

  ,= 1


eNf N  (9) 

where ,= fNN  1;=   the gravitational force is  

    ),(= 1100


eeG ggm   (10) 

where 
0,1=ig  are gravitational coefficient; the frictional force is  

  ,= 0

 eNf   (11) 

where   is frictional coefficient [16] .  

3. fN Magnetic curves in 3D Remannian manifolds 

 

Now, we assume that for a moving charged particle in any magnetic field   on ),,( 3 M  there 

exists a normal force acting on the particle. Then, trajectories of the particle of the magnetic field   on 

the 3D Riemannian surface give a new kind of magnetic curve. 

Definition: Let   be an arc-length parameterized magnetic curve in the 3D Riemannian manifold 

),( 3 M  and   be a magnetic field on .3M  We call the curve   as a fN -magnetic curve if the normal 

force field of the curve meets the following Lorentz force equation; 

 .=)(= fff NNN  
 '  (12) 

Proposition: Let   be an arc-length parametrized fN magnetic curve of   with the Frenet frame 

elements       }.,,,{ 210 
ee,e  Then, Lorentz force   of a magnetic field   is written in the Frenet frame 

as the following way  

 

       

     

       ,=)(

,=)(

,=)(

261052

24031

221010













eeee

eee

eeee







 (13)
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where ,i  61  i  are smooth functions along the curve .  

Proof: Let   be an arc-length parametrized fN magnetic curve in ),( 3 M  together with the Frenet 

frame elements       }.,,,,{ 210 
eee  Knowing the fact that        },,{)( 2100

 eeee span and  

          )),(,(=))(,(=)),((= 01000

  eeeNeNe ff NN    

we get        ;=)( 221010

  eeee   where 1  and 2  are some smooth functions along the curve .  

Proof is completed by using similar procedure for  )( 1

 e  and  ).( 2

 e  

Theorem:   is a unit speed fN magnetic curve of the magnetic field   if and only if  

       0,)(= 321

3

5

3

1
0  









 

eee  (14) 

or equivalently  

       0,)(= 421

4

6

4

2
0  









 

eee  (15) 

along the curve .  

Proof: Let us choose      ,= 221100


eee aaa   where ,ia  0,1,2=i  are some functions along  . We also 

suppose that   does not vanish along the curve. Now, from the definition of fN -magnetic curve we have  

        ).()(= 1221100


 eeeeNf Naaa'   

Here, we obtain =0a  and .=2 a  Also, from the definition of Lorentz force ,  we get 

0.==)(    Thus, we have  

      ),()()(=0 221100

  eee aaa   

which means ),(=
3

5

3

1
1









 a  03   or equivalently ),(=

4

6

4

2
1









 a  0.4   

Corollary: Let ,i  61  i  be arbitrary smooth functions given in Proposition. Then, we have the 

following relation. 
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 0,= 3241

3241

4536 












 (16) 

Proof: By definition we get 0.==)(   Thus, we have  

      ).()()()(=)(=0 21

3

5

3

1
0

 








 eee   (17) 

If we also use (13),  (14),  and (15),  then the proof is completed. 

Corollary: Let ,i  61  i  be arbitrary smooth functions along the curve   such that the ratio given in 

Eq.  16  is constant. Then fN magnetic curve is a general helix in the   magnetic field. 

Proof: If we use Lancret theorem, then it gives the result immediately [18]. 

 

4. Energy on the fN Magnetic curves 
 

Definition: Let  ,M  and  hN ,  be two Riemannian manifolds. Then, the energy of a differentiable 

map    hNMr ,,:   can be defined as  

        ,,
2

1
=

1=

vedfedfhrnergy aa

n

a
M
  (18) 

where  ae  is a local basis of the tangent space and v  is the canonical volume form in M [19]. 

Proposition: Let   MTMTTQ 11:   be the connection map. Then following two conditions hold: 

i)  dQ  =  and ,~=  Q  where   MTMTT 11:~   is the tangent bundle projection; 

ii) for   MTx  and a section MTM 1:  ; we have  

    ,=  dQ  (19) 

where   is the Levi-Civita covariant derivative [19,20]. 

Definition: Let  ,, 1

21 MTT   then we define 

            .,,=, 212121  QQddS   (20) 
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This yields a Riemannian metric on TM . As known S  is called the Sasaki metric that also makes the 

projection :  MMT 1  a Riemannian submersion. 

Main Theorem: Let   be a moving charged particle such that it corresponds to a unit speed fN

magnetic curve   on the 3D Riemannian manifold ),( 3 M  in the magnetic field  . Then, energy on the 

particle in the magnetic vector field   is stated by 

 

 

,))())(

)(()((1
2

1
=

2

3

12

3

52

2

3

3535

3

5

2

3

3131

3
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3

52

3

1

0

ds

nergy

'
''

'

''
''

s















































fN

 

or equivalently 

 

 

.))())(

)(()((1
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4242
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22
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''
''

s















































fN

 

Proof: From (18)  and ,(19)  we get 

        .,
2

1
= 00

0
dsddnergy S

s

)(e)(eNf

   

By using Eq. ,(20)  we have 

             ).(,(((,((=,( 000000 ))(e))(e)))(e))(e))(e)(e
   QQddddS   

Since  

0e  is a section, we also get 

 .=)((=)()( TCC ididdddd =)    

Moreover, it is clear that 

 

 

).())(

)(()(==(
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Thus, we find from (6)  and  14  

 

       

).)())(

)(()(1=

,(),(=,(
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3
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3
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'
''

'

''
''

''S dd )ee))(e)(e 

 

Finally, this gives the desired result. The equivalent relation can be proved by a similar method. 

Corollary: Let   be a unit speed fN magnetic curve on 3D Riemannian manifold ),( 3 M  in the 

magnetic field  . Then, energy on the particle in each Lorentz force field of the magnetic field   given 

in  13  is stated by using Sasaki metric as the following. 
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 Proof: It is obvious from Eqs.  ,13       ,19 ,18 and  .20  
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Abstract 

                    In this study, we investigate the growth and distortion properties of functions in the a certain subclasses of 

analytic functions which involves the operator Fractional Calculus.  

 

          Keywords: Analytic functions, Univalent functions, starlike and convex functions, Fractional calculus operators, 

Differential operator. 

1. Introduction and Definitions       

 

Let  denote the class of functions of the form   

                                
2

( ) n

n

n

f z z a z


=

= +                                                         (1) 

which are analytic in the open disc  : : 1 .z z z=    Suppose that  denote the subclass of  

consisting of functions that are the univalent in . Also denote by  the subclass of consisting of 

functions of the form  

                                                                              
2

( ) .n

n

n

f z z a z


=

= −                                                       (2) 

A function f   is said to be in the class of uniformly convex functions of order  and type ,  denoted 

by ( ) −   (see [14]) if  

                
( ) ( )

Re 1 , ,
( ) ( )

zf z zf z
z

f z f z
 

  
+ −   

  
                             (3) 

where 1 1−    and 0.   

A function f   is said to be in the class of   uniformly starlike functions of order  and type ,  denoted 

by ( ) −   (see [2]) if  

( ) ( )
Re 1 , ,

( ) ( )

zf z zf z
z

f z f z
 

  
−  −  

 
                                      (4) 

where and 1 1−    and 0.   

These classes generalize various other classes which are worth mentioning here. The class 

(0) − = −  is the class of  − uniformly convex functions [9].  

Indeed it follows from (3) and (4) that  
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( )( ) ( ) ( ) ( ).m mD f z z D f z    
 −   −  

Especially the classes 1 (0)− =  and 1 (0) ,− =  defined by Goodman [8] and Ronning 

[14], respectivelly. 

For a functions f  in ,  Deniz and Özkan [5] (see also [6]) introduced the following differential operatör 

m

  as follows: 

Definition 1. Let f  . For the parametres 0   and  0 0m =   the differential operatör 
m

  

on  defined by  

                                                         
0 ( ) ( )f z f z =  

                                    
1 3 2( ) ( ) (2 1) ( ) ( )f z z f z z f z zf z    = + + +  

                                                     
1( ) ( ( )m mf z f z 

−=  

for z . 

For a function  f  in  from the definition of the differential operatör 
m

 , we can easily see that                                                                                                                                                                                             

2

2

( ) ( ( 1) 1) .m m m n

n

n

f z z n n a z 


=

= + − +                                     (5) 

Also, ( ) .m f z   

For f   given by (1) and ( )g z   given by 
2

( ) ,n

n

n

g z z b z


=

= +  the Hadamard product (or 

Convolution) of f  and g  defined by   

2

( )( ) ( )( ), .n

n n

n

f g z z a b z g f z z


=

 = + =    

Special cases of this operator include the Salagean derivative operator m  (see [15]) as follows: 

                                                   
2

0 ( ) ( ) ( ) ( )m m m mf z f z f z f z=  =  

and 

                                                 
3

1 ( ) ( ) ( ) ( ) ( )m m m m mf z f z f z f z f z=   = . 

For 1 1−   , 0  ,  0 0m =   and 0  , let  ( )m

 −  be the subclass of  consising of 

functions of the form (1) and satisfying the analytic criterion  

( ) ( )( ) ( )
Re 1

( ) ( )

m m

m m

z f z z f z

f z f z

 

 

 

  
 

−  − 
 
 

, 

where ( )m f z  is given by (5). We also let ( ) ( ) .m m

    − = −   
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Not that ( ) ( )m mf z   −  if and only if ( ) ( )m f z   − . Using the Alexander type relation, 

we define the class ( )m

 −  as follows  

( )( ) ( ) ( ) ( ).m m m mf z z f z      
 −   −  

We also let ( ) ( ) .m m

    − = −   

We note that by specializing the parameters , ,    and m, the subclasses ( )m

 −  and 

( )m

 −  reduces to several well-known subclasses of analytic functions. This subclasses are:  

i. 
0 0( ) ( ), ( ) ( )        − = − − = −  

ii. 
0 0(0) , (0)    − = − − = −  

iii. 
0 01 (0) , 1 (0) − = − = .  

In [7], authors obtained the following results: 

Theorem 1. A function ( )f z  of the form (1) is in ( )m

 −  if  

                             ( )2

2

(1 ) ( ) ( 1) 1 1
mm

n

n

n n n a    


=

+ − + − +  −                                 (6) 

where 1 1−   , 0  ,  0 0m =   and 0  . 

Theorem 2. A necessary and sufficient condition for ( )f z  of the form (2) to be in the class  ( )m

 −  

for 1 1−   , 0  ,  0 0m =   and 0   is that  

                           ( )2

2

(1 ) ( ) ( 1) 1 1 .
mm

n

n

n n n a    


=

+ − + − +  −                                  (7) 

Theorem 3. A function ( )f z  of the form (1) is in ( )m

 −  if  

                             ( )2 1

2

(1 ) ( ) ( 1) 1 1
mm

n

n

n n n a    


+

=

+ − + − +  −                                 (8) 

where 1 1−   , 0  ,  0 0m =   and 0  . 

Theorem 4. A necessary and sufficient condition for ( )f z  of the form (2) to be in the class  ( )m

 −  

for 1 1−   , 0  ,  0 0m =   and 0   is that  

                           ( )2 1

2

(1 ) ( ) ( 1) 1 1 .
mm

n

n

n n n a    


+

=

+ − + − +  −                                  (9) 

 

 

277



 

5th INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 

1-3 December 2021, Istanbul, Turkey 

 

 

ICOM 2021 

ISTANBUL / TURKEY 

2. Main Results 

 

Applications of Fractional Calculus Operators 

Various operators of fractional calculus (that is, fractional derivatives) have been studied in the literatüre 

extensivelly (cf., e.g., [13,16,19]; see also [3,4,12,17,18] and the various references cited therein). In our 

present investigation, we recall the following definitions. 

Definition 2. Let ( )f z be analytic in a simply connected region of the z −plane containing the origin. The 

fractional integral of f  order v  is defined by  

( )
1

0

1 ( )
( ) ( 0)

( )

z

v

z v

f
D f z d v

v z






−

−
= 
 −

  

where the multiplicity of ( )
1 v

z 
−

−  is removed by requiring that ( )log z −  is real for 0.z −   

Definition 3. Let ( )f z be analytic in a simply connected region of the z −plane containing the origin. The 

fractional integral of f  order v  is defined by  

( )0

1 ( )
( ) (0 1).

(1 )

z

v

z v

d f
f z d v

v dz z





=  
 − −

  

Where the multiplicity of ( )
v

z 
−

−  is removed by requiring that ( )log z −  is real for 0.z −   

Definition 4.  From the hypothesis of Definition 3, the fractional derivative of order n v+  is defined, for a 

function ( )f z , by  

 

 

 

In the present paper, we make use of the familiar integral operator L  defined by (see, for details, 

[1,10,11]; see also [20]) 

( ) 1

0

1
( ) ( ) ; 1

z

L z t f t dt f A
z






−+

=   −  

as well as the fractional calculus operator v

z
 for which it is well known that (see, for details, [13,16,19]) 

  11
( )

(2 )

v v

z z z v
v

−= 
 −

 

in terms of the gamma function. 

In this section, we investigate the growth and distortion properties of functions in the class ( )m

 −

and ( )m

 − which involves the operators L  and v

z
. To derive our results, we need following 

lemma given by Chen et al. [3]. 

 

  0( ) ( ) (0 1; ).
n

n v v

z zn

d
f z f z v n

dz

+ =   
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Lemma (see [3]) Let the function ( )f z  be given defined by (2). Then  

  ( ) 
1

2

( 1) ( 1)
( ) ( ; 1; )

(2 ) ( ) ( 1 )

v
v n v

z n

n

z n
L f z a z v n

v n n v







− 
−

=

+  +
= −   − 
 − +  + −

     (10) 

and  

( )  1

2

( 1) ( 1) ( 1)
( )

( 1 ) (2 ) ( ) ( 1 )

( ; 1; )

v v n v

z n

n

n
L f z z a z

v v n v n v

v n



 

 




− −

=

+ +  +
= −

+ −  − + −  + −

  − 


    (11) 

 

provided that no zeros appear in the denominators (10) and (11). 

Theorem 5. Let the functions ( )f z  defined by (2) be in the ( )m

 − . Then 

( ) 

( ) ( )
1

2 1

( )

1 (1 )(1 )

(2 ) 2 3 2 ( 2)( 1)

( ; 0, 1, ; ).

v

z

v

m m

L f z

z z
v v

z v n



 

   

  

−

+

−

 + − 
 − 

 + +  + − + +  

   −  

        (12) 

and  

( ) 

( ) ( )
1

2 1

( )

1 (1 )(1 )

( 2) 2 3 2 ( 2)( 1)

( ; 0, 1, ; ).

v

z

v

m m

L f z

z z
v v

z v n



 

   

  

−

+

−

 + − 
 + 

 + +  + − + +  

   −  

       (13) 

Each of the assertion (12) and (13) is sharp. 

Proof: In view of Theorem 2, we have  

( ) ( )( ) ( ) ( )( )
2 2

2 2

2 2 1 (1 ) 1 1
1,

1 1

m mm m

n n

n n

n n n
a a

      

 

 

= =

− + + + − + − +   
− −

     (14) 

which readily yields  

( )2
2

1
.

( 2)2 1
n mm

n

a


  



=

−


− + +
                                    (15) 

Consider the function ( )F z  defined in by  

( ) 

2

2

( ) (2 ) ( )

( 1) ( 1) ( 2)

( ) ( 1)

( ) ( ),

v v

z

n

n

n

n

n

n

F z v z L f z

n v
z a z

n n v

z n a z z







− −



=



=

=  −

+  +  +
= −

+  + +

= −  
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where  

( )
( )

1 ( 1) ( 2)
( ) , ( 2, 0).

( 1)

n v
n n v

n n v





+  +  +
 =  

+  + +
                         (16) 

Since ( )n  is a decreasing function of n  when 0,v   we get  

( )
( )

2 1
0 ( ) (2) , ( 1, 0).

2 (2 )
n v

v






+
    =  − 

+ +
             (17) 

Thus, from (15) ve (17) for all ,z  we deduce that  

2

2

2

2 1

( ) (2)

(1 )(1 )

(2 )(2 )2 ( 2)( 1)

n

n

m m

F z z z a

z z
v

 

   



=

−

 −

+ −
 −

+ + − + +


 

and  

2

2

2

2 1

( ) (2)

(1 )(1 )
,

(2 )(2 )2 ( 2)( 1)

n

n

m m

F z z z a

z z
v

 

   



=

−

 +

+ −
 +

+ + − + +


 

which yields the inequalities (12) and (13) of Theorem 5. Equalities in (12) and (13) are attained for the 

function ( )f z  given by  

( ) 
( )

( ) ( )
1

2 1

1 (1 )1
( )

(2 ) 2 3 2 ( 2)( 1)

( ; 0, 1, ; ).

v v

z m m
L f z z z

v v

z v n



 

   

  

− +

−

 + − 
= − 

 + +  + − + +  

   −  

 

or, equivalently, by  

( )
( )

2

2

(1 )(1 )
( ) .

2 2 ( 2)( 1)m m
L f z z z

 

   

+ −
= −

+ − + +
 

Thus we complete the proof of Theorem 5.  

Theorem 6. Let the functions ( )f z  defined by (2) be in the ( )m

 − . Then  

( ) 

( ) ( )

1
1

2 1

( )

( 1)(1 )

(2 ) 2 3 2 ( 2)( 1)

( ; 0, 1, ; ).

v

z

v
v

m m

L f z

z
z z

v v

z v n



 

   

  

−
−

−

 + − 
 − 

 − +  − − + +  

   −  

            (18) 

and  

280



 

5th INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 

1-3 December 2021, Istanbul, Turkey 

 

 

ICOM 2021 

ISTANBUL / TURKEY 

( ) 

( ) ( )

1
1

2 1

( )

(1 )(1 )

(2 ) 2 3 2 ( 2)( 1)

( ; 0, 1, ; ).

v

z

v
v

m m

L f z

z
z z

v v

z v n



 

   

  

−
−

−

 + − 
 + 

 − +  − − + +  

   −  

              (19) 

Each of the assertions (18) and (19) is sharp. 

Proof: It follows from Theorem 2 that  

2 1
2

1
.

2 ( 2)( 1)
n m m

n

n a


  



−
=

−


− + +
                       (20) 

Consider the function ( )z  defined in  by  

( ) 

2

2

( ) (2 ) ( )

(1 ) ( ) (2 )

( ) ( 1 )

( ) ( ),

v v

z

n

n

n

n

n

n

z v z L f z

n v
z n a z

n n v

z n n a z z











=



=

=  −

+   −
= −

+  + −

= − 





 

where, for convenience  

(1 ) ( ) (2 )
( ) ( 2, 0 1).

( ) ( 1 )

n v
n n v

n n v






+   −
=   

+  + −
                       (21) 

Since ( )n  is a decreasing function of n  when 0 1,v    we find that  

               
(1 )

0 ( ) (2) .
(2 )(2 )

n
v


 



+
  =

+ −
                                    (22) 

Hence, with the aid of (20) and (22), for all  z , we have  

2

2

2

2 1

( ) (2)

(1 )(1 )

(2 )(2 )2 ( 2)( 1)

n

n

m m

z z z n a

z z
v

 

 

   



=

−

 −

+ −
 −

+ − − + +


 

and  

2

2

2

2 1

( ) (2)

(1 )(1 )

(2 )(2 )2 ( 2)( 1)

n

n

m m

z z z n a

z z
v

 

 

   



=

−

 +

+ −
 +

+ − − + +


 

which yields the inequalities (18) and (19) of Theorem 6. Equalities in (18) and (19) are attained for the 

functions ( )f z  given by  
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( ) 

( )
1

2 1

( )

1 (1 )(1 )

(2 ) 2 (3 )2 ( 2)( 1)

v

z

v

m m

L f z

z z
v v



 

   

−

−

 + − 
= − 

 − +  − − + +  

 

or, equivalently, by  

( )
( )

2

2

( 1)(1 )
( ) .

2 2 ( 2)( 1)m m
L f z z z

 

   

+ −
= −

+ − + +
 

Consequently, we complete the proof of Theorem 6. 

Corollary 1. Let the functions ( )f z  defined by (2) be in the ( )m

 − . Then 

( ) 

( ) ( )
1

2

( )

1 (1 )(1 )

(2 ) 2 3 2 ( 2)( 1)

( ; 0, 1, ; ).

v

z

v

m m

L f z

z z
v v

z v n



 

   

  

−

+ + − 
 − 

 + +  + − + +  

   −  

 

and  

( ) 

( ) ( )
1

2

( )

1 (1 )(1 )

(2 ) 2 3 2 ( 2)( 1)

( ; 0, 1, ; ).

v

z

v

m m

L f z

z z
v v

z v n



 

   

  

−

+ + − 
 + 

 + +  + − + +  

   −  

 

Corollary 2. Let the functions ( )f z  defined by (2) be in the ( )m

 − . Then  

( ) 

( ) ( )

1
1

2

( )

(1 )(1 )

(2 ) 2 3 2 ( 2)( 1)

( ; 0, 1, ; ).

v

z

v
v

m m

L f z

z
z z

v v

z v n



 

   

  

−
− + − 

 − 
 − +  − − + +  

   −  

 

and  

( ) 

( ) ( )

,1

1
1

2

( )

(1 )(1 )
.

(2 ) 2 3 2 ( 2)( 1)

( ; 0, 1, ; ).

v

z

v
v

m m

L f z

z
z z

v v

z v n



 

   

  

−
− + − 

 + 
 − +  − − + +  

   −  
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Neighborhoods of Certain Classes of Analytic Functions Defined By Rabotnov Function 
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Abstract 

We introduce a new subclass of analytic functions in the open unit disk   with negative 
coefficients defined by normalized of the Rabotnov function. The object of the present paper is to determine 
coefficient inequalities, inclusion relations and neighborhoods properties for Rabotnov function belonging 
to this subclass. 

 
          Keywords: Analytic function, starlike and convex functions, Rabotnov function, neighborhoods, 

coefficient inequality. 

 
1. Introduction 
 

Let  be a class of functions f  of the form  

                                                                 ( )
2

n
n

n
f z z a z

∞

=

= +∑                                                                         (1)  

that are analytic in the open disk { }: 1 .z z= <  Denote by ( )n  the class of functions consisting of 
functions f  of the form  

                                                        ( ) ( )
2

,    0n
n n

n
f z z a z a

∞

=

= − ≥∑                                                                (2)  

which are analytic in . 
 We recall that the convolution (or Hadamard product) of two functions  

( )
2

n
n

n
f z z a z

∞

=

= +∑   and  ( )
2

n
n

n
g z z b z

∞

=

= +∑  

is given by  

( )( ) ( )( ) ( )
2

: : ,    .n
n n

n
f g z z a b z g f z z

∞

=

∗ = + = ∗ ∈∑   

Note that .f g∗ ∈ 
 Next, following the earlier investigations by Goodman [7], Ruscheweyh [12], Silverman [13], 
Altıntaş et al. [2,3] and Srivastava and Bulut [14] (see also [1], [4]-[6], [8]-[10]), we define the ( ),n δ −

neighborhood of a function ( )f n∈  by 
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                                ( ) ( ) ( ),
2 2

:  and .n
n n n n

n n
f g n g z z b z n a bδ δ

∞ ∞

= =

 = ∈ = − − ≤ 
 

∑ ∑                                 (3) 

For ( ) ,e z z=  we have  

                                     ( ) ( ) ( ),
2 2

:  and .n
n n n

n n
e g n g z z b z n bδ δ

∞ ∞

= =

 = ∈ = − ≤ 
 

∑ ∑                                      (4) 

A function ( )f n∈  is α − starlike of complex order ,γ  denoted by ( ),nf α γ∗∈  if it satisfies the 
following condition 

( )
( ) { }( )11 1 ,    \ 0 ,  0 1,  

zf z
z

f z
α γ α

γ

  ′ ℜ + − > ∈ ≤ < ∈      
   

and a function ( )f n∈  is α −convex of complex order ,γ  denoted by ( ),nf α γ∗∈  if it satisfies the 
following condition  
 

( )
( ) { }( )11 ,    \ 0 ,  0 1,  .

zf z
z

f z
α γ α

γ
 ′′ ℜ + > ∈ ≤ < ∈ ′  

   

The Rabotnov [11] function ( ), ,R zα β  defined by  

                                ( ) ( )( )( )
( ) ( )1

,
0

,    1,  0,  .
1 1

n
n

n
R z z z z

n
αα

α β
β α β

α

∞
+

=

= > − ≥ ∈
Γ + +∑                                (5) 

The Rabotnov function ( ),R zα β  does not belong to the class  . Therefore, we consider the following 
normalization for the function ( ),R zα β : 

                        ( ) ( ) ( ) ( )( ) ( )
( )( )( ) ( )1/ 1 1/ 1 1

, ,
0

1
1 ,   .

1 1

n
n

n
z z R z z z

n
α α

α β α β

β α
α

α

∞
+ + +

=

Γ +
= Γ + = ∈

Γ + +∑                        (6) 

In terms of Hadamard product and ( ), zα β  given by (6), a new operator , :α βΘ →   can be defined as 
follows: 

                               ( ) ( )( ) ( )
( )( )( ) ( )1 1

, ,
1

1
,   .

1 1

n
n n

n

a
f z f z z z z

nα β α β

β α
α

∞
+ +

=

Γ +
Θ = Θ ∗ = + ∈

Γ + +∑                                 (7) 

If  ( )f n∈  is given by (2), then we have  

                                            ( ) ( )
( )( )( ) ( )1 1

,
1

1
,   .

1 1

n
n n

n

a
f z z z z

nα β

β α
α

∞
+ +

=

Γ +
Θ = − ∈

Γ + +∑                                             (8) 

Finally, by using the differential operator defined by (8), we investigate the subclasses ( ), ,n
α β κ γ  and 

( ), , ;n
α β κ γ ϑ  of ( )n  consisting of functions f  as the followings: 

However, throughout this paper, we restrict our attention to the case real-valued ,α β with 1α > −  and 
0.β ≥     
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Definition 1. The subclass ( ), ,n
α β κ γ  of ( )n  is defined as the class of functions f  such that  

                                                         
( )
( ) ( ),

,

1 1 ,    ,
z f z

z
f z

α β

α β

κ
γ

 ′ Θ  − < ∈ Θ 
 

                                                             (9) 

where { }\ 0γ ∈  and 0 1.κ≤ <  
 
Definition 2. Let ( ), , ;n

α β κ γ ϑ  denote the subclass of ( )n  consisting of f  which satisfy the inequality   

                                                    ( ) ( ) ( )( ),
,

1 1 1 ,
f z

f z
z

α β
α βϑ ϑ κ

γ
Θ ′− + Θ − <                                                   (10) 

where { }\ 0γ ∈ , 0 1κ≤ <  and 0 1.ϑ≤ ≤  
In this paper, we obtain the coefficient inequalities, inclusion relations and neighborhood properties of the 
subclasses ( ), ,n

α β κ γ  and ( ), , ; .n
α β κ γ ϑ  

 
2. Coefficient inequalities for ( ), ,n

α β κ γ  and ( ), , ;n
α β κ γ ϑ  

 
Theorem 1. Let ( ).f n∈  Then ( ), ,nf α β κ γ∈  if and only if  

                                               ( )
( )( ) ( )

2

1
1 ,   

1 n
n

n a z
n

β α
κ γ κ γ

α

∞

=

Γ +
 − +  ≤ ∈ Γ +∑                                                 (11) 

for { }\ 0γ ∈  and 0 1.κ≤ <  

Proof. Let ( ).f n∈  Then, by (9) we can write  

                                                     
( )
( ) ( ),

,

1 ,    .
z f z

z
f z

α β

α β

κ γ
 ′ Θ  ℜ − > − ∈ Θ  

                                                   (12) 

Using (2) and (8), we have,  

                                             

( )
( )( ) [ ]

( )
( )( )

( )

1

2
1

2

1
1

1
,    .

1
1

n
n

n
n

n
n

n
n

n a z
n

z
z a z

n

β α
α

κ γ
β α

α

−∞

=

−∞

=

 Γ +
− − Γ + ℜ > − ∈ Γ + −

 Γ + 

∑

∑
                                        (13) 

Since (13) is true for all ,z∈  choose values of z  on the real axis. Letting 1,z →  through the real values, 
the inequality (13) yields the desired inequality 

( )
( )( )

1

2

1
1 .

1

n

n
n

n a
n

β α
κ γ κ γ

α

−∞

=

Γ +
 − +  ≤ Γ +∑  
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Conversely, supposed that the inequality (11) holds true and 1,z =  then we obtain 

( )
( )

( )
( )( ) [ ]

( )
( )( )

( )
( )( ) [ ]

( )
( )( )

1

2,
1

,

2

1

2
1

2

1
1

1
1

1
1

1
1

1
1

1
1

.

n
n

n
n

n
n

n
n

n

n
n

n

n
n

n a z
z f z n

f z
z a z

n

n a
n

a
n

α β

α β

β α
α

β α
α

β α
α

β α
α

κ γ

−∞

=

−∞

=

−∞

=

−∞

=

Γ +
−′ Θ Γ +  − ≤

Γ +Θ
−

Γ +

Γ +
−

Γ +
≤

Γ +
−

Γ +

≤

∑

∑

∑

∑
 

Hence, by the maximum modulus theorem, we have ( ) ( ), , ,nf z α β κ γ∈  which establishes the required 

result. 
 
Theorem 2. Let ( ).f n∈  Then ( ), , ;nf α β κ γ ϑ∈  if and only if  

                                                    ( )
( )( ) ( )

1

2

1
1 1

1

n

n
n

n a
n

β α
ϑ κ γ

α

−∞

=

Γ +
+ − ≤  Γ +∑                                                            (14) 

for { }\ 0γ ∈ , 0 1κ≤ <  and 0 1.ϑ≤ ≤  

Proof. We omit the proofs since it is similar to Theorem 1. 
 
3. Inclusion relations involving ( ),n eδ  of ( ), ,n

α β κ γ  and ( ), , ;n
α β κ γ ϑ  

 
Theorem 3. If 

                                                       ( )
( ) ( ) ( )2 2 2

,    1 ,
1 1
κ γ α

δ γ
β κ γ α

Γ +
= <

+ Γ +
                                                               (15) 

then ( ) ( ), ,, .n
n eα β δκ γ ⊂    

Proof. Let ( ) ( ), , .nf z α β κ γ∈  By Theorem 1, we have  

( )
( ) ( )

2

1
1 ,

2 2 n
n

a
β α

κ γ κ γ
α

∞

=

Γ +
+ ≤

Γ + ∑  

which implies 
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                                                              ( )
( ) ( )2

.
1

1
2 2

n
n

a
κ γ

β α
κ γ

α

∞

=

≤
Γ +

+
Γ +

∑                                                          (16) 

Using (11) and (16), we get  
( )

( )
( )

( ) ( )

( )

2 2

1 1
1

2 2 2 2

2
,

1

n n
n n

na a
β α β α

κ γ κ γ
α α

κ γ
δ

κ γ

∞ ∞

= =

Γ + Γ +
≤ + −

Γ + Γ +

≤ =
+

∑ ∑
 

that is,  

( )
( ) ( )2

2
.

1
1

2 2

n
n

na
κ γ

δ
β α

κ γ
α

∞

=

≤ =
Γ +

+
Γ +

∑  

Thus, by the definition given by (4), ( ) ( ), ,nf z eδ∈  which completes the proof. 

 
Theorem 4. If 

                                                       
( )

( ) ( ) ( )2 2 2
,    1 ,

1 1
κ γ α

δ γ
β ϑ α

Γ +
= <

+ Γ +
                                                               (17) 

then ( ) ( ), ,, ; .n
n eα β δκ γ ϑ ⊂    

Proof. For ( ) ( ), , ;nf z α β κ γ ϑ∈  and making use of the condition (14), we obtain 

( )
( ) ( )

2

1
1

2 2 n
n

a
β α

ϑ κ γ
α

∞

=

Γ +
+ ≤

Γ + ∑  

so that 

                                                                ( )
( ) ( )2

.
1

1
2 2

n
n

a
κ γ

β α
ϑ

α

∞

=

≤
Γ +

+
Γ +

∑                                                               (18) 

Thus, using (14) along with (18), we also get  
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( )
( ) ( ) ( )

( )
( ) ( )

( )
( )

( ) ( )

( )

2 2

1 1
1

2 2 2 2

2 21 1
2 2 1 1

2
.

1

n n
n n

na a
β α β α

ϑ κ γ ϑ
α α

κ γ αβ ϑ α
κ γ

α β ϑ α

ϑκ γ
δ

ϑ

∞ ∞

= =

Γ + Γ +
≤ + −

Γ + Γ +

Γ +− Γ +
≤ +

Γ + + Γ +

≤ =
+

∑ ∑

  

Hence, 

( )
( ) ( )2

2
1

1
2 2

n
n

na
κ γ

δ
β α

ϑ
α

∞

=

≤ =
Γ +

+
Γ +

∑  

which in view of (4), completes the proof of theorem. 

4. Neighborhood properties for the classes ( ), , ,n
α β κ γ η  and ( ), , , ;n

α β κ γ η ϑ  
 
Definition: For 0 1η≤ <  and ,z∈  A function ( ) ( )f z n∈  is said to be in the class ( ), , ,n

α β κ γ η  if 

there exists a function ( ) ( ), ,ng z α β κ γ∈  such that 

                                                                         ( )
( )

1 1 .
f z
g z

η− < −                                                                     (19) 

Analogously, for 0 1η≤ <  and ,z∈  ( ) ( )f z n∈  is said to be in the class ( ), , , ;n
α β κ γ η ϑ  if there 

exists a function ( ) ( ), , ;ng z α β κ γ ϑ∈  such that the inequality (19) holds true. 

 
Theorem 5. If ( ) ( ), ,ng z α β κ γ∈  and 

                                            
( )( )

( ) ( ) ( )
1 1

1
2 1 1 2 2

δβ α κ γ
η

β κ γ α κ γ α

Γ + +
= −

 + Γ + − Γ + 
                                                       (20) 

then ( ) ( ), , , , .n
n gδ α β κ γ η⊂    

Proof. Let ( ) ( ), .nf z gδ∈  Then,  

                                                                      
2

 n n
n

n a b δ
∞

=

− ≤∑                                                                        (21) 

which yields the coefficient inequality, 
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( )
2

 ,    .
2n n

n
a b nδ∞

=

− ≤ ∈∑   

Since ( ) ( ), ,ng z α β κ γ∈  by (16), we have 

                                                              ( )
( ) ( )2

,
1

1
2 2

n
n

b
κ γ

β α
κ γ

α

∞

=

≤
Γ +

+
Γ +

∑                                                              (22) 

and so 

( )
( )

( )
( ) ( )

( )
( ) ( )

2

2

1
1

1
1

2 2
12 1

2 2
1 .

n n
n

n
n

a bf z
g z b

β α
κ γ

αδ
β α

κ γ κ γ
α

η

∞

=
∞

=

−
− <

−

Γ +
+

Γ +
≤

Γ +
+ −

Γ +

= −

∑

∑

 

Thus, by definition, ( ) ( ), , ,nf z α β κ γ η∈  for η  given by (20), which establishes the desired result. 

 
Theorem 6. If ( ) ( ), , ;ng z α β κ γ ϑ∈  and 

                                            ( ) ( )
( ) ( ) ( )

1 1
1 ,

2 1 1 2 2
δβ ϑ α

η
β ϑ α κ γ α

+ Γ +
= −

 + Γ + − Γ +  
                                                         (23) 

then ( ) ( ), , , , ; .n
n gδ α β κ γ η ϑ⊂    

Proof. We omit the proofs since it is similar to Theorem 5. 
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From The First Remarkable Limit to a Nonlinear Differential Equation 
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Abstract 

In the paper a nonlinear differential equation arising from an elementary geometry problem 

was discussed. This geometry problem was inspired by one of the proofs of the first remarkable limit 

known from the 1st semester undergraduate Calculus course. It is known that the involved differential 

equation can be reduced to Abel’s differential equation of the first kind. In the paper the problem was 

solved using an approximate geometric method which constructs broken line approximation for the 

curve. Compass tool of GeoGebra was extensively used for these constructions. At the end of the 

paper, some generalizations were discussed. A new transformation of curves, named as Interception, 

was introduced and its approximate construction by GeoGebra was described. 

 

          Keywords: Length of a curve, nonlinear differential equations, Abel’s equation, The First 

Remarkable Limit. 

 

1. Introduction 

 

One of the first theorems that an undergraduate student learns from Calculus 1 course is the First 

Remarkable Limit:  

lim
𝜃→0

sin 𝜃

𝜃
= 1. 

Most of the Calculus textbooks provide the following proof based on the inequality sin 𝜃 < 𝜃 < tan 𝜃 

for 𝜃 ∈ [0,
𝜋

2
]. Dividing all the sides of this double inequality by positive number 𝜃 and then tending 𝜃 →

0 we obtain via, by then already covered Sandwich Theorem, the required limit. To prove the double 

inequality sin 𝜃 < 𝜃 < tan 𝜃 for 𝜃 ∈ [0,
𝜋

2
] the following standard diagram is used. 

In the following diagram, a circle of unit radius with the centre at the point 𝑂 is drawn, 𝑂𝐴 and 𝑂𝐵 are 

its radii, and the tangent of the circle at the point 𝐵 intersects the extension of the radius 𝑂𝐴 at the point 

𝐶. It is easy to see that the area of the triangle 𝐴𝑂𝐵 is lesser than the area of the sector 𝐴𝑂𝐵, which in 

turn is lesser than the area of triangle 𝐵𝑂𝐶. Therefore, 

sin 𝜃

2
<

𝜃

2
<

tan 𝜃

2
, 

where 𝜃 = ∠𝐴𝑂𝐵.  
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The inequality 𝜃 < tan 𝜃 for 𝜃 ∈ [0,
𝜋

2
] also means that the length of the arc 𝐴𝐵 is lesser than the length 

of the tangent 𝐵𝐶, as the line 𝑂𝐴 rotates counterclockwise around the point 𝑂. So, it is natural to ask, 

whether it is possible to replace the unit circle with another smooth curve passing through the point 𝐵 

such that now the length of the curve 𝐴𝐵 is equal to the length of the tangent 𝐵𝐶 as the line 𝑂𝐴 rotates 

counterclockwise around the point 𝑂. 

 

 

 

Figure 1. The proof of The First Remarkable Limit 

 

It will be shown in the Section II that this problem is equivalent to a nonlinear differential equation of 

the first order and overview of the literature about the equation will be given here. In Section III we will 

use an approximate method to determine the shape of this curve. In Section IV we generalize the problem 

and in Section V we give some elementary examples. In Section VI we discuss one possible application 

of this theory. For diagrams and numerical experiments, we used GeoGebra Calculator. This paper also 

intends to become a motivation for professors and students interested in undergraduate research projects. 

The current paper can be a motivating example to show that it is possible to jump from a familiar 

textbook topic directly to advanced research problems. 

2. The Differential Equation 

 

We want to find a curve whose polar equation 𝑟 = 𝑟(𝜃) satisfies 𝑟(0) = 1 and the length of its arc in 

the interval [0, 𝜃] is equal to the length of the tangent line at 𝜃 = 0 in the same interval [0, 𝜃]. In the 

following diagram the length of the line segment 𝐵𝐶 which is perpendicular to 𝑂𝐵, is equal to the length 

of the arc 𝐴𝐵 of the required curve as 𝑂𝐶 rotates around 𝑂. 
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Figure 2. The length of BA is equal to BC. 

 

Using the well-known formula for the length of a curve given in polar form 𝑟 = 𝑟(𝜃), we obtain the 

equation  

∫ √𝑟2 + (𝑟′)2𝜃

0
𝑑𝜃 = tan 𝜃, 

where ∠𝐶𝑂𝐵 = 𝜃 and 𝑂𝐴 = 𝑟(𝜃). By taking the derivative of both sides with respect to 𝜃 we obtain the 

differential equation  

√𝑟2 + (𝑟′)2 =
1

𝑐𝑜𝑠2𝜃
,      (1) 

with initial condition 𝑟(0) = 1. One of the solutions of the differential equation is its known solution 𝑟 =
1

cos 𝜃
, which is the equation of tangent line itself. We are interested in the existence of the other solution. 

Using standard methods of series solutions of ODE, we can find the first terms of the Maclaurin’s series 

of the two solutions:  

𝑟1 = 1 +
1

2
𝜃2  +

5

24
𝜃4  +

61

720
𝜃6  +

277

8064
𝜃8  + 𝑂(𝜃10), 

𝑟2 = 1 −  𝜃2  −
2

21
𝜃4 −

1933

24255
𝜃6  −

6004

169785
𝜃8  +  𝑂(𝜃10). 

We used Maple 2021 to obtain these series. 
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Figure 3. 4th order series approximations of solutions 𝑟1, 𝑟2. 

It is obvious that 𝑟1 =
1

cos 𝜃
. But it is not clear what 𝑟2 is. Let us try to solve (1) explicitly. It was noted in 

[1, Part C (Part 3 in Russian Translation), Sect. 1.370] that a differential equation of the form 

𝑟2 + (𝑟′)2 = 𝑓2(𝑥) 

can always be transformed into the form 

𝑓𝑢′ + 𝑓′ tan 𝑢 = ±𝑓, 

using the substitution 𝑟 = 𝑓 sin 𝑢(𝑥) (see [1, Sect. 1.370]), which in turn can be transformed into the 

equation 

𝑓𝑢′ + 𝑔𝑢3 + ℎ𝑢2 + 𝑔𝑢 + ℎ = 0, 

using the substitution 𝑢(𝑥) = tan 𝑦 (see [1, Sect. 1.202]). The last equation is I type Abel equation (see [1, 

Sect. 4.10], [2, Sect. 4-1]). The special case 

𝑦2 + (𝑦′)2 =
𝑎2

cos4 𝑥
, 

was discussed in [3] in relation to one kinematics problem which is dilational version of our problem (See 

also [1, Sect. 1.460]). Solution in quadratures for the last equation was given in [4] (See also [1, Sect. 

1.460]). One can follow the following steps: 

1)  Use substitution 𝑦′ = 𝑦 ∙ cot𝑢 to obtain 𝑦 ∙ cos2𝑥 = ±𝑎 ∙ sin𝑢. Then differentiating and excluding 𝑦 

and 𝑦′ we obtain 𝑢′ + 2 tan 𝑢 tan 𝑥 = 1. [1, Sect. 1.460] 

2) Use substitutions 𝜂(𝜉) = tan 𝑢 , 𝜉 = tan 𝑥 to obtain Abel’s equation (𝜉2 + 1)𝜂′ = (𝜂2 + 1)(1 − 2𝜉𝜂). 

[1, Sect. 1.81] 

3) Use substitution 𝜉4𝜂(𝜉) = (𝜉2 + 1)𝑧 + 𝜉3  to obtain again Abel’s equation 𝜉7𝑧′ + 2(𝜉2 + 1)𝑧3 +
5𝜉3𝑧2 = 0. [1, Sect. 1.151] 
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4) Use substitution 𝑣 =
1

𝑧
 to obtain 𝜉7𝑣𝑣′ = 2(𝜉2 + 1) + 5𝜉3𝑣. [1, Sect. 1.185] 

5) Use substitution 𝜉𝑤 = 𝜉3𝑣 + 1 to obtain linear equation 
𝑑𝜉

𝑑𝑤
−

𝜉𝑤

2(𝑤2+1)
+

1

2(𝑤2+1)
= 0, which can be 

solved using quadratures [1, Sect. 1.185]. 

As one can understand from these steps, the solution of (1) as a closed formula is not going to be simple. 

Therefore, the approximate solutions are very helpful to find the shape of the curve. 

It is also worthwhile to note that similar problems were also discussed in the context of aeronautics [5]. 

These real-life applications are not the main objective of the current paper, and they will be shortly 

touched in the conclusion part of the current paper. 

I thank my former colleague E. Hasanalizade (currently PhD student at The University of Lethbridge) for 

the discussion of the references in [1]. 

 

3. Approximate geometric solution. 

 

Let us draw the rays 𝜃1 =
𝜋

𝑛
, 𝜃2 =

2𝜋

𝑛
, 𝜃3 =

3𝜋

𝑛
, ..., 𝜃𝑛 =

𝑛𝜋

𝑛
= 𝜋  for the given 𝑛 . Denote the 

intersections of these rays with the vertical line 𝑟 =
1

cos 𝜃
 by 𝐶1, 𝐶2, 𝐶3, …. Let us construct the points 

𝐴1, 𝐴2, 𝐴3, …  on the rays 𝑂𝐶1, 𝑂𝐶2, 𝑂𝐶3, … ., respectively, so that 𝐵𝐴1 = 𝐵𝐶1 , 𝐴1𝐴2 = 𝐶1𝐶2 , 𝐴2𝐴3 =
𝐶2𝐶3,... We can use the compass tool of GeoGebra for this purpose. To construct the point 𝐴1 we draw 

circle with radius 𝐵𝐶1  at the centre 𝐵  and denote its second intersection with the line 𝑂𝐶1  by 𝐴1 . 

Similarly, to find the point 𝐴2, we draw circle with radius 𝐶1𝐶2 at the centre 𝐴1, and denote its second 

inersection with the line 𝑂𝐶2 by 𝐴2. The other points 𝐴3, 𝐴4, … are constructed in the same way. 

 

 

 

Figure 4. The construction of the broken line. 

297



 

5th INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 

1-3 December 2021, Istanbul, Turkey 

 

 

ICOM 2021 

ISTANBUL / TURKEY 

 

It is now obvious that the length of the line segment 𝐵𝐶1𝐶2𝐶3 … 𝐶𝑛 is equal to the length of the broken 

line 𝐵𝐴1𝐴2𝐴3 … 𝐴𝑛 and as 𝑛 → ∞ this broken line approaches the required curve. It is noteworthy that all 

these constructions can be done using only ruler and compass. One can also observe that the locus of each 

of the points 𝐴1, 𝐴2, 𝐴3, … , 𝐴𝑛 as the point 𝐶1 moves, can be interpreted as approximations of the required 

curve. We used one of these approximations to draw the curve at the beginning of Section II. Each circle 

in the next picture is used as a compass to find the centre of the next circle. The centre of each next circle 

is taken at the point obtained in the previous construction. 

 

 

 

Figure 5. The broken line approximates the curve. 

 

Note that at around 𝜃 = 𝜃0 ≈ 0.9235 ≈ 52.9° the curve 𝑟 = 𝑟(𝜃) passes through the point 𝑂. It would be 

interesting to find out how the constant 𝜃0 is related to the other constants in mathematics such as 𝑒 or 𝜋. 

We could only prove that 

1

𝜃0(tan2 𝜃0 + 1)
= 1 − 𝜃0 tan 𝜃0 + 𝜃0

2 (tan2 𝜃0 +
1

6
) + ⋯ 

where arbitrary number of terms of the series on the right-hand side can be calculated. 

 

4. Generalizations and “Interception”. 

 

Let us now replace the vertical line 𝐵𝐶  by an arbitrary differentiable curve 𝑟 = Φ(𝜃)  passing 

through the point 𝐵(1,0). Then the differential equation becomes 

√𝑟2 + (𝑟′)2 = 𝜑(𝜃), 
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where 𝜑(𝜃) = √Φ(𝜃)2 + Φ′(𝜃)2. One of the solutions is obviously 𝑟1 = Φ(𝜃). It is interesting to find 

the other solution 𝑟2 = 𝑟2(𝜃). As the case Φ(𝜃) =
1

cos 𝜃
 suggests, it is not always possible to do this 

analytically. So, it is reasonable to have an approximate method for the solution. The approximate method 

described in Section 3 can be applied here again with obvious modifications. We just need to take the 

points 𝐶1, 𝐶2, 𝐶3, … , 𝐶𝑛 on the curve 𝑟 = Φ(𝜃) and measure the distances 𝐵𝐶1, 𝐶1𝐶2, 𝐶2𝐶3,... using the 

broken line approximation 𝐵𝐶1𝐶2𝐶3 … 𝐶𝑛 … of the curve 𝑟 = Φ(𝜃). As in the previous case we use the 

compass to construct the points 𝐴1, 𝐴2, 𝐴3, … on the rays 𝑂𝐶1, 𝑂𝐶2, 𝑂𝐶3, …., respectively, so that 

𝐵𝐴1 = 𝐵𝐶1, 𝐴1𝐴2 = 𝐶1𝐶2, 𝐴2𝐴3 = 𝐶2𝐶3,... 

 

 

 

 

Figure 6: Construction of “The Interception Curve”. 

 

The broken line 𝐵𝐴1𝐴2𝐴3 … 𝐴𝑛  approximates 𝑟2 = 𝑟2(𝜃)  and as 𝑛 → ∞  this broken line 

approaches the curve 𝑟2 = 𝑟2(𝜃). We will call the process of obtaining the curve 𝑟2 = 𝑟2(𝜃) from the 

given curve 𝑟1 = Φ(𝜃) as Interception. The reasons for the choice of this name will be clear later in the 

last section of the paper. This transformation preserves the distances on the curves. It would be interesting 

to find an analogue of this transformation for surfaces in space. 
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5. Examples. 

 

It would be satisfying to see some examples of elementary functions 𝑟1 = Φ(𝜃) for which 𝑟2 is 

again an elementary function. First, note that if 

𝑟1
2 + (𝑟1′)2 = 𝑟2

2 + (𝑟2′)2 

then 

(𝑟2 − 𝑟1)(𝑟2 + 𝑟1) = −(𝑟2
′ − 𝑟1

′)(𝑟2
′ + 𝑟1

′). 

Let us denote 𝑟2 − 𝑟1 = 2𝑥, 𝑟2 + 𝑟1 = 2𝑦. Then we obtain 𝑦𝑥 = −𝑦′𝑥′ . The last equality can also be 

rewritten as 
𝑥

𝑥′
= −

𝑦′

𝑦
 or (ln 𝑦)′ = −

1

(ln 𝑥)′
. From geometrical point of view this means that the solutions 

𝑟1, 𝑟2  of the differential equation 𝑟2 + (𝑟′)2 = 𝜑(𝜃)2  can be represented as 𝑟1 = 𝑦 − 𝑥, 𝑟2 = 𝑦 + 𝑥 , 

where the functions 𝑥 = 𝑥(𝜃), 𝑦 = 𝑦(𝜃) have the nice property that the tangent lines of the functions 

ln 𝑥(𝜃) and ln 𝑦(𝜃) at an arbitrary point 𝜃 are perpendicular to each other. The equality (ln 𝑦)′ = −
1

(ln 𝑥)′ 

can be the starting point to find infinitely many elementary examples of such 𝑟1, 𝑟2. Using the easily 

verifiable fact that 

(ln sin 𝜃)′ = −
1

(ln cos 𝜃)′, 

we obtain the pair of circles 

𝑟1 = cos 𝜃 − sin 𝜃 , 𝑟2 = cos 𝜃 + sin 𝜃. 

Note that the equality of the arcs 𝐵𝐴 and 𝐵𝐶 follows easily from the elementary properties of inscribed 

angles and the fact that these circles have the same radius. 
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Figure 7. Circles as an example of Interception. 

 

Similarly, if we take 𝑥 = 𝜃, then we get 𝑦 = 𝑒−
𝜃2

2 . 

 

 

 

Figure 8. Another example of Interception. 
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Finally, if we take 𝑥 = √𝜃, then we obtain 𝑦 = 𝑒−𝜃2
. 

 

 
 

Figure 9. One more example of Interception. 

 

Note that the curves 𝑟1, 𝑟2  do not need to pass through the same point 𝐵(0,1) and can still have the 

distance preserving property.  

 

 
 

Figure 10. Non-intersecting example of Interception. 

 

For example, if we take 𝑥 =
1

√𝜃
 we obtain 𝑦 = 𝑒𝜃2

. The obtained curves 𝑟1 = 𝑒𝜃2
+

1

√𝜃
, 𝑟2 = 𝑒𝜃2

−
1

√𝜃
 

never intersect but they have the property that their arcs between two arbitrary lines 𝑓: 𝜃 = 𝜃1 and 𝑔: 𝜃 =
𝜃2, have the same length (length of arc 𝐴𝐷 = length of arc 𝐵𝐶). The transformation Interception that was 

described in the previous section should be modified for such cases. In this case instead of the point 𝐵 we 

should take two points: 𝐵 on 𝑟1 = Φ(𝜃) and 𝐵′ on 𝑟2, and then construct the broken line 𝐵′𝐴1𝐴2𝐴3 … 𝐴𝑛 

so that 

𝐵′𝐴1 = 𝐵𝐶1, 𝐴1𝐴2 = 𝐶1𝐶2, 𝐴2𝐴3 = 𝐶2𝐶3,... 

Note that two such broken line approximations 𝐵′𝐴1𝐴2𝐴3 … 𝐴𝑛 are possible here and only one was drawn 

below. 
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Figure 11. More general Interception. 

 

 

 

6. Conclusion 

 

The study of curves and their properties has a long history dating back to the time of the ancient Greeks. 

Modern mathematics supplied the theory of curves with analytical tools and abstract viewpoint. Although 

it is not a mainstream research topic today, for undergraduate research projects and expository papers the 

theory of curves can be a source of inspiration and motivation. In the current paper one interesting curve 

was studied in detail. Its approximate shape was drawn as a broken line. This construction was done with 

the help of the compass tool of GeoGebra. After this, a generalization was discussed and a new 

transformation (named as Interception) preserving the distances on the curves was introduced. 

Elementary function examples for which Interception gives again an elementary function were given at 

the end of the paper. 

 

 
 

Figure 12. Real life Interception REUTERS/Amir Cohen. 

 

The discussed topics also have some connections with problems related to laser-beam riding 

interception (hence the name) of high-speed missiles in defence technology [5]. The discussed method in 

the current paper can have some applications outside of mathematics. 

 

303



 

5th INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 

1-3 December 2021, Istanbul, Turkey 

 

 

ICOM 2021 

ISTANBUL / TURKEY 

Acknowledgement: This paper was supported by ADA University Faculty Research and Developement 

Fund.   

 

 

7. References 

 

1. Kamke E., Differentialgleichungen Lösungsmethoden und Lösungen, Wiesbaden, 1977; Russian 

translation: Nauka, 1971. 

2. Murphy G.M., Ordinary Differential Equations and Their Solutions (Dover Books on Mathematics), 

2011. 

3. Wilder Ch.E., A discussion of a differential equation, The American Mathematical Monthly, 38(1) 

(1931) 17-25. 

4. Zbornik J., Akademie der Wissenschaften in Wien Mathematisch-Naturwissenschaftliche Klasse, Abt. 

IIa, Sitzungberichte, 166 (1957) 42. 

5. Elnan O.R.S., Lo H., Interception of High-Speed Target by Beam Rider Missile, AIAA Journal, 1963, 

Vol.1: 1637-1639. 

304



 

5th INTERNATIONAL ONLINE CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 

1-3 December 2021, Istanbul, Turkey 

 

 

ICOM 2021 

ISTANBUL / TURKEY 

On Strongly -g-Rad-Supplemented Modules 

Hilal Başak Özdemir
1
, Celil Nebiyev

2  

Department of Mathematics, Ondokuz Mayıs University, Samsun/Turkey 
1
hilal-basak@windowslive.com, 

2
cnebiyev@omu.edu.tr  

 

Abstract 

In this work, all rings have unity and all modules are unitary left modules. It is investigated 

some new properties of strongly -g-Rad-supplemented modules, in this work. Let M be a strongly 

-g-Rad-supplemented R-module. If M is supplemented, then M is strongly -supplemented. 

Keywords: Essential Submodules, g-Small Submodules, Supplemented Modules, g-Supplemented 

Modules. 

 

2020 Mathematics Subject Classification: 16D10, 16D80. 

 

1. INTRODUCTION 

Throughout this paper all rings will be associative with identity and all modules will be unital left 

modules. 

Let R be a ring and M be an R-module. We will denote a submodule N of M by N≤M. Let M be an 

R-module and N≤M. If L=M for every submodule L of M such that M=N+L, then N is called a small 

submodule of M and denoted by NM. Let M be an R-module and N≤M. If there exists a submodule K of 

M such that M=N+K and NK=0, then N is called a direct summand of M and it is denoted by M=NK. 

For any R-module M, we have M=M0. The intersection of all maximal submodules of M is called the 

radical of M and denoted by RadM. If M have no maximal submodules, then it is defined RadM=M. M is 

said to be semilocal if M/RadM is semisimple. A submodule N of an R-module M is called an essential 

submodule of M and denoted by NM in case KN≠0 for every submodule K≠0, or equivalently, K=0 for 

every K≤M with NK=0. Let M be an R-module and K be a submodule of M. K is called a generalized 

small (or briefly, g-small) submodule of M if for every essential submodule T of M with the property 

M=K+T implies that T=M, then we write KgM (in [16], it is called an e-small submodule of M and 

denoted by KeM). It is clear that every small submodule is a generalized small submodule but the 

converse is not true in general. Let M be an R-module. M is called a hollow module if every proper 

submodule of M is small in M. M is called a local module if M has the largest submodule, i.e. a proper 

submodule which contains all other proper submodules. Let U and V be submodules of M. If M=U+V and 

V is minimal with respect to this property, or equivalently, M=U+V and UVV, then V is called a 

supplement of U in M. M is said to be supplemented if every submodule of M has a supplement in M. If 
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every submodule of M has a supplement that is a direct summand in M, then M is called a -

supplemented module. Let M be a supplemented R-module. If every supplement submodule of M is a 

direct summand of M, then M is called a strongly -supplemented module. Let M be an R-module and 

U;V≤M. If M=U+V and M=U+T with TV implies that T=V, or equivalently, M=U+V and UVgV, 

then V is called a g-supplement of U in M. M is said to be g-supplemented if every submodule of M has a 

g-supplement in M. M is said to be -g-supplemented if every submodule of M has a g-supplement that is 

a direct summand in M (see [9]). Let M be an R-module and U,V≤M. If M=U+V and UV≤RadV, then V 

is called a generalized (radical) supplement (briefly, Rad-supplement) of U in M. M is said to be 

generalized (radical) supplemented (briefly, Rad-supplemented) if every submodule of M has a Rad-

supplement in M. M is said to be generalized (radical) -supplemented (briefly, Rad--supplemented) if 

every submodule of M has a Rad-supplement that is a direct summand in M. The intersection of all 

essential maximal submodules of an R-module M is called the generalized radical of M and denoted by 

RadgM (in [16], it is denoted by RadeM). If M have no essential maximal submodules, then we denote 

RadgM =M. An R-module M is said to be g-semilocal if M/RadgM is semisimple (see [8]). Let M be an R-

module and U,V≤M. If M=U+V and UV≤RadgV, then V is called a generalized radical supplement (or 

briefly, g-radical supplement) of U in M. M is said to be generalized radical supplemented (briefly, g-

radical supplemented) if every submodule of M has a g-radical supplement in M. M is said to be -g-

Rad-supplemented if every submodule of M has a g-radical supplement that is a direct summand in M (see 

[11]). Let M be an R-module and X≤Y≤M. If Y/XM/X, then we say Y lies above X in M. If every 

submodule of M lies above a direct summand in M, then we say M satisfies (D1) property. Let M be an R-

module. M is said to be -projective if for every U,V≤M such that M=U+V there exists an R-module 

homomorphism f : MM such that Imf≤U and Im(1-f)≤ V. 

More informations about supplemented modules are in [1] and [15]. More results about -

supplemented modules are in [4] and [7]. More details about strongly -supplemented modules are in 

[10]. More details about generalized (radical) supplemented modules are in [14]. More details about 

generalized (radical) -supplemented modules are in [2], [3] and [13]. More informations about g-

supplemented modules are in [5]. More informations about g-radical supplemented modules are in [6]. 

 

Lemma 1.1. Let M be an R-module. 

(1) If K≤L≤M, then KM if and only if KLM. 

(2) Let N be an R-module and f : MN be an R-module homomorphism. If KN, then f
-1

 (K)M. 

(3) For N≤K≤M, if K/NM/N, then KM. 

(4) If K1L1≤M and K2L2≤M, then K1K2L1L2. 
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(5) If K1M and K2M, then K1K2M. 

Proof. See [15, 17.3]. 

 

Lemma 1.2. Let M be an R-module. The following conditions hold. 

(1) RadgM is equal to the sum of g-small submodules of M. 

(2) RmgM for every mRadgM. 

(3) If N≤M, then RadgN≤RadgM. 

(4) If K,L≤M, then RadgK+RadgL≤Radg(K+L). 

(5) Let N be an R-module and f : MN be an R-module homomorphism. Then f(RadgM)≤RadgN. 

(6) If K,L≤M, then (RadgK+L)/L≤Radg[(K+L)/L]. If L≤RadgK, then (RadgK)/L≤Radg(K/L). 

(7) If M=iIMi, then RadgM=iIRadgMi. 

(8) RadM≤RadgM. 

Proof. See [6, Lemma 2, Lemma 3 and Lemma 4]. 

 

2. STRONGLY -g-RAD-SUPPLEMENTED MODULES 

Definition 2.1. Let M be a g-supplemented R-module. If every g-supplement submodule is a direct 

summand in M, then M is called a strongly -g-supplemented module.  

 

Definition 2.2. Let M be a g-radical supplemented R-module. If every g-radical supplement submodule is 

a direct summand in M, then M is called a strongly -g-Rad-supplemented module. (See also [12]) 

 

Proposition 2.3. Every strongly -g-supplemented module is -g-supplemented. 

Proof. Clear, from definitions. 

 

Proposition 2.4. Every strongly -g-Rad-supplemented module is -g-Rad-supplemented. 

Proof. Clear from definitions. 

 

Proposition 2.5. Let M be a strongly -g-Rad-supplemented R-module. 

Then M is g-semilocal. 

Proof. Since M is strongly -g-Rad-supplemented, M is g-radical supplemented. Then by [6, Theorem 1], 

M is g-semilocal. 

 

Proposition 2.6. Every strongly -g-supplemented module is -g-Rad-supplemented. 

Proof. Let M be a strongly -g-supplemented module. Then by Proposition 2.3, M is -g-supplemented. 

It is clear that every -g-supplemented module is -g-Rad-supplemented. Hence M is -g-Rad-

supplemented. 
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Proposition 2.7. Let M be a strongly -g-Rad-supplemented module. If M is g-supplemented, then M is 

strongly -g-supplemented. 

Proof. Since every g-supplement submodule is a g-radical supplement submodule and every g-radical 

supplement submodule is a direct summand in M, every g-supplement submodule is a direct summand in 

M. Hence M is strongly -g-supplemented. 

 

Proposition 2.8. Let M be a strongly -g-Rad-supplemented module. If M is supplemented, then M is 

strongly -supplemented. 

Proof. Clear, since every supplement submodule in M is a g-radical supplement submodule in M. 

 

Proposition 2.9. Let M be a strongly -g-Rad-supplemented module. If M is supplemented, then M is -

supplemented. 

Proof. By Proposition 2.8, M is strongly -supplemented. Hence M is -supplemented. 

 

Proposition 2.10. Let M be a g-supplemented module. If every g-radical supplement submodule is a 

direct summand in M, then M is strongly -g-Rad-supplemented. 

Proof. Since M is g-supplemented, M is g-radical supplemented. Then by definition, M is strongly -g-

Rad-supplemented. 

 

Proposition 2.11. Let M be a supplemented module. If every g-radical supplement submodule is a direct 

summand in M, then M is strongly -g-Rad-supplemented. 

Proof. Since M is supplemented, M is g-supplemented. Since M is g-supplemented, M is g-radical 

supplemented. Then by definition, M is strongly -g-Rad-supplemented. 

 

Proposition 2.12. Let M be a hollow module. If every g-radical supplement submodule is a direct 

summand in M, then M is strongly -g-Rad-supplemented. 

Proof. Since M is hollow, M is supplemented and hence M is g-supplemented. Since M is g-

supplemented, M is g-radical supplemented. Then by definition M is strongly -g-Rad-supplemented. 

 

Proposition 2.13. Let M be a local module. If every g-radical supplement submodule is a direct summand 

in M, then M is strongly -g-Rad-supplemented. 

Proof. Clear from Proposition 2.12, since every local module is hollow. 

 

Proposition 2.14. Let M be a g-radical supplemented module and K≤M. If every g-radical supplement 

submodule is a direct summand in M/K, then M/K is strongly -g-Rad-supplemented. 

Proof. Since M is g-radical supplemented M/K is g-radical supplemented. Then by definition M/K is 

strongly -g-Rad-supplemented. 
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Proposition 2.15. Let M be a g-supplemented module and K≤M. If every g-radical supplement 

submodule is a direct summand in M/K, then M/K is strongly -g-Rad-supplemented. 

Proof. Since M is g-supplemented, M is g-radical supplemented. Then by Proposition 2.14, M/K is 

strongly -g-Rad-supplemented. 

 

Proposition 2.16. Let M be a supplemented module and K≤M. If every g-radical supplement submodule 

is a direct summand in M/K, then M/K is strongly -g-Rad-supplemented. 

Proof. Since M is supplemented, M is g-radical supplemented. Then by Proposition 2.14, M/K is strongly 

-g-Rad-supplemented. 

 

3. CONCLUSION 

Strongly  -g-Rad-supplemented modules are special parts of -g-Rad-supplemented modules. 
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Abstract 

In this study, we firstly characterize focal curves of adjoint curves by considering quasi frame in 

the ordinary space. Then, we obtain the relation of each quasi curvatures of curve in terms of focal 

curvatures. Finally, we give some new conditions with constant quasi curvatures in the ordinary space.  

   

Keywords: Quasi frame, focal curve, adjoint curve. 

 

1.  Introduction 

 

By way of design and style, this is model to kind of a moving frame with regards to a particle. In 

the quick stages of regular differential geometry, the Frenet-Serret frame was applied to create a curve in 

location. After that, Frenet-Serret frame is established by way of subsequent equations for a presented 

framework [1-14], 
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where t=  and   are the curvature and torsion of  , respectively. 

The quasi frame( q -frame) of a regular curve   is given by 

 

 ,=,=, 

qqqqq NTB
kT

kT
NT=T 




 

 

where k  is the projection vector [4]. 

For simplicity, we have chosen the projection vector (0,0,1)=k  in this paper. However, the q-

frame is singular in all cases where t  and k  are parallel. Thus, in those cases where t  and k  are parallel 

the projection vector k  can be chosen as (0,1,0)=k  or (1,0,0).=k  

If the angle between the quasi normal vecctor 

qN  and the normal vector N  is choosen as ,  then 

following relation is obtained between the quasi and FS frame.  
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such that short computation by using Eqs. ( )31−  yields that the variation of parallel adapted q -frame is 

given by 
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where  

 ,=,sin=,cos=
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  +− 'ùùù  

curvatures of   and 

 .=,=,= 
qqqqqqqqq NTBTBNBNT   

 

 

Definition 1: 1 Let   be a regular curve arc-length parametrized, },,{ 
qqq BNT  be q -frame of .  Then, 

the adjoint curve of   according to q -frame is given as 

 .)(=)(

0

dsss q

s

s

 B  

  

Theorem 2: 2 Let   be a regular curve arc-length parametrized, },,{ 
qqq BNT  be q -frame of   and   

be adjoint curve of   according to q -frame. Denote by },,{ 
qqq BNT  q -frame of .  Then, q -frame 

elements of   can given by 
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2.  Quasi Focal Curve of Adjoint Curves with q-Frame in 3E  

 

The focal curve of   is given by  

 ,= 21

  qqf BN ++                                                            (2.1) 

where the coefficients ,1  2  are smooth functions of the parameter of the curve  , called the first and 

second focal curvatures of  , respectively. 

 

Theorem 3: 3 Let 3: E→I  be adjoint curve of  , 
f  its focal curve on 3E  and 

1
ù , 

2
ù , 
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ù  be 

curvatures of   according to q -frame. Then, 
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                                   (2.2) 

 

where C  is a constant of integration.   

 

Proof:  Assume that   is a unit speed curve and f  its focal curve in .3E  So, by differentiating of the 

formula (2.1), we get 
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From above equation, the first 2  components vanish, we get 
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Using the above equations, we obtain 
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By integrating this equation, we find 
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By means of obtained equations and using Theroem 2, we express (2.2). This completes the proof of the 

theorem.    

 

As an immediate consequence of the above theorem, we have: 

 

Corollary 4: 4 Let 3: E→I  be a unit speed curve and f  its focal curve on 3E . Then, the focal 

curvatures of   are 
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Proof: From above theorem, we have above system, which completes the proof.    

 

In the light of Theorem 3 and Corollary 4, we express the following corollary without proof: 

  

Corollary 5: 5 Let 3: E→I  be a unit speed curve and 
f  its focal curve on 3E . If the curvatures of   

are constant, then the focal curve of   are 
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Abstract 

In this work, we will prove some theorems for nonlinear multivariate convolution operators in 

order to approximate one-sided partial derivatives of functions of multivariables by using extended 

definition of the notion of one-sided derivative in univariate case. Our proofs will be guided by 

previous studies in the literature. 

          Keywords: nonlinear multivariate convolution operators, Lipschitz condition, unified approach, 

approximation of partial derivatives. 

 

1. Introduction 

 

 Let Ω be a non-empty index set and [𝑎, 𝑏) be a bounded interval in ℝ. Musielak [1] investigated 

some problems of nonlinear approximation using integral operators of the form: 

 

T𝜎(𝑓; 𝑥) = ∫ 𝐾𝜎(𝑡 − 𝑥, 𝑓(𝑡))𝑑𝑡
𝑏

𝑎

 

 

where 𝜎 ∈ Ω, 𝐾𝜎: [𝑎, 𝑏) × ℝ → ℝ, and proved a theorem for the functions which belong to generalized 

Orlicz space. In order to overcome the nonlinearity barrier occurring in the proof, the Lipschitz condition 

imposed on the kernel function 𝐾𝜎 in [1]. Bardaro, Musielak and Vinti [2] gave extensive information 

about unified approach and approximation by nonlinear integral operators.  

  The linear convolution-type integral operators are the building blocks for their nonlinear 

counterparts. In this context, detailed information can be found in [3]. Multivariate versions of 

convolution-type operators were widely studied in [4] and [5].  

 The convergence method given by Fatou [6] is studied in several works presenting some results 

concerning convergence of linear integral operators. Some results concerning linear convolution-type 

operators’ Fatou-type (pointwise) convergences can be found in [7-12]. For the nonlinear case, one may 

see [13] and so on. When it comes to the convergence of derivatives of operators, Taberski [7] gave a 

complicated result for higher order derivatives of linear convolution-type integral operators depending on 

two parameters. He put some conditions conditions on the kernel function in order to obtain (Fatou-type) 

convergence. In the same year, Gadjiev, Džafarov and Labsker [14] obtained the asymptotic 

approximation of derivatives of general summation-integral type operators to the functions whose higher 

order one-sided derivatives exist.  In [15], Gadjiev dealt with approximation of functions whose one-sided 

derivatives exist at a point by means of Fatou-type convergence of linear integral operators. For further 

reading, we refer the reader to [11, 16-20].  

 

 

317



 

5th INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 

1-3 December 2021, Istanbul, Turkey 

 

 

ICOM 2021 

ISTANBUL / TURKEY 

In [20] and [21], the authors respectively approximated first and higher order derivatives of 

functions using univariate nonlinear convolution-type integral operators depending on two parameters. 

They also obtained some convergence theorems concerning right and left derivatives of the functions. 

Some related works can be given as [22] and [23]. Recently, Uysal and Yılmaz [24] obtained some results 

which are analogues to that of proved in [7, 11, 12, 15] for multivariate singular integral operators of 

convolution-type using similar approach. Nonlinear counterparts of convolution-type integral operators 

concerning multidimensional case were studied, for example, in [25-27].  

Let 𝐸 be a non-empty index set consisting of non-negative parameters 𝜎 and ℝ𝑛 denote usual finite 

𝑛 −dimensional Euclidean space. The accumulation point of 𝐸  is denoted by 𝜎0  by allowing it to be also 

infinity. As a continuation of the works [7, 15, 20, 21, 24], in this study, we consider the nonlinear 

multivariate integral operators in the following form: 

𝑇𝜎(𝑔; 𝑥) = ∫ 𝐾𝜎(𝑡 − 𝑥, 𝑔(𝑡))𝑑𝑡,
𝐴

 𝑡, 𝑥 ∈ 𝐴, 

 

where 𝐴: = (𝑎1, 𝑏1) × ⋯ × (𝑎𝑛, 𝑏𝑛) is arbitrary bounded 𝑛 −dimensional open interval in ℝ𝑛 with finite 

end points and �̅�: = [𝑎1, 𝑏1] × ⋯ × [𝑎𝑛, 𝑏𝑛].  Here, for each fixed 𝜎 ∈ 𝐸,  𝐾𝜎  is a real-valued function 

defined on ℝ𝑛  × ℝ and satisfies some additional conditions. We denote the space of all measurable 

functions 𝑔  which are integrable in the sense of Lebesgue on �̅� such that the norm ‖𝑔‖𝐿(�̅�) ≔ 

∫ |𝑔(𝑡)|𝑑𝑡 < ∞
�̅� 

 by 𝐿(�̅�).  Using notations 𝑡: = (𝑡1, … , 𝑡𝑛) and 𝑥: = (𝑥1, … , 𝑥𝑛), we restate the operators 

𝑇𝜎 as 

 

𝑇𝜎(𝑔; 𝑥) = ∫ ⋯ ∫ 𝐾𝜎(𝑡1 − 𝑥1, … , 𝑡𝑛 − 𝑥𝑛, 𝑔(𝑡1, … , 𝑡𝑛))𝑑𝑡𝑛 ⋯ 𝑑𝑡1.
𝑏𝑛

𝑎𝑛

𝑏1

𝑎1

 

 

Let 𝜎 ∈ 𝐸 and 𝐊 be the family of all functions 𝐾𝜎 , 𝐾𝜎: ℝ𝑛  × ℝ → ℝ, such that the following conditions 

hold there: 

 

(I) 𝐾𝜎(𝑡, 0) = 0 for all 𝑡 ∈ ℝ𝑛 and 𝐾𝜎(𝑡, 𝑢) is Lebesgue integrable over ℝ𝑛 for each fixed 𝜎 ∈ 𝐸 for all 

values of 𝑢.  
 
(II) Partial derivative(s) of 𝐾𝜎(𝑡 − 𝑥,∙) up to the order 𝑚 + 1 with respect to 𝑥𝑗  (resp. 𝑡𝑗), where 𝑗 is a 

fixed integer with 1 ≤ 𝑗 ≤ 𝑛, finitely exist(s) for each fixed 𝜎 ∈ 𝐸. There exists a function ℒ𝜎: ℝ𝑛 → ℝ0
+ 

which is Lebesgue integrable over ℝ𝑛 and partial derivative(s) of ℒ𝜎(𝑡 − 𝑥,∙) up to the order 𝑚 + 1 with 

respect to 𝑥𝑗  (resp. 𝑡𝑗), where 𝑗 is a fixed integer with 1 ≤ 𝑗 ≤ 𝑛, finitely exist(s) for each fixed 𝜎 ∈ 𝐸 

such that the condition 

 

                               
𝜕𝑚+1

𝜕𝑥𝑗
𝑚+1 𝐾𝜎(𝑡 − 𝑥, 𝑢) −

𝜕𝑚+1

𝜕𝑥𝑗
𝑚+1 𝐾𝜎(𝑡 − 𝑥, 𝑣) =

𝜕𝑚+1

𝜕𝑥𝑗
𝑚+1 ℒ𝜎(𝑡 − 𝑥)[𝑢 − 𝑣],                    (1.1) 

318



 

5th INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 

1-3 December 2021, Istanbul, Turkey 

 

 

ICOM 2021 

ISTANBUL / TURKEY 

 

where 𝑡, 𝑥 ∈ ℝ𝑛 and 𝑢, 𝑣 ∈ ℝ, holds for each fixed 𝜎 ∈ 𝐸 and 𝑚 ∈ ℕ0. 
 

(III) lim
𝜎→𝜎0

[sup
|𝑡|≥𝜉

ℒ𝜎(𝑡)] = 0,  ∀𝜉 > 0. 

 

(IV) lim
𝜎→𝜎0

∫ ℒ𝜎(𝑡)𝑑𝑡 = 0,
|𝑡|≥𝜉

 ∀𝜉 > 0. 

(V) lim
𝜎→𝜎0

∫ ℒ𝜎(𝑡)𝑑𝑡 = 1
ℝ𝑛  and ‖ℒ𝜎‖𝐿(ℝ𝑛) ≤ 𝑀, where 𝑀 > 0 is independent of 𝜎. 

 

Remark 1. Condition (II) covering equation (1.1) is the condition whose univariate analogue is used in 

the works [20-23]. The remaining conditions were used in several works including [1, 2, 20-23, 27]. 

Especially, conditions (III-V) are well-known approximate identity properties (see, e.g., [3]). 

 

2. Main Result 

 

Now, we prove the following theorem based on the results and corresponding proofs of [7, 12, 15, 20, 

21]. More specifically, we generalize, mutatis mutantis, Theorem 3 in [21] and its proof steps. 

 

Theorem 1. Let 𝐾𝜎 ∈ 𝐊,  𝑚 ∈ ℕ0 and 𝑗 be a fixed integer such that  1 ≤ 𝑗 ≤ 𝑛. Assume that ℒ𝜎(𝑡) and 
𝜕𝑣

𝜕𝑡𝑗
𝑣 ℒ𝜎(𝑡) are continuous functions with respect to 𝑡 on ℝ𝑛 for each fixed 𝜎 ∈ 𝐸 and 𝑣 = 1, 2, … , 𝑚 + 1. 

Suppose that the following conditions:  

 

                                                     lim
𝜎→𝜎0

sup
|𝑡|≥𝜉

|
𝜕𝑣

𝜕𝑡𝑗
𝑣 ℒ𝜎(𝑡)| = 0, ∀𝜉 > 0                                                     (2.1)                                                                                                  

 

hold for each fixed 𝑣 = 1, 2, … , 𝑚 + 1. If 𝑔 ∈ 𝐿(�̅�) is continuous at a point 𝑐: = (𝑐1, … , 𝑐𝑛) ∈ 𝐴 and for 

each fixed 𝑣 = 1, 2, … , 𝑚 + 1,  its partial derivatives with respect to the 𝑗 − 𝑡ℎ variable 𝑔𝑗
(𝑣)

 and right-

hand (𝑚 + 1) − 𝑡ℎ order partial derivative with respect to the 𝑗 − 𝑡ℎ variable 𝑔+,𝑗
(𝑚+1)

 and left-hand (𝑚 +

1) − 𝑡ℎ  order partial derivative with respect to the 𝑗 − 𝑡ℎ  variable  𝑔−,𝑗
(𝑚+1)

 finitely exist and are 

continuous at 𝑐, then we have 

 

lim
(𝑥,𝜎)→(𝑐,𝜎0)

𝜕𝑚+1

𝜕𝑥𝑗
𝑚+1 𝑇𝜎(𝑔; 𝑥) = 𝛽𝑔+,𝑗

(𝑚+1)(𝑐) + (1 − 𝛽)𝑔−,𝑗
(𝑚+1)(𝑐), 

 

where  

 

lim
(𝑥,𝜎)→(𝑐,𝜎0)

∫ ⋯
∞

−∞

∫ ⋯ ∫ ℒ𝜎(𝑡1 − 𝑥1, … , 𝑡𝑗 − 𝑥𝑗 , … , 𝑡𝑛 − 𝑥𝑛)𝑑𝑡𝑛 ⋯ 𝑑𝑡𝑗 ⋯ 𝑑𝑡1 = 𝛽,
∞

−∞

∞

𝑐𝑗

 𝛽 ∈ [0, 1], 
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on any set 𝑆 consisting of (𝑥, 𝜎) ∈ 𝐴 × 𝐸 on which the following functions: 

 

              sup
𝜎∈𝐸

∫ ⋯
𝑐1−𝑥1+𝜁

𝑐1−𝑥1−𝜁

∫ |𝑡𝑗|
𝑚+1

|
𝜕𝑚+1

𝜕𝑡𝑗
𝑚+1 ℒ𝜎(𝑡1, … , 𝑡𝑛)| 𝑑𝑡𝑛 ⋯ 𝑑𝑡1

𝑐𝑛−𝑥𝑛+𝜁

𝑐𝑛−𝑥𝑛−𝜁

,                                             (2.2) 

 

                sup
𝜎∈𝐸

∫ ⋯
𝑐1−𝑥1+𝜁

𝑐1−𝑥1−𝜁

∫ |
𝜕𝑚+1

𝜕𝑡𝑗
𝑚+1 ℒ𝜎(𝑡1, … , 𝑡𝑛)| 𝑑𝑡𝑛 ⋯ 𝑑𝑡1

𝑐𝑛−𝑥𝑛+𝜁

𝑐𝑛−𝑥𝑛−𝜁

                                                           (2.3) 

 

and  

 

                  |𝑥𝑗 − 𝑐𝑗|
𝑣

∫ ⋯
𝑐1−𝑥1+𝜁

𝑐1−𝑥1−𝜁

∫ |𝑡𝑗|
𝑚+1−𝑣

|
𝜕𝑚+1

𝜕𝑡𝑗
𝑚+1 ℒ𝜎(𝑡1, … , 𝑡𝑛)| 𝑑𝑡𝑛 ⋯ 𝑑𝑡1

𝑐𝑛−𝑥𝑛+𝜁

𝑐𝑛−𝑥𝑛−𝜁

                            (2.4) 

 

are bounded for sufficiently large real number(s) 𝜁 > 0  as (𝑥, 𝜎) → (𝑐, 𝜎0)  for each fixed 𝑣 =
1, 2, … , 𝑚 + 1.  
 

Proof. Let 𝑐 ∈ 𝐴  be fixed. Further, there exists a number 𝛿 > 0 satisfying 0 < |𝑐𝑗 − 𝑥𝑗| <
𝛿

2
 with 𝑗 =

1, 2, … , 𝑛 such that the hypotheses on the function 𝑔 hold. We consider the function ℎ defined as  

 

ℎ(𝑡): = ℎ𝑡𝑗
−  and ℎ𝑡𝑗

−: = 𝑔(𝑐) + ⋯ +
(𝑡𝑗−𝑐𝑗)

𝑚

𝑚!
𝑔𝑗

(𝑚)(𝑐) +
(𝑡𝑗−𝑐𝑗)

𝑚+1

(𝑚+1)!
𝑔−,𝑗

(𝑚+1)(𝑐) 

 

for all 𝑡 ∈ (𝑎1, 𝑏1) × ⋯ × (𝑎𝑗 , 𝑐𝑗) × ⋯ × (𝑎𝑛, 𝑏𝑛) and 

 

ℎ(𝑡): = ℎ𝑡𝑗
+  and ℎ𝑡𝑗

+: = 𝑔(𝑐) + ⋯ +
(𝑡𝑗−𝑐𝑗)

𝑚

𝑚!
𝑔𝑗

(𝑚)(𝑐) +
(𝑡𝑗−𝑐𝑗)

𝑚+1

(𝑚+1)!
𝑔+,𝑗

(𝑚+1)(𝑐) 

 

for all 𝑡 ∈ (𝑎1, 𝑏1) × ⋯ × [𝑐𝑗 , 𝑏𝑗) × ⋯ × (𝑎𝑛, 𝑏𝑛).  

 

We also take into account the following function: 𝑓(𝑡): = ℎ(𝑡), for all 𝑡 ∈ 𝐴 and 𝑓(𝑡): = 0 for all 𝑡 ∈
ℝ𝑛 ∖ 𝐴.  In view of this, we have 

 

            𝑇𝜎(𝑔; 𝑥) = ∫ 𝐾𝜎(𝑡 − 𝑥, 𝑔(𝑡))𝑑𝑡
𝐴

 

 

 = ∫ 𝐾𝜎(𝑡 − 𝑥, 𝑔(𝑡))𝑑𝑡 −
𝐴

∫ 𝐾𝜎(𝑡 − 𝑥, 𝑓(𝑡))𝑑𝑡
ℝ𝑛

+ ∫ 𝐾𝜎(𝑡 − 𝑥, 𝑓(𝑡))𝑑𝑡
ℝ𝑛

 

 

                             =: 𝐼1(𝜎, 𝑥) + 𝐼2(𝜎, 𝑥), 
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where  

 

𝐼1(𝜎, 𝑥) = ∫ 𝐾𝜎(𝑡 − 𝑥, 𝑔(𝑡))𝑑𝑡 −
𝐴

∫ 𝐾𝜎(𝑡 − 𝑥, 𝑓(𝑡))𝑑𝑡
ℝ𝑛

 

 

and 

𝐼2(𝜎, 𝑥) = ∫ 𝐾𝜎(𝑡 − 𝑥, 𝑓(𝑡))𝑑𝑡.
ℝ𝑛

 

 

Differentiating both sides of the integral 𝐼2(𝜎, 𝑥) up to the order 𝑚 + 1 with respect to 𝑥𝑗, we have 

 

𝜕𝑚+1

𝜕𝑥𝑗
𝑚+1 𝐼2(𝜎, 𝑥) = (−1)𝑚+1 ∫ 𝑓(𝑡)

𝜕𝑚+1

𝜕𝑡𝑗
𝑚+1 ℒ𝜎(𝑡 − 𝑥)𝑑𝑡.

ℝ𝑛

 

Applying integration by parts 𝑚 + 1 times with respect to 𝑡𝑗, we get 

 

𝜕𝑚+1

𝜕𝑥𝑗
𝑚+1 𝐼2(𝜎, 𝑥) = 𝑔+,𝑗

(𝑚+1)(𝑐) ∫ ⋯
∞

−∞

∫ ⋯ ∫ ℒ𝜎(𝑡1 − 𝑥1, … , 𝑡𝑗 − 𝑥𝑗 , … , 𝑡𝑛 − 𝑥𝑛)𝑑𝑡𝑛 ⋯ 𝑑𝑡𝑗 ⋯ 𝑑𝑡1

∞

−∞

∞

𝑐𝑗

 

                                 +𝑔−,𝑗
(𝑚+1)(𝑐) ∫ ⋯

∞

−∞

∫ ⋯ ∫ ℒ𝜎(𝑡1 − 𝑥1, … , 𝑡𝑗 − 𝑥𝑗 , … , 𝑡𝑛 − 𝑥𝑛)𝑑𝑡𝑛 ⋯ 𝑑𝑡𝑗 ⋯ 𝑑𝑡1.
∞

−∞

𝑐𝑗

−∞

 

 

Evaluating the limits of both sides of resulting equality as (𝑥, 𝜎) → (𝑐, 𝜎0), we get 

 

lim
(𝑥,𝜎)→(𝑐,𝜎0)

𝜕𝑚+1

𝜕𝑥𝑗
𝑚+1 𝐼2(𝜎, 𝑥) = 𝛽𝑔+,𝑗

(𝑚+1)(𝑐) + (1 − 𝛽)𝑔−,𝑗
(𝑚+1)(𝑐), 𝛽 ∈ [0,1]. 

 

In view of conditions (2.1)-(2.4), the remaining part of the proof is quite similar to the proof of Theorem 

1 in [24]. We skip that part. The proof is completed. 

 

 

3. Conclusion 

 

 As is mentioned in [21], main theorem of this paper is valid for periodic kernel functions too. Our 

ongoing research is on finding an appropriate nonlinear kernel function which is compatible with 

computer applications. It is thought that nonlinear periodic kernel functions may help to achive this goal. 
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Abstract 

In this study, an inverse scattering problem for a discontinuous Sturm-Liouville equation on 

the half-line  0,  is considered. The special solutions and scattering datas are defined for the 

equation. Green function is obtained and the  resolvent operator is constructed. Applying the  contour 

integration ,  the  spectral expansion formulas in terms of scattering datas are obtained. 

 

            Keywords:  Expansion formula., scattering data,  singular differential operator, spectral parameter.  

 

1. Introduction 

 

In this paper, on the half line  0, , we are interested in obtaining the expansion formula of the 

problem (1.1)-(1.2) in terms of scattering data. These types of problems  with spectral parameter in the 

boundary condition are investigated in [1-3].  Unlike the classical works, in present work,  the boundary 

value problem  for the  differential equation with discontinuous coefficient  

                                  
2

2

2
, 0 ,

d
q x r x x

dx


                         (1.1) 

with  the boundary condition 

          0 1 0 10 0 0,U a ia b ib           (1.2) 

is considered. Here   spectral parameter,  r x  is a positive function with a finite number of 

discontinuity points,  q x is real valued function satisfying the condition  

    
0

1 ,x q x dx
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where      11 0,x q x L        11 0, ,x q x L   0 1 0 1, , ,a a b b are real numbers such that 

0 1 1 0 0a b a b    , 1   . 

It is known that, the asymptotic behavior of wave functions at infinity is shown   by scattering data  

(see [4]).  Scattering datas are defined and expansion formula is expressed by these datas.  

Firstly,  let’s define the special solutions for equation  (1.1).  Assume that,  the function  r x  in 

the following form  

  
2 , 0 ,

1, .

x d
r x

x d

  
 

  

It is known that [6], the  Jost solution  ,x   can be represented in the form   

      
 

0, , , ,i t

x

x x A x t e dt



   




    

where the function      1, , .A x t L x   For real 0  , the functions  ,x  and  ,x   form a 

fundamental system of solutions for (1.1) and   their Wronskian is  

                                                          , , , 2 ,W x x i      

where    1 2 1 2 1 2,W y y y y y y    . 

Let  ,x   be solution of equation (1.1) under initial condition  

    0 1 0 10, , 0, .a ia b ib           

Denote   

                                                 
         

         

0 1 0 1

1 0 1 0 1

0, 0, ,

0, 0, ,

a ia b ib

a ia b ib

       

       

   

   
 

and  

  
 

 
1

.S
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The function  S  is called the scattering function of the boundary value problem (1.1)-(1.2). 

Similarly to the Lemma 2.1. in [7], it is show that  the identity  

 
 

 
     

2 ,
, , ,

i x
x S x

 
    

 
   

holds for real 0  and      
1

.S S S  


       The function is meromorphic in half plane 

Im 0  with poles at the function    . The function     may have only a finite number of zeros in 

the half plane  Im 0.   

They are all simple and lie on the imaginary axis. For  0, 1,2,...,i n       , we get 

  
 

 

 

22

2 2

0 0 1 0 1

, .
2 2

i i
m x i dx

b b b b



 

   

 
 

   



    
 

  

The numbers are called the normalizing numbers of the boundary value problem (1.1)-(1.2) has finite 

numbers eigenvalue. The function is a characteristic of continuous spectrum of  the boundary value 

problem (1.1)-(1.2) 

                                                     0

1
exp ,

2
sF x S S i x d  







    

where 

 
 

 
0

1 exp 2
,

exp 2

i d
S

i d

 

 

 


 
 

where  

 
1
.
1










 

The collection      ; , 1,2,...,S m n         provides a complete description of the 

behaviour at infinity of all eigenfunctions of the boundary value problem (1.1)-(1.2). The set of values 

    , , 1,2,...,S m n      is called the scattering data of the boundary value problem (1.1)-(1.2). 

One can introduce the operator  L y y  with the domain of definition               
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               2 2| , , , 0 ,oc ocD L y y L R AC R y AC R y L R U y    
       

where  0, .R    If  runs through the set of all points of the  plane, then we obtain a family of 

singular operators L depending on the parameter   ( see [5]).]  

2. The Construction of  Resolvent Operator 

 

Assume that  is not a spectrum point of operator L . Let us find the expression of the resolvent 

of operator  L . For this reason,  let's find  the solution of the following problem 

     ,q x f x       (2.1) 

        0 1 0 10 0 0,a ia b ib         (2.2) 

where    f x D L  is a finite function and   equal to zero on  outside of  finite interval  0,a .  

By applying  the Lagrange method,  we obtain solution  of  (2.1)-(2.2)  

      
0

, , , ,x G x t f t dt  


   (2.3) 

where  

  
 

   

   

, , , ,1
, ,

, , , 0 .

x t x t
G x t

x t t x

   


    

  
  

 
 

Therefore, for   0, Im 0,     all  these numbers   belong to  resolvent set of   operator L   and the 

resolvent operator R  is  the integral operator  

      
0

, , .R f G x t f t r t dt 


   (2.4) 

Moreover, for the kernel function  , ,G x t  ,  by using the properties of the solutions of  ,x   and 

 ,x  , the inequality 

    
 

 

exp Im
, , ,

x t
G x t c x




 

 
          (2.5) 
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is obtained. 

Theorem 2.1. Assume that, let the function  g x  be twice continuously differentiable finite function. 

Then, the following equality  is valid: 

      
 

     2 2

0 0

1
, , , , ,

g x
G x t g t r t dt G x t g t r t dt 

 

 

     (2.6) 

where  

         .g t g t q t g t dt   

Proof:    For the kernel   , , ,G x t   the following equality is valid 

          2, , , , , , .G x t q x G x t G x t x t          

Here   x   is Dirac-delta function. By integrating by parts  and considering the boundary condition,  the 

formula (  2.6)  is obtained.  

3. The Expansion Formula 

  

Let    f x D L  and assume that it is a finite function at finite interval     0, 0,a   . Let us RC

denotes the circle of  radius R and center at the origin  which contour is positive oriented. Let RC that 

doesn't include points z satisfying the conditions Imz   and let 
 2
,RC   be a half arc that does not include  

Im z    points of RC and 
   1 2

, , ,R R RC C C     is positive oriented. Let 
 3
,RC   be negative oriented curve 

formed with Im z    lines and be arcs including points z  satisfying the conditions Im .z   Then, we 

can use the property of the integration 

 
(3)

, ,

.

R R R
C C C 

     (3.1) 

Let’s  call  
0

( , ) ( , , ) ( ) .x x t g t r t dtG  


   According to (2.6),  it is clear that  

 
2 2

0

( ) 1
( , ) ( , , ) ( ) .G

g x
x x t g t dt  
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Now multiplying both sides of the equality by 
1

2 i



and and integrating over the contour ,RC    

 

, , , 0

1 1 ( ) 1 1
( , ) ( , , ) ( ) .

2 2 2
R R RC C C

g x
x d d x t g t dt d

i i
G

i
  

     
    

 
    

 
     

According to (3.1), we obtain 

 
(3)

, ,

1 1 1
( , ) ( , ) ( , ) .

2 2 2
R R R
c C C

F x d F x d x d
i i i

 

        
  

     

From the relations   , 0 ,R   we get  

 

 

1 1

( ) [ ( , )] [ ( , )]

( , 0) ( , 0) .

K KK K
i

n

i

n

g x Res x Res x

x i x i d

   
   

     

 











  

   

 



 (3.2) 

and with calculations  

 

 

   
 1 1

1

0, 0,
[ ( , )] . ,

n

i

b i a ii
Res x x i

F i


 


 




   
   







 
   

                                                         
0 0

, , , ,t i g t r t dt u x i u t i g t r t dt     
 

    

where  

 

   

 
   

 1 1

1
, , ,

2

0, 0,
, , ,

K K K

K K

K K

u x i m x i

b i a i
x i x i

  

   
   





 
 

 

and  

 

     
2

1 1

2
. .

0, 0,

i
m

a i b iF i
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Now  taking    

        
1 01 1

[ ( , )] [ ( , )] , , ,
i i

n n n

Res x Res x u x i u t i g t r t dt
   

 
   

     


 
 




      (3.3) 

since  

                                                   ( , 0) ( , 0),x i x i        

we have 
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Substituting (3.2), (3.3)   in (3.4), we obtain  expansion formula in the following form:  
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Abstract 

In this article, we define the notion of prime ideals of Γ-near-rings on weak nearness 

approximation spaces and explain some of the concepts and definitions. Then, we study some basic 

properties of prime ideals of Γ-nearness near-rings. Γ-nearness near-rings is different from Γ-nearness 

rings and Γ-nearness semirings since Γ does not have to be group in Γ-nearness near-rings. Because of 

this, some properties defined in Γ-nearness rings and Γ-nearness semirings show some changes in Γ-

nearness near-rings. 

 

          Keywords: Near set, Near ring, Nearness approximation space, Weak nearness approximation 

space, Near-ring, Gamma-near-ring, Nearness near-ring, Gamma nearness near-ring. 

 

1. Introduction 

 

The concept Γ-rings, a generalization of a ring was introduced by Nobusawa in 1964 [1] and generalized 

by Barnes in 1966 [2]. Pilz defined near-rings (also near ring or nearring) that is an algebraic structure 

similar to a ring but satisfying some axioms [3]. A generalization of both the concepts near-ring and the 

ring, namely Γ-near-ring was introduced by Satyanarayana in 1984 and later studied by the authors like 

Satyanarayana [4], [5], Booth [6], Booth and Groenewald [7], [8], Jun, Sapancı and Öztürk [9]. 

In 2002, Peters introduced near set theory, which is a generalization of rough set theory [10]. In this 

theory, Peters defined an indiscernibility relation by using the features of the objects to determine the 

nearness of the objects [11], [12], [13]. The concept of nearness has a different approach for algebraic 

structures. Because, in the concept of ordinary algebraic structures, such a structure that consists of a 

nonempty set of abstract points with one or more binary operations, which are required to satisfy certain 

axioms. Also, the sets are composed of abstract points. Perceptual objects (non-abstract points) can be 

used on weak nearness approximation space to define nearness algebraic structures. This is more useful 

than working with abstract points for many areas such as engineering applications, image analysis and so 

on. In 2012, İnan and Öztürk investigated the concept of nearness groups [14] and other algebraic 

approaches of near sets in [15], [16], [17], [18], [19], [20], [21], [22], [23]. In 2021, Uçkun and Genç 

defined near-rings on nearness approximation spaces [24]. 
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The aim of this paper is to define the concept of prime ideals of Γ-nearness near-rings and to study some 

properties. Γ-nearness near-rings is different from Γ-nearness rings [20] and Γ-nearness semirings [21] 

because Γ does not have to be group in Γ-nearness near-rings. Because of this, some properties defined in 

Γ-nearness rings and Γ-nearness semirings show some changes in Γ-nearness near-rings. 

 

 

2. Preliminaries 

 

An object description is specified by means of a tuple of function values Φ(𝑥) deal with an object 

𝑥 ∈ 𝑋. 𝐵 ⊆ ℱ is a set of probe functions and these functions stand for features of sample objects 𝑋 ⊆ 𝒪. 

Let 𝜑𝑖 ∈ 𝐵 , that is 𝜑𝑖  : 𝒪 → ℝ . The functions showing object features supply a basis for Φ: 𝒪 →

ℝ𝐿 , Φ(𝑥) = (𝜑1(𝑥), 𝜑2(𝑥), . . . , 𝜑𝐿(𝑥))  a vector consisting of measurements deal with each functional 

value 𝜑𝑖(𝑥), where the description length |Φ| = 𝐿 ([2]). 

The selection of functions 𝜑𝑖 ∈ 𝐵 is very fundamental by using to determine sample objects. 𝑋 ⊆

𝒪 are near each other if and only if the sample objects have similar characterization. Each 𝜑 shows a 

descriptive pattern of an object. Hence, △𝜑𝑖
 means △𝜑𝑖

= |𝜑𝑖(𝑥)′ − 𝜑𝑖(𝑥)|,  where 𝑥, ′𝑥 ∈ 𝒪 . The 

difference 𝜑 means to a description of the indiscernibility relation “ ∼𝐵 ” defined by Peters in [2]. 𝐵𝑟 is 

probe functions in 𝐵 for 𝑟 ≤ |𝐵|. 

   

Definition 1: [11] 

[𝑐]𝑙 ∼𝐵= {(𝑥, 𝑥)′ ∈ 𝒪 × 𝒪| △𝜑𝑖
= 0∀𝜑𝑖 ∈ 𝐵 𝐵 ⊆ ℱ} 

means indiscernibility relation on 𝒪, where description length 𝑖 ≤ |Φ|. ∼𝐵𝑟
 is also indiscernibility relation 

determined by utilizing 𝐵𝑟. 

 

 Near equivalence class is stated as [𝑥]𝐵𝑟
= {𝑥 ∈ ′𝒪|𝑥 ∼𝐵𝑟

𝑥}′ . After getting near equivalence 

classes, quotient set 𝒪 ∕∼𝐵𝑟
= {[𝑥]𝐵𝑟

|𝑥 ∈ 𝒪} = 𝜉𝒪,𝐵𝑟
 and set of partitions 𝑁𝑟(𝐵) = {𝜉𝒪,𝐵𝑟

|𝐵𝑟 ⊆ 𝐵} can be 

found. By using near equivalence classes, 𝑁𝑟(𝐵)∗𝑋 = ⋃[𝑥]𝐵𝑟∩𝑋≠⌀ [𝑥]𝐵𝑟
 upper approximation set can be 

attained. 

 

Definition 2: [18] 

 Let 𝒪 be a set of sample objects, ℱ a set of the probe functions, ∼Br
 an indiscernibility relation,and Nr a 

collection of partitions. Then, (𝒪, ℱ, ∼Br
, Nr(B)) is called a weak nearness approximation space. 

 

Theorem 1:[18] 

Let (𝒪, ℱ, ∼Br
, Nr) be a weak nearness approximation space and X, Y ⊂ 𝒪. Then the following statements 

hold: 
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i) 𝑋 ⊆ 𝑁𝑟(𝐵)∗𝑋, 

ii)𝑁𝑟(𝐵)∗(𝑋 ∪ 𝑌) = 𝑁𝑟(𝐵)∗𝑋 ∪ 𝑁𝑟(𝐵)∗𝑌, 

iii) 𝑋 ⊆ 𝑌 implies 𝑁𝑟(𝐵)∗𝑋 ⊆ 𝑁𝑟(𝐵)∗𝑌, 

iv) 𝑁𝑟(𝐵)∗(𝑋 ∩ 𝑌) ⊆ 𝑁𝑟(𝐵)∗𝑋 ∩ 𝑁𝑟(𝐵)∗𝑌.  

 

Definition 3: [25] 

 Let (𝒪, ℱ, ∼Br
, Nr(B)) be a weak nearness approximation space, G ⊆ 𝒪 and “ ⋅ ”a operation by ⋅∶ G × G →

Nr(B)∗G. G is called a group on 𝒪 or shortly nearness group if the following properties are satisfied: 

  

    i)  𝑥 ⋅ 𝑦 ∈ 𝑁𝑟(𝐵)∗𝐺 for all 𝑥, 𝑦 ∈ 𝐺, 

 

    ii)  (𝑥 ⋅ 𝑦) ⋅ 𝑧 = 𝑥 ⋅ (𝑦 ⋅ 𝑧) property holds in 𝑁𝑟(𝐵)∗𝐺 for all 𝑥, 𝑦, 𝑧 ∈ 𝐺, 

 

    iii) There exists 𝑒 ∈ 𝑁𝑟(𝐵)∗𝐺 such that 𝑥 ⋅ 𝑒 = 𝑥 = 𝑒 ⋅ 𝑥 for all 𝑥 ∈ 𝐺, 

 

    iv) There exists 𝑦 ∈ 𝐺 such that 𝑥 ⋅ 𝑦 = 𝑒 = 𝑦 ⋅ 𝑥 for all 𝑥 ∈ 𝐺. 

Lemma 1: [21] 

 Let S be a Γ-nearness semiring. If   ∼Br
 is a congruence indiscernibility relation on S, then [x]Br

+

[y]Br
⊆ x + y]Br

, [β]Br
+ [γ]Br

⊆ β + γ]Br
, [x]Br

αy]Br
⊆ xαy]Br

 for all x, y ∈ S, and α, β, γ ∈ Γ.  

 

 

Lemma 2: [21]  Let S be a Γ-nearness semiring. The following properties hold: 

 

i) If X, Y ⊆ S, then (Nr(B)∗X) + (Nr(B)∗Y) ⊆ Nr(B)∗(X + Y), 

 

ii) If X, Y ⊆ S, then (Nr(B)∗X)Γ(Nr(B)∗Y) ⊆ Nr(B)∗(XΓY).  

 

Definition 4: [2] Let M and Γ be additive Abelian groups. M is said to be a Γ-ring if there exists a 

mapping M × Γ × M → M (the image of (a, α, b) is denoted by aαb). M is called a Γ-near-ring (in the 

sense of Barnes) on 𝒪 − 𝒪′ or shortly a Γ-nearness near-ring and denoted by (M, +,⋅) satisfying the 

following conditions: 

i)  

 (a + b)αc = aαc + bαc, 

 a(α + β)b = aαb + aβb, 

 aα(b + c) = aαb + aαc, 

 

ii)  (aαb)βc = aα(bβc) for all a, b, c ∈ M and α, β ∈ Γ. 
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Definition 5: [24]  Let (𝒪, ℱ, ∼Br
, Nr(B), νNr

) be a nearness approximation spaces, “+” and “⋅” be binary 

operations defined on 𝒪. M ⊆ 𝒪 is called a near-ring on nearness approximation spaces or shortly 

nearness near-ring if the following properties are satisfied: 

 

NN1) (M, +) is a nearness group (it does not need to be commutative), 

NN2) (M,⋅) is a nearness semigroup, 

NN3) for all x, y, z ∈ M, (x + y) ⋅ z = (x ⋅ z) + (y ⋅ z) property holds in Nr(B)∗M.  

 

Definition 6: [26]  Let M = {a, b, c, … } ⊆ 𝒪, and Γ = {α, β, … } ⊆ 𝒪′ where (𝒪, ℱ, ∼Br
, Nr(B)) and 

(𝒪′, ℱ, ∼Br
, Nr(B)) are two different weak near approximation spaces. “ ⋅ ”a operation by ⋅: M × M →

Nr(B)∗M. M is called a Γ-near-ring (in the sense of Barnes) on 𝒪 − 𝒪′ or shortly a Γ-nearness near-ring 

and denoted by (M, +,⋅) if the following conditions are satisfied: 

 

𝐺𝑁𝑅1) (𝑀, +) is a nearness group on 𝒪 with identity element 0𝑀 (not necessarily abelian), 

 

𝐺𝑁𝑅2) for all 𝑎, 𝑏, 𝑐 ∈ 𝑀 and 𝛼, 𝛽 ∈ Γ such that (𝑎𝛼𝑏)𝛽𝑐 = 𝑎𝛼(𝑏𝛽𝑐) hold in 𝑁𝑟(𝐵)∗𝑀, 

 

𝐺𝑁𝑅3) for all 𝑎, 𝑏, 𝑐 ∈ 𝑀 and 𝛼 ∈ Γ such that (𝑎 + 𝑏)𝛼𝑐 = 𝑎𝛼𝑐 + 𝑏𝛼𝑐 hold in 𝑁𝑟(𝐵)∗𝑀.  

 

Theorem 2: [26] Let M be a Γ-nearness near-ring and {Hi|i ∈ I} be a nonempty family of Γ-ideal of M, 

where an arbitrary index set I. 

 

𝑖) If 𝑁𝑟(𝐵)∗(⋂ 𝐻𝑖𝑖∈𝐼 ) = ⋂ 𝑁𝑟(𝐵)∗𝐻𝑖𝑖∈𝐼 , then ⋂ 𝐻𝑖𝑖∈𝐼  is a Γ-ideal of 𝑀. 

 

𝑖𝑖) ⋃ 𝐻𝑖𝑖∈𝐼  is a Γ-ideal of 𝑀.  

 

3. Prime Ideals of 𝚪-nearness near-ring 

  

Definition 7: Let P be an ideal of Γ-nearness near-ring M. P is called  

 

i) a Γ-prime ideal of M if for all ideals I and J of M, IΓJ ⊆ Nr(B)∗P implies I ⊆ P or J ⊆ P. 

 

ii) a Γ-semiprime ideal of M if for all ideals I and J of M, I2 = IΓJ ⊆ Nr(B)∗P implies I ⊆ P or J ⊆

P. 
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Definition 8: Let X be a nonempty subset of a Γ-nearness near-ring M. Let {Ai: i ∈ I} be a family of all 

ideals in M that contain X. If 

 ⋂i∈Δ (Nr(B)∗Ai) = Nr(B)∗(⋂i∈Δ Ai), 

then ⋂i∈I Ai is called the ideal generated by the set X and it is denoted by (X). 

The elements of X  is called the generators of ideal (X) . If X = {x1, x2, ⋯ , xn} , then (X) =

(x1, x2, ⋯ , xn). Thus, we call (X) is finitely generated.  

If X = {a},  then (X) = (a) is called the principal ideal generated by a. 

Theorem 3: Let P be a Γ-prime ideal of M. Then, the following conditions are equivalent. 

𝑖) 𝑃 is prime, 

𝑖𝑖) For every two ideals 𝐼, 𝐽 of 𝑀, it implies that 𝐼 ⊈ 𝑃 and 𝐽 ⊈ 𝑃 ⇒ 𝐼Γ𝐽 ⊈ 𝑁𝑟(𝐵)∗𝑃, 

𝑖𝑖𝑖) For every two elements 𝑎, 𝑏 ∈ 𝑀, 𝑎 ∉ 𝑃 and 𝑏 ∉ 𝑃 ⇒ (𝑎)Γ(𝑏) ⊈ 𝑁𝑟(𝐵)∗𝑃. 

 

Proof.  

𝑖) ⇒ 𝑖𝑖) Assume that 𝑃 is a Γ-prime ideal of 𝑀, 𝐼 ⊈ 𝑃 and 𝐽 ⊈ 𝑃. If possible, suppose that 𝐼Γ𝐽 ⊆

𝑁𝑟(𝐵)∗, then 𝐼 ⊆ 𝑃 or 𝐽 ⊆ 𝑃 since 𝑃 is a Γ-prime ideal of 𝑀. Thus, we received a contradiction. From here, 

we have 𝐼Γ𝐽 ⊈ 𝑁𝑟(𝐵)∗. 

𝑖𝑖) ⇒ 𝑖𝑖𝑖)  Let 𝑎 ∉ 𝑃  and 𝑏 ∉ 𝑃  be elements of 𝑀 . In this case, we get (𝑎) ⊈ 𝑃  and (𝑏) ⊈ 𝑃 . 

Therefore, by hypothesis, (𝑎)Γ(𝑏) ⊈ 𝑁𝑟(𝐵)∗𝑃. 

𝑖𝑖𝑖) ⇒ 𝑖) For elements 𝑎, 𝑏 ∈ 𝑀 , 𝑎 ∉ 𝑃  and 𝑏 ∉ 𝑃 , and so (𝑎) ⊈ 𝑃  and (𝑏) ⊈ 𝑃 . Suppose that 

(𝑎) ⊈ 𝑃  and (𝑏) ⊈ 𝑃  such that (𝑎)Γ(𝑏) ⊆ 𝑁𝑟(𝐵)∗𝑃 . Since 𝑎 ∉ 𝑃  and 𝑏 ∉ 𝑃 , then by hypothesis 

(𝑎)Γ(𝑏) ⊈ 𝑁𝑟(𝐵)∗𝑃, which is contradiction. In this case, (𝑎)Γ(𝑏) ⊆ 𝑁𝑟(𝐵)∗𝑃 ⇒ (𝑎) ⊆ 𝑃 and (𝑏) ⊆ 𝑃. 

Therefore, 𝑃 is a prime ideal of 𝑀. 

Definition 9: Let M be a Γ-nearness near-ring. Then, M is called Γ-prime near ring if 0 is a Γ-prime ideal 

of M.  

Theorem 4: Let M be a Γ-nearness near-ring and {Ai|i ∈ I} be a nonempty family of Γ-prime ideal of M, 

where an arbitrary index set I. 

𝑖) If 𝑁𝑟(𝐵)∗(⋂ 𝐴𝑖𝑖∈𝐼 ) = ⋂ 𝑁𝑟(𝐵)∗𝐴𝑖𝑖∈𝐼 , then ⋂ 𝐴𝑖𝑖∈𝐼  is a Γ-prime ideal of 𝑀. 

𝑖𝑖) If 𝐴1 ⊆ 𝐴2 ⊆ 𝐴3 ..., then ⋃ 𝐴𝑖𝑖∈𝐼  is a Γ-prime ideal of 𝑀.  

Proof. 

 𝑖) ⋂ 𝐴𝑖𝑖∈𝐼  is a Γ-ideal of 𝑀 by Theorem 2. Suppose that 𝑃1Γ𝑃2 ⊆ 𝑁𝑟(𝐵)∗(⋂ 𝐴𝑖𝑖∈𝐼 ) for any Γ-ideals 𝑃1 and 

𝑃2  of 𝑀 . In this case, 𝑃1Γ𝑃2 ⊆ 𝑁𝑟(𝐵)∗(⋂ 𝐴𝑖𝑖∈𝐼 ) = ⋂ 𝑁𝑟(𝐵)∗𝐴𝑖𝑖∈𝐼  from hypothesis. Thus, 𝑃1Γ𝑃2 ⊆

⋂ 𝑁𝑟(𝐵)∗𝐴𝑖𝑖∈𝐼 , and so 𝑃1Γ𝑃2 ⊆ 𝑁𝑟(𝐵)∗𝐴𝑖 for all 𝑖 ∈ 𝐼. Because 𝐴𝑖’s are Γ-prime ideals of 𝑀 for all 𝑖 ∈ 𝐼, 

then 𝑃1 ⊆ 𝐴𝑖 or 𝑃2 ⊆ 𝐴𝑖 for all 𝑖 ∈ 𝐼. From here, we attain that 𝑃1 ⊆ ⋂ 𝐴𝑖𝑖∈𝐼   or 𝑃2 ⊆ ⋂ 𝐴𝑖𝑖∈𝐼  . 

 

𝑖𝑖) From Theorem 2.(ii), ⋃ 𝐴𝑖𝑖∈𝐼  is a Γ-ideal of 𝑀. Assume that 𝑃1Γ𝑃2 ⊆ 𝑁𝑟(𝐵)∗(⋃ 𝐴𝑖𝑖∈𝐼 ) for any ideals 

𝑃1 and 𝑃2 of 𝑀. In this case, we get 𝑃1Γ𝑃2 ⊆ ⋃ 𝑁𝑟(𝐵)∗𝐴𝑖𝑖∈𝐼  by Theorem 1.(ii). There is at least one 𝑖𝑛 ∈ 𝐼 

such that 𝑃1Γ𝑃2 ⊆ 𝑁𝑟(𝐵)∗𝐴𝑖𝑛
. As 𝐴𝑖𝑛

 is prime ideal of 𝑀  for 𝑖𝑛 ∈ 𝐼 , 𝑃1 ⊆ 𝐴𝑖𝑛
 or 𝑃2 ⊆ 𝐴𝑖𝑛

 for 𝑖𝑛 ∈ 𝐼. 
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Therefore, 𝑃1 ⊆ ⋃ 𝐴𝑖𝑖∈𝐼  or 𝑃2 ⊆ ⋃ 𝐴𝑖𝑖∈𝐼 . 

 

Definition 10: A Γ-nearness near-ring M is called simple if M has no proper ideal.  

 

Theorem 5: If Γ-nearness near-ring M is simple, then either M is Γ-prime or MΓM = {0} ∈ Nr(B)∗M.  

Proof.  

Suppose that 𝐼 and 𝐽 are ideals of 𝑀. Since 𝑀 is simple, we have 𝐼 = 𝑀 or 𝐼 = 0 and 𝐽 = 𝑀 or 𝐼 = 0. 

Therefore, for the ideals 𝐼 and 𝐽 of 𝑀, we have the equation 𝐼Γ𝐽 = 0, then 𝐼 = 0 or 𝐽 = 0, or 𝐼 = 𝐽 = 𝑀. If 

𝐼 = 0 or 𝐽 = 0, then 𝑀 is Γ-prime near ring. Otherwise, 𝑀Γ𝑀 = {0} ∈ 𝑁𝑟(𝐵)∗𝑀 if 𝐼 = 𝐽 = 𝑀.  

 

 

4. Conclusion 

As a recent study of Γ-nearness near-ring, it is defined that the notion of prime ideals in Γ-nearness near-

ring. Afterward, it is explained that some of the concepts and definitions. We believe that these properties 

will be more useful theoretical development for Γ-nearness near-ring theory. 
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Abstract 

In this paper we begin with investigating  the order-type  Pettis, Bochner, Dunfort and  McShane  integrals 

in  Banach lattice   and give some comparison results.  One interesting difference between these kinds of 

integration is the fact that they possess the properties represented by Hake and Henstock lemmas. We 

observe that on the case of L-spaces  the order integral of Pettis is stronger as Bochner one (by norm). 

 

Keyword(s)  Banach lattice, (o)-Pettis integral,  (o)- McShane  integrals. 

 

 

1. Introduction and preliminaries  

It is known that  the McShane integral and the Henstock-Kurzweil integral  are two kinds of the Riemann-

type integral. Relations of different generalizations of Riemann-type integral was done in the last decades 

and afterwards the notions of order-type integrals were introduced and studied  for functions taking their 

values in ordered vector spaces, and in Banach lattices.  In particular we can see [11], [7], [4], [8], [9], [13], 

[3], [5], [10], [12], [14]. We are inspired from the works of  Candeloro and Sambucini [1], [2] as well as 

Boccuto et al. [3]-[6] about order –type integrals. In this paper we begin with investigating  the order-type  

Pettis, Bochner, Dunfort and  McShane  integrals in  Banach lattice  and give some comparison results.  

One interesting difference between these kinds of integration is the fact that they possess the properties 

represented by Hake and Henstock lemmas. We observe that on the case of L-spaces that are separable the 

order integral of Pettis is stronger as Bochner one. 

 

From now on, T will denote a compact metric space, and μ: 𝔅 → ℝ0
+ any regular, nonatomic 𝜎-additive 

measure on the 𝜎-algebra 𝔅 of Borel subsets of T. 

A sequence (𝑟𝑛)𝑛 is said to be order-convergent (or (o)-convergent ) to r, if there exists a sequence (𝑝𝑛)𝑛 ∈

𝑅, such that 𝑝𝑛 ↓ 0 and |𝑟𝑛 − 𝑟| ≤ 𝑝𝑛, ∀ 𝑛 ∈ ℕ. 

(see also [12], [14]), and we will write(𝑜) lim 𝑟𝑛 = 𝑟.𝑛  
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A gage is any map 𝛾: 𝑇 → ℝ+. A partition 𝛱 of T is a finite family 𝛱 = {(𝐸𝑖, 𝑡𝑖): 𝑖 = 1, … . , 𝑘} of pairs 

such that the sets 𝐸𝑖 are pairwise disjoint sets whose union is T and the points 𝑡𝑖 are called tags. If all tags 

satisfy the condition 𝑡𝑖 ∈ 𝐸𝑖  then the partition is said to be of Henstock type, or a Henstock partition. 

Otherwise, if 𝑡𝑖 is not necessary  to be in 𝐸𝑖, we say that it is a free or McShane partition. 

Given a gage  𝛾, we say that  𝛱 is 𝛾-fine if d(𝑤, 𝑡𝑖) < 𝛾(𝑡𝑖) for every w ∈ 𝐸𝑖 and i = 1, . . . ,k. Clearly, a 

gage 𝛾 can also be defined as a mapping associating with each point 𝑡𝑖 ∈ T an open ball centered at  𝑡𝑖and 

cover 𝐸𝑖. 

Let us assume now that X is any Banach lattice with an order-continuous norm. For the sake of completeness 

we recall the main notions of integral we are interested in. 

Definition 1.1. 

A function 𝑓: 𝑇 → 𝑋 is called (o)- McShane integrable ((oH)-integrable) and 𝐽 ∈ 𝑋 is its (o)-McShane 

integral ((oH)-integral) if for every  (o)- sequence (𝑏𝑛)𝑛 in X, there is a corresponding sequence (𝛾𝑛)𝑛of 

gauges (𝛾𝑛(𝑡): 𝑇 → ]0, +∞[ such that for every n and (𝛾𝑛) -fine M-partition (H-partition) {(𝐸𝑖, 𝑡𝑖), 𝑖 =

1, … , 𝑝} of T  holds the inequality 

 

|𝜎(𝑓, 𝛱) − 𝐽| ≤ 𝑏𝑛.         (1) 

 Where 𝜎(𝑓, Π) = ∑ 𝑓(𝑡𝑖)
𝑝
𝑖=1 μ(𝐸𝑖). We denote  

𝐽 = (𝑜𝑀) ∫ 𝑓
𝑇

. 

respectively 

     𝐽 = (𝑜𝐻) ∫ 𝑓
𝑇

. 

a 

Definition1.2. 

A function𝑓: 𝑇 → X, is called (o)- Bochner integrable  if there is an(o)- Cauchy sequence   {𝑓𝑛}𝑛  of  simple 

functions  which converges to 𝑓 almost everywhere in 𝑇, i.e. 

 

(𝑜)-lim ∫ |𝑓𝑛(𝑡) − 𝑓𝑚(𝑡)|
𝑇

= 0  for almost all 𝑡 ∈ 𝑇       (2) 

           (𝑜)- lim
𝑛→∞

∫ 𝑓𝑛(𝑡)
𝑇

  is called the (𝑜)- Bochner integral  of  the function 𝑓:  (3) 

(𝑜𝐵) ∫ 𝑓(𝑡)
𝑇

. 

 Where 𝑓𝑛   is an arbitrary  sequence  of simple  functions which determines 𝑓. 

340



 

5th INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 

1-3 December 2021, Istanbul, Turkey 

 

 

ICOM 2021 

ISTANBUL / TURKEY 

 

Definition 1.3. 

If 𝑓: 𝑇 → 𝑋   is weakly measurable and that for each 𝑥∗ ∈ 𝑋∗ ,   the function 𝑥∗(𝑓): 𝑇 → ℝ  is (𝑜𝑀) 

integrable  then  𝑓  is called (o)-  Dunford integrable  (𝑜𝐷) ∫ 𝑓
𝐸

,  of 𝑓 over a measurable 𝐸 ⊂ 𝑇,is defined 

by the element 𝑥𝐸
∗∗ ∈ 𝑋∗∗ 

 (𝑜𝐷) ∫ 𝑓
𝐸

= 𝑥𝐸
∗∗ ∈ 𝑋∗∗, (4) 

   for all 𝑥∗ ∈ 𝑋∗. 𝑥𝐸
∗∗(𝑥∗) = ∫ 𝑥∗(𝑓)

𝐸
 

The Dunford integral (𝑜𝐷) ∫ 𝑓
𝐸

 is an element of the second dual 𝑋∗∗  of  the Banach lattice  X. This 

situation is not very pleasant,one would expect that the values of an integral of an X-valued function belong 

to the same space 𝑋 

The space 𝑋 itself is in a natural way embedded into𝑋∗∗, if (𝑜𝐷) ∫ 𝑓
𝐸

∈ 𝑋 ⊂ 𝑋∗∗the following definition 

can be presented. 

Definition1.4. 

If 𝑓: 𝑇 → 𝑋  is (𝑜𝐷)- integrable where  (𝑜𝐷) ∫ 𝑓
𝐸

∈ 𝑒(𝑋) ⊂ 𝑋∗∗, ( 𝑒 is the canonical embedding of 𝑋 ⊂ 

𝑋∗∗ ) for every measurable 𝐸 ⊂ 𝑇, then  𝑓 is called  (o)- Pettis integrable and  

 (𝑜𝑃) ∫ 𝑓
𝑒

= (𝑜𝐷) ∫ 𝑓
𝐸

 (5) 

is called the (𝑜) -Pettis integral  of  𝑓: 𝑇 → 𝑋  over the set 𝐸. 

The (𝑜𝑃)- integrability of can be defined equivalently as follows 

Definition1.5. 

A weakly measurable 𝑓: 𝑇 → 𝑋, with  𝑥∗(𝑓) (𝑜)-Bochner integrable for every  𝑥∗ ∈ 𝑋∗  is (𝑜) -Pettis i 

integrable definition can be presented. 

 𝑥∗(𝑥𝐸) = ∫ 𝑥∗(𝑓)
𝐸

    (6) 

For every 𝑥∗ ∈ 𝑋∗. 

If  𝑋 is  a reflexive space  (𝑋∗∗ = 𝑋), then the (𝑜𝐷)  and  (𝑜𝑃)  integrals coincide.  

Definition.1.6 

If 𝑓: [𝑎, 𝑏] → 𝑋 is such that the function 𝑥∗(𝑓): [𝑎, 𝑏] → ℝ is  (𝑜)-Denjoy integrable for each 𝑥∗ ∈ 𝑋∗and 

if for every interval 𝐸 ⊂ [𝑎, 𝑏] there is an element . 𝑥𝐸
∗∗ ∈ 𝑋∗∗  such that  
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 𝑥𝐸
∗∗(𝑥∗) = ∫ 𝑥∗(𝑓)

𝐸
 for all 𝑥∗ ∈ 𝑋∗ then 𝑓 is called (o)-Denjoy-Dunford integrable on [𝑎, 𝑏] 

We write 

(𝑜𝐷𝐷) ∫ 𝑓
𝐸

=𝑥𝐸
∗∗ 

Lemma 1.7. (Saks-Henstock). 

Assume that  𝑓: 𝑇 → 𝑋  is (𝑜) – McShane integrable. Given (o) - sequence (𝑏𝑛)𝑛  assume that a  

corresponding sequence (𝛾𝑛)𝑛 of gauges (𝛾𝑛(𝑡): 𝑇 → ]0, +∞[ on T such that for every n 

and for every 𝛾𝑛-fine M- partition Π= {(𝐸𝑖, 𝑡𝑖): 𝑖 = 1, … . , 𝑘},  of T holds the inequality  

 

 |∑ 𝑓(𝑡𝑖)
𝑘
𝑖=1 𝜇(𝐸𝑖) − (𝑜𝐻) ∫ 𝑓

𝑇
| ≤ 𝑏𝑛 (7) 

 

 Then if {(𝐹𝑗 , 𝜏𝑗): 𝑗 = 1, … . , 𝑚} is an arbitrary 𝛾𝑛-fine M-system we have  

 |∑ (𝑓(𝜏𝑗)𝑚
𝑗=1 𝜇(𝐹𝑗) − (𝑜𝐻) ∫ 𝑓)

𝐹𝑗
| ≤ 𝑏𝑛  (8) 

 

The same holds if (𝑜𝑀) is replaced by (𝑜𝐻) and H- partitions  are used instead of  M- partitions. 

Theorem 1.8.(Hake)  

Let [a, b] ⊂ ℝ,   𝑓: [a, b] → 𝑋. If  the integral (oH)∫ 𝑓𝑑𝜇
𝑏

𝑐
   and (𝑜)- lim

𝑐→𝑎+
(𝑜𝐻) ∫ 𝑓 = 𝐿 ∈ 𝑋

𝑏

𝑐
 exists  for 

every 𝑎 < 𝑐 ≤ 𝑏 then the integral (𝑜𝐻) ∫ 𝑓
𝑏

𝑎
  exists and  holds the equality: 

(𝑜𝐻) ∫ 𝑓 = 𝐿.
𝑏

𝑎
  (9) 

Theorem 1.9. [1].  

Let 𝑓: 𝑇 → 𝑋 be any mapping. Then f is (𝑜)– Henstock integrable ( (o)- McShane integrable) if and only 

if there exist an (𝑜) –sequence (𝑏𝑛)𝑛 and a corresponding sequence (𝛾𝑛)𝑛 of gages, such that for every n, 

as soon as Π′′,Π′ are two -𝛾𝑛 fine Henstock (McShane) partitions, the following holds true:     

∣ 𝜎(𝑓, Π′′) − 𝜎(𝑓, Π′) ∣ ≤ 𝑏𝑛 (10) 

 

Theorem 1.10.[1]. 

 Let  𝑓: 𝑇 → 𝑋  be  (𝑜𝑀)-integrable and  assume that 𝑋 is an 𝐿- space. Then  𝑓 is Bochner  integrable. 
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2.Comparison of   the  order-type integrals 

Proposition 2.1. 

If 𝑓: 𝑇 → 𝑋 is (𝑜𝐵)- integrable   then 𝑓 is  (𝑜𝑃)-integrable : 

 (𝑜𝑃) ∫ 𝑓
𝐸

= (𝑜𝐵) ∫ 𝑓
𝐸

 (11) 

For every measurable  𝐸 ⊂ 𝑇. 

Proof.  Since  𝑓 ∈ (𝑜𝐵), let  (𝑓𝑞) be an (𝑜) -Cauchy sequence of simple functions determining 𝑓 . Then  

 (𝑜𝐵) ∫ 𝑓
𝐸

= (𝑜𝐵) ∫ 𝑓𝑞𝐸𝑞→∞
𝑂−𝑙𝑖𝑚  

And for  𝑥∗ ∈ 𝑋∗ we have: 

 𝑥∗ ((𝑜𝐵) ∫ 𝑓
𝐸

) = 𝑥∗ ( (𝑜𝐵) ∫ 𝑓𝑞𝐸𝑞→∞
𝑂−𝑙𝑖𝑚 ) =   𝑥∗ ((𝑜𝐵) ∫ 𝑓𝑞𝐸

)𝑞→∞
𝑜−𝑙𝑖𝑚  

= (𝑜𝐵) ∫ 𝑥∗(𝑓𝑞)
𝐸𝑞→∞

𝑂−𝑙𝑖𝑚 = ∫ 𝑥∗𝑓
𝐸

, 

Because              

                                         |(𝑜𝐵) ∫ 𝑥∗(𝑓𝑞 − 𝑓)
𝐸

| ≤ (𝑜𝐵) ∫ |𝑥∗(𝑓𝑞 − 𝑓)|
𝐸

 

 ≤ (𝑜𝐵) ∫ 𝑠𝑢𝑝
𝐸

|𝑥∗(𝑓𝑞 − 𝑓)| ≤  ‖𝑥∗‖(𝑜𝐵) ∫ |𝑓𝑞 − 𝑓|
𝐸

 

And                         

= (𝑜𝐵) ∫ |𝑓𝑞 − 𝑓|
𝐸𝑞→∞

𝑂−𝑙𝑖𝑚 = 0. 

Hence  𝑓 ∈ (𝑜𝑃). 

Proposition 2.2. 

If  𝑓: 𝑇 → 𝑋 is (𝑜𝑀) integrable with (𝑜𝑀) ∫ 𝑓
𝑇

∈ 𝑋, then for every  𝑥∗ ∈ 𝑋∗ the real function 𝑥∗(𝑓): 𝑇 →

ℝ is order McShane integrable and  

 (𝑜𝑀) ∫  𝑥∗(𝑓)
𝑇

=  𝑥∗ ((𝑜𝑀) ∫ 𝑓
𝑇

).(12) 

Proof. By Definition 1.1 for every  (o)- sequence (𝑏𝑛)𝑛 in X, there is a corresponding sequence (𝛾𝑛)𝑛of 

gauges (𝛾𝑛(𝑡): 𝑇 → ]0, +∞[ such that for every n and (𝛾𝑛) -fine M-partition {(𝐼𝑖, 𝑡𝑖), 𝑖 = 1, … , 𝑝} of T  

holds the inequality  

 |∑ 𝑓(𝑡𝑖)
𝑝
𝑖=1 𝜇(𝐼𝑖) − (𝑜𝑀) ∫ 𝑓

𝑇
| ≤ 𝑏𝑛, 

343



 

5th INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 

1-3 December 2021, Istanbul, Turkey 

 

 

ICOM 2021 

ISTANBUL / TURKEY 

 If 𝑥∗ ∈ 𝑋∗, then by previous inequality we have  

 |∑  𝑥∗ (𝑓(𝑡𝑖)𝜇(𝐼𝑖) −  𝑥∗(𝑜𝑀) ∫ 𝑓
𝑇

)𝑝
𝑖=1 | 

=| 𝑥∗ ∑ (𝑓(𝑡𝑖)𝜇(𝐼𝑖) − (𝑜𝑀) ∫ 𝑓
𝑇

)𝑝
𝑖=1 | 

 ≤ ‖𝑥∗‖ |∑ 𝑓(𝑡𝑖)
𝑝
𝑖=1 𝜇(𝐼𝑖) − (𝑜𝑀) ∫ 𝑓

𝑇
| ≤ ‖𝑥∗‖ . 𝑏𝑛, 

for every n and (𝛾𝑛) -fine M-partition {(𝐼𝑖, 𝑡𝑖), 𝑖 = 1, … , 𝑝} of T   

The same holds if (𝑜𝑀) is replaced by (𝑜𝐻) and H- partitions  are used instead of  M- partitions. 

◼  

Remark. The  (𝑜)-McShane, (𝑜)- Bochner (Lebesgue) integrals of 𝑥∗(𝑓): 𝑇 → ℝ, coincide (𝑋 = ℝ) and 

therefore we can replace in proposition 2.2 the (𝑜)-McShane integrability  of  𝑥∗(𝑓): 𝑇 → ℝ,  by its (𝑜)- 

Bochner (Lebesgue)  integrability. Consequently, we also have that the function 𝑓: 𝑇 → 𝑋  is weakly 

measurable. 

Theorem 2.3. 

If  𝑓: 𝑇 → 𝑋 is (𝑜)-McShane  integrabile with (𝑜𝑀) ∫ 𝑓
𝑇

∈ 𝑋, then 𝑓 is also (𝑜𝑃)-integrable and 

 (𝑜𝑃) ∫ 𝑓 =
𝐸

(𝑜𝑀) ∫ 𝑓
𝑇

𝜒𝐸 = (𝑜𝑀) ∫ 𝑓
𝐸

         (13) 

for every measurable 𝐸 ⊂ 𝑇. Hence we have (𝑜𝑀) ⊂ (𝑜𝑃). 

Proof. According to the previous Remark the function 𝑓: 𝑇 → 𝑋   is weakly measurable. For every 

measurable set  E⊂T the function  𝑓. 𝜒𝐸 is McShane integrable and :  

 (𝑜𝑀) ∫ 𝑓.
𝑇

𝜒𝐸 = (𝑜𝑀) ∫ 𝑓
𝐸

∈ 𝑋. 

Hence by Proposition 2.2 for every 𝑥∗ ∈ 𝑋∗ the real function  𝑥∗(𝑓. 𝜒𝐸) is  (𝑜)-McShane integrable and 

(𝑜𝑀) ∫ 𝑥∗(𝑓. 𝜒𝐸)
𝑇

= (𝑜𝑀) ∫ 𝑥∗𝑓
𝐸

=𝑥∗ (𝑜𝑀 ∫ 𝑓
𝐸

). 

By Definition 1.5 this implies that  𝑓 is(𝑜)-Pettis integrable 

Theorem.2.4. 

If 𝑓𝑢: 𝑇 → 𝑋, 𝑢 ∈ 𝑁 are (o)- McSshane integrable functions such that  

1. 𝑓𝑢(𝑡) → 𝑓(𝑡)  for 𝑡 ∈ 𝑇,                         

2.  the set {𝑓𝑢; 𝑢 ∈ 𝑁} forms an (oM)-equi-integrable sequence.  

Then 𝑓𝑢 . 𝜒𝐸, 𝑢 ∈ 𝑁 is an (oM)-equi-integrable sequence for every measurable set 𝐸 ⊂ 𝑇. 
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Proof. Then for every (o)- sequence (𝑏𝑛)𝑛 there exists an 𝜂 > 0   and  assume that 𝐸 ⊂ 𝑇 measurable.. 

Then there exist 𝐹 ⊂ 𝑇  closed and 𝐺 ⊂ 𝑇  open such 𝐹 ⊂ 𝐸 ⊂ 𝐺  where 𝜇(𝐺\𝐹) < 𝜂 . Assume that the 

sequence (𝛾𝑛)𝑛 corresponding gauge 𝛾𝑛: 𝑇 → ]0, ∞[ such that  

𝐵(𝑡, (𝛾𝑛(𝑡) ⊂ 𝐺 for 𝑡 ∈ 𝐺, 

𝐵(𝑡, (𝛾𝑛(𝑡) ∩ 𝑇 ⊂ 𝑇\𝐹 for 𝑡 ∈ 𝑇\𝐹 

and that {(𝐸𝑖, 𝑡𝑖)}, {(𝐾𝑗, 𝑟𝑗)}, are 𝛾𝑛-fine M-partitions of 𝑇. 

We have 

if 𝑡𝑖 ∈ 𝐸 then 𝐸𝑖 ⊂ 𝐺, 𝐹 ⊂ int⋃ 𝐸𝑖𝑡𝑖∈𝐹  

if 𝑟𝑗 ∈ 𝐸 then 𝐾𝑗 ⊂ 𝐺, 𝐹 ⊂ int⋃ 𝐾𝑗𝑟𝑗∈𝐹  

 |∑ 𝑓𝑢(𝑡𝑖)𝜇(𝐸𝑖) − ∑ 𝑓𝑢(𝑟𝑗)𝜇(𝐾𝑗)𝑗,𝑟𝑗∈𝐸𝑖,𝑡𝑖∈𝐸 | ≤  𝑏𝑛 

And therefore also 

 |∑ 𝑓𝑢(𝑡𝑖)𝜒𝐸(𝑡𝑖)𝜇(𝐸𝑖) − ∑ 𝑓𝑢(𝑟𝑗)𝜒𝐸(𝑟𝑗)𝜇(𝐾𝑗)𝑗𝑖 | ≤  𝑏𝑛 

 

This is the Bolzano -Cauchy condition for (oM) equi-integrability of the sequence 𝑓𝑢 . 𝜒𝐸, 𝑢 ∈ 𝑁 and the 

proof is complete. 

 Theorem.2.5. 

 Let 𝑓: 𝑇 → 𝑋 be measurable. If 𝑓 is (𝑜)- Pettis integrable on 𝑇, then 𝑓 is (𝑜)- McShane integrable on 𝑇. 

Proof. The measurability of 𝑓  implies  that there  is a bounded   measurable function 𝑔: 𝑇 → 𝑋 and a 

measurable function : ℎ: 𝑇 → 𝑋 

h(𝑡) = ∑ 𝑥𝑛
∞
𝑛=1 𝜒𝐸𝑛

(𝑡), t∈ 𝑇 

with 𝑥𝑛 ∈ 𝑋, 𝐸𝑛 ⊂ 𝑇, 𝑛 ∈ ℕ, 𝐸𝑛 being pairwise disjoint measurable sets such that: 

𝑓(𝑡) = 𝑔(𝑡) + ℎ(𝑡), t ∈ 𝑇. 

The function  𝑔  is bounded and measurable, therefore it is  (oB)-integrable  because T is assumed to be a 

compact interval. Therefore 𝑔 is (𝑜)- McShane integrable by Theorem 2.4. and by Theorem 2.3 it is also 

(o)-Pettis integrable. Since 𝑓 i assumed to be (𝑜)-Pettis integrable, the function ℎ = 𝑓 − 𝑔  must be (o)- 

Pettis integrable and therefore the series  ∑ 𝑥𝑛 𝜇(𝐸𝑛)∞
𝑛=1   converges unconditionally in  𝑋. The sequence 

 ℎ𝑛(𝑡) = ∑ 𝑥𝑗𝜒𝐸𝑗
(𝑡) 𝑛

𝑗=1 , t ∈ 𝑇 𝑛 ∈ ℕ is (oM)-equi-integrable and it is easy to see that 

(o)- lim
𝑛→∞

 ℎ𝑛(𝑡) = ℎ(𝑡) por t ∈ 𝑇. 
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Then  function h is (𝑜)-McShane integrable  

(𝑜𝑀) ∫ ℎ =
𝑇

lim
𝑛→∞

(𝑜𝑀) ∫ ℎ𝑛 =
𝑇

 lim
𝑛→∞

 ∑ 𝑥𝑗𝜇(𝐸𝑗) 𝑛
𝑗=1 =∑ 𝑥𝑗𝜇(𝐸𝑗) ∞

𝑗=1  

 

and therefore 𝑓 is also (𝑜)-McShane integrable. 

Theorem 2.6. 

Assume that the Banach lattice  𝑋  is separable and that 𝑓: 𝑇 → 𝑋 is (𝑜)-Pettis integrable. Then 𝑓  is (𝑜)-

McShane integrable. 

 Proof . The(𝑜)  -Pettis integrability of 𝑓  assumes that 𝑓  is weakly measurable and the function 𝑓  is 

measurable.  Theorem  2.5. gives the (𝑜) - McShane integrability of 𝑓 . 

 Using Theorem 2.3 and Theorem 2.6 we obtain immediately the following result. 

Corollary 2.7. 

Assume that the Banach  lattice 𝑋  is separable. Then  𝑓: 𝑇 → 𝑋   is (𝑜) - Pettis integrable if and only if it 

is (𝑜) - McShane integrable,i.e.  (𝑜𝑀 ) =(𝑜𝑃 ) holds in this case. 

 This fact has interesting consequences where (𝑜) -Pettis integrability is stronger than Bochner (norme) 

one.  

Theorem 2.8.(Hake)  

Assume that 𝑓: [𝑎, 𝑏] → 𝑋 is (o)-Denjoy-Dunford integrable on [𝑎, 𝑡] for all 𝑡 ∈ [𝑎, 𝑏[ and for each 𝑥∗ ∈

𝑋∗ the limit  (o) − lim
                𝑡→𝑏

∫ 𝑥∗(𝑓)
𝑡

𝑎
 exists. Then 𝑓 is (o)-Denjoy-Dunford integrable on [𝑎, 𝑏], and  

𝑥∗((𝑜𝐷𝐷) ∫ 𝑓) =
𝑏

𝑎

(o)lim
                𝑡→𝑏

𝑥∗((𝑜𝐷𝐷) ∫ 𝑓
𝑏

𝑎

 ) 

For each 𝑥∗ ∈ 𝑋∗. 

Proof. Since 𝑓 is (o)- Denjoy-Dunford integrable on [𝑎, 𝑡] for all 𝑡 ∈ [𝑎, 𝑏[ and for each 𝑥∗ ∈ 𝑋∗  

the limit (o) − lim
                𝑡→𝑏

∫ 𝑥∗(𝑓)
𝑡

𝑎
 exists, 𝑥∗(𝑓) is (o)- Denjoy integrable on [𝑎, 𝑏] for all 𝑥∗ ∈ 𝑋∗.On the other 

hand ,take any (o)-sequence (𝑡𝑛) in [𝑎, 𝑏[ convergent to b. 

 Define     𝐿(𝑥∗) = (𝑜) lim
  𝑛

∫ 𝑥∗(𝑓)
𝑡𝑛

𝑎
 = (o)lim

                𝑛
𝑥∗((𝑜𝐷𝐷) ∫ 𝑓

𝑡𝑛

𝑎
 ). 

The uniform boundedness principle guarantees that the linear functional L  is continuous on 𝑋∗.Then it is 

immeditiate that 𝑓 is (o)Denjoy-Dunford integrable on[𝑎, 𝑏]. 
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Conclusion   

İn this paper  we have investigated the notions of Order gauge integrals for functions taking values  in  a 

Banach lattice with an order -continuous norm. We compare the norm -and order-type integral, which 

become more interesting in L-spaces.  Though in case of Banach space-valued functions the stronger type 

of integral is the Bochner one which is stronger both  of McShane and  Pettis integrals, we have seen that 

in L-spaces the orde-type  Pettis integrals is indeed  a Bochner one. 
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Abstract 

The 3x+1 Problem is one of the longstanding problems in mathematics [2]. It is about the 

following simple algorithm. Take a positive integer. If it is even then divide it by 2, otherwise i.e., if it is 

odd then multiply the number by 3 and add 1. Continue to do the same with the resulting number. This 

can be interpreted as a discrete dynamical system. For example, if you start with 7, then the next numbers 

are 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, …. As one can observe from this 

example the algorithm in the long run reaches 1. It is still unproven that for any starting number, 

eventually, there is a step where the algorithm touches 1. The other observation is that after 1 we obtain a 

periodic sequence 4, 2, 1, 4, 2, 1, … Again, it is still unproven that it is the only such possible cycle for 

this algorithm. In the current paper, a new approach for the 5x+1 incarnation of the second problem will 

be discussed. Instead of choosing a starting number and letting it dictate what operations are applied to 

the following numbers, a fixed sequence of Conway [1] type operations are chosen and the starting 

number, which returns to itself when the given operations are applied to it in the given order, is 

determined using these operations. Because of this change in the perspective, the starting number and the 

numbers which follow it are, in general, not always positive, and not always integer anymore. The 

obtained rational numbers enjoy some interesting divisibility properties, discussion, and proof of which is 

the main focus of the current paper. In some simpler cases these properties can also be expressed in the 

context of 5-adic representation of numbers where patterns of repeating digits appear and visualize those 

divisibility results.  

 

          Keywords: 3x+1 problem, Collatz problem, p-adic numbers, 5-adic numbers, periods, rational 

numbers, algorithm. 

 

1. Introduction 

 

For arbitrarily chosen initial positive integer 𝑥0, the recursive sequence defined by  

 

𝑥𝑛+1 = {

3𝑥𝑛 + 1

2
, if 𝑥𝑛 is an odd number 

𝑥𝑛

2
,       if 𝑥𝑛 is an even number
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returns 𝑥𝑁 = 1 for some positive integer 𝑁 . Another observation is that after  𝑥𝑁 = 1  it is periodic 

1, 2, 1, 2, …. There are two non-trivial problems associated with this recursive sequence. 

 

Problem 1. Prove that for any positive integer 𝑥0 there exists a positive integer 𝑁 such that 𝑥𝑁 = 1. 

 

Problem 2. Prove that the only periodic sequence that this recursive formula can produce is 1, 2, 1, 2, …..  

 

Both problems remain unsolved. For more information about the history of the problem and the various 

attempts to solve it, we refer the reader to the encyclopedic book [2]. If 𝑥0 and therefore the subsequent 

numbers are allowed to be negative or zero, then there are other possible cycles, but the essence of the 

above problems doesn’t change much. Problem 1 can be stated to prove that lim
𝑛→+∞

|𝑥𝑛| ≠ +∞. Problem 2 

can be stated to prove that there are only finitely many different periodic sequences that this recursive 

formula can generate. 

We are currently interested only with Problem 2. Note that it is not clear at all, how the solution of 

Problem 2 will be helpful for the solution of Problem 1. Because, even if it is known that there is only one 

periodic sequence, it remains to prove that lim
𝑛→+∞

𝑥𝑛 ≠ +∞. 

When we choose 𝑥0, it determines all the numbers 𝑥𝑛 coming after 𝑥0, and all the operations 
3𝑥𝑛+1

2
 and 

𝑥𝑛

2
 

that are applied to them. Since these numbers and the corresponding operations appear chaotically, it is 

reasonable to fix finite number of operations first and then determine the number 𝑥0, which returns to 

itself as a periodic sequence (cycle), using these operations. When we do this, we also determine the other 

numbers 𝑥1, … , 𝑥𝑛+𝑚−1 that together with the number 𝑥0 form a periodic sequence (cycle) 

𝑥0, 𝑥1, … , 𝑥𝑛+𝑚−1. This problem in a more general setting was discussed in the recent paper of the author 

[3] in detail. In the current paper, we applied this idea to more general problem, involving Conway type 

operations 𝑆𝑘(𝑥) =
5𝑥+𝑘

2
 and 𝑇(𝑥) =

𝑥

2
. John Conway used this type of operations in his paper [4] to 

prove some results about undecidability (see [1], [5] for new results in this direction). The results 

obtained in the current paper can be extended for any operation of the type  𝑆𝑘(𝑥) =
𝑝𝑥+𝑘

2
 with arbitrary 

odd number 𝑝 > 2 as a coefficient of 𝑥. The special case when 𝑝 = 3 and 𝑘 = 0, 1, or 2, was discussed in 

[3]. It is even possible to take several operations 𝑆𝑘(𝑥) =
𝑝𝑥+𝑘

2
 with different 𝑝. But then the proof 

becomes more complicated and the visualizations, that we are going to present at the end of the current 

paper (see also [3]), are not so obvious. In that case one needs to switch from one base to another in 𝑝-
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adic representations. So, to be able to explain the main idea of the proof, to keep the visuals simple and 

the notations short, we decided to constrain ourselves only to the case of the operations 𝑆𝑘(𝑥) =
5𝑥+𝑘

2
. 

We will see that the order of operations doesn’t affect an invariant which is dependent only on the total 

number of 𝑆𝑘 operations (𝑚) and the number of 𝑇(𝑥) =
𝑥

2
 operations (𝑛). The invariant that we are going 

to investigate is a pair of nonnegative integers (𝑎, 𝑏), for which 5𝑎𝑈0 − 𝑈𝑏  is an integer, where 𝑈𝑖 =
2𝑖

2𝑛+𝑚−5𝑚. This is equivalent to say that 2𝑛+𝑚 − 5𝑚 divides 5𝑎 − 2𝑏. Proof of the existence of such pairs 

(𝑎, 𝑏), which is a pure number theoretic question, will not be discussed in the current paper. We will 

constrain ourselves by stating the obvious fact that one can always choose, for example, trivial pairs like 
(𝑎, 𝑏) = (𝜑(2𝑛+𝑚 − 5𝑚), 0) , (𝑎, 𝑏) = (0, 𝜑(2𝑛+𝑚 − 5𝑚))  or (𝑎, 𝑏) = (𝑚, 𝑛 + 𝑚) . As numerical 

experiments suggest, some of which are given in the current paper, there are infinitely many such pairs 

for any 𝑚 > 0 and 𝑛 ≥ 0. The same remarks can be made for the existence of a pair of nonnegative 

integers (𝑎, 𝑏), for which 5𝑎𝑈0 + 𝑈𝑏 is an integer. Again, it is equivalent to say that 2𝑛+𝑚 − 5𝑚 divides 

5𝑎 + 2𝑏.  Finally, we will also need a pair of nonnegative integers (𝑎′, 𝑏′), for which 5𝑎′
𝑈𝑏′ ± 𝑈0 is an 

integer. It is equivalent to say that 2𝑛+𝑚 − 5𝑚 divides 5𝑎 ± 2𝑏. For some reasons, that will be explained 

at the end of the paper, we are more interested with pairs (𝑎, 𝑏), for which 𝑎 is minimal and 𝑏 ≤ 𝑛 + 𝑚. 

Further discussion of these divisibility problems should be a topic of another paper. 

 

2. Operations and Cycles. 

 

2.1. Operations. 

 

Consider the set of operations 𝑂 = {𝑇(𝑥) =
𝑥

2
} ∪ {𝑆𝑘 ∣ 𝑆𝑘(𝑥) =

5𝑥+𝑘

2
, 𝑘 ∈ 𝑍}. Suppose that a sequence 

of operations 𝑃 = 𝐵0𝐵1 … 𝐵𝑛+𝑚−1  is given, where 𝐵𝑖 ∈ 𝑂 for 𝑖 = 0,1, 2, … , 𝑛 + 𝑚 − 1. Suppose that 𝑛 is 

the number of 𝑇 operations and 𝑚 is the total number of 𝑆𝑘 operations for all 𝑘. We assume that 𝑚 > 0 

and 𝑛 ≥ 0. We will need also infinite extension of 𝑃 defined by 𝐵𝑖 = 𝐵𝑗 if 𝑖 ≡ 𝑗 (mod 𝑛 + 𝑚). In other 

words, we interpret 𝑃 as a sequence infinite in both directions: 

𝑃 = ⋯ 𝐵0𝐵1 … 𝐵𝑛+𝑚−1𝐵0𝐵1 … 𝐵𝑛+𝑚−1𝐵0𝐵1 … 𝐵𝑛+𝑚−1 …. 

2.2. Cycles. 

Consider the equation 𝐵0𝐵1 … 𝐵𝑛+𝑚−2𝐵𝑛+𝑚−1(𝑥) = 𝑥. Note that this is a linear equation and therefore its 

solution 𝑥0 is a rational number. We are not going to write a formula for 𝑥0, although it is possible. We 

just mention the fact that 𝑥0 is completely defined by the given sequence of operations. In a similar way, 

let 𝑥1  be the solution of 𝐵1 … 𝐵𝑛+𝑚−2𝐵𝑛+𝑚−1𝐵0(𝑥) = 𝑥   (𝑥0 = 𝐵0(𝑥1)) . The other numbers 𝑥𝑖  are 

defined similar to these. The last number 𝑥𝑛+𝑚−1  is the solution of 𝐵𝑛+𝑚−1𝐵0𝐵1 … 𝐵𝑛+𝑚−2(𝑥) = 𝑥 

(𝑥𝑛+𝑚−1 = 𝐵𝑛+𝑚−1(𝑥0)) . Again, we can extend the numbers 𝑥𝑖  (𝑖 = 0, 1, … , 𝑛 + 𝑚 − 1)  using the 

equalities 𝑥𝑖 = 𝑥𝑗  if 𝑖 ≡ 𝑗 (mod 𝑛 + 𝑚) . This means that the numbers 𝑥𝑖  are also interpreted as a 

sequence infinite in both directions: 

…,𝑥0, 𝑥1, … , 𝑥𝑛+𝑚−1, 𝑥0, 𝑥1, … , 𝑥𝑛+𝑚−1, 𝑥0, 𝑥1, … , 𝑥𝑛+𝑚−1, … 
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3. Special numbers and Main Results. 

 

3.1. Special numbers. 

Let 𝑈𝑖 =
2𝑖

2𝑛+𝑚−5𝑚, where 𝑖 = 0, 1, 2, … , 𝑛 + 𝑚. There are infinitely many pairs of nonnegative integers 

(𝑎, 𝑏), for which 5𝑎𝑈0 − 𝑈𝑏 is an integer, or equivalently, 5𝑎𝑈𝑖 − 𝑈𝑖+𝑏  is an integer (0 ≤ 𝑖 ≤ 𝑖 + 𝑏 ≤

𝑛 + 𝑚). Similarly, there are infinitely many pairs of non-negative integers (𝑎′, 𝑏′), for which 5𝑎′
𝑈𝑏′ −

𝑈0  is an integer, or equivalently, 5𝑎′
𝑈𝑖+𝑏′ − 𝑈𝑖  is an integer (0 ≤ 𝑖 ≤ 𝑖 + 𝑏′ ≤ 𝑛 + 𝑚) . Let 𝜎(𝑠, 𝑟) , 

where 𝑠 ≤ 𝑟, be the number of all 𝑆𝑘 operations in the fragment 𝐵𝑠𝐵𝑠+1 … 𝐵𝑟−1 of the infinitely extended 

sequence 𝑃. In particular 𝜎(𝑠, 𝑠) = 0, because 𝜎(𝑠, 𝑠) corresponds to an empty fragment of the sequence 

𝑃. 

3.2. Main Results. 

Theorem 1.  

If the pair of nonnegative integers (𝑎,  𝑏) satisfy 5𝑎𝑈0 − 𝑈𝑏 ∈ 𝑍 then for the numbers 𝑥𝑖 defined above, 

the difference 5𝑎𝑥𝑖 − 5𝜎(𝑖,𝑖+𝑏)𝑥𝑖+𝑏 is also an integer (0 ≤ 𝑖 ≤ 𝑖 + 𝑏 ≤ 𝑛 + 𝑚). 

Proof. The proof is based on the method of mathematical induction. We can first show that the claim is 

true for one particular sequence of operations consisted of only 𝑆0 and 𝑇 operations. Then we can prove 

that the correctness of the claim does not change when we change one 𝑆0 operation in the sequence to 𝑆1, 

or to 𝑆−1 . Similarly, the claim does not change when we change those 𝑆1  and 𝑆−1  operations in the 

sequence to 𝑆2 and 𝑆−2, respectively.  In this way we can obtain any sequence from a special sequence of 

operations consisted of only 𝑆0 and 𝑇 operations. Suppose now that all 𝑆𝑘 operations in 𝑃 are replaced by 

𝑆0 . This means that the given sequence of operations is consisted of only 𝑆0  and 𝑇  operations. For 

example, 𝑃 = 𝑆0𝑇𝑆0𝑆0𝑆0𝑇. It is obvious that in this case 𝑥𝑖 = 0 for all 𝑖 , where 0 ≤ 𝑖 ≤ 𝑛 + 𝑚. So, 

5𝑎𝑥𝑖 − 5𝜎(𝑖,𝑖+𝑏)𝑥𝑖+𝑏 = 0 and therefore the claim is trivially true. Now, we will replace some of the  𝑆0 

operations by 𝑆−1 and prove that the claim remains true. Suppose that the claim is already true for a 

sequence of operations 𝑃. First, make a cyclic permutation of 𝑃 so that the operation  𝑆0 which will be 

changed to 𝑆−1, comes at the beginning of 𝑃. For example, suppose we are going to change the operation  

𝑆0 with a bar above it in the sequence 𝑃 =  𝑆0𝑇 𝑆0 𝑆0
̅̅̅̅  𝑆0𝑇. We do a cycling permutation to write it as 

𝑃1 =  𝑆0
̅̅̅̅  𝑆0𝑇 𝑆0𝑇 𝑆0. The numbers 𝑥𝑖  (0 ≤ 𝑖 ≤ 𝑛 + 𝑚) also make the same cyclic permutation. Let us 

rename them so that they are labelled again as 𝑥𝑖 (0 ≤ 𝑖 ≤ 𝑛 + 𝑚) with respect to 𝑃1. Now consider the 

sequence of operations 𝑃2 which is obtained from 𝑃1 by replacing the  𝑆0 operation in the beginning by 

𝑆−1. In the example, it will look like 𝑃2 = 𝑆−1 𝑆0𝑇 𝑆0𝑇 𝑆0. Let us denote by 𝑥𝑖
′  (0 ≤ 𝑖 ≤ 𝑛 + 𝑚) the 

rational numbers corresponding to the sequence of operations 𝑃2. 

Let us denote by 𝑅𝑖 = 𝐵𝑛+𝑚−𝑖 … 𝐵𝑛+𝑚−2𝐵𝑛+𝑚−1  the sequence formed by the last 𝑖  operations in 𝑃1 . 

Denote by 𝑅𝑖[𝑏] the number obtained from application of the operations of the sequence 𝑅𝑖  to some 
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number 𝑏 in the given order (from right to left). In particular, 𝑅0[𝑏] = 𝑏. As we said before, the sequence 

𝑃1 starts with  𝑆0 and the sequence 𝑃2 starts with 𝑆−1, all the other operations are the same, that is 𝑃1 =
 𝑆0𝑅𝑛+𝑚−1 and 𝑃2 = 𝑆−1𝑅𝑛+𝑚−1. Since 𝑃1[𝑥0] = 𝑥0 and 𝑃2[𝑥0

′ ] = 𝑥0
′ , we can write  

𝑥0 =
5𝑅𝑛+𝑚−1[𝑥0]

2
, 𝑥0

′ =
5𝑅𝑛+𝑚−1[𝑥0

′ ] − 1

2
, 

and find the difference 

𝑥0
′ − 𝑥0 =

5𝑅𝑛+𝑚−1[𝑥0
′ − 𝑥0] − 1

2
=

5𝑚(𝑥0
′ − 𝑥0)

2𝑛+𝑚
−

1

2
. 

By solving this equation for 𝑥0
′ − 𝑥0, we obtain 

𝑥0
′ = 𝑥0 − 𝑈𝑛+𝑚−1. 

Using this we prove step by step that 

𝑥𝑛+𝑚−1
′ = 𝐵𝑛+𝑚−1(𝑥𝑛+𝑚

′ ) = 𝐵𝑛+𝑚−1(𝑥0
′ ) = 

= 𝐵𝑛+𝑚−1(𝑥0 − 𝑈𝑛+𝑚−1) = 

= 𝑥𝑛+𝑚−1 − 5𝜎(𝑛+𝑚−1,𝑛+𝑚) ∙ 𝑈𝑛+𝑚−2. 

Similarly, 

𝑥𝑛+𝑚−2
′ = 𝐵𝑛+𝑚−2(𝑥𝑛+𝑚−1

′ ) = 

= 𝐵𝑛+𝑚−2(𝑥𝑛+𝑚−1 − 5𝜎(𝑛+𝑚−1,𝑛+𝑚) ∙ 𝑈𝑛+𝑚−2) = 

= 𝑥𝑛+𝑚−2 − 5𝜎(𝑛+𝑚−2,𝑛+𝑚) ∙ 𝑈𝑛+𝑚−3. 

By continuing in this manner, we obtain that 

𝑥𝑛+𝑚−𝑘
′ = 𝑥𝑛+𝑚−𝑘 − 5𝜎(𝑛+𝑚−𝑘,𝑛+𝑚) ∙ 𝑈𝑛+𝑚−𝑘−1, 

for all 𝑘 = 0,1,2, … , 𝑛 + 𝑚 − 1. In particular, for 𝑘 = 𝑛 + 𝑚 − 1 we obtain 𝑥1
′ = 𝑥1 − 5𝜎(1,𝑛+𝑚) ∙ 𝑈0. 

Noting the fact that 𝜎(1, 𝑛 + 𝑚) = 𝑚 − 1, we can write 𝑥1
′ = 𝑥1 − 5𝑚−1 ∙ 𝑈0. It is also possible to write 

the above equalities with simpler indices: 𝑥𝑖
′ = 𝑥𝑖 − 5𝜎(𝑖,𝑛+𝑚) ∙ 𝑈𝑖−1, where 𝑖 = 1,2, … , 𝑛 + 𝑚. Going one 

more step and using the fact that 𝐵0 is not a 𝑇 operation, we obtain again 

𝑥0
′ = 𝐵0(𝑥1

′ ) = 𝐵0(𝑥1 − 5𝑚−1 ∙ 𝑈0) = 𝑥0 −
1

2
(5𝑚 ∙ 𝑈0 + 1) = 𝑥0 − 𝑈𝑛+𝑚−1. 

This can also be interpreted as 

𝑥𝑛+𝑚
′ = 𝑥𝑛+𝑚 − 𝑈𝑛+𝑚−1. 
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Suppose now that the pair of nonnegative integers (𝑘, 𝑗) satisfy 5𝑎𝑈0 − 𝑈𝑏 ∈ 𝑍 and for the numbers 𝑥𝑖 

(0 ≤ 𝑖 ≤ 𝑛 + 𝑚)  the difference 5𝑎𝑥𝑖 − 5𝜎(𝑖,𝑖+𝑏)𝑥𝑖+𝑏 is known to be an integer. We want to prove that the 

last property holds true for the numbers 𝑥𝑖
′  (0 ≤ 𝑖 ≤ 𝑛 + 𝑚), too. Assume first that 𝑖 > 0. Using the 

above results, we can write  

5𝑎𝑥𝑖
′ − 5𝜎(𝑖,𝑖+𝑏)𝑥𝑖+𝑏

′ = 5𝑎(𝑥𝑖 − 5𝜎(𝑖,𝑛+𝑚) ∙ 𝑈𝑖−1) − 

−5𝜎(𝑖,𝑖+𝑏) ∙ (𝑥𝑖+𝑏 − 5𝜎(𝑖+𝑏,𝑛+𝑚) ∙ 𝑈𝑖+𝑏−1) = 

= 5𝑎𝑥𝑖 − 5𝜎(𝑖,𝑖+𝑏)𝑥𝑖+𝑏 − 5𝜎(𝑖,𝑛+𝑚) ∙ (5𝑎 ∙ 𝑈𝑖−1 − 𝑈𝑖+𝑏−1), 

which is an integer by assumption. For the case 𝑖 = 0 we obtain 

5𝑎𝑥0
′ − 5𝜎(0,𝑏)𝑥𝑏

′ = 5𝑘(𝑥0 − 𝑈𝑛+𝑚−1) − 5𝜎(0,𝑏) ∙ (𝑥𝑏 − 5𝜎(𝑏,𝑛+𝑚) ∙ 𝑈𝑏−1) = 

= (5𝑎𝑥0 − 5𝜎(0,𝑏)𝑥𝑏) − (5𝑎 ∙ 𝑈𝑛+𝑚−1 − 5𝜎(0,𝑛+𝑚) ∙ 𝑈𝑏−1), 

where the summand 5𝑎𝑥0 − 5𝜎(0,𝑏)𝑥𝑏 is again an integer by assumption. For the second summand we 

can write 

5𝑎 ∙ 𝑈𝑛+𝑚−1 − 5𝜎(0,𝑛+𝑚) ∙ 𝑈𝑏−1 = 5𝑎 ∙ 𝑈𝑛+𝑚−1 − 5𝑚 ∙ 𝑈𝑏−1 = 

=
5𝑎

2
(5𝑚 ∙ 𝑈0 + 1) − 5𝑚 ∙ 𝑈𝑏−1 =

5𝑚(5𝑎 ∙ 𝑈0 − 𝑈𝑏) + 5𝑎

2
, 

which is again an integer, because 5𝑎 ∙ 𝑈0 − 𝑈𝑏 is odd and therefore 5𝑚(5𝑎 ∙ 𝑈0 − 𝑈𝑏) + 5𝑎 is an even 

number. 

The case when 𝑆0 operation is replaced by 𝑆1 is considered in a similar way. Now, it is possible to prove 

that when 𝑆1 operation is replaced by 𝑆2, similarly, 𝑆2 operation is replaced by 𝑆3 , etc. in general, 𝑆𝑘 

operation is replaced by 𝑆𝑘+1, then the property of 5𝑎𝑥𝑖 − 5𝜎(𝑖,𝑖+𝑏)𝑥𝑖+𝑏 being an integer remains true. 

The same can be stated if 𝑆−1 operation is replaced by 𝑆−2, 𝑆−2 operation is replaced by 𝑆−3, etc. in 

general, 𝑆𝑘  operation is replaced by 𝑆𝑘−1 . These replacements of operations allow us to obtain any 

sequence of operations 𝑃 = 𝐵0𝐵1 … 𝐵𝑛+𝑚−1 from the sequence of operations consisted of only 𝑆0 and 𝑇 

operations. After each replacement, the claim of the current theorem, which says that 5𝑎𝑥𝑖 − 5𝜎(𝑖,𝑖+𝑏)𝑥𝑖+𝑏 

is an integer, remains true. So, when we will reach the desired sequence of operations 𝑃 =
𝐵0𝐵1 … 𝐵𝑛+𝑚−1, the claim will be true for this sequence, too. Proof is complete. 

The following three theorems are proved analogously. 

Theorem 2.  

If the pair of nonnegative integers (𝑎,  𝑏) satisfy 5𝑎𝑈0 + 𝑈𝑏 ∈ 𝑍 then for the numbers 𝑥𝑖 defined above, 

the sum 5𝑎𝑥𝑖 + 5𝜎(𝑖,𝑖+𝑏)𝑥𝑖+𝑏 is also an integer. 

Theorem 3.  
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If the pair of nonnegative integers (𝑎′, 𝑏′), for which 5𝑎′
𝑈𝑏′ − 𝑈0 ∈ 𝑍  then for the numbers 𝑥𝑖 defined 

above, the difference 5𝑎′+𝜎(𝑖,𝑖+𝑏′)𝑥𝑖+𝑏′ − 𝑥𝑖 is also an integer (0 ≤ 𝑖 ≤ 𝑖 + 𝑏′ ≤ 𝑛 + 𝑚). 

Theorem 4.  

If the pair of nonnegative integers (𝑎′, 𝑏′), for which 5𝑎′
𝑈𝑏′ + 𝑈0 ∈ 𝑍  then for the numbers 𝑥𝑖 defined 

above, the sum 5𝑎′+𝜎(𝑖,𝑖+𝑏′)𝑥𝑖+𝑏′ + 𝑥𝑖 is also an integer (0 ≤ 𝑖 ≤ 𝑖 + 𝑏′ ≤ 𝑛 + 𝑚). 

 

4. Examples. 

 

Consider the sequence of operations 𝑃 = 𝐵0𝐵1𝐵2 = 𝑆2𝑇𝑆1. Here 𝑚 = 2 and 𝑛 = 1. The solution of the 

linear equation 𝑆2𝑇𝑆1(𝑥) = 𝑥 is the number 𝑥0 = −13/17. Note that 𝑥0 = 𝑥3. We can also find the other 

numbers 𝑥1 = −12/17,  𝑥2 = −24/17. We also find the numbers 𝑈𝑖 = −2𝑖/17  (𝑖 = 0,1,2,3). Note that  

 

I. 56 ∙ 𝑈0 − 𝑈1 = −919 ∈ 𝑍, (𝑎 = 6, 𝑏 = 1 in Theorem 1) 

 

II. 54 ∙ 𝑈0 + 𝑈2 = −37 ∈ 𝑍, (𝑎 = 4, 𝑏 = 2 in Theorem 2) 

 

III. 54 ∙ 𝑈2 − 𝑈0 = −147 ∈ 𝑍, (𝑎′ = 4, 𝑏′ = 2 in Theorem 3) 

 

IV. 52 ∙ 𝑈1 + 𝑈0 = −3 ∈ 𝑍. (𝑎′ = 2, 𝑏′ = 1 in Theorem 4) 

 

We observe that 

 

I. 56 ∙ 𝑥0 − 5𝜎(0,1) ∙ 𝑥1 = 56 ∙ (−
13

17
) − 51 ∙ (−

12

17
) = −11945 ∈ 𝑍 . Note that 𝜎(0,1) = 1  is the 

number of non-𝑇 operations in the fragment 𝐵0 = 𝑆2 of 𝑃, (cf. Theorem 1) 

 

II. 54 ∙ 𝑥0 + 3𝜎(0,2) ∙ 𝑥2 = 54 ∙ (−
13

17
) + 51 ∙ (−

24

17
) = −485 ∈ 𝑍, (cf. Theorem 2) 
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III. 54+𝜎(0,2) ∙ 𝑥2 − 𝑥0 = 54+1 ∙ (−
24

17
) − (−

13

17
) = −4411 ∈ 𝑍, (cf. Theorem 3) 

 

IV. 52+𝜎(1,2) ∙ 𝑥2 + 𝑥1 = 52+0 ∙ (−
24

17
) + (−

12

17
) = −36 ∈ 𝑍. (cf. Theorem 4)  

 

These observations are in perfect agreement with the main results of the current paper. 

5. Visualization: 5-adic representations. 

 

In some simple cases it is possible to give a visual representation for the above results. Let us return to the 

example 𝑃 = 𝐵0𝐵1𝐵2 = 𝑆2𝑇𝑆1. Let us try to visualise the fact that 56 ∙ 𝑥0 − 5𝜎(0,1) ∙ 𝑥1 ∈ 𝑍 which was 

given as an example for Theorem 1. We will write the obtained 5-adic representations from right to left 

and omit powers of 5. Also, if a non-𝑇 operation of 𝑃 is applied to that number, then we shift that number 

and all the numbers above it, to the left by one digit. The non-𝑇 operation applied to that number is also 

indicated at the end of the number, but it is separated from the number by a line. 

 

 
1210240132342043

2420431210240132

301323420431210

112102401323420

0

021

12

213









=

==

==

==

x

BSx

BTx

BSx

 

 

Each of the rows should be periodic because they are 5-adic representations of rational numbers. But 

there are also repeated digits in the different rows. The fact that 56 ∙ 𝑥0 − 5𝜎(0,1) ∙ 𝑥1 ∈ 𝑍 can be 

explained by the appearance of the same digits in 5-adic representations of 𝑥0 and 𝑥1. The similarities are 

indicated using rectangular boxes. Note that the size of the boxes in this and the following constructions 

is not important. The same pattern is true for all the other rows of the above construction. In all the rows 

the boxes have the same horizontal shift (𝑎 = 6), and the same vertical shift (𝑏 = 1). 

 

1210240132342043

2420431210240132

301323420431210

112102401323420

0

021

12

213









=

==

==

==

x

BSx

BTx

BSx
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For Theorem 2, it is possible to give a similar visualization. The fact that 54 ∙ 𝑥0 + 5𝜎(0,2) ∙ 𝑥2 ∈ 𝑍 can be 

explained by appearance of opposite digits in the rows of the construction. By opposite digits we mean 

the digits which complete each other to 4. 

 

1210240132342043

2420431210240132

301323420431210

112102401323420

0

021

12

213









=

==

==

==

x

BSx

BTx

BSx

 

 

Again, it is not important where the boxes are put, how large the boxes are, the only restriction is that they 

have the same horizontal shift (𝑎 = 4), and the same vertical shift (𝑏 = 2). Also, the boxes should not be 

too close to the right side of the construction where this and the above patterns can fail. 

 

1210240132342043

2420431210240132

301323420431210

112102401323420

0

021

12

213









=

==

==

==

x

BSx

BTx

BSx

 

 

In the previous visualizations the boxes were traversed in the "northwest" direction. For Theorem 3 and 

Theorem 4 these boxes are traversed in the "northeast" direction. For Theorem 3 we gave the example 

54+𝜎(0,2) ∙ 𝑥2 − 𝑥0 ∈ 𝑍. It can be interpreted as the appearance of the same digits in the following boxes. 
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2420431210240132
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In the above construction the horizontal shift is 𝑎′ = 4, and the vertical shift 𝑏′ =2. In the following 

constraction, which visualises Theorem 4 with the example 52+𝜎(1,2) ∙ 𝑥2 + 𝑥1 ∈ 𝑍, the horizontal shift is 

𝑎′ = 2, and the vertical shift 𝑏′ = 1. 

 

1210240132342043

2420431210240132

301323420431210

112102401323420

0

021

12

213









=

==

==

==

x

BSx

BTx

BSx

 

 

Note that in all the above examples we chose (𝑎, 𝑏), so that 𝑎 is minimal and 𝑏 ≤ 𝑛 + 𝑚 = 3. Minimality 

of 𝑎 makes it possible to avoid further extension to the left side of these already long constructions. 

Another advantage is the decrease of stopping time if the algorithm is designed to determine if the 

numbers 𝑥𝑖 are all integers or not. More about these integer cases in the Conclusion below. The limitation 

𝑏 ≤ 𝑛 + 𝑚 is useful because one doesn’t need to extend the above constructions vertically to see the 

arising patterns. Otherwise, it is necessary to put several copies of the above constructions to see the 

pattern of repeating or opposing digits as in the following construction. 

 

210

021

12

213

11210240132342043

2420431210240132

301323420431210

112102401323420

BSx

BSx

BTx

BSx

==

==

==

==







  

           1210240132342043

2420431210240132

301323420431210

112102401323420

0

021

12

213









=

==

==

==

x

BSx

BTx

BSx

 
 

The above construction visualises the fact that 52+𝜎(1,6) ∙ 𝑥6 − 𝑥1 = 52+3 ∙ 𝑥0 − 𝑥1 = 55 ∙ (−
13

17
) −

(−
24

17
) = −2389 is an integer. 
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6. Conclusion 

 

We proved that for the numbers 𝑥𝑖, there are invariants determined by the numbers 𝑈𝑖, which are not 

dependent, to some extent, on the order and nature of operations in 𝑃. The main results of the paper can 

be nicely visualized if the numbers 𝑥𝑖 and 𝑈𝑖 are represented as 5-adic numbers. These visualizations 

show that there are patterns in the 𝑝-adic representations which can be studied further and in more detail. 

Special cases of these visualizations about 3-adic representations can be found in [3]. These constructions 

consisted of rows of 5-adic numbers can be interpreted as new mathematical objects. These constructions 

deserve to be investigated more systematically in the future. The main results of the paper can be further 

generalized if the number 5 is replaced by any prime 𝑝 > 2.  

There are sequences of operation 𝑃 for which the numbers 𝑥𝑖 are all integers, e.g., 𝑃 = 𝑆3𝑆3𝑇𝑇𝑇. 

30000000000000003

11000000000000006

220000000000000012

440000000000000024

34100000000000009

3300000000000003

0

01

12

23

334

435













==

===

===

===

===

===

x

BTx

BTx

BTx

BSx

BSx

 

 

I leave as an exercise to write the above construction for the well-known cycle {13, 33, 83, 208, 104, 52, 

26} corresponding to the sequence of operations 𝑃 = 𝑆1𝑆1𝑆1𝑇𝑇𝑇𝑇. This cycle is usually given as a 

counterexample for “5𝑥 + 1” incarnation of 3𝑥 + 1 problem. Another such counterexample is {17, 43, 

108, 54, 27, 68, 34} which corresponds to 𝑃 = 𝑆1𝑆1𝑇𝑇𝑆1𝑇𝑇. 

The main motivation behind the current study was the determination of all such sequences 𝑃 for 

which all the numbers 𝑥𝑖 are integers. For now, this task is incomplete, and it should be a topic for the 

future papers. The fact that the numbers 𝑥𝑖 in the above construction are all integers, is evident from the 

presence of zeros in their 5-adic representations. But note that if the integers 𝑥𝑖 are negative then the zeros 

will be replaced by 4s. The above observations about the presence of patterns of repeating digits 

(indicated by boxes) in the examples of Theorem 1 and Theorem 3, are trivially true here, because all the 

digits are the same. So, there is a hope that better understanding of the nature of the patterns in these 

constructions will be helpful for the determination and classification of all such integer cases. 
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Abstract 

In this work, some new properties of finitely e-supplemented (briefly, fe-supplemented) 

modules are investigated. All rings have unity and all modules are unitary left modules, in this work. 

Let M be an fe-supplemented R-module and N be a finitely generated submodule of M. Then M/N is 

fe-supplemented. 

Keywords: Small Submodules, Essential Submodules, Supplemented Modules, f-Supplemented 

Modules. 

 

2020 Mathematics Subject Classification: 16D10, 16D70. 

 

1. INTRODUCTION 

Throughout this paper all rings will be associative with identity and all modules will be unital left 

modules. 

Let R be a ring and M be an R-module. We will denote a submodule N of M by N≤M. Let M be an 

R-module and N≤M. If there exists a submodule K of M such that M=N+K and NK=0, then N is called a 

direct summand of M and it is denoted by M=NK. For any R-module M, we have M=M0. Let M be an 

R-module and N≤M. If L=M for every submodule L of M such that M=N+L, then N is called a small (or 

superfluous) submodule of M and denoted by NM. Let M be an R-module. M is called a hollow module 

if every proper submodule of M is small in M. M is called a local module if M has the largest submodule, 

i.e. a proper submodule which contains all other proper submodules. A submodule N of an R-module M is 

called an essential submodule and denoted by NM in case KN≠0 for every submodule K≠0, or 

equvalently, NL=0 for L≤M implies that L=0. Let M be an R-module and U,V≤M. If M=U+V and V is 

minimal with respect to this property, or equivalently, M=U+V and UVV, then V is called a 

supplement of U in M. M is called a supplemented module if every submodule of M has a supplement in 

M. M is said to be essential supplemented (briefly, e-supplemented) if every essential submodule of M has 

a supplement in M. M is said to be finitely supplemented (briefly, f-supplemented) if every finitely 

generated submodule of M has a supplement in M. Let M be an R-module and U≤M. If for every V≤M 

such that M=U+V, U has a supplement X with X≤V, we say U has ample supplements in M. If every 
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submodule of M has ample supplements in M, then M is called an amply supplemented module. If every 

essential submodule of M has ample supplements in M, then M is called an amply essential supplemented 

module. The intersection of maximal submodules of an R-module M is called the radical of M and 

denoted by RadM. If M have no maximal submodules, then we denote RadM=M. A module M is said to 

be noetherian, if every submodule of M is finitely generated. 

More informations about (amply) supplemented modules are in [1], [5] and [6]. More details about 

(amply) essential supplemented modules are in [3] and [4]. 

 

Lemma 1.1. Let M be an R-module. 

(1) If K≤L≤M, then KM if and only if KLM. 

(2) Let N be an R-module and f : MN be an R-module homomorphism. If KN, then f 
-1

(K)M. 

(3) For N≤K≤M, if K/NM/N, then KM. 

(4) If K1L1≤M and K2L2≤M, then K1K2L1L2. 

(5) If K1M and K2M, then K1K2M. 

Proof. See [5, 17.3]. 

 

Lemma 1.2. Let M be an R-module. The following assertions are hold. 

(1) If K≤L≤M, then LM if and only if KM and L/KM/K. 

(2) Let N be an R-module and f : MN be an R-module homomorphism. If KM, then f(K)N. The 

converse is true if f is an epimorphism and KefM. 

(3) If KM, then (K+L)/LM/L for every L≤M. 

(4) If L≤M and KL, then KM. 

(5) If K1,K2,...,KnM, then K1+K2+...+KnM. 

(6) Let K1,K2,...,Kn,L1,L2,...,Ln ≤M. If KiLi for every i=1,2,...,n, then K1+K2+...+KnL1+L2+...+Ln. 

Proof. See [1, 2.2] and [5, 19.3]. 

 

Lemma 1.3. Let M be an R-module. The following assertions are hold. 

(1) RadM is the sum of all small submodules of M. 

(2) Let N be an R-module and f : MN be an R-module homomorphism. Then f(RadM)≤RadN. If 

Kef≤RadM, then f(RadM)=Radf(M). 

(3) If N≤M, then RadN≤RadM. 
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(4) For K,L≤M, RadK+RadL≤Rad(K+L). 

(5) RxM for every xRadM. 

Proof. See [5, 21.5 and 21.6]. 

 

2. FINITELY e-SUPPLEMENTED MODULES 

Definition 2.1. Let M be an R-module. If every finitely generated essential submodule of M has a 

supplement in M or M have no finitely generated essential submodules, then M is called a finitely e-

supplemented (or briefly, fe-supplemented) module. (See also [2]) 

 

Lemma 2.2. Every f-supplemented module is fe-supplemented. 

Proof. Let M be a f-supplemented module. Then every finitely generated submodule of M has a 

supplement in M. By this, every finitely generated essential submodule of M has a supplement in M. 

Hence M is fe-supplemented, as required. 

 

Corollary 2.3. Let M be an R-module and LM. If M is f-supplemented, then M/L is fe-supplemented. 

Proof. Since M is f-supplemented and LM, by [5, 41.3 (2) (i)], M/L is f-supplemented. Then by Lemma 

2.2, M/L is fe-supplemented. 

 

Corollary 2.4. Let M be an R-module and L be a finitely generated submodule of M. If M is f-

supplemented, then M/L is fe-supplemented. 

Proof. Since M is f-supplemented and L is a finitely generated submodule of M, by [5, 41.3 (2) (i)], M/L is 

f-supplemented. Then by Lemma 2.2, M/L is fe-supplemented. 

 

Proposition 2.5. Let M be a fe-supplemented R-module. If every nonzero finitely generated submodule of 

M is essential in M, then M is f-supplemented. 

Proof. Let U be a finitely generated submodule of M. If U=0, then M is a supplement of U in M. If U≠0, 

then by hypothesis U is a finitely generated essential submodule of M and since M is fe-supplemented, U 

has a supplement in M. Hence M is f-supplemented. 

 

Lemma 2.6. Let M be a fe-supplemented R-module and N be a finitely generated submodule of M. Then 

M/N is fe-supplemented. 

Proof. Let K/N be a finitely generated essential submodule of M/N. Since K/NM/N, by Lemma 1.1, 

KM. Since K/N and N are finitely generated, K is also finitely generated. Since M is fe-supplemented, K 

has a supplement T in M. Then by [5, 41.1 (7)], (T+N)/N is a supplement of K/N in M/N. Hence M/N is fe-

supplemented. 
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Corollary 2.7. Let M be a fe-supplemented R-module and N be a cyclic submodule of M. Then M/N is fe-

supplemented. 

Proof. Since N is cyclic, then N is finitely generated. Then by Lemma 2.6, M/N is fe-supplemented, as 

desired. 

 

Corollary 2.8. Let f : MN be an R-module epimomorphism and Kef be finitely generated. If M is fe-

supplemented, then N is also fe-supplemented. 

Proof. Clear from Lemma 2.6. 

 

Corollary 2.9. Let f : MN be an R-module epimomorphism with cyclic kernel. If M is fe-supplemented, 

then N is also fe-supplemented. 

Proof. Clear from Corollary 2.8. 

 

Proposition 2.10. Every supplemented module is fe-supplemented. 

Proof. Clear, since every supplemented module is f-supplemented. 

 

Proposition 2.11. Every amply supplemented module is fe-supplemented. 

Proof. Clear from Proposition 2.10, since every amply supplemented module is supplemented. 

 

Proposition 2.12. Hollow and local modules are fe-supplemented. 

Proof. Clear from Proposition 2.10, since hollow and local modules are supplemented. 

 

Proposition 2.13. Every essential supplemented module is fe-supplemented. 

Proof. Clear from definitions. 

 

Proposition 2.14. Every amply essential supplemented module is fe-supplemented. 

Proof. Clear from Proposition 2.13, since every amply essential supplemented module is essential 

supplemented. 

 

3. CONCLUSION 

fe-supplemented modules are more general than f-supplemented modules. 
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Abstract 

In this work, some new properties of eg-supplemented modules are investigated. All rings 

have unity and all modules are unitary left modules. It is clear that every essential supplemented 

module is eg-supplemented. Hence eg-supplemented modules are more general than essential 

supplemented modules. 
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1. INTRODUCTION 

Throughout this paper all rings are associative with identity and all modules are unital left modules. 

Let R be a ring and M be an R-module. We denote a submodule N of M by N≤M. Let M be an R-

module and N≤M. If there exists a submodule L of M such that M=N+L and NL=0, then N is called a 

direct summand of M and denoted by M=NL. Let M be an R-module and N≤M. If L=M for every 

submodule L of M such that M=N+L, then N is called a small (or superfluous) submodule of M and 

denoted by NM. A module M is said to be hollow if every proper submodule of M is small in M. M is 

said to be local if M has a proper submodule which contains all proper submodules. A submodule N of an 

R-module M is called an essential submodule, denoted by NM, in case KN≠0 for every submodule 

K≠0, or equvalently, NL=0 for L≤M implies that L=0. Let M be an R-module and K be a submodule of 

M. K is called a generalized small (briefly, g-small) submodule of M if for every essential submodule T of 

M with the property M=K+T implies that T=M, we denote this by KgM. A module M is said to be 

generalized hollow (briefly, g-hollow) if every proper submodule of M is g-small in M. It is clear that 

every small submodule is a generalized small but the converse is not true generally. Let M be an R-

module and U,V≤M. If M=U+V and V is minimal with respect to this property, or equivalently, M=U+V 

and UVV, then V is called a supplement of U in M. M is said to be supplemented if every submodule 

of M has a supplement in M. M is said to be essential supplemented (briefly, e-supplemented) if every 
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essential submodule of M has a supplement in M. Let M be an R-module and U≤M. If for every V≤M such 

that M=U+V, U has a supplement X with X≤V, we say U has ample supplements in M. M is said to be 

amply supplemented if every submodule of M has ample supplements in M. M is said to be amply 

essential supplemented (briefly, amply e-supplemented) if every essential submodule of M has ample 

supplements in M. Let M be an R-module and U,V≤M. If M=U+V and M=U+T with TV implies that 

T=V, or equivalently, M=U+V and UVgV, then V is called a g-supplement of U in M. M is said to be 

g-supplemented if every submodule of M has a g-supplement in M. Let M be an R-module and U≤M. If 

for every V≤M such that M=U+V, U has a g-supplement X with X≤V, we say U has ample g-supplements 

in M. M is said to be amply g-supplemented if every submodule of M has ample g-supplements in M. The 

intersection of maximal submodules of an R-module M is called the radical of M and denoted by RadM. 

If M have no maximal submodules, then we denote RadM=M. The intersection of essential maximal 

submodules of an R-module M is called the generalized radical (briefly, g-radical) of M and denoted by 

RadgM. If M have no essential maximal submodules, then we denote RadgM=M. 

More details about (amply) supplemented modules are in [1], [8] and [9]. More details about 

(amply) essential supplemented modules are in [6] and [7]. More informations about g-small submodules 

and g-supplemented modules are in [2], [3] and [4]. 

 

Lemma 1.1. Let M be an R-module. 

(1) If K≤L≤M, then KM if and only if KLM. 

(2) Let N be an R-module and f : MN be an R-module homomorphism. If KN, then f 
-1

(K)M. 

(3) For N≤K≤M, if K/NM/N, then KM. 

(4) If K1L1≤M and K2L2≤M, then K1K2L1L2. 

(5) If K1M and K2M, then K1K2M. 

Proof. See [8, 17.3]. 

 

Lemma 1.2. Let M be an R-module. The following assertions are hold. 

(1) If K≤L≤M, then LM if and only if KM and L/KM/K. 

(2) Let N be an R-module and f : MN be an R-module homomorphism. If KM, then f(K)N. The 

converse is true if f is an epimorphism and KefM. 

(3) If KM, then (K+L)/LM/L for every L≤M. 

(4) If L≤M and KL, then KM. 
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(5) If K1,K2,...,KnM, then K1+K2+...+KnM. 

(6) Let K1,K2,...,Kn,L1,L2,...,Ln ≤M. If KiLi for every i=1,2,...,n, then K1+K2+...+KnL1+L2+...+Ln. 

Proof. See [1, 2.2] and [8, 19.3]. 

 

Lemma 1.3. Let M be an R-module. The following assertions are hold. 

(1) Every small submodule in M is g-small in M. 

(2) If K≤L≤M and LgM, then KgM and L/KgM/K. 

(3) Let N be an R-module and f : MN be an R-module homomorphism. If KgM, then f(K)gN. 

(4) If KgM, then (K+L)/LgM/L for every L≤M. 

(5) If L≤M and KgL, then KgM. 

(6) If K1,K2,...,KngM, then K1+K2+...+KngM. 

(7) Let K1,K2,...,Kn,L1,L2,...,Ln ≤M. If KigLi for every i=1,2,...,n, then K1+K2+...+KngL1+L2+...+Ln. 

Proof. See [2] and [3]. 

 

2. ESSENTIAL g-SUPPLEMENTED MODULES 

Definition 2.1. Let M be an R-module. If every essential submodule of M has a g-supplement in M, then 

M is called an essential g-supplemented (or briefly, eg-supplemented) module. (See [5]) 

 

Proposition 2.2. Every essential supplemented module is eg-supplemented. 

Proof. Clear from definitions. 

 

Proposition 2.3. Every factor module of an essential supplemented module is eg-supplemented. 

Proof. Clear from Proposition 2.2, since every factor module of an essential supplemented module is 

essential supplemented. 

 

Proposition 2.4. Every homomorphic image of an essential supplemented module is eg-supplemented. 

Proof. Clear from Proposition 2.2, since every homomorphic image of an essential supplemented module 

is essential supplemented. 

 

Proposition 2.5. The finite sum of essential supplemented modules is eg-supplemented. 

Proof. Clear from Proposition 2.2, since the finite sum of essential supplemented modules is essential 

supplemented. 

 

Proposition 2.6. The finite direct sum of essential supplemented modules is eg-supplemented. 
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Proof. Clear from Proposition 2.5. 

 

Proposition 2.7. Let M be an essential supplemented module. Then every finitely M-generated module is 

eg-supplemented. 

Proof. Clear from Proposition 2.2, since every finitely M-generated module is essential supplemented. 

 

Proposition 2.8. Let R be any ring. If RR is essential supplemented, then every finitely generated R-

module is eg-supplemented. 

Proof. Clear from Proposition 2.7. 

 

Proposition 2.9. Hollow and local modules are eg-supplemented. 

Proof. Clear from definitions. 

 

Proposition 2.10. Every g-hollow module is eg-supplemented. 

Proof. Clear from definitions. 

 

Proposition 2.11. Every supplemented module is eg-supplemented. 

Proof. Clear from definitions. 

 

Proposition 2.12. Every factor module of a supplemented module is eg-supplemented. 

Proof. Clear from Proposition 2.11, since every factor module of a supplemented module is 

supplemented. 

 

Proposition 2.13. Every homomorphic image of a supplemented module is eg-supplemented. 

Proof. Clear from Proposition 2.11, since every homomorphic image of a supplemented module is 

supplemented. 

 

Proposition 2.14. The finite sum of supplemented modules is eg-supplemented. 

Proof. Clear from Proposition 2.11, since the finite sum of supplemented modules is supplemented. 

 

Proposition 2.15. The finite direct sum of supplemented modules is eg-supplemented. 

Proof. Clear from Proposition 2.14. 

 

Lemma 2.16. Every g-supplemented module is eg-supplemented. 

Proof. Clear from definitions. 

 

Corollary 2.17. Every factor module of a g-supplemented module is eg-supplemented. 
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Proof. Let M be a g-supplemented module and M/N be a factor module of M. By [2, Theorem 2], M/N is 

g-supplemented. Then by Lemma 2.16, M/N is eg-supplemented. 

 

Corollary 2.18. The homomorphic image of a g-supplemented module is eg-supplemented. 

Proof. Clear from Corollary 2.17. 

 

3. CONCLUSION 

eg-supplemented modules are more general than essential supplemented modules. 
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Abstract 

The variety of dynamic mechanisms leading to epileptic behavior in the human brain demands 

the development of different theoretical approaches to the modeling of this disease. The Epileptor is a 

generic phenomenological model recently developed to describe fast-slow limit cycles in the 

dynamics of seizures. To make the control over the co-existing attractors in the Epileptor model we 

propose here the algorithm based on Kolesnikov’s “synergetic” target attractor feedback. We 

investigate the pros and cons of our approach to compare with other methods and discuss the 

perspectives of the further development of the control algorithm for modeling the real epileptic 

processes in vivo.  

 

Keywords: Epileptor, nonlinear feedback, dynamical attractors. 

 

1. Introduction 

 

The mathematical modeling of epilepsy involves the set of fundamental concepts from the non-

linear theory of dynamical systems and control theory: stability analysis, multistability, bifurcations, 

attractors, feedback driving of the system dynamics, and others [1]. Epileptiform seizes are modeled at all 

scales of the brain dynamics: micro-, meso- and macro-. The detailed investigation of different dynamical 

regimes in a given model is important to establish a taxonomy of the seizes [2] while the development of 

new control algorithms serves for detecting pre-ictal and ictal phases and their subsequent suppressing 

[3].  

Here we investigate the application of non-linear control feedback to one of the mesoscopic 

models of epilepsy. The Epileptor is a generic phenomenological model recently developed to 

describe fast-slow limit cycles in the dynamics of seizures [4]. To make the control over the co-

existing attractors in the Epileptor model we propose here the algorithm based on Kolesnikov’s 

“synergetic” target attractor feedback [5]. We discuss the pros and cons of our approach to compare 

with other methods and the perspectives of the further development of the control algorithm for 

modeling the real epileptic processes in vivo. 
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2. Neural Mass (Mesoscopic) Epileptor Model 

 

Differential Equations for the Epileptor Model 

The Epileptor system is a neural mass (mesoscopic) model of partial seizures [4]. Its five state 

variables {x1,y1,x2,y2,z} comprise the set of ordinary differential equations [6], and includes Subsystem 1 

for the fast discharges: 
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                                                        (1) 

Subsystem 2 for the spike-wave events (SWEs) [4]: 

  ,)(
1

;)5.3(3.0)(002.0

222

2

2

12ext

3

222
2

xfy
dt

dy

zxgIxxy
dt

dx







                              (2) 

and the variable z for the slow time-scale evolution: 
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Here in (1)-(2) we used notations: 
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Thus, the Epileptor set (1)-(4) is a generic phenomenological model describing fast-slow limit 

cycles in the dynamics of seizes. 
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The quasi-periodical dynamics of the Epileptor model are presented in Fig. 1: A. Time series of 

the Epileptor model (its enlarged view is shown on the right), the first (middle), and second (bottom) 

subsystem are plotted to show the principal components of a seizure-like event, that is an inter-ictal 

period with no spikes, the emergence of pre-ictal spikes, ictal onset, seizure evolution, and the emergence 

of sharp-wave events toward ictal offset; B. The trajectory of the whole system is sketched in the (y1, c, z) 

phase space. Seizure offset and ictal onset emerge through the z evolution. 

 

 

Figure 1. Quasi-periodical dynamics in the Epileptor model [6]. 

 

The set of numerical parameters in Fig. 1 is: a = 1, b = 3, c = 1, d = 5, m = 0, and Iext1 = 3.1 for 

Subsystem 1; a2 = 6, τ2 = 10, γ = 0.01, and Iext2 = 0.45 for Subsystem 2; r = 0.035, s = 4, and x0 = −1.6 for 

the slow z dynamics.  

For further details on the Epileptor dynamical regimes, one should turn to [6]. 
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Subsystem 2 Generating Sharp-Wave Events 

As an example of our approach, we investigate here Subsystem 2, which is responsible for 

generating sharp-wave events. A typical shape of SWEs in the recorded human EEG signals is presented 

in Fig. 2. 

 

 

Figure 2. The epileptiform activity in human EEG signals [7]. 

B: Sharp-wave event signals. 

 

SWEs often occur during sleep and quiet restfulness states, and they are believed to play a critical 

role in the consolidation of episodic memory. 

 

3. Target Attractor Feedback for Elipeptor Dynamics Control 

 

To make the control over the dynamics in the Epileptor model we propose here the algorithm 

based on Kolesnikov’s “synergetic” target attractor feedback [5]. To do it, one should define the 

attracting manifolds ψs as functions of the state variables. This subset refers to the goal function of the 

control. 

As an example, suppose that we study the stabilization of the state variable y2 in Subsystem 2 by 

the application of the external control current Iext2. Then, the subsystem (2) can be re-written as: 
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The f2 is defined in (4) 

The goal of the stabilization is:  

02 
dt

dy
.                                                                      (6) 

To achieve it, let’s define the target attractor variable by: 

222 )( yxf    .                                                                 (7) 

It must satisfy Kolesnikov’s dynamical equation [5]: 

.0const;  T
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                                                      (8) 

Then by the substitution (7) to (8), we get: 
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which implies by (5): 
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For the case 2T , when Kolesnikov’s attractor is formed much faster than the subsystem (5) 

makes its evolution, we obtain: 

   2222ext
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1

)(' yxf
T
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Finally, by (11) we express the control current: 
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 (12) 

The external control current (12) drives the subsystem (5) towards the stabilization of the state 

coordinate y2 exponentially fast. The x2-derivative of the function f2 is equal to 0 if x2 < −0.25. It means 

that our control algorithm (12) does not work for the stabilization in this domain. 

 

4. Conclusions 

 

The usage of Kolesnikov’s “synergetic” feedback provides by (8) exponentially fast stabilization 

or tracking. Such a type of control works more efficiently than gradient optimal and sub-optimal methods, 

and it seems to be very natural for control over different attractor regimes in the Epileptor model.  

Forming different target attractors or repellers opens a gate for complex control over particular 

subsystems in the Epileptor independently. It allows driving separately the fast and slow dynamics of the 

epileptiform behavior in the different subsystems.  

The algorithm proposed here for the forming control attractors in the Epileptor model can be 

used in perspectives for the further development of the control algorithms for in silico or in vivo 

detecting and suppressing the real epileptic processes in the human brain. 

 

5. References 

 

1. Stefanescu, R. A., Shivakeshavan, R. G., Talathi, S. S. 2012. Computational models of epilepsy. 

Seizure, 21, 748-759; doi.org/10.1016/j.seizure.2012.08.012. 

2. Depannemaecker, D., Destexhe, A., Jirsa, V., Bernard, C. 2021. Modeling seizures: from single 

neurons to networks. Seize, 90, 4-8; doi.org/10.1016/j.seizure.2021.06.015. 

3. Borisenok, S. 2020. Suppressing epileptiform dynamics in small Hodgkin-Huxley neuron clusters via 

target repeller-attractor feedback. IOSR Journal of Mathematics, 16, 41-47; doi: 10.9790/5728-

1604024147. 

4. Jirsa, V. K., Stacey, W. C., Quilichini, P. P., Ivanov, A. I., Bernard, C. 2014. On the nature of seizure 

dynamics. Brain, 137(8), 2210-2230; doi: 10.1093/brain/awu133. 

376



 

5th INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 

1-3 December 2021, Istanbul, Turkey 

 

 

ICOM 2021 

ISTANBUL / TURKEY 

5. Kolesnikov, A., 2013. Synergetic control methods of complex systems. Moscow: URSS Publ. 

https://library.bntu.by/sinergeticheskie-metody-upravleniya-slozhnymi-sistemami-energeticheskie-

sistemy  

6. Houssaini, K., Bernard, C., Jirsa, V. J. 2020. The Epileptor model: A systematic mathematical 

analysis linked to the dynamics of seizures, refractory status epilepticus, and depolarization block. 

eNeuro, 7(2), ENEURO.0485-18.2019; doi: 10.1523/ENEURO.0485-18.2019. 

7. Mohamed, N., Rubin, D., Tshilidzi, M. 2005. Detection of epileptiform activity in human EEG 

signals using Bayesian neural networks. IEEE 3rd International Conference on Computational 

Cybernetics 2005 (ICCC 2005), 231-237,  doi: 10.1109/ICCCYB.2005.1511578. 

 

377



 

5th INTERNATIONAL ONLINE CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 

1-3 December 2021, Istanbul, Turkey 

 

 

ICOM 2021 

ISTANBUL / TURKEY 
 

Commutativity and Wangerin Differential Equation 

Mehmet Emir Koksal 1,* and Serap Karagöl 2 

 
1Department of Mathematics, Ondokuz Mayis University, 55200 Atakum, Samsun, Turkey 

2Department of Electrical and Electronics Engineering, Ondokuz Mayis University, 55200 Atakum, Samsun, Turkey 

* E-mail:  mekoksal@omu.edu.tr 

 
Abstract 

The commutativity conditions of the Wangerin differential equation are studied. It is shown that 

the only class of commutative pairs of Wangerin differential equation is its constant feedback and 

constant-forward feedback conjugate pairs, and the possibility of commutative pairs other than f eedback 

conjugates is proven to be strictly negative. The commutativity with its feedback conjugate pairs is also 

studied under nonzero initial conditions. 

.  

Keywords: Commutativity, Wangerin dfiferential equation, time-varying system, linear system  

 

1.  Introduction 

 

The commutativty of linear time-varying differential systems has gained attraction in the last few 

decades. In addition to the exhaustive study [1], which sets the basic theory of commutativty, there have 

been many other publications in the literature concerning higher-order systems [2], studying 

commutativty of most of the second-order linear time-varying systems [3, 4], dealing with commutativty 

in cryptology [5], about the effects of commutativity on system performances such as robustness, 

stability, noise, sensitivity [6, 7] and subjecting many other aspects. 

The commutativity is not only restricted for analogue systems; the subject is also impressive f or 

discrete-time systems modelled by linear difference equations with time-varying coefficients [8, 9].  

Although most of the famous second-order linear time-varying differential were subjected from 

the commutativity point of view in [3, 4], Wangerin differential equation [10] is not among them. So the 

purpose of this study is to study the commutativity conditions of Wangerin differential equation; namely 

�̈� +
1

2
(

1

𝑡 − 𝑎
+

1

𝑡 − 𝑏
+

1

𝑡 − 𝑐
)�̇� +

𝐴 + 𝐵𝑡 + 𝐶𝑡2

4(𝑡 − 𝑎)(𝑡 − 𝑏)(𝑡 − 𝑐)
𝑦 = 0;  𝑡 ≥ 𝑡0,     (1) 

where 𝑎, 𝑏, 𝑐, 𝐴, 𝐵, 𝐶 are constants; and 𝑦(𝑡0),𝑦′(𝑡0) are the initial conditions at the initial time 𝑡 = 𝑡0. 

Note that the independent variable 𝑥 is changed to the continuous-time variable 𝑡 in order to be coherent 

with the theory of linear time-varying systems and the theory of commutativity. So, it is kept in mind that 

𝑡 can be any variable, space for example, other than time. 
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2.  Summary of the Relevant Theory 

 

Let 𝐴 be linear time-varying second-order differential system described by  

𝐴:   𝑎2(𝑡)�̈�𝐴(𝑡) + 𝑎1(𝑡)�̇�𝐴(𝑡) + 𝑎0(𝑡)𝑦𝐴(𝑡) = 𝑥𝐴(𝑡);  𝑡 ≥ 0  (2) 

where 𝑥𝐴(𝑡) is the independent excitation and 𝑦𝐴(𝑡) is the resulting response. We assume time variable 

𝑡 ≥ 𝑡0 (initial time) and 𝑦𝐴(𝑡0), �̇�𝐴(𝑡0 ) are the initial conditions. For the unique solution of Eq. ( 2) f or 

𝑡 ≥ 𝑡0, it is sufficient that the excitation and the time-varying coefficients 𝑎2(𝑡), 𝑎1(𝑡), 𝑎0(𝑡) be piece-

wise continuous functions of time with 𝑎2(𝑡) ≠ 0 [11]. Note that �̈�𝐴(𝑡) = 𝑦𝐴
′′(𝑡) =

𝑑2

𝑑𝑡2
𝑦𝐴(𝑡), �̇�𝐴(𝑡) =

𝑦𝐴
′ (𝑡) =

𝑑

𝑑𝑡
𝑦𝐴(𝑡), and similar notations will be followed throughout the paper. 

 It is shown in [12] that all the commutative pairs of (2) are obtained by 

[

𝑏2

𝑏1

𝑏0

] = [

𝑎2 0 0

𝑎1 𝑎2
0.5 0

𝑎0 𝑎2
−0.5(2𝑎1 − �̇�2)/4 1

] [

𝑘2

𝑘1

𝑘0

]                                    (3) 

if the coefficients of 𝐴 satisfy 

−𝑎2
0.5 𝑑

𝑑𝑡
[𝑎0 −

1

16𝑎2

(4𝑎1
2 + 3�̇�2

2 − 8𝑎1�̇�2 + 8�̇�1𝑎2 − 4𝑎2�̈�2)] 𝑘1 = 0. (4) 

In Eqs. (3) and (4), 𝑘2, 𝑘1, 𝑘0 are some constants. Then, any commutative pair 𝐵 of 𝐴 is described by  

𝑏2(𝑡)�̈�𝐵(𝑡) + 𝑏1(𝑡)�̇�𝐵(𝑡) + 𝑏0(𝑡)𝑦𝐵(𝑡) = 𝑥𝐵(𝑡)                (5) 

with the paper initial conditions  𝑦𝐵(𝑡0) and �̇�𝐵(𝑡0). If 𝑘1 = 0, Eq. (4) is automatically satisf ied f or any 

second-order linear time-varying differential system 𝐴 and its commutative pairs are obtainable from 𝐴 

by constant feed-forward gain 𝛼𝐴 =
1

𝑘2
 and constant feedback gain 𝜎𝐴 = 𝑘0 [2]. Since Eq. (4) is 

automatically satisfied for 𝑘1 = 0, every second-order linear time-varying system has a commutative pair 

which is its constant feedback conjugate. In this work, we look for the commutativity not of this type, so 

𝑘1 ≠ 0, and the coefficients of 𝐴 must satisfy 

𝑎0 −
1

16𝑎2

(4𝑎1
2 + 3�̇�2

2 − 8𝑎1�̇�2 + 8�̇�1𝑎2 − 4𝑎2�̈�2) = 𝐾    (6) 

for all 𝑡 ≥ 𝑡0 where 𝐾 is some constant. 

 When the case of nonzero initial conditions is considered, 𝐴 and 𝐵 must satisfy (see Eqs. (18a) 

and (18b) in [13] for 𝑘 = 0,1, ⋯ ,𝑛 + 𝑚 − 1; see also (3) in [14]) 

𝑦(𝑡0) = 𝑦𝐴(𝑡0) = 𝑦𝐵(𝑡0)         (7) 

�̇�(𝑡0) = �̇�𝐴(𝑡0) = �̇�𝐵(𝑡0)                  (8) 

�̈�(𝑡0) =
(1 − 𝑎0)𝑡𝑦𝐴 − 𝑎1�̇�𝐴

𝑎2
=

(1 − 𝑏0)𝑡𝑦𝐵 − 𝑏1�̇�𝐵

𝑏2
 (9) 

379



3 
 

𝑦(𝑡0) = − [
�̇�0

𝑎2
+

(1 − 𝑎0)(�̇�2 + 𝑎1)

𝑎2
2 ] 𝑦𝐴 + [

1 − 𝑎0�̇�1

𝑎2
+

𝑎1(�̇�2 + 𝑎1)

𝑎2
2 ] �̇�𝐴 

 

Eqs. (7) and (8) clearly indicate the equivalence of initial conditions of 𝐴 and 𝐵. With this knowledge 

Eqs. (9) and (10) yield 

[
1 − 𝑎0

𝑎2
−

1 − 𝑏0

𝑏2
−

𝑎1

𝑎2
+

𝑏1

𝑏2

] [

𝑦𝐴

�̇�𝐴

] = 0 (11a) 

 

[
 
 
 
 
 �̇�0

𝑏2
−

�̇�0

𝑎2
+

(1 − 𝑏0)(�̇�2 + 𝑏1)

𝑏2
2 −

(1 − 𝑎0)(�̇�2 + 𝑎1)

𝑎2
2

1 − 𝑎0�̇�1

𝑎2
−

1 − 𝑏0�̇�1

𝑏2
+

𝑎1(�̇�2 + 𝑎1)

𝑎2
2 −

𝑏1(�̇�2 + 𝑏1)

𝑏2
2 ]

 
 
 
 
 

𝑇

[

𝑦𝐴

�̇�𝐴

] = 0 (11b) 

  

Eqs. (7-11) are derived for the requirement that the differential systems 𝐴 and 𝐵 be commutative under 

nonzero initial conditions as well and their cascade connections 𝐴𝐵  and 𝐵𝐴 are described by a fourth-

order linear time-varying differential system 𝐶 described by  

  𝑐4(𝑡)𝑦
(4)(𝑡) + 𝑐3(𝑡)𝑦(𝑡) + 𝑐2(𝑡)�̈�(𝑡) + 𝑐1(𝑡)�̇�(𝑡) + 𝑐0(𝑡)𝑦(𝑡) = 𝑥(𝑡)          (12) 

with the initial conditions 𝑦(𝑡0), �̇�(𝑡0), �̈�(𝑡0),𝑦(𝑡0). 

 
3.  Commutativity of Wangerin Differential Equation 

 

Under the light of the above given theoretical bases, we investigate the commutativity conditions 

for Wangerin differential equations given in (1). 

Regarding the comparison of Wagnerian differential equation in (1) as the system A and 

comparing it with the general form of the second-order linear time-varying differential system of Eq. (2), 

the coefficients of Wangerin differential equation are 

𝑎2(𝑡) = 1, (13a) 

𝑎1(𝑡) =
1

2
(

1

𝑡 − 𝑎
+

1

𝑡 − 𝑏
+

1

𝑡 − 𝑐
), (13b) 

𝑎0(𝑡) =
𝐴 + 𝐵𝑡 + 𝐶𝑡2

4(𝑡 − 𝑎)(𝑡 − 𝑏)(𝑡 − 𝑐)
. (13c) 

The commutativity condition in Eq. (6) yields 

= − [
�̇�0

𝑏2
+

(1 − 𝑏0)(�̇�2 + 𝑏1)

𝑏2
2 ] 𝑦𝐵 + [

1 − 𝑏0�̇�1

𝑏2
+

𝑏1(�̇�2 + 𝑏1)

𝑏2
2 ] �̇�𝐵.            (10) 
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4𝑎0𝑎1
2 − 2�̇�1 = −

𝐴 + 𝐵𝑡 + 𝐶𝑡2

(𝑡 − 𝑎)(𝑡 − 𝑏)(𝑡 − 𝑐)
+

1

4
[

1

(𝑡 − 𝑎)2 +
1

(𝑡 − 𝑏)2 +
1

(𝑡 − 𝑐)2
] 

−
1

4
[

1

(𝑡 − 𝑎)2 +
1

(𝑡 − 𝑏)2 +
1

(𝑡 − 𝑐)2 

+
2

(𝑡 − 𝑎)(𝑡 − 𝑏)
+

2

(𝑡 − 𝑎)(𝑡 − 𝑐)
+

2

(𝑡 − 𝑏)(𝑡 − 𝑐)
] = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (14a) 

Rearranging the above expression, we obtain 

4(𝐴 + 𝐵𝑡 + 𝐶𝑡2)

(𝑡 − 𝑎)2(𝑡 − 𝑏)2(𝑡 − 𝑐)2 + 3 [
1

(𝑡 − 𝑎)2 +
1

(𝑡 − 𝑏)2 +
1

(𝑡 − 𝑐)2
] 

−2 [
1

(𝑡 − 𝑎)(𝑡 − 𝑏)
+

1

(𝑡 − 𝑎)(𝑡 − 𝑐)
+

1

(𝑡 − 𝑏)(𝑡 − 𝑐)
] = 𝐾.                     (14b) 

As the limit 𝑡 → ∞, the left side of Eq. (14) approaches 0 −
6

𝑡2
; hence for large 𝑡 it must hold that 

−
6

𝑡2 = 𝐾  (15) 

which is not possible for 𝐾 being a constant. 

Similar result can be obtained as follows: Arranging Eq. (14b), we obtain 

                                𝐾(𝑡 − 𝑎)2(𝑡 − 𝑏)2(𝑡 − 𝑐)2 = 4(𝐴 + 𝐵𝑡 + 𝐶𝑡2) 

                   +3[(𝑡 − 𝑏)2(𝑡 − 𝑐)2 + (𝑡 − 𝑎)2(𝑡− 𝑐)2 + (𝑡 − 𝑎)2(𝑡 − 𝑏)2]  

     −2[(𝑡 − 𝑎)(𝑡 − 𝑏)(𝑡 − 𝑐)2 + (𝑡 − 𝑎)(𝑡 − 𝑏)2(𝑡− 𝑐) + (𝑡 − 𝑎)2(𝑡− 𝑏)(𝑡 − 𝑐)]. (16) 

Since the right-hand side is a fourth-degree polynomial, the left-hand side should have “0” coefficient f or 

𝑡6 and 𝑡5, which is possible only if 𝐾 = 0. In this case, the left-hand side is zero. So to satisfy the equality 

for the general values of 𝑡, the coefficients of 𝑡4, 𝑡3, 𝑡2, 𝑡1, 𝑡0 

On the right-hand side must be equal to “0”. And for 𝑡4 this yields 0 = 3 which is a contradiction. Hence, 

we arrive the result that Eq. (6) can never be satisfied for the Wangerin differential equation. Therefore , 

the only second-order commutative pairs of Wangerin differential equation are its f eedback conjugates 

obtained by constant gain feed-forward and constant gain feedback structures [15]. 

 

4.  Commutativity of Constant Feedback Conjugates 

 

For this case 𝑘1 = 0 and the commutative pairs (𝐵’s) are obtained by Eq. (3):  

𝑏2(𝑡) = 𝑘2𝑎2(𝑡) = 𝑘2,          (17a) 

𝑏1(𝑡) = 𝑘2𝑎1(𝑡) =
𝑘2

2
(

1

𝑡 − 𝑎
+

1

𝑡 − 𝑏
+

1

𝑡 − 𝑐
), (17b) 

𝑏0(𝑡) = 𝑘2𝑎0(𝑡) + 𝑘0 =
𝑘2(𝐴+ 𝐵𝑡 + 𝐶𝑡2)

4(𝑡 − 𝑎)(𝑡 − 𝑏)(𝑡 − 𝑐)
+ 𝑘0. (17c) 
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It is true that with zero initial conditions, Wagnerian differential equation 𝐴 and 𝐵 defined by Eq. (17) are 

commutative. For the nonzero initial conditions, insertion of these in Eq. (11) yields the matrix equation 

𝑘1 + 𝑘0 − 1

𝑘2𝑎
[

1 0

−
�̇�2 + 𝑎1

𝑎2
1] [

𝑦𝐴

�̇�𝐴

] = [
0

0
]. (18) 

It is obvious from Eq. (18) that for  

𝑘2 + 𝑘0 = 1      (19) 

It is obvious from Eq. (18) that for 𝑦𝐴(𝑡0) and �̇�𝐴(𝑡0) can be chosen arbitrarily . Hence �̈�(𝑡0) and 𝑦(𝑡0) 

can be computed from Eqs. (9) and (10) respectively. On the other hand, if Eq. (19) is not satisf ied, then 

Eq. (18) yields that 𝑦𝐴(𝑡0) = 0, �̇�𝐴(𝑡0) = 0; and then Eqs. (9) and (10) yield �̈�(𝑡0) = 0, 𝑦(𝑡0) = 0. This 

means that all initial conditions of 𝐴, 𝐵 and of the combined system 𝐶 = 𝐴𝐵 or 𝐶 = 𝐵𝐴 must be zero f or 

the commutativity holds. 

Since 𝑎2(t) = 1 for the investigated differential system, the initial conditions formula can be 

summarized for 𝑘1 = 0 and 𝑘2 + 𝑘0 = 1 as 

𝑦 = 𝑦𝐴 = 𝑦𝐵,      (20a) 

�̇� = �̇�𝐴 = �̇�𝐵,        (20b) 

�̈� = (1 − 𝑎0)𝑦𝐴 − 𝑎1�̇�𝐴,     (20c) 

𝑦 = −[𝑎1(1 − 𝑎0) + �̇�0]𝑦𝐴 + (1 − 𝑎0 + 𝑎1
2 − �̇�1)�̇�𝐴,    (20d)  

where all time-dependent parameters are evaluated at the initial time 𝑡0. 

 
5.  Simulations 

 

Assume 𝑎 = 𝑏 = 𝑐 = 1, 𝐴 = 4, 𝐵 = 12, 𝐶 = −12. Then from Eq. (13), the differential equation 

for 𝐴 has the coefficients  

𝑎2 = 1,               (21a) 

𝑎1 = 
1 .5

t − 1
, (21b) 

𝑎0 =
−3t2 + 3t − 1

(t − 1)3 . (21c) 

The initial condition in Eq. (20) for 𝑦𝐴(𝑡0) = 0.1, �̇�𝐴(𝑡0) = 0.4 

𝑦 = 𝑦𝐴 = 𝑦𝐵 = 0.1,             (22a) 

�̇� = �̇�𝐴 = �̇�𝐵 = 0.4,            (22b) 

�̈� = 0.2,            (22c) 

𝑦 = 2.3.             (22d) 
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Within remind 𝑘1 = 0, choosing 𝑘2 = 2, 𝑘0 = −1 for which Eq. (19) is satisfied, Eq. (3)    together with 

Eq. (24) yields the differential system B as obtained by the coefficients    

𝑏2 = 2,                   (23a) 

𝑏1 =
3

𝑡 − 1
, (23b) 

𝑏0 =
−𝑡3 − 3𝑡2 + 3𝑡 − 1

(𝑡 − 1)3 . (23c) 

Then the resulting connection 𝐶 = 𝐴𝐵 or 𝐵𝐴 has the differential representation as in Eq. (24) (See Eq. (3) 

for 𝑛 = 𝑚 = 2 in [1]) with the initial conditions in Eq. (22). 

2𝑦(4) +
6

𝑡 − 1
𝑦(3) −

𝑡3 + 9𝑡2 − 7.5𝑡 + 1.5

(𝑡 − 1)3 𝑦(2) + 1.5
𝑡3 + 𝑡2 − 10𝑡 + 4

(𝑡 − 1)4 𝑦(1) 

+
3𝑡5 + 6𝑡4 − 20𝑡3 + 6𝑡2 + 6𝑡 + 1

(𝑡 − 1)6 . (24) 

Within 𝑘2 = 2 ,𝑘0 = −2 where Eq. (19) is not satisfied, we obtain 𝐵′       

𝑏2 = 2,                  (25a) 

𝑏1 =
3

𝑡 − 1
, (25b) 

𝑏0 =
−2𝑡3

(𝑡 − 1)3. (25c) 

Then the resulting connection 𝐶′ = 𝐴𝐵′ or 𝐶′ = 𝐵′𝐴 has the differential representation as in Eq. (26); 

note that the commutativity of 𝐴 and 𝐵′ gets valid only for zero initial conditions.  

2𝑦 (4) +
6

𝑡 − 1
𝑦(3) +

−2𝑡3 − 6𝑡2 + 4.5𝑡 + 0.5

(𝑡 − 1)3 𝑦(2) + 1.5
−3𝑡3 + 3𝑡2 + 10.5𝑡 + 4.5

(𝑡 − 1)4 𝑦(1) 

+
6t5 − 6t4 − t3−9t2 + 12t

(t − 1)6 𝑦 = 𝑥. (26) 

Wangerin differential system 𝐴 defied by the coefficients in Eq. (21) together with its constant f eedback 

conjugate pair 𝐵 defined by Eq. (23) are connected in cascade in the form 𝐴𝐵  and 𝐵𝐴 .The connections 

and their mathematical fourth-order  equivalence system 𝐶 defined by Eq. (24)  are excited by a pulse 

train of a period 0.5, duty cycle of 20%, amplitude of 2000 , and bias of −800. The starting time is 

assumed 𝑡0 = 2. 

The solutions for the output is obtained by ode45 (Dormend-Prince)  of Simulink toolbox in 

Matlab 2019a. It is observed that the output of 𝐴𝐵, 𝐵𝐴, 𝐶 are indentical for zero intial conditions; see 

  𝐴𝐵 = 𝐵𝐴 = 𝐶 zero initial condition in Fig. 1. On the same figure, the input signal is shown by - - 

- - input excitation. When the proper initial conditions in Eq. (22) are chosen, the commutativity still 
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holds and all the differential systems 𝐴𝐵, 𝐵𝐴, 𝐶 give the same solution as shown by            𝐴𝐵 = 𝐵𝐴 =

𝐶 nonzero initial conditions.   

In Fig. 2, the results relevant to the case where the necessary condition for commutativity with 

nonzero initial conditions are not satisfied. The commutativity of relaxed systems 𝐴′ and 𝐵′ are obvious 

from the plot             𝐴𝐵′ = 𝐵𝐴′ = 𝐶′ zero initial condition. When the condition in Eq. (19) is not 

satisfied, as the case for systems 𝐴, and 𝐵′ as defined by coefficients in Eq. (25), the commutativity  with 

nonzero initial condition is spoiled and the connections 𝐴𝐵′ and  𝐵′𝐴  yield the different response (see - - 

- - 𝐴𝐵′ nonzero initial condition          𝐵′𝐴 = 𝐶′ nonzero initial condition). Here, the responses of 𝐵′𝐴 

and 𝐶′ coincide since initial conditions are satisfied for the connection of  𝐵′𝐴 only [13]. 

 
 

Figigure 1. Responses for the case 𝑘2 + 𝑘0 = 1; all the commutativity conditions are satisfied. 

 

 
 

Figure 2. Responses for the case 𝑘2 + 𝑘0 ≠ 1;  commutativity conditions relevant to nonzero initial 

conditions are not satisfied. 
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6. Conclusion 

 

Wangerin differential equation is studied in this work from the point of view of commutativity. It 

is shown that Wangerian differential system is commutative with a second-order linear time-varying 

differential system only if this system is one of constant forward and constant feedback conjugate pair of 

the given Wangerin system. The case of nonzero initial conditions is also examined in this study. The 

results are well-validated by the MATLAB simulation software Simulink. 
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Abstract 

Parameters play the main role to model real life problems involving uncertainly. Researchers 

working in the  area of metric spaces have been inspired by this idea, and the soft metric spaces gave 

birth. By the similar reason, we defined parametric soft metric spaces as the parametric extension of 

the soft metric spaes [1]. The existence and the uniqueness of the fixed points in the metric (-like) 

saces take important place. Since the theory of fixed points is the backbone of the several applied 

sciences.In this article, we investigate some common and coincidence fixed soft point results in the 

parametric soft metric spaces.  

 

          Keywords: Parametric soft metric, soft set, coincidence and common fixed soft point. 

 

1. Introduction 

 

Investigations on indicating the existence and also uniqueness of fixed points of self mappings have 

extensive applications in different branches of mathematics, economics, engineering, and statistics. In 

mathematical aspect, fixed point theory is worthwhile to investigate by its applicability in various 

problems which consist differential and integral equations, approximations, games, and so on. For these 

reasons, to determine the existence and uniqueness of fixed points, common fixed points, coincident fixed 

points in different types of metric spaces, take attentions of the researchers working in the different 

branches of mathematics. 

The notion of a parametric metric space defined by Hussain et al. [7] in 2014. Later, Rao et al. [9] 

presented parametric S-metric spaces and prove common fixed point theorems in this spaces. Çetkin [12] 

introduced the concept of parametric 2-metric spaces and investigated some fixed point results in such 

spaces. Different versions of parametric metric spaces and investigations on fixed points of the proposed 

spaces have been considered by several authors [10,1314,15]. Besides, the notion of soft metric spaces [4] 

is one of the generalizations of metric spaces, which based on the parameterization tool. Researches on 

soft metric spaces and their fixed point theorems are very popular, nowadays. By expanding the role of 

the parameterization tool in the parametric metric spaces, Tunçay and Çetkin [8] defined the concept of a 

parametric soft metric space and observed some basic features of these spaces. 
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The goal of this study is to show the existence and the uniqueness of coincidence fixed soft points and 

common fixed soft points of self soft mappings described on a (complete) parametric soft metric space. 

So this study is arranged in the following manner. In section 2, we recall some basic notions and notations 

which are necessary for the main sections. In section 3, we observe some common and coincidence fixed 

soft point results for self soft mappings in the described spaces. Also we have some useful results on the 

existence of fixed soft points in such spaces.  

2. Preliminaries 

 

Definition 2.1. [1] Let 𝑋  denote the universal set, E denote the set of parameters and ∅ ≠ 𝐴 ⊆ 𝐸.Then a 

mapping  𝐹: 𝐴 → 𝒫(𝑋) is called a soft set over 𝑋, and it is denoted by the pair  (𝐹, 𝐴). In other words, a 

soft set over 𝑋 can be thought as a parametrized family of crisp subsets of the universe 𝑋.  

For any soft set (𝐹, 𝐴), we can extend the soft set (𝐹, 𝐴) to the soft set (�̅�, 𝐸) where  

�̅� ∶ 𝐸 → 𝒫(𝑋) , �̅�(𝑒) =  {
𝐹(𝑒)  ,   𝑖𝑓 𝑒 ∈ 𝐴
∅        ,   𝑖𝑓 𝑒 ∉ 𝐴

 

Example 2.2. [6] Let  𝑋  be the set of houses under consideration. E is the set of parameters. Each 

parameter is a word or a sentence. E = {expensive; beautiful; wooden; cheap; in the green surroundings; 

modern; in good repair; in bad repair}. In this case, to define a soft set means to point out expensive 

houses, beautiful houses, and so on. The soft set (F, E) describes the “attractiveness of the houses” which 

Mr. X is going to buy. Suppose that there are six houses in the universe 𝑋 given by  

𝑋 =  {ℎ1, ℎ2, ℎ3, ℎ4, ℎ5, ℎ6} and 𝐸 =  {𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5}: 

where 𝑒1 stands for the parameter ‘expensive’, 𝑒2 stands for the parameter ‘beautiful’, 𝑒3 stands for the 

parameter ‘wooden’, 𝑒4  stands for the parameter ‘cheap’, 𝑒5  stands for the parameter ‘in the green 

surroundings’. 

Suppose that 

𝐹(𝑒1) = {ℎ2, ℎ4}, 𝐹(𝑒2) = {ℎ1, ℎ3}, 𝐹(𝑒3) = {ℎ3, ℎ4, ℎ5}, 𝐹(𝑒4) = {ℎ1, ℎ3, ℎ5}, 𝐹(𝑒5)  =  {ℎ1} 

The soft set  

(𝐹, 𝐸) = {(𝑒1, {ℎ2, ℎ4}), (𝑒2, {ℎ1, ℎ3}), (𝑒3, {ℎ3, ℎ4, ℎ5}), (𝑒4, {ℎ1, ℎ3, ℎ5}), (𝑒5, {ℎ1})}  is a parametrized 

family {𝐹(𝑒𝑖), 𝑖 =  1,2,3,4, … ,8}  of subsets of the set 𝑋  and gives us a collection of approximate 

descriptions of an object. 

Definition 2.3. [1]  (1) The union of two soft sets (𝐹, 𝐴) and (𝐺, 𝐵) over 𝑋 is a soft set (𝐻, 𝐶), where 

𝐶 =  𝐴 ∪  𝐵 and for all 𝑒 ∈  𝐶 𝐻(𝑒) = 𝐹(𝑒) ∪  𝐺(𝑒). We express it as (𝐹, 𝐴)  ∪̃  (𝐺, 𝐵)  = (𝐻, 𝐶). 

(2) The intersection of two soft sets (𝐹, 𝐴) and (𝐺, 𝐵) over 𝑋 is the soft set (𝐻, 𝐷), where 𝐷 =  𝐴 ∩  𝐵 

and for all 𝑒 ∈ 𝐷, 𝐻(𝑒) =  𝐹(𝑒) ∩  𝐺(𝑒). We express it as (𝐹, 𝐴) ∩̃  (𝐺, 𝐵) = (𝐻, 𝐷). 
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Definition 2.4. [2] A soft set (𝐹, 𝐸) over X is said to be an absolute soft set denoted by �̃� if  𝐹(𝑒) = 𝑋,for 

all 𝑒 ∈ 𝐸. 

A soft set (𝐹, 𝐸) over X is said to be a null soft set denoted by ∅̃    if   𝐹(𝑒) = ∅,  for all 𝑒 ∈ 𝐸. 

Definition 2.5. [3] Let ℝ be the set of real numbers and ℬ(ℝ) be the collection of all non-empty bounded 
subsets of ℝ.  Then the mapping described by 𝐹: 𝐴 → ℬ(ℝ) is called a soft real set. In this case F is called 
a soft real number. 

We use notations �̃�, �̃�, �̃� to denote soft real numbers whereas �̅�, �̅�, 𝑡̅ will denote a particular type of soft real 

numbers  such that �̅�(λ) = r, for all λ ∈ A .  

For example 0 is the soft real number where 0̅(λ) = 0, for all λ∈A.  

Definition 2.6. [4] For two soft real numbers �̃�, �̃� the orderings are defined as follows:  

i. �̃� (α)≤̃ �̃� (α)⇒ �̃�≤�̃� 

ii. �̃� (α )≥̃ �̃�(α)⇒ �̃�≥�̃� 

iii. �̃� (α)<̃ �̃� (α)⇒ �̃�<�̃� 

iv. �̃� (α)>̃  �̃� (α)⇒ �̃�>�̃� 

Definition 2.7. [4] If ℬ is a collection of soft points then the soft set generated by taking all the soft points 

of ℬ is denoted by the symbol  𝑆𝑆(ℬ). In addition, the collection of all soft points of a soft set (𝐹, 𝐴) is 

described by 𝑆𝑃(𝐹, 𝐴). 

Notation 2.8. [4] ℝ(𝐴)∗  denotes the set of all non-negative soft real numbers. 

Definition 2.9. [4] A soft set (𝐹, 𝐴) over 𝑋 is said to be a soft point and it is denoted by 𝑃𝜆
𝑥, where 𝜆 ∈ 𝐴 

and 𝑥 ∈ 𝑋. A soft point  𝑃𝜆
𝑥 is defined by follows:  

𝑃𝜆
𝑥(𝛼)={

{𝑥}              𝛼 = 𝜆  
   ∅      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒         

, for all 𝛼 ∈ 𝐴. 

 

Definition 2.10.  [6] Let (𝐹, 𝐴) and (𝐺, 𝐵) be two soft sets over 𝑋 and 𝑌, respectively and let φ𝜓 be a soft 

mapping from (𝒫(𝑋))𝐴 into (𝒫(𝑌))𝐵. 

(1) The image of (𝐹, 𝐴) under the soft mapping 𝜑𝜓 is the soft set over 𝑌, defined by 

𝜑𝜓((𝐹, 𝐴))(𝑘) = ⋃ 𝜑((𝐹, 𝐴)(𝑒))

𝑒∈𝜓−1(𝑘)

   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 ∈ 𝐵   

(2) The pre-image of  (𝐺, 𝐵) under the soft mapping 𝜑𝜓  is the soft set over 𝑋, defined by 

𝜑𝜓
−1((𝐺, 𝐵))(𝑒) =   𝜑−1 ((𝐺, 𝐵)(𝜓(𝑒)))  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑒 ∈ 𝐴. 

For further information on notions and notations for the soft sets, we refer the papers [1,2,4]. 
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Definition 2.11. [8] Let �̃� be the universal soft set and  

𝑑: 𝑆𝑃(�̃�) × 𝑆𝑃(�̃�) × ℝ(𝐴)∗ → ℝ(𝐴)∗  be a mapping. Then the mapping 𝑑  is called a parametric soft 

metric on �̃� if the following axioms are valid:  

(P1) d(𝑃𝜆
𝑥, 𝑃𝜇

𝑦
, 𝑡̅) = 0̅ for all 𝑡̅ >̃ 0̅if and only if 𝑃𝜆

𝑥 = 𝑃𝜇
𝑦

, 

(P2) d(𝑃𝜆
𝑥, 𝑃𝜇

𝑦
, 𝑡̅)  = d(𝑃𝜇

𝑦
, 𝑃𝜆

𝑥, 𝑡̅) for all 𝑡̅ >̃ 0̅, 

(P3) d(𝑃𝜆
𝑥, 𝑃𝜇

𝑦
, 𝑡̅)≤̃d(𝑃𝜆

𝑥, 𝑃𝛾
𝑧, 𝑡̅) + d(𝑃𝛾

𝑧, 𝑃𝜇
𝑦

, 𝑡̅) for all  

𝑃𝜆
𝑥, 𝑃𝜇

𝑦
, 𝑃𝛾

𝑧 ∈̃ SP(�̃�) and all 𝑡̅ >̃ 0̅. 

The pair (�̃�, d) is said to be a parametric soft metric space. In case when the parameter set is one-pointed, 

then we get the definition of a parametric metric. 

Example 2.12. [8] Let X be any nonempty set and describe a mapping   

𝑑: 𝑆𝑃(�̃�) × 𝑆𝑃(�̃�) × ℝ(𝐴)∗ → ℝ(𝐴)∗ by  

d(𝑃𝜆
𝑥, 𝑃𝜇

𝑦
, 𝑡̅) = {

1̅, 𝑃𝜆
𝑥 =  𝑃𝜇

𝑦
    

0̅    𝑃𝜆
𝑥 ≠ 𝑃𝜇

𝑦 for all 𝑡̅ >̃ 0̅. 

Then the mapping 𝑑 identified above is a parametric soft metric on �̃�. This parametric soft metric is 

called the discrete parametric soft metric and (�̃�, d) is called the discrete parametric soft metric space. 

Example 2.13. [8]  Let 𝑋 = ℝ be the set of all reals and  define a mapping   

𝑑: 𝑆𝑃(�̃�) × 𝑆𝑃(�̃�) × ℝ(𝐴)∗ → ℝ(𝐴)∗  by  d(𝑃𝜆
𝑥, 𝑃𝜇

𝑦
, 𝑡)̅ = 𝑡̅[|�̅� − �̅�| + |�̅� − �̅�|] 𝑓 𝑜𝑟 𝑎𝑙𝑙 𝑡̅ > 0 ̅. 

Then 𝑑 is a parametric soft metric.   

Definition 2.14. [8] Let {𝑃𝜆𝑛

𝑥𝑛}
𝑛∈𝑁

 be a sequence of soft points in a parametric soft metric space (�̃�, d). 

1. {𝑃𝜆𝑛

𝑥𝑛}
𝑛∈𝑁

is said to be convergent to 𝑃𝜆
𝑥 ∈̃ SP(�̃�) , written as  lim𝑛→∞ 𝑃𝜆𝑛

𝑥𝑛 = 𝑃𝜆
𝑥 , for all 𝑡̅  >̃ 0̅ , if 

lim
𝑛→∞

d(𝑃𝜆𝑛

𝑥𝑛, 𝑃𝜆
𝑥, 𝑡̅ ) = 0̅. 

2. {𝑃𝜆𝑛

𝑥𝑛}
𝑛∈𝑁

is said to be a Cauchy sequence in �̃� if for  all   �̅� >̃ 0̅, if lim𝑛,𝑚→∞ d(𝑃𝜆𝑛

𝑥𝑛 , 𝑃𝜆𝑚

𝑥𝑚 , 𝑡̅ ) = 0̅. 

3. (�̃�, 𝑑)  is said to be complete if every Cauchy sequence is a convergent sequence. 

Definition 2.15. [8]  Let (𝑋,̃  𝑑1)  and (�̃�, 𝑑2) be two parametric soft metric spaces, and   

𝜑𝜓 : (�̃�, 𝑑1) → (�̃�, 𝑑2)  be a soft  mapping. We say 𝜑𝜓  is a continuous mapping at  𝑃𝜆
𝑥 in �̃�, if for any 

sequence {𝑃𝜆𝑛

𝑥𝑛}
𝑛∈𝑁

in X such that lim𝑛→∞ 𝑃𝜆𝑛

𝑥𝑛= 𝑃𝜆
𝑥,  then lim

𝑛→∞
𝜑𝜓 (𝑃𝜆𝑛

𝑥𝑛) = 𝜑𝜓(𝑃𝜆
𝑥).  
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Lemma 2.22. [8]  Let {𝑃𝜆𝑛

𝑥𝑛}
𝑛∈𝑁

 be a sequence of soft points in a parametric soft metric space (�̃�, 𝑑) such 

that   

𝑑 (𝑃𝜆𝑛

𝑥𝑛 , 𝑃𝜆𝑛+1

𝑥𝑛+1 , 𝑡̅) = �̅�𝑑 (𝑃𝜆𝑛−1

𝑥𝑛−1 , 𝑃𝜆𝑛

𝑥𝑛 , 𝑡̅) … (1)   

where �̅� ∈̃ [0,̅ 1̅ )  and 𝑛 ∈ ℕ. Then {𝑃𝜆𝑛

𝑥𝑛}
𝑛∈𝑁

 is a Cauchy sequence in (�̃�, 𝑑). 

Proof.  Let 𝑚 > n ≥ 1 be chosen. Then it implies that the follwoing  

𝑑 (𝑃𝜆𝑛

𝑥𝑛 , 𝑃𝜆𝑚

𝑥𝑚 , 𝑡̅) ≤̃ 𝑑 (𝑃𝜆𝑛

𝑥𝑛 , 𝑃𝜆𝑛+1

𝑥𝑛+1 , 𝑡̅) + 𝑑 (𝑃𝜆𝑛+1

𝑥𝑛+1 , 𝑃𝜆𝑛+2

𝑥𝑛+2 , 𝑡̅) + ⋯ + 𝑑(𝑃𝜆𝑚−1

𝑥𝑚−1 , 𝑃𝜆𝑚

𝑥𝑚 , 𝑡̅) 

                            ≤̃ (�̅�𝑛 + �̅�𝑛+1 + ⋯ + �̅�𝑚−1)𝑑(𝑃𝜆0

𝑥0 , 𝑃𝜆1

𝑥1 , 𝑡̅)    

                            ≤̃
�̅�𝑛

1̅−�̅�
 𝑑(𝑃𝜆0

𝑥0 , 𝑃𝜆1

𝑥1 , 𝑡̅),  for all 𝑡̅ >̃ 0̅. …..(2) 

Since �̅� <̃ 1̅. Assume that 𝑑(𝑃𝜆0

𝑥0 , 𝑃𝜆1

𝑥1  , 𝑡̅) >̃  0̅. If we take limit as 𝑚, 𝑛 → +∞ in the above inequality, 

then we gain the following  

lim𝑛,𝑚→∞𝑑(𝑃𝜆𝑛

𝑥𝑛 , 𝑃𝜆𝑚

𝑥𝑚 , 𝑡̅) = 0̅....(3)  

Therefore, {𝑃𝜆𝑛

𝑥𝑛}
𝑛∈𝑁

is a Cauchy sequence in �̃�. Also, if 𝑑(𝑃𝜆0

𝑥0 , 𝑃𝜆1

𝑥1 , 𝑡̅)  = 0̅, then 𝑑 (𝑃𝜆𝑛

𝑥𝑛 , 𝑃𝜆𝑚

𝑥𝑚 , 𝑡̅) = 0̅ , 

for all 𝑚 > 𝑛 and hence {𝑃𝜆𝑛

𝑥𝑛}
𝑛∈𝑁

is a Cauchy sequence in �̃�. 

3. Coincidence and Common Fixed Soft Point Theorems ın Parametric Soft Metric Spaces 

Definition 3.1: Let 𝛿𝜌 and 𝜑𝜓  be two self soft mappings of the soft universe �̃�. Then 𝛿𝜌 and 𝜑𝜓  are said 

to be weakly compatible if they commute at all of their coincidence soft points; that is,                  

𝛿𝜌(𝑃𝜆
𝑥) = 𝜑𝜓 (𝑃𝜆

𝑥), for some 𝑃𝜆
𝑥 ∈̃  𝑆𝑃(�̃�)   and then 𝛿𝜌(𝜑𝜓 (𝑃𝜆

𝑥)) = 𝜑𝜓 (𝛿𝜌(𝑃𝜆
𝑥)).  

Theorem 3.2: Let (�̃�, 𝑑)  be a complete parametric soft metric space. Let 𝛿𝜌  and 𝜑𝜓 be a weakly 

compatible self soft mappings of �̃� and 𝜑𝜓 (�̃�)  ⊆  𝛿𝜌 (�̃�) . Suppose that there exists �̅� ≥̃ 1̅ such that 

𝑑(𝛿𝜌(𝑃𝜆
𝑥), 𝛿𝜌(𝑃𝜇

𝑦
), 𝑡̅)  ≥̃  �̅� 𝑑(𝜑𝜓 (𝑃𝜆

𝑥), (𝑃𝜇
𝑦

), 𝑡̅), ∀ 𝑃𝜆
𝑥, 𝑃𝜇

𝑦
∈̃  �̃� … (4) 

If one of the subspaces 𝜑𝜓 (�̃�) or 𝛿𝜌(�̃�)  is complete, then 𝛿𝜌 and 𝜑𝜓  have a unique common fixed point 

in �̃�.  
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Proof. Let  𝑃𝜆0

𝑥0 ∈̃ 𝑆𝑃(�̃�)  be taken arbitary.  Since 𝜑𝜓 (�̃�)  ⊆  𝛿𝜌 (�̃�) , choose 𝑃𝜆1

𝑥1  such that                  

𝑃𝜇1

𝑦1 =  𝛿𝜌(𝑃𝜆1

𝑥1)  = 𝜑𝜓 (𝑃𝜆0

𝑥0). In general choose 𝑃𝜆𝑛+1

𝑥𝑛+1  such that 𝑃𝜇𝑛+1

𝑦𝑛+1 =  𝛿𝜌(𝑃𝜆𝑛+1

𝑥𝑛+1)  =  𝜑𝜓 (𝑃𝜆𝑛

𝑥𝑛), then 

from condition  (4), we gain the following 

 𝑑(𝑃𝜇𝑛+1

𝑦𝑛+1 , 𝑃𝜇𝑛+2

𝑦𝑛+2 , 𝑡̅) =  𝒫 (𝜑𝜓 (𝑃𝜆𝑛

𝑥𝑛) , 𝜑𝜓 (𝑃𝜆𝑛+1

𝑥𝑛+1) , 𝑡̅) … (5)  

By repeating  (5)  (𝑛 + 1) -times, we obtain the following inequality 

𝑑(𝑃𝜇𝑛+1

𝑦𝑛+1 , 𝑃𝜇𝑛+2

𝑦𝑛+2 , , 𝑡̅) ≤̃  �̅�𝑛+1𝑑(𝑃𝜇0

𝑦0 , 𝑃𝜇1

𝑦1 , 𝑡)̅ … (6) 

Hence for 𝑛 > 𝑚, we have 

𝑑(𝑃𝜇𝑛

𝑦𝑛 , 𝑃𝜇𝑚

𝑦𝑚 , 𝑡̅) ≤̃  𝑑(𝑃𝜇𝑛

𝑦𝑛 , 𝑃𝜇𝑛+1

𝑦𝑛+1 , 𝑡)̅ + 𝑑(𝑃𝜇𝑛

𝑦𝑛 , 𝑃𝜇𝑛+1

𝑦𝑛+1 , 𝑡̅) +   … … + 𝑑(𝑃𝜇𝑚−1

𝑦𝑚−1 , 𝑃𝜇𝑚

𝑦𝑚 , t) … (7)  

                         ≤̃  (�̅�𝑛  + �̅�𝑛+1  +  ⋯ +  �̅�𝑚−1 )𝒫(𝑃𝜇0

𝑦0 , 𝑃𝜇1

𝑦1 , 𝑡̅), for all 𝑡̅  >̃ 0̅.  

By taking n, m →  ∞ in the above inequality, we obtain that lim𝑛→∞𝑑(𝑃𝜆𝑛

𝑥𝑛 , 𝑃𝜇𝑚

𝑦𝑚 , 𝑡̅) =  0̅.  

Therefore, {𝑃𝜆𝑛

𝑥𝑛}
𝑛∈𝑁

is a Cauchy Sequence. Since (�̃�, 𝑑) is a complete parametric soft metric space, there 

exists 𝑃𝜌
𝜛 ∈̃ 𝑆𝑃(�̃�)   such  that  𝑃𝜇𝑛

𝑦𝑛 →  𝑃𝜌
𝜛 as n →  +∞.  Hence we get 

lim
𝑛→∞

𝑃𝜇𝑛

𝑦𝑛 =  lim
𝑛→∞

 𝜑𝜓 (𝑃𝜆𝑛

𝑥𝑛) =  lim
𝑛→∞

 𝛿𝜌 (𝑃𝜆𝑛

𝑥𝑛) =  𝑃𝜌
𝜛 … (8) 

Since 𝜑𝜓 (�̃�) or 𝛿𝜌(�̃�) is complete and 𝜑𝜓 (�̃�)  ⊆  𝛿𝜌 (�̃�) , there exists a soft point 𝑃𝑢
𝑣 ∈̃  �̃�  such that 

𝛿𝜌(𝑃𝑢
𝑣)  =  𝑃𝜌

𝜛 . Now from (4), for all 𝑡̅ >̃ 0̅, 

𝑑 (𝜑𝜓 (𝑃𝑢
𝑣), 𝜑𝜓 (𝑃𝜆𝑛

𝑥𝑛) , 𝑡̅) ≤̃
1̅

�̅�
𝑑(𝛿𝜌(𝑃𝑢

𝑣), 𝛿𝜌(𝑃𝜇𝑛

𝑦𝑛), 𝑡)̅ … . (9) 

Proceeding to the limit as n →  +∞ in (9), we have 

𝑑(𝜑𝜓 (𝑃𝑢
𝑣), 𝑃𝜌

𝜛 , 𝑡̅)  ≤̃
1̅

�̅�
𝑑(𝛿𝜌(𝑃𝑢

𝑣), 𝑃𝜌
𝜛 , 𝑡̅) … (10) 

for all 𝑡̅ >̃ 0̅ , which implies that 𝜑𝜓 (𝑃𝑢
𝑣) =  𝑃𝜌

𝜛 . Therefore  𝜑𝜓 (𝑃𝑢
𝑣)  =  𝛿𝜌(𝑃𝑢

𝑣) =  𝑃𝜌
𝜛 . Since 𝜑𝜓  and 

𝛿𝜌 are weakly compatible self soft mappings, we have 𝛿𝜌(𝜑𝜓 (𝑃𝑢
𝑣) ) =  𝜑𝜓 (𝛿𝜌(𝑃𝑢

𝑣)) , that is        

𝛿𝜌(𝑃𝜌
𝜛 )  =  𝜑𝜓 (𝑃𝜌

𝜛). 

Now we show that 𝑃𝜌
𝜛  is a fixed point of 𝛿𝜌 and 𝜑𝜓 . From (4), we have 
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𝑑(𝛿𝜌(𝑃𝜌
𝜛), 𝛿𝜌(𝑃𝜆𝑛

𝑥𝑛), 𝑡̅))  ≥̃ �̅� 𝑑(𝜑𝜓 (𝑃𝜌
𝜛 ), 𝜑𝜓 (𝑃𝜆𝑛

𝑥𝑛), 𝑡̅) … (11) 

Proceeding to the limit as n → ∞ in (11), we have 

𝑑(𝛿𝜌(𝑃𝜌
𝜛), 𝑃𝜌

𝜛 , 𝑡̅))  ≥̃ �̅�𝑑(𝜑𝜓 (𝑃𝜌
𝜛), 𝑃𝜌

𝜛 , 𝑡̅)) … (12) 

which implies that 𝛿𝜌(𝑃𝜌
𝜛)  =  𝑃𝜌

𝜛. Hence 𝛿𝜌(𝑃𝜌
𝜛)  = 𝜑𝜓 (𝑃𝜌

𝜛)  =  𝑃𝜌
𝜛. 

Uniquenes:  Suppose that 𝑃𝜌
𝜛 ≠ 𝑃𝛾

𝑧 is also another common fixed point of 𝛿𝜌 and 𝜑𝜓 . Then 

𝑑(𝛿𝜌(𝑃𝜌
𝜛), 𝛿𝜌(𝑃𝛾

𝑧), 𝑡̅))  ≥̃ �̅�𝑑(𝜑𝜓 (𝑃𝜌
𝜛), 𝜑𝜓 (𝑃𝛾

𝑧), 𝑡̅)), for all 𝑡̅  >̃ 0̅ , which witnesses the fact that  

𝑃𝜌
𝜛 =  𝑃𝛾

𝑧. This completes the proof. 

Theorem 3.3: Let (�̃�, 𝑑)  be a complete parametric soft metric space and  𝜑𝜓 , 𝛿𝜌: �̃� →  �̃� be two 

surjective self soft mappings which satisfy the following conditions. 

𝑑(𝜑𝜓  𝛿𝜌(𝑃𝜆
𝑥), ), 𝛿𝜌(𝑃𝜆

𝑥), 𝑡̅)  +  �̅�𝑑(𝜑𝜓 𝛿𝜌(𝑃𝜆
𝑥), 𝑃𝜆

𝑥 , 𝑡̅)  ≥̃ �̅� 𝑑(𝛿𝜌(𝑃𝜆
𝑥), 𝑃𝜆

𝑥 , 𝑡̅) … (13) 

and 

𝑑(𝛿𝜌 (𝜑𝜓 (𝑃𝜆
𝑥), 𝜑𝜓 (𝑃𝜆

𝑥), 𝑡)̅  +  �̅�𝑑(𝛿𝜌 (𝜑𝜓 (𝑃𝜆
𝑥), 𝑃𝜆

𝑥, 𝑡̅) ≥̃ �̅�𝑑(𝜑𝜓 (𝑃𝜆
𝑥), 𝑃𝜆

𝑥 , 𝑡̅) … (14) 

for all 𝑃𝜆
𝑥 ∈̃ 𝑆𝑃(�̃�),all 𝑡̅ >̃ 0̅,  and some nonnegative soft real numbers �̅�, �̅� and �̅� with �̅�  >  1̅  +  2�̅� and  

�̅� >  1̅  +  2�̅�. If 𝜑𝜓  or 𝛿𝜌 is continuous, then 𝜑𝜓  and 𝛿𝜌  have a common fixed point. 

Proof. Let 𝑃𝜆0

𝑥0 ∈̃ 𝑆𝑃(�̃�)   be an arbitrary soft point in �̃� . Since 𝜑𝜓  is surjective, there exists 

𝑃𝜆1

𝑥1 ∈̃ 𝑆𝑃(�̃�) such that 𝑃𝜆0

𝑥0 =  𝜑𝜓 (𝑃𝜆1

𝑥1). Since 𝛿𝜌 is also surjective, there exists 𝑃𝜆2

𝑥2 ∈̃ 𝑆𝑃(�̃�)  such that 

𝑃𝜆2

𝑥2 = 𝛿𝜌 (𝑃𝜆1

𝑥1) . Continuing this process, we construct a sequence of soft points {𝑃𝜆𝑛

𝑥𝑛}
𝑛∈𝑁

 in  �̃� such that 

𝑃𝜆2𝑛

𝑥2𝑛 =  𝜑𝜓 (𝑃𝜆2𝑛+1

𝑥2𝑛+1) and 𝑃𝜆2𝑛+1

𝑥2𝑛+1  =  𝛿𝜌 (𝑃𝜆2𝑛+2

𝑥2𝑛+2) , ∀ 𝑛 ∈ ℕ ∪ {0} … (15)  

Now for  𝑛 ∈ ℕ ∪ {0} , we have 

𝑑(𝜑𝜓  (𝛿𝜌(𝑃𝜆2𝑛+2

𝑥2𝑛+2), 𝛿𝜌(𝑃𝜆2𝑛+2

𝑥2𝑛+2), 𝑡̅)  +  �̅� 𝑑(𝜑𝜓  (𝛿𝜌(𝑃𝜆2𝑛+2

𝑥2𝑛+2), 𝑃𝜆2𝑛+2

𝑥2𝑛+2 , 𝑡̅) ≥̃ �̅�𝑑 (𝛿𝜌 (𝑃𝜆2𝑛+2

𝑥2𝑛+2) , 𝑃𝜆2𝑛+2

𝑥2𝑛+2 , 𝑡̅) … (16)  

Thus we have 

𝑑 (𝑃𝜆2𝑛

𝑥2𝑛 , 𝑃𝜆2𝑛+1

𝑥2𝑛+1 , 𝑡)̅ + �̅� 𝑑(𝑃𝜆,2𝑛
𝑥2𝑛 , 𝑃𝜆,2𝑛+2

𝑥2𝑛+2 , 𝑡̅) ≥̃ �̅�𝑑 (𝑃𝜆2𝑛+1

𝑥2𝑛+1 , 𝑃𝜆2𝑛+2

𝑥2𝑛+2 , 𝑡̅) … (17) 

Since    𝑑(𝑃𝜆2𝑛

𝑥2𝑛 , 𝑃𝜆2𝑛+2

𝑥2𝑛+2 , t)  ≤̃  𝑑(𝑃𝜆2𝑛

𝑥2𝑛 , 𝑃𝜆2𝑛+1

𝑥2𝑛+1 , 𝑡̅) +  𝑑(𝑃𝜆2𝑛+1

𝑥2𝑛+1 , 𝑃𝜆2𝑛+2

𝑥2𝑛+2  , 𝑡̅) 
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Hence from (17), 

𝑑 (𝑃𝜆2𝑛+1

𝑥2𝑛+1 , 𝑃𝜆2𝑛+2

𝑥2𝑛+2 , 𝑡̅) ≤̃
1̅ + �̅�

�̅� − �̅�
𝑑 (𝑃𝜆2𝑛

𝑥2𝑛 , 𝑃𝜆2𝑛+2

𝑥2𝑛+2 , 𝑡̅) … (18) 

On other hand, we have 

𝑑(𝛿𝜌 (𝜑𝜓 (𝑃𝜆2𝑛+1

𝑥2𝑛+1), 𝜑𝜓 (𝑃𝜆2𝑛+1

𝑥2𝑛+1), 𝑡̅)  +  �̅�  𝑑(𝛿𝜌 (𝜑𝜓 (𝑃𝜆2𝑛+1

𝑥2𝑛+1)), 𝑃𝜆2𝑛+1

𝑥2𝑛+1 , 𝑡̅) ≥̃ �̅�𝑑𝜑𝜓 (𝑃𝜆2𝑛+1

𝑥2𝑛+1), 𝑃𝜆2𝑛+1

𝑥2𝑛+1 , 𝑡̅) … (19)  

Thus, we have 

𝑑 (𝑃𝜆2𝑛−1

𝑥2𝑛−1 , 𝑃𝜆2𝑛

𝑥2𝑛  , 𝑡)̅ +  �̅� 𝑑 (𝑃𝜆2𝑛−1

𝑥2𝑛−1 , 𝑃𝜆2𝑛+1

𝑥2𝑛+1 , 𝑡)̅ ≥̃ �̅�𝑑 (𝑃𝜆2𝑛

𝑥2𝑛 , 𝑃𝜆2𝑛+1

𝑥2𝑛+1 , 𝑡̅) … (20)   

Since  𝑑(𝑃𝜆2𝑛−1

𝑥2𝑛−1 , 𝑃𝜆2𝑛+1

𝑥2𝑛+1 , 𝑡̅)  ≤̃  𝑑(𝑃𝜆2𝑛−1

𝑥2𝑛−1 , 𝑃𝜆2𝑛

𝑥2𝑛 , 𝑡̅)  +  𝑑(𝑃𝜆2𝑛

𝑥2𝑛 , 𝑃𝜆2𝑛+1

𝑥2𝑛+1 , 𝑡̅) 

Hence from (20), we have 

𝑑 (𝑃𝜆2𝑛

𝑥2𝑛 , 𝑃𝜆2𝑛+1

𝑥2𝑛+1 , 𝑡)̅ ≤̃
1̅ + �̅�

�̅� − �̅�
𝑑 (𝑃𝜆2𝑛−1

𝑥2𝑛−1 , 𝑃𝜆2𝑛

𝑥2𝑛 , 𝑡̅) … (21) 

Let  �̅� =  max {
1̅+�̅�

�̅�−�̅�
 ,

1̅+�̅�

�̅�−�̅�
}. Then by combining (18) and (21), we have 

𝑑 (𝑃𝜆𝑛

𝑥𝑛 , 𝑃𝜆𝑛+1

𝑥𝑛+1 , 𝑡̅)  ≤̃ �̅� 𝑑 (𝑃𝜆𝑛−1

𝑥𝑛−1 , 𝑃𝜆𝑛

𝑥𝑛 , 𝑡̅) , ∀ 𝑛 ∈ N ∪ {0}and for all 𝑡̅  >̃ 0̅ … (22) 

By repeating (21) ntimes, we get 

𝑑 (𝑃𝜆𝑛

𝑥𝑛 , 𝑃𝜆𝑛+1

𝑥𝑛+1 , 𝑡̅) ≤̃ �̅�𝑑 (𝑃𝜆0

𝑥0 , 𝑃𝜆1

𝑥1 , 𝑡̅) … (23) 

for all 𝑛 ∈ N ∪ {0} and for all 𝑡̅ >̃ 0̅.By Lemma 2.21, {𝑃𝜆𝑛

𝑥𝑛}
𝑛∈𝑁

is a Cauchy sequence in the complete 

parametric soft metric space (�̃�, 𝑑). Then there exists 𝑃𝜌
𝜛 ∈̃ �̃� such that 

𝑃𝜆𝑛

𝑥𝑛 → 𝑃𝜌
𝜛  as n → +∞ . Therefore 𝑃𝜆2𝑛+1

𝑥2𝑛+1 → 𝑃𝜌
𝜛    and 𝑃𝜆2𝑛+2

𝑥2𝑛+2 → 𝑃𝜌
𝜛 as n → +∞ . Without loss of 

generality, we may assume that 𝜑𝜓  is continuous, then 𝜑𝜓 (𝑃𝜆2𝑛+1

𝑥2𝑛+1) → 𝜑𝜓 (𝑃𝜌
𝜛)  as n → +∞. But    

𝜑𝜓 (𝑃𝜆2𝑛+1

𝑥2𝑛+1)  =  𝑃𝜆2𝑛

𝑥2𝑛  →  𝑃𝜌
𝜛 as n →  +∞. Thus, we have 𝜑𝜓 (𝑃𝜌

𝜛) = 𝑃𝜌
𝜛. Since 𝛿𝜌 is surjective, there 

exists 𝑃𝜎
𝜗 ∈̃ �̃�  such that 𝛿𝜌(𝑃𝜆

𝑥∗
)  =  𝑃𝜌

𝜛. Now 

𝑑(𝜑𝜓  (𝛿𝜌(𝑃𝜎
𝜗), 𝛿𝜌𝑃𝜎

𝜗), 𝑡̅)  +  �̅�𝑑(𝜑𝜓  (𝛿𝜌(𝑃𝜎
𝜗), 𝑃𝜎

𝜗 , 𝑡)̅ ≥̃  �̅�𝑑(𝛿𝜌(𝑃𝜎
𝜗), 𝑃𝜎

𝜗 , 𝑡̅) … (24) 

implies that �̅�𝑑(𝑃𝜌
𝜛 , 𝑃𝜎

𝜗 , 𝑡̅)  ≥̃  �̅�𝑑(𝑃𝜌
𝜛 , 𝑃𝜎

𝜗 , 𝑡̅). Thus we gain 𝑑(𝑃𝜌
𝜛 , 𝑃𝜎

𝜗 , t) ≤̃
�̅�

�̅�
𝑑(𝑃𝜌

𝜛 , 𝑃𝜎
𝜗 , 𝑡̅) … (25) 
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Since �̅� >̃ �̅� , we conclude that 𝑑(𝑃𝜌
𝜛, 𝑃𝜎

𝜗 , 𝑡̅)  =  0̅ . So 𝑃𝜌
𝜛 =  𝑃𝜎

𝜗 . Hence, 𝜑𝜓 (𝑃𝜌
𝜛) =  𝛿𝜌(𝑃𝜌

𝜛) =  𝑃𝜌
𝜛 . 

Therefore 𝑃𝜌
𝜛 is a common fixed soft point of 𝜑𝜓  and 𝛿𝜌. This completes the proof. 

Theorem 3.4.  Let (�̃�, 𝑑)be a parametric soft metric space. Let 𝜑𝜓 , 𝜙𝛼: �̃�  →  �̃� be mappings satisfying 

𝑑(𝜑𝜓 (𝑃𝜆
𝑥), 𝜑𝜓 (𝑃𝜇

𝑦
), 𝑡̅)  ≥̃  �̅� 𝑑(𝜙𝛼(𝑃𝜆

𝑥), 𝜙𝛼(𝑃𝜇
𝑦

), 𝑡̅)  + �̅�𝑑(𝜙𝛼(𝑃𝜆
𝑥), 𝜑𝜓 (𝑃𝜆

𝑥), 𝑡̅) +  𝑐̅𝑑(𝜙𝛼(𝑃𝜇
𝑦

), 𝜑𝜓 (𝑃𝜇
𝑦

), 𝑡̅) … . (26) 

for all 𝑃𝜆
𝑥, 𝑃𝜇

𝑦
 ∈̃ 𝑆𝑃(�̃�) and all 𝑡̅ >̃ 0̅  where �̅�, �̅�, 𝑐̅  ≥̃  0̅ with 

�̅� +  �̅� + 𝑐̅  >̃  1̅. Suppose the following hypotheses: 

1) �̅� >̃ 1̅ or 𝑐̅ <̅ 1̅; 

2) 𝜙𝛼(�̃�) ⊆ 𝜑𝜓 (�̃�); 

3) 𝜑𝜓 (�̃�) is a complete subspace of �̃�. 

Then 𝜑𝜓  and 𝜙𝛼  have a coincidence fixed soft  point. 

Proof. Let 𝑃𝜆0

𝑥0 ∈̃ 𝑆𝑃(�̃�). Since 𝜙𝛼(�̃�) ⊆ 𝜑𝜓 (�̃�), we choose 𝑃𝜆1

𝑥1 ∈̃ �̃�  such that 𝜑𝜓 (𝑃𝜆1

𝑥1) = 𝜙𝛼(𝑃𝜆0

𝑥0). 

Again we can choose 𝑃𝜆2

𝑥2 ∈̃ �̃�such that  𝜑𝜓 (𝑃𝜆2

𝑥2) = 𝜙𝛼(𝑃𝜆1

𝑥1). Continuing in the same way, we construct 

a sequence {𝑃𝜆𝑛

𝑥𝑛}
𝑛∈𝑁

 in �̃� such that 𝜑𝜓 (𝑃𝜆𝑛+1

𝑥𝑛+1) =  𝜙𝛼(𝑃𝜆𝑛

𝑥𝑛) ∀  𝑛 ∈ ℕ ∪ {0}.     

If 𝜙𝛼(𝑃𝜆𝑚−1

𝑚−1) =  𝜙𝛼(𝑃𝜆𝑚

𝑥𝑚)  for m ∈ N, then 𝜑𝜓 (𝑃𝜆𝑚

𝑥𝑚) =  𝜙𝛼(𝑃𝜆𝑚

𝑥𝑚).  Thus 𝑃𝜆𝑚

𝑥𝑚  is a coincidence point of 

𝜑𝜓 and 𝜙𝛼. Now assume that 𝑃𝜆𝑛−1

𝑥𝑛−1 ≠  𝑃𝜆𝑛

𝑥𝑛  for  all n ∈ ℕ. We have the following two cases 

Case (1)  Suppose 𝑏 ̅ <̃ 1̅. By (26), we have 

𝑑(𝜙𝛼(𝑃𝜆𝑛−1

𝑥𝑛−1), 𝜙𝛼(𝑃𝜆𝑛

𝑥𝑛), 𝑡̅)  =  𝑑(𝜑𝜓 (𝑃𝜆𝑛

𝑥𝑛),   𝜑𝜓 (𝑃𝜆𝑛+1

𝑥𝑛+1), 𝑡̅) 

≥̃ �̅�𝑑(𝜙𝛼(𝑃𝜆𝑛

𝑥𝑛), 𝜙𝛼(𝑃𝜆𝑛+1

𝑥𝑛+1), 𝑡̅) + �̅� 𝑑(𝜙𝛼(𝑃𝜆𝑛

𝑥𝑛), 𝜑𝜓 (𝑃𝜆𝑛

𝑥𝑛), 𝑡̅) +  𝑐̅𝑑(𝜙𝛼(𝑃𝜆𝑛+1

𝑥𝑛+1), 𝜑𝜓 (𝑃𝜆𝑛+1

𝑥𝑛+1), 𝑡̅) 

= �̅�𝑑(𝜙𝛼 (𝑃𝜆𝑛

𝑥𝑛) , 𝜙𝛼(𝑃𝜆𝑛+1

𝑥𝑛+1), 𝑡̅) + �̅�𝑑(𝜙𝛼(𝑃𝜆𝑛

𝑥𝑛), 𝜙𝛼(𝑃𝜆𝑛−1

𝑥𝑛−1), 𝑡̅) + 𝑐̅𝑑(𝜙𝛼(𝑃𝜆𝑛+1

𝑥𝑛+1), 𝜙𝛼 (𝑃𝜆𝑛

𝑥𝑛) , 𝑡̅) 

Thus, we have 

(1̅  −  𝑏 ̅)𝑑(𝜙𝛼(𝑃𝜆𝑛−1

𝑥𝑛−1), 𝜙𝛼(𝑃𝜆𝑛

𝑥𝑛), 𝑡̅)  ≥̃  (�̅� + 𝑐̅)𝑑(𝜙𝛼(𝑃𝜆𝑛+1

𝑥𝑛+1), 𝜙𝛼(𝑃𝜆𝑛

𝑥𝑛), 𝑡̅) 

Hence  𝑑(𝜙𝛼(𝑃𝜆𝑛+1

𝑥𝑛+1), 𝜙𝛼(𝑃𝜆𝑛

𝑥𝑛), 𝑡̅)  ≤̃
1̅−�̅�

�̅�+𝑐̅
𝑑(𝜙𝛼(𝑃𝜆𝑛−1

𝑥𝑛−1), 𝜙𝛼(𝑃𝜆𝑛

𝑥𝑛), 𝑡̅)… (27) 

Case (2)   Suppose 𝑐 ̅ <̃ 1̅. Also from (26), we have 

𝑑(𝜙𝛼(𝑃𝜆𝑛

𝑥𝑛), (𝑃𝜆𝑛−1

𝑥𝑛−1) , 𝑡)̅ = 𝑑(𝜑𝜓 (𝑃𝜆𝑛+1

𝑥𝑛+1) , 𝜑𝜓 (𝑃𝜆𝑛

𝑥𝑛), 𝑡̅) …(28) 

≥̃ �̅�𝑑(𝜙𝛼(𝑃𝜆𝑛+1

𝑥𝑛+1), 𝜙𝛼(𝑃𝜆𝑛

𝑥𝑛), 𝑡)̅ + �̅�𝑑(𝜙𝛼(𝑃𝜆𝑛+1

𝑥𝑛+1), 𝜑𝜓 (𝑃𝜆𝑛+1

𝑥𝑛+1) , 𝑡̅) + 𝑐 ̅𝑑(𝜙𝛼(𝑃𝜆𝑛

𝑥𝑛), 𝜑𝜓 (𝑃𝜆𝑛

𝑥𝑛), 𝑡̅) 

= �̅�𝑑(𝜙𝛼(𝑃𝜆𝑛

𝑥𝑛), 𝜙𝛼(𝑃𝜆𝑛+1

𝑥𝑛+1), 𝑡̅) + �̅�𝑑(𝜙𝛼(𝑃𝜆𝑛+1

𝑥𝑛+1), 𝜙𝛼(𝑃𝜆𝑛

𝑥𝑛), 𝑡̅) + 𝑐 ̅𝑑(𝜙𝛼(𝑃𝜆𝑛

𝑥𝑛), 𝜙𝛼(𝑃𝜆𝑛−1

𝑥𝑛−1), 𝑡̅) 
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Thus, we have (1̅  −  𝑐 ̅)𝑑(𝜙𝛼(𝑃𝜆𝑛−1

𝑥𝑛−1), 𝜙𝛼(𝑃𝜆𝑛

𝑥𝑛), 𝑡̅)  ≥̃  (�̅� + �̅�)𝑑(𝜙𝛼(𝑃𝜆𝑛+1

𝑥𝑛+1), 𝜙𝛼(𝑃𝜆𝑛

𝑥𝑛), 𝑡̅) 

Hence 

𝑑(𝜙𝛼 (𝑃𝜆𝑛−1

𝑥𝑛−1), 𝜙𝛼(𝑃𝜆𝑛

𝑥𝑛), 𝑡̅)  ≤̃
1̅−𝑐̅

�̅�+�̅�
𝑑(𝜙𝛼  (𝑃𝜆𝑛+1

𝑥𝑛+1), 𝜙𝛼(𝑃𝜆𝑛

𝑥𝑛), 𝑡̅)… (29)   

In case (1), we let  

�̅�1 =
1̅ − �̅�

�̅� + 𝑐̅
 

and in case (2), we let  

�̅�2 =
1̅ − 𝑐̅

�̅� + �̅�
 

Define �̅�  =  max{�̅�1, �̅�2}.  Thus in both cases, we have �̅� <̃ 1̅. Hence 

𝑑(𝜙𝛼 (𝑃𝜆𝑛+1

𝑥𝑛+1), 𝜙𝛼(𝑃𝜆𝑛

𝑥𝑛), 𝑡̅)  ≤̃  �̅�𝑑(𝜙𝛼(𝑃𝜆𝑛−1

𝑥𝑛−1), 𝜙𝛼(𝑃𝜆𝑛

𝑥𝑛), 𝑡̅)… (30)   

Repeating (30), n-times, we obtain 

𝑑(𝜙𝛼(𝑃𝜆𝑛+1

𝑥𝑛+1), 𝜙𝛼(𝑃𝜆𝑛

𝑥𝑛), 𝑡̅)  ≤̃  �̅̅�𝑛𝑑(𝜙𝛼(𝑃𝜆0

𝑥0), 𝜙𝛼(𝑃𝜆1

𝑥1), 𝑡)̅…(31) 

So for m > n, we have 

𝑑 (𝜙𝛼 (𝑃𝜆𝑛

𝑥𝑛) , 𝜙𝛼 (𝑃𝜆𝑚

𝑥𝑚) , 𝑡̅) ≤̃ 𝑑 (𝜙𝛼 (𝑃𝜆𝑛

𝑥𝑛) , 𝜙𝛼 (𝑃𝜆𝑛+1

𝑥𝑛+1) , 𝑡̅) + 𝑑 (𝜙𝛼 (𝑃𝜆𝑛+1

𝑥𝑛+1) 𝜙𝛼 (𝑃𝜆𝑛+1

𝑥𝑛+1) , 𝑡)̅ + ⋯ +

𝑑(𝜙𝛼 (𝑃𝜆𝑚−1

𝑥𝑚−1) , 𝜙𝛼 (𝑃𝜆𝑚

𝑥𝑚) , 𝑡̅) ≤̃ (�̅�𝑛 + �̅�𝑛+1 + ⋯ + �̅�𝑚−1)𝑑(𝑃𝜆0

𝑥0 , 𝑃𝜆1

𝑥1 , 𝑡̅)  

                              ≤̃
�̅�𝑛

1̅−�̅�
𝑑 (𝜙𝛼(𝑃𝜆0

𝑥0) , 𝜙𝛼 (𝑃𝜆1

𝑥1) , 𝑡̅) …(32) 

for all 𝑡̅ >̃ 0̅. Since �̅� <̃ 1̅.  

By taking limit as n,m→+∞ in above inequality (32), we get lim𝑛,𝑚→∞𝑑(𝜙𝛼 (𝑃𝜆𝑛

𝑥𝑛), 𝜙𝛼  (𝑃𝜆𝑚

𝑥𝑚), 𝑡̅) = 0̅ for 

all 𝑡̅ >̃ 0̅. Therefore {𝜑𝜓 (𝑃𝜆𝑛

𝑥𝑛)}
𝑛∈𝑁

 is a Cauchy sequence in 𝜑𝜓 �̃�. Since 𝜑𝜓 �̃� is a complete subspace of 

�̃� , there is 𝑃𝜌
𝜛 ∈̃ 𝑆𝑃(�̃�)  such that {𝜑𝜓 (𝑃𝜆𝑛

𝑥𝑛)}
𝑛∈𝑁

converges 𝜑𝜓 (𝑃𝜌
𝜛)  as n → +∞. Hence 𝜙𝛼(𝑃𝜆𝑛

𝑥𝑛) 

converges to 𝜑𝜓 (𝑃𝜌
𝜛)  as n → +∞ . Since �̅� + �̅� +  𝑐 ̅ > 1̅. We have �̅�, �̅� 𝑎𝑛𝑑  𝑐 ̅are not all 0̅. So we have 

the following cases. 

Step 1:  If �̅� ≠ 0̅, then 

𝑑(𝜑𝜓 (𝑃𝜆𝑛

𝑥𝑛), 𝜑𝜓 (𝑃𝜌
𝜛) , 𝑡̅) ≥̃ �̅�𝑑(𝜙𝛼  (𝑃𝜆𝑛

𝑥𝑛), 𝜙𝛼(𝑃𝜌
𝜛), 𝑡̅)  + �̅� 𝑑(𝜙𝛼  (𝑃𝜆𝑛

𝑥𝑛), 𝜑𝜓 (𝑃𝜆𝑛

𝑥𝑛), 𝑡̅) + 𝑐 ̅𝑑(𝜙𝛼(𝑃𝜌
𝜛), 𝜑𝜓 (𝑃𝜌

𝜛), 𝑡̅) 

≥̃ �̅�𝑑(𝜙𝛼  (𝑃𝜆𝑛

𝑥𝑛), 𝜙𝛼  (𝑃𝜆
𝑥) 

Hence   𝑑(𝜙𝛼 (𝑃𝜆𝑛

𝑥𝑛), (𝜙𝛼(𝑃𝜌
𝜛), 𝑡̅)  ≤̃

1

�̅�
𝑑(𝜑𝜓 (𝑃𝜆𝑛

𝑥𝑛), 𝜑𝜓 (𝑃𝜌
𝜛), 𝑡̅)… (33) 
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Since 
1

�̅�
𝑑(𝜑𝜓 (𝑃𝜆𝑛

𝑥𝑛), 𝜑𝜓 (𝑃𝜌
𝜛), 𝑡)̅ →  0  as n → +∞. Thus 𝜙𝛼 (𝑃𝜆𝑛

𝑥𝑛) → (𝜙𝛼(𝑃𝜌
𝜛)  as n → +∞. By 

uniqueness of limit, we have 𝜑𝜓 (𝑃𝜌
𝜛) =  𝜙𝛼(𝑃𝜌

𝜛).  Therefore 𝜑𝜓  and 𝜙𝛼 have a coincidence point. 

Step 2:  If 𝑏 ≠ 0, then 

𝑑(𝜑𝜓 (𝑃𝜌
𝜛), 𝜑𝜓 (𝑃𝜆𝑛

𝑥𝑛), 𝑡̅) ≥̃ �̅�𝑑(𝜙𝛼  (𝑃𝜆𝑛

𝑥𝑛) , 𝜙𝛼(𝑃𝜌
𝜛), 𝑡̅)+�̅�𝑑(𝜙𝛼  (𝑃𝜌

𝜛), 𝜑𝜓 (𝑃𝜌
𝜛), 𝑡̅)+𝑐 ̅𝑑(𝜙𝛼 (𝑃𝜆𝑛

𝑥𝑛) , 𝜑𝜓 (𝑃𝜆𝑛

𝑥𝑛) , 𝑡̅) 

     ≥̃ �̅�𝑑(𝜙𝛼  (𝑃𝜇
𝑦∗

) , 𝜙𝛼  (𝑃𝜇
𝑦∗

) , 𝑡̅) 

Hence       𝑑(𝜙𝛼 (𝑃𝜌
𝜛), 𝜑𝜓 (𝑃𝜌

𝜛), 𝑡̅) ≤̃
1

�̅�
𝑑(𝜑𝜓 (𝑃𝜌

𝜛), 𝜑𝜓 (𝑃𝜆𝑛

𝑥𝑛), 𝑡̅)… (34) 

As similar proof of case (1), we can show that 𝜙𝛼  (𝑃𝜌
𝜛) = 𝜑𝜓 (𝑃𝜌

𝜛). thus  𝜙𝛼  and 𝜑𝜓  have a coincidence 

point. 

Step 3:  If 𝑐̅ ≠ 0̅, then 

𝑑(𝜑𝜓 (𝑃𝜆𝑛

𝑥𝑛) , 𝜑𝜓 (𝑃𝜌
𝜛), 𝑡̅) ≥̃ �̅�𝑑(𝜙𝛼  (𝑃𝜆𝑛

𝑥𝑛) , 𝜙𝛼(𝑃𝜌
𝜛), 𝑡̅)+�̅�𝑑(𝜙𝛼 (𝑃𝜆𝑛

𝑥𝑛) , 𝜑𝜓 (𝑃𝜆𝑛

𝑥𝑛) , 𝑡̅ + 𝑐̅𝑑(𝜑𝜓 (𝑃𝜌
𝜛), 𝜙𝛼(𝑃𝜌

𝜛), 𝑡̅) 

     ≥̃ 𝑐̅𝑑(𝜙𝛼(𝑃𝜌
𝜛), 𝜑𝜓 (𝑃𝜌

𝜛), 𝑡̅) 

Hence    𝑑(𝜙𝛼(𝑃𝜌
𝜛), 𝜑𝜓 (𝑃𝜌

𝜛), 𝑡̅) ≤̃
1

𝑐̅
𝑑(𝜑𝜓 (𝑃𝜆𝑛

𝑥𝑛), 𝜑𝜓 (𝑃𝜌
𝜛), 𝑡)̅…(35) 

for all 𝑡̅ >̃ 0̅. As similar proof of case (1), we can Show that 𝜙𝛼(𝑃𝜌
𝜛) = 𝜑𝜓 (𝑃𝜌

𝜛). thus 𝜙𝛼 and 𝜑𝜓  have a 

coincidence fixed soft point.  

Corollary 3.5. Let (�̃�, 𝑑)  be a parametric soft metric space. Let 𝜑𝜓 , 𝜙𝛼: �̃�  →  �̃� mappings satisfying 

𝑑(𝜑𝜓 (𝑃𝜆
𝑥), 𝜑𝜓 (𝑃𝜇

𝑦
), 𝑡̅) ≥̃ �̅�𝑑(𝜙𝛼(𝑃𝜆

𝑥), 𝜙𝛼(𝑃𝜇
𝑦

), 𝑡̅) + �̅�𝑑(𝜙𝛼(𝑃𝜆
𝑥), 𝜑𝜓 (𝑃𝜆

𝑥), 𝑡̅)…(36) 

For all 𝑃𝜆
𝑥, 𝑃𝜇

𝑦
∈̃ 𝑆𝑃(�̃�) , 𝑃𝜆

𝑥 ≠ 𝑃𝜇
𝑦

 and all 𝑡̅ >̃ 0̅, where  �̅�, �̅� ≥̃ 0̅ with �̅� + �̅� >̃ 1̅ and �̅� >̃ 1̅. Suppose the 

following hypotheses: 

1) 𝜙𝛼(�̃�) ⊆ 𝜑𝜓 (�̃�); 

2) 𝜑𝜓 (�̃�) ,  is a complete subspace of �̃�. 

Then 𝜑𝜓  and 𝜙𝛼  have a coincidence point.  

Corollary 3.6. Let (�̃�, 𝑑) be a parametric soft metric space. Let 𝜑𝜓 , 𝜙𝛼: �̃�  →  �̃� mappings satisfying 

 𝑑(𝜑𝜓 (𝑃𝜆
𝑥), 𝜑𝜓 (𝑃𝜇

𝑦
), 𝑡)̅ ≥̃ �̅�𝑑(𝜙𝛼(𝑃𝜆

𝑥), 𝜙𝛼(𝑃𝜇
𝑦

), 𝑡̅)…(37) 

for all 𝑃𝜆
𝑥, 𝑃𝜇

𝑦
∈̃ 𝑆𝑃(�̃�) , and all 𝑡̅ >̃ 0̅, where �̅� >̃ 1̅. Suppose the following hypotheses: 

1) 𝜙𝛼(�̃�) ⊆ 𝜑𝜓 (�̃�); 

2) 𝜑𝜓 (�̃�) is a complete subspace of �̃�. 

Then 𝜑𝜓  and 𝜙𝛼 have a coincidence point.  

Corollary 3.7.  Let (�̃�, 𝑑)   be a parametric soft metric space. Let 𝜑𝜓 : �̃�  →  �̃� mappings satisfying 
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𝑑(𝜑𝜓 (𝑃𝜆
𝑥), 𝜑𝜓 (𝑃𝜇

𝑦
), 𝑡)̅ ≥̃ �̅�𝑑(𝑃𝜆

𝑥 , 𝑃𝜇
𝑦

, 𝑡̅) + �̅�𝑑(𝑃𝜆
𝑥, 𝜑𝜓 (𝑃𝜆

𝑥), 𝑡̅) + 𝑐̅𝑑𝑃𝜇
𝑦

, 𝜑𝜓 (𝑃𝜇
𝑦

), 𝑡̅)…(38) 

for all 𝑃𝜆
𝑥, 𝑃𝜇

𝑦
∈̃ 𝑆𝑃(�̃�) and all 𝑡̅ >̃ 0̅, where  �̅�, �̅�, 𝑐̅ ≥̃ 0̅ with �̅� + �̅� + 𝑐̅ >̃ 1̅ . 

Suppose �̅� >̃ 1̅ or 𝑐̅ <̃ 1̅ . Then 𝜑𝜓  has a fixed point.  

Corollary 3.8. Let (�̃�, 𝑑)  be a parametric soft metric space. Let 𝜑𝜓 : �̃�  →  �̃� mappings satisfying  

𝑑(𝜑𝜓 (𝑃𝜆
𝑥), 𝜑𝜓 (𝑃𝜇

𝑦
), 𝑡̅) ≥̃ �̅�𝑑(𝑃𝜆

𝑥 , 𝑃𝜇
𝑦

, 𝑡̅)….(39) 

for all 𝑃𝜆
𝑥, 𝑃𝜇

𝑦
∈̃ 𝑆𝑃(�̃�) and all 𝑡̅ >̃ 0̅, where �̅� >̃ 1̅ . Then 𝜑𝜓  has a fixed point. 

Corollary 3.9.Let (�̃�, 𝑑)  be a parametric soft metric space. Let 𝜑𝜓 : �̃�  →  �̃� mappings satisfying  

𝑑(𝜑𝜓 (𝑃𝜆
𝑥), 𝜑𝜓 (𝑃𝜇

𝑦
), 𝑡̅) ≥̃ �̅�𝑑(𝑃𝜆

𝑥 , 𝑃𝜇
𝑦

, 𝑡̅) + �̅�𝑑(𝑃𝜆
𝑥, 𝜑𝜓 (𝑃𝜆

𝑥), 𝑡̅)….(40)  

for all 𝑃𝜆
𝑥, 𝑃𝜇

𝑦
∈̃ 𝑆𝑃(�̃�) and all 𝑡̅ >̃ 0̅, where �̅�, �̅� ≥̃ 0̅ with �̅� + �̅� >̃ 1̅.  

Suppose �̅� >̃ 1̅. Then 𝜑𝜓  has a fixed point. 

Corollary 3.10.  Let (�̃�, 𝑑) be a parametric soft metric space. Let 𝜑𝜓 : �̃�  →  �̃� mappings satisfying  

𝑑(𝜑𝜓 (𝑃𝜆
𝑥), 𝜑𝜓 (𝑃𝜇

𝑦
), 𝑡̅) ≥̃ �̅�𝑑(𝑃𝜆

𝑥 , 𝑃𝜇
𝑦

, 𝑡̅) + �̅�𝑑(𝑃𝜇
𝑦

, 𝜑𝜓 (𝑃𝜇
𝑦

), 𝑡̅)…(41) 

for all 𝑃𝜆
𝑥, 𝑃𝜇

𝑦
∈̃ 𝑆𝑃(�̃�)  and all 𝑡̅ >̃ 0̅, where �̅�, �̅� ≥̃ 0̅ with �̅� + �̅� >̃ 1̅. Suppose �̅� >̃ 1̅. Then 𝜑𝜓  has a 

fixed point. 

 

4. Conclusion 

 

Fixed point theory has fascinated many researchers since 1922 with the celebrated Banach’s fixed point 

theorem. There exists a vast literature on the topic and is a very active field of research at present. Many 

researchers have been applied/embedded this theory in different types of metric spaces as well as 

applicable sciences. In this merit, we decide to investigate the existence and the uniqueness of fixed soft 

points of self soft mappings in parametric soft metric spaces, which spaces the parameterization tool plays 

the key role. For further research, we aim to investigate some different kinds of fixed soft point theorems, 

some fixed circle theorems and also we plan to give some applications.  
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Abstract 

          In this paper, we consider the deep learning network model in the construction of biological networks. This 

approach has been commonly used in recent years for modeling complex nonlinear regression model and for the 

classification problem. Here, we have adapted this approach as a regression model for the representation of the 

protein-protein interaction networks. Thus, we have compared its performance with the Gaussian graphical model 

(GGM) which is one of the well known graphical models to describe the biological systems. In the calculation of 

GGM, we have also implemented the bootstrap procedure to increase the number of observations and the consistent 

AIC as well as information and complexity approaches as the model selection criteria within GGM to improve the 

accuracy of estimates. In the analyses, we have used two real bench-mark datasets and compared the accuracy of 

the deep learning method with the underling GGM.  

     Keywords: Deep neural networks, nonparametric regression, biological data 

 

1. Introduction 

 Deep neural networks have huge success in different areas such as image progressing, analyses of 

biomedical signals and financial time series in recent years.  In this paper, we have suggested this neural 

network model as generalized additive models(GAMs). Because, GAMs have great flexibility to explain 

explanatory variables while capturing non-linearities in the regression model. In order to solve the 

problem of nonlinearity, Hastie and Tibshirani (1990) have suggested the multilayer feed forward neural 

network approach. Then, the non- parametric regressions are proposed by Scmidt-Hieber (2020) , in 

particular, when the number of network’s parameter is greater than the number of samples which is called 

the problem of over-parametrization. Moreover, we have also compared the proposed generalized 

additive neural networks (GANNs) and Gaussian Graphical model (GGM) with bootstrap scheme and 

two model selection criteria inserted in GGM. Bootstrap scheme is known as a computationally efficient 

variance reduction technique.  Furthermore, the consistent AIC (CAICF) and ICOMP selection criteria 

are suggested by Bozdogan (1987,2010) to obtain more consistent selection criterion derived from the 

Fisher information matrix. For this reason, Bülbül et al. (2019)   and Kaygusuz and Purutçuoğlu (2019) 

have suggested CAICF and ICOMP selection criteria for Gaussian graphical model. We have examined 

the performance of the proposed generalized additive model and GGM for two biological datasets.  
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2  Theory and Methods   

  2.1. Feed-forward Neural Networks    

 Feed-forward neural network (FNN), also known as deep learning network, is one of the fundamental 

artificial neural networks in the literature. In this method, the information goes always in one direction 

from input layer to output layer. In other words, the network does not consist of any cycles or loops. The 

multilayer feed-forward neural network is developed by the Bauer and Kohler (2019) since it has been 

considered the curse of dimensionality problem for single-index models. FNN uses the sigmoid activation 

function σ : R → [0,1] with the following equation. In the above expression, we have assumed that there 

are L- hidden layers and N1, N2, . . . , NL neurons for the L-th layer.   

                                            f(x)=∑ 𝑐𝑖
(𝐿)𝑁𝐿

𝑖=1 𝑓𝑖
(𝐿)(𝑥) + 𝑐 0

(𝐿)
                                                                          (1) 

where 𝑐 0
(𝐿)

, … , 𝑐
𝑁𝐿

(0)
 and 𝑓𝑖

(𝐿)
 may be defined via: 

                        𝑓𝑖
(𝑠)(𝑥) =  𝜎(∑ 𝑐𝑖,𝑗 

  𝑁𝑠−1
𝐿=1 𝑓𝑗 

(𝑠−1)
(𝑥) + 𝑐 𝑗,0

 ) + 𝑐𝑖,0  
(𝑠−1)

                                                      (2) 

𝑤hile 𝑐𝑖,0  
(𝑠−1)

,…, 𝑐𝑖,𝑁𝑠−1  
(𝑠−1)

and s=2,…,L    

                                 𝑓𝑖
(1)(𝑥) = 𝜎(∑ 𝑐𝑖,𝑗

(0)𝑑
𝑗=1 𝑥 

(𝑖)
+ 𝑐 𝑖,0

(0)
)                                                                      (3) 

 Neural networks apply activation function to estimate parameters with σ : R → [0,1] which is non-

decreasing and must satisfy 

                             lim
𝑧→ −∞  

σ(z) = 0 and lim
𝑧→ ∞  

σ(z) = 1                                                                         (4)  

this expression might be called the sigmoidal function or logistic squasher   

                                        σ(z) =
1

1+exp (−𝑧)
                                                                                           (5)            

while (z ∈  𝑅). In the literatüre of the deep learning, besides the sigmodial activation function, there 

are other alternative activation functions too. One of the well known choices is the Re-Lu activation 

function due to it is flexibility in our analyses, we prefer this choice. On the other hand, we can define 

neural networks with distinct number of  hidden layers and in here, we use one hidden layer by the 

following form: 

                               𝑓(𝑥) = ∑ 𝑐𝑗 
 𝑁

𝑗=1 𝜎(∑ 𝑐𝑗,𝑛
 𝑑

𝐿=1 𝑥 
𝑘 + 𝑐 𝑗,0

 ) + 𝑐 0
                                                         (6)  
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Figure 1 : An example of Feed-forward neural networks 

In general deep neural network is used for the classification purpose. But in this study, we apply it as 

regression model by keeping the weight coefficients as the regression coefficient and conducting this 

model for each gene in the system iteratively so that each gene can be modelled in terms of other genes in 

the system. Then, the regression coefficients obtained from each gene model are converted as a binary 

value via a threshold value. In this analysis, we set the coefficient to zero if the number in absolute value 

is closer to zero; otherwise, we set it to one.   

Once all the weights, i.e., regression co-efficients of gene specific model, are converted to binary values, 

we generate two rules in the construction of the adjacency matrix:  

1- OR rule: If one of the genes indicates the value 1 in binary conversion between the selected gene in 

response side and other gene is predictor side and vice versa, we accept as 1 between these two genes if 

they have both 1 binary coefficients or 0-1 as well as 1-0 binary coefficients.  

2- AND rule: We accept link between two genes if they both show 1 in binary values when they are 

response and predictor of each other. Therefore we consider that they are connected if both regression 

coefficients produce 1 in binary entries.  

Once we decide on the rule, we can generate a symmetric adjacency matrix which indicates an undirected 

graphical structure. In the decision of final rule, currently we check the accuracy of both results with the 

true networks. The rule which produces the highest accuracy is selected as the ultimate rule of the 

network construction. Whereas, for a realistic application when the true network is unknown, we consider 

to evaluate this question in a comprehensive simulation study.   

2.2. Generalized Additive Models  
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Linear model can be too restrictive for some scientific applications to explain dependent variables. For 

this reason, Hastie and Tibshirani (1990) proposed the generalized additive models (GAMs). In this 

modelling, let   𝑋𝑖    and   𝑌𝑖   (i = 1, . . . , n) be independent samples of random pairs (X, Y ) with 

following regression model:  

                                                    𝑌 = ⍺+f(X)+ ε                                                                                      (7) 

where ε is distributed with N(mu,sigma). Another assumption for GAMs is 

                                            f(𝑥1 , …, 𝑥𝑑)=𝑓1(𝑥1)+...+𝑓𝑑(𝑥𝑑)                                                                    (8) 

where the component functions fj‘s are obtained non-parametrically by the method of Hastie and 

Tibshirani (1990).   Now, we can present GAMs by the following equation:       

                                                  𝑌 = ⍺+ ∑  𝑝
𝑗=1 𝑓𝑗( 𝑥𝑗) + ε                                                                        (9) 

in which the error term ε has zero mean.    

3. Bootstrap Scheme for Graphical Lasso Algorithm  

This section includes the definition of graphical lasso algorithm and bootstrap scheme inserted in this 

algorithm to improve the accuracy in high dimensional settings. We also suggest to use CAICF and 

ICOMP selection criteria in the lasso method so that we can compare the performance of both the 

underlying graphical lasso approach with the deep learning regression model in two real biological 

datasets.   

3.1. Graphical Lasso Algorithm  

Graphical lasso algorithm is suggested by Bühlmann and Meinhausen (2006) to estimate the inverse 

covariance matrix when the number of variables (p) is much more than the number of observations (n). 

Because the ordinary maximum likelihood approach have some limitations in high dimensional settings. 

For this reason, Yuan and Lin (2007) suggested a penalized likelihood method to solve this problem.  

Let us assume that independent identically distributed (i.i.d.) sample (X = X(1), . . . , X(n)) comes from 

normal distribution with mean μ and unknown variance Σ,i.e., X ∼ Nd(μ,Σ). Thereby, the aim is to infer 

(Σ)−1 = (Θ)∗ when the number of observations (n) is more than the number of random variables (p). 

Accordingly, Friedman et al. (2007) gave the following definition for the graphical lasso procedure.  

                        𝐿(Θ) = log det Θ − 𝑡𝑟(𝑆Θ) − 𝜆‖Θ‖1                                                                                  (10)  

403



 

5th INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 

1-3 December 2021, Istanbul, Turkey 

 

 

ICOM 2021 

ISTANBUL / TURKEY 

where λ is a non-negative tuning parameter controlling the amount of l1-shrinkage, S is the empirical 

covariance matrix and Θ = Σ−1 refers to a non-negative precision matrix while an element θij implies that 

corresponding variables  𝑋𝑗 and   𝑋𝑘  are conditionally independent. Moreover, tr(.) denotes the trace and 

det(.) shows the determinant of the given matrix. In the above expression, if S is singular and λ is enough 

big, the estimate of Θˆ can be sparse.  

3.2. Bootstrap Scheme  

Bootstrap scheme is very beneficial, in particular, when we work with limited observations’ datasets. 

Hence, this regime can be applicable in the estimation of the sampling distribution from almost any 

statistics by using splitting methods. Furthermore, it can be used when the approximate distribution is 

available. We also assume that observations come from i.i.d. population F.  

Thus, we can summarize the scheme for the non-parametric bootstrap algorithm as follows:  

. (i)  Build the sample probability distribution �̂�  which divides n at each point  𝑥1
 ,  𝑥2

 ,  𝑥3
 … , 𝑥𝑛

  

(ii)  When �̂� is constant, draw a random sample of size n from �̂�  via 𝑋𝑖 
∗ =  𝑥𝑖 

∗, 𝑋𝑖 
∗ = �̂�  when i = 

1,2,...,n. It is called bootstrap sample,    𝑋 ∗ = (𝑋1
∗, … , 𝑋𝑛

∗), 

. while  x∗ = ( 𝑥1
∗, … , 𝑥𝑛

∗  ).   

. (iii)  Compute the bootstrapped estimators  𝜃𝑛
∗= f(𝑋1

∗, … , 𝑋𝑛
∗)   𝑋1

  , 𝑌1
  based on the  bootstrap sample.   

. (iv)  Repeat step 1, 2, 3,..., B times to obtain  𝜃.  
∗,1, . . . , 𝜃.

∗,𝐵 for B repetitions.   

   

(v) Bootstrapped estimators are approximately the bootstrap expectation and the bootstrap  

variance via E(𝜃𝑛
∗)= 1/B ∑ θ𝑛 

∗,𝑖𝐵
𝑖=1  and V ar(𝜃𝑛

∗)= 1/(B − 1) ∗  ∑ θ𝑛 
∗,𝑖𝐵

𝑖=1 - ∑ θ𝑛 
∗,𝑗2𝐵

𝑗=1

 
  

respectively.  

 

3.3. CAICF and ICOMP Selection Criteria  

There are two classical model selection criteria, namely, Akaike‘s information criterion (AIC) and 

Schwartz‘s Bayesian information criterion that are applicabe in different fields. In order to improve the 
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performance of accuracy, Bozdoğan (1987,2010) proposed two alternative approaches. The first method 

is called the consistent AIC selections criterion (CAIC) which makes the distance between the true model 

and the real value as small as possible. In the study of Bozdoğan (1987), the smallest distance is 

computed by the Kullback-Leibler divergence and this criterion has the followinf form:  

                  𝐶𝐴𝐼𝐶(𝑘) = −2 log 𝐿(𝜃𝑘) + 𝑘[𝑙𝑜𝑔𝑛 + 1]                                                                                (11)  

in which the likelihood of θ is shown by logL(𝜃𝑘 ) and k denotes the degrees of freedom of the 

distribution. There is no need to say the similarity between the CAIC(k) and the BIC of k log n and k[log 

n + 1] terms that have a stronger penalty term.  

The second Bozdoğan‘s model selection criterion which is based on the consistent AIC with Fisher 

information matrix, also shown by CAICF(k)), has an increasing penalty term for the over-

parametrization whose expression is as follows:  

                    CAICF(k) = −2 log L(𝜃𝑘) + k[log n + 2] + log |I(𝜃𝑘)|.                                                       (12)  

Here, logL(𝜃𝑘) indicates the likelihood estimation of θ, as used beforehand, k presents the degrees of 

freedom of the distribution and I(𝜃𝑘) �̂�−1 represents the Fisher information matrix.  

As an extension of this method, Bozdoğan (2010) also proposed the Information and COMPlexity 

(ICOMP) measure. Basically, ICOMP can penalize the free parameters and the covariance matrix directly 

with a third term. This third term in the loss function has a capability to calculate the distance when the 

parameter estimates are correlated in the model fitting stage. Hence, the expression for ICOMP can be 

presented as below.  

                           𝐼𝐶𝑂𝑀𝑃 = −2 log 𝐿(𝜃𝑘) + 2𝐶(�̂�  )                                                                             (13)                    

where logL(𝜃𝑘) is the log-likelihood of E, 𝜃𝑘 shows the maximum likelihood estimate of the parameter 

vector of θk, C expresses a real-valued complexity measure and finally, �̂� = 𝑐𝑜�̂�(𝜃𝑘)  refers to the 

estimated covariance matrix of the parameter vector of the candidate model. This covariance matrix can 

be obtained in different ways. Bozdoğan (2010)` s choice is the computation of the inverse of the Cramer-

Rao lower bound matrix that is obtained from the estimated inverse Fisher information matrix with the 

following equation.  

 
                                    �̂�−1 = {−𝐸 (

𝜕2𝑙𝑜𝑔𝐿(𝜃)

𝜕𝜃𝜕𝜃′ )}
−1

                                                                                  (14) 

In this expression, the (s × s)-dimensional second-order partial derivatives of the log-likelihood function 
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of the estimated model is denoted by �̂�−1. As a result, a more general form of ICOMP can be expressed 

via  

                               𝐼𝐶𝑂𝑀𝑃 = −2 log 𝐿(𝜃𝑘) + 2𝐶(�̂�−1)                                                                         (15)        

when  

𝐶(�̂�−1)=
𝑠

2
log [

𝑡𝑟�̂�−1

𝑠
] −

1

2
log |�̂�−1|.                                                

In this expression, the second term shows the information complexity of the estimated inverse Fisher 

information matrix of the model and 𝑠 = dim (�̂�−1) = 𝑟𝑎𝑛𝑘(�̂�−1) while dim(.) shows the dimension of 

the given matrix.  

4. Application  

We implement the proposed deep neural networks and Gaussian graphical model in two biological 

datasets, namely, cell signalling data and human genome expression data. In the calculation of Gaussian 

graphical model, we infer the model parameters via the lasso regression approach and apply the non-

parametric bootstrap scheme to increase the sample size. Finally, we compute CAICF and ICOMP model 

selection criteria for the decision of the optimal model. On the other hand, we calculate distinct accuracy 

measures from the estimated values of neural networks and its adjacency matrix. We compute the 

accuracy, precision, F-score and recall values in the comparison of models. In the representation of the 

adjacency matrix via the deep learning model, since we need to construct a symmetrix matrix, we use 

both AND and OR rule. Shortly, the AND rule implies that if both   𝑋𝑖  and   𝑋𝑗   indicate significant 

regression coefficients for the regression model while the response is   𝑋𝑖  and   𝑋𝑗  , respectively, then we 

can denote the entries of the   𝑋𝑖𝑗   and   𝑋𝑗𝑖   by one. Whereas in the OR rule, if we find either   𝑋𝑖  and 

  𝑋𝑗  ’s regression coefficient as significant, then we can present the entries of the adjacency matrix for 

  𝑋𝑖𝑗   and   𝑋𝑗𝑖   as one. Otherwise, we denote the zero value for the associated entries. In the estimation 

part, we presented the results from AND rule since its accuracy is higher than the OR rule in both 

datasets.  

Below, we presented the description of the selected real datasets:  

 

. Cell signaling dataset: This dataset contains the flow of cytometry results of 11 phosphorylated 

proteins and phospholipids measured on 11.672 red blood cells. These components are the part of 

the cellular protein-signaling network of human immune system cells. This dataset is studied by 
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Sacks et al.(2005) to investigate the reactions of the native state tissue signaling biology and drug 

actions. Thus, the aim of the construction of this network is to understand the native-state tissue 

signaling biology, complex drug actions and the dysfunctional signals in diseased cells.   

. Human genome expression dataset: This dataset involves the gene expression of B- lymphocyte cells 

from the Utah residents with Northern and Western European ancestry sample. The genes of 60 

unrelated individuals are examined for 100 different transcripts. From the 55 biologically 

validated links, 45 have the names of the transcription factor and target genes in the network of 

gene expression data [0]). For this reason, for the inference of both models we use these 45 links 

for the calculation of the accuracy measures.   

From the tabulated values it is seen that the accuracy and recall values are best under the deep learning 

method from both datasets. On the other side, F-score of the cell signalling data is high under the deep 

learning model. For the remaining entries the inference conducted by the graphical lasso approach with 

bootstrap is better. Furthermore, we do not observe difference in the selected two model selection criteria 

under the graphical lasso approach.  

Table.1 The results of graphical lasso algorithm with non-parametric bootstrap scheme with ICOMP and 

CAICF model selection criteria.   

Data  Measures  ICOMP  CAICF  

Cell signal  

n = 11672 p = 11  

Accuracy  

Precision  

F-score  

Recall  

0.719 

 1.000 

 0.393 

0.244  

0.719 

 1.000 

 0.393  

0.244  

Gene expression  

n = 60 p = 100  

Accuracy  

Precision 

 F-score 

 Recall  

0.991 

1.000  

0.690  

0.526  

0.991 

 1.000  

0.690  

0.526 
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Table.2 The results of deep learning model whose accuracy measures are computed based on the AND 

rule 

Data  Measures  Deep Learning  

Cell signal  

n = 11672 p = 11  

Accuracy  

Precision  

F-score  

Recall  

0.661 

 0.577 

 0.436  

0.344  

Gene expression  

n = 60 p = 100  

Accuracy  

Precision 

 F-score 

 Recall  

0.954 

 0.383  

0.433  

0.926  

     

5. Conclusion  

We have proposed an alternative model selection algorithm for Gaussian graphical model whose 

inference is done via the L1-norm penalized lasso approach with bootstrap scheme and CAICF as well as 

ICOMP model selection criteria. On the other hand, we have used the Re-Lu function for one layer deep 

learning method whose adjacency matrix is generated by the AND rule. The results have indicated that 

the deep learning is best under accuracy and recall measures and it is comparable under the F-score 

regarding the estimated network by the Gaussian graphical model. Therefore, we believe that the deep 

learning approach can be a promising alternative method for the construction of biological networks 

specifically under large model parameters. However, in order to make more precise decision, we consider 

to perform this approach in more datasets too.  

In future work, we also think that CAICF and ICOMP selection procedures may be good candidates for 

multilayer feedforward neural networks, i.e. the deep learning approach, as well. Moreover, the deep 

neural network can be extended by inserting the bootstrap scheme while the data have limited 

observations. Furthermore, we consider to apply other bootstrap schemes such as wild bootstrap and 
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Bayesian bootstrap in both Gaussian graphical model and deep learning models so that we can evaluate 

whether the accuracy can be improved for model specific techniques.  
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Abstract 

 

Two classes of sets are examined: rough weighted I-statistical limit set and weighted I-statistical 

cluster points set which are generalizations of rough I-limit set and I-cluster points set respectively. Our 

main aim is to give the different behaviors of the new convergences and characterize both the sets with 

topological approach like closedness, boundedness, compactness etc. 

 

          Keywords: Rough weighted I-statistical limit set, rough weighted I-statistical cluster points set, rough 

weighted ideal statistical convergence. 

 

1. Introduction 

 

In order to extend convergence of sequences, the notion of statistical convergence was given by Fast 

[1] for the real sequences. Afterward, it was further researched from sequence point of view and 

connected with the summability theory (see [2-7]). The concept of ideal convergence which is a 

generalization of statistical convergence was presented by Kostyrko et al. [8]. Kostyrko et al. [9] 

examined some features of I-convergence and extremal I-limit points. Ideal convergence became a 

noteworthy topic in summability theory after the studies of [10-11]. 

The idea of rough convergence was first defined by Phu [12] in finite-dimensional normed spaces. In 

another paper [13] related to this subject, Phu worked the rough continuity of linear operators and denoted 

that every linear operator       r-continuous at every point     under the assumption        

and    , where   and   are normed spaces. In [14], Phu extended the results given in [12] to infinite-

dimensional normed spaces. Aytar [15] investigated the rough statistical convergence. Also, Aytar [16] 

studied that the rough limit set and the core of a real sequence. Pal et al. [17] and Dündar et al. [18] 

independently extended the result given in [15] to rough I-convergence. Savaş et al. [19] examined rough 

I-statistical convergence as an extension of rough convergence and defined the set of rough I-statistical 

limit points of a sequence and analyzed the results with proofs. 

Weighted statistical convergence introduced by Karakaya and Chisti in [20]. Also Küçükaslan studied 

this concept in [21]. Then the modified definition is given by Mursaleen et al. in [22] as follow:  

Let    be a positive sequence of nonnegative numbers such that      and    ∑   
 
      as 

     A sequence    is weighted statistically convergent to x if for      the set *      |    |  
 + has weighted density zero, i.e. 
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|*       |    |   +|     

 

It is indicated by   ̅     
   

        ̅ denote the set of these sequences. 

Let    , the set of positive integers, the weighted density of K is defined by 

 

  ̅     
   

 

  
|*        +|  

 

In particular, if we choose        then it reduces to natural density. After that we use (  ) instead of 

(  ) in our results to avoid confusing and    ∑   
 
     

In the year 2017 weighted lacunary statistical convergence is a generalization of lacunary statistical 

convergence was introduced by Ghosal et al. [23]. In the study [24] rough weighted I-lacunary statistical 

limit set and weighted I-lacunary statistical cluster points set which are natural generalizations of rough I-

limit set and I-cluster points set. 

On further progress, we combine the approaches of I-statistical convergence [10], rough I-convergence 

[17, 18], statistical cluster point and I-cluster point [7, 24, 25] and weighted statistical convergence [20] 

and investigate new and more advance summability methods namely, rough weighted I-statistical limit set 

and weighted I-statistical cluster points set of a sequence in a metric space. 

 

2. Main Results 

 

Definition 2.1. Let r be a non-negative real number and (  ) be a weighted sequence. Then, the sequence 

of   *  + is known as rough weighted I-statistically convergent to    w.r.t the roughness of degree r 

(or briefly: r-weighted I-statistically convergent to    if for every        

 

{    
 

  
|*        (     )     +|   }     

 

We indicate   
       
→        . The set 

 

{           {       
       
→        }} 

 

is called the r-weighted I-statistical limit set of the sequence   *  + with degree of the roughness r. 

The sequence   *  + is said to be r-weighted I-statistically convergent as long as            
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Definition 2.2. A sequence of   *  + is called to be weighted I-statistically bounded if there is an 

element ζ in X and a positive real number M such that for each      

 

{    
 

  
|*        (    )   +|   }     

 

From the above definition, a weighted sequence   *  + of real numbers is called to be self-weighted I-

statistically bounded if there exists     such that for each      

 

{    
 

  
|*         +|   }     

 

In general, for a weighted sequence *  +; the r-weighted statistical limit of a sequence   *  + may not 

be unique actually it can be infinite for some roughness of degree      

 

Theorem 2.1. The rough weighted I-statistical limit set            includes at most one element in 

X if the weighted sequence (  ) is not self-weighted I-statistically bounded. 

 

Proof. Presume that that there are two points       such that               
    Select    

 (     )  

 

Case 1: Let the weighted sequence *  + is properly divergent to     Then, 

 

  *                     +  {    
 

  
|{        

     

 (     )
}|   }

 {    
 

  
|*        (     )     +|  

 

 
}

 {    
 

  
|*        (     )     +|  

 

 
}     

 

which is a contradiction. 

 

Case 2: Let the weighted sequence *  + be unbounded but not properly divergent to   . Then, there are 

two infinite subsets    and   of   such that             and *  +    is a unbounded 

subsequence and *  +    is a bounded subsequence of *  +     

 

Subcase 2(i): Let 
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{    
 

  
|*        +|   }     

 

Since *  +    is a bounded subsequence of *  +   , so there is a     such that            Then 

 

{    
 

  
|*         +|   }  {    

 

  
|*        +|   }     

 

which contradicts that *  +    is not self weighted I-statistically bounded. 

 

Subcase 2(ii): Let 

 

{    
 

  
|*        +|   }     

Then, 

 

{    
 

  
|{         *                     +}|   }  {    

 

  
|{        

     

 ( 
 
   )

}|   }

 {    
 

  
|{        (     )     }|  

 

 
}

 {    
 

  
|*        (     )     +|  

 

 
}     

 

which is a contradiction. Hence the proof is completed. 

 

If the weighted sequence *  +    is self weighted I-statistically bounded then there is a     such 

that 

 

{    
 

  
|*         +|   }    

 

 {      
 

  
|*        +|   }   ( )  

 

where   *        +  Then, the subsequence *  +    of the sequence *  +    is bounded and 

so the limit inferior exists. The notation             indicates the limit inferior of the sequence 

*  +    when the weighted sequence *  +    is self weighted I-statistically bounded. 
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Theorem 2.2. For a sequence   *  +     we have 

 

      (          )  {

  

           
    *  +                                             

                                                                      

 

 

Proof. Let *  +    be self weighted I-statistically bounded sequence. By contradiction we presume 

that     (          )  
  

           
  Then, there is a positive real number   (             ) 

such that     (          )  
  

 
 

  

           
  

So, there are               
   such that  (     )  

  

 
  Since               then, there exists 

a natural number m such that      for all     and      

Let   (  
  (     )

 
  )    (   ) and    *       +  Then, 

 

  {    
 

  
|*        (     )     +|  

 

 
}   ( )  

 

  {    
 

  
|*        (     )     +|  

 

 
}   ( )  

 

  {    
 

  
|{*         +    }|  

 

 
}   ( )  

 

and 

 

{    
 

  
|*        (     )     +|   }     

 

Since        ( ) and    ( )  we can select         such that 

 
 

  
|*        (     )     +|  

 

 
 
 

 
  

 
 

  
|*        (     )     +|  

 

 
 
 

 
  

 

and 
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|{*         +    }|  

 

 
 
 

 
  

 

This gives 

 
 

  
|*  (     )    (     )          (     )          +|     

 

Since (     )           so there is a    (     )  such that     (      )    

      (      )             

 

  (     )    (      )    (      )      (      )       (      )   (   )    (     )  

 

which is a contradiction. Hence the proof of theorem is completed. 
 

Theorem 2.3. The set            of a sequence   *  + is closed. 

 

Proof. Case 1: Let *  +    be self-weighted I-statistically bounded and               Then, 

there is a sequence   *  +    in            such that       as      We have to denote 

that            
    

Since       as      then for any      then is a      such that  (     )  
 

  
        

Then, from the triangle inequality we get 

 

{        (      )    
 

 
}  *         +  *        (     )     +  

 

So            
    Therefore, the set            of a sequence   *  + is closed. 

 

Case 2: Let *  +    be self weighted I-statistically bounded. Then, by the Theorem 2.1, the set 

           is closed. 

 

Definition 2.3. Let *  +    be a weighted sequence. A point     is named a weighted I-statistical 

cluster point of a sequence   *  +    if for every        

 

{    
 

  
|*        (    )   +|   }     
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We indicate the set of all a weighted I-statistical cluster point of a sequence   *  +    by 

   ( )  

 

Theorem 2.4. For an arbitrary      ( ) of a sequence   *  +    we get 

 

 (    )  {

 

           
    *  +                                             

 

        
                                                                      

 

 

for all            
    

 

Proof. Case 1: Let *  +    be self weighted I-statistically bounded sequence. By contradiction we 

suppose that there is a point      ( ) and            
   such that  (    )  

 

           
 

   

This gives 
(           ) (    )  

 
    Then, there is a positive real number   (             ) such 

that 

 
(           ) (    )   

 
 
  (    )   

 
    

 

Define   
  (    )  

 
    Since               so there is a      such that            and 

    where   *        +  

Let      *          + and   *       (    )   +  Then four subcases may arise. 

Subcase 1(i): If       , then         which is a contradiction since      ( )  So this case 

can never happen. 

Subcase 1(ii): If       then         

Subcase 1(iii): If       then          

Subcase 1(iv): If                and        then   (    )        

 

{    
 

  
|*         (    )+|  

 

 
}  {    

 

  
|*           +|  

 

 
}     

 

So, we obtain, 

 

{    
 

  
|*         (    )+|  

 

 
}     
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Since      ( ), then we acquire 

 

{    
 

  
|*        +|   }     

 

Again   [  ((    ))]  (    )  Then, we get 

 

{    
 

  
|*        +|   }

 {    
 

  
|*         (    )+|  

 

 
}  {    

 

  
|*           +|  

 

 
}  

 

So we know that if                   and       then    , this gives 

 

{    
 

  
|*           +|  

 

 
}     

 

This shows that for all existing cases (i.e., 1(ii); 1(iii) and 1(iv)) we obtain 

 

{    
 

  
|*           +|  

 

 
}     

 

So there is a natural number        such that 

 

   (     )     (    )     (    )                  

 

(since      and      (    )   ). 

 

      *       (     )     +  

 

Then, 

 

{    
 

  
|*        (     )     +|  

 

 
}     

 

This contradicts the fact that            
  . 
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Case 2: Let the weighted sequence *  +    be not self weighted I-statistically bounded. 

By contradiction we presume that there is a point      ( ) and            
   such that 

 (    )  
 

        
  Select   

  (    )  

 
  where             We know that 

 

   (     )     (    )     (    )    (    )     (    )          (    )       

 

Then, we obtain 

 

{    
 

  
|*        (    )   +|   }  {    

 

  
|*        (     )     +|   }  

 

           
   contradicts the fact that      ( )  

 

Theorem 2.5. 

i. For an arbitrary      ( ) of a sequence   *  +     we have 

          

 { ̅ 
 

( )     *  +                                             

 ̅ 
 

( )                                                  ̅ ( )

 *     (   )   + }  

ii.            

{
 
 

 
 ⋂  ̅ 

 

( )  {        ( )   ̅ 
 

(  )}       ( )

    *  +                                             

⋂  ̅ 
 

( )  {        ( )   ̅ 
 

(  )}       ( )           

 

 

Proof. The results are obvious so omitted. 
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Abstract 

The set of dual numbers is defined by 𝐷 = {𝑎 + 𝜀𝑎∗: 𝑎, 𝑎∗ ∈ 𝑅, 𝜀 ≠ 0; 𝜀 = 0}. Every unit dual 
spherical point  corresponds to a directed line in real 3- space 𝑅  by E. Study’s theorem. So a dual 
unit spherical curve corresponds to a ruled surface. In this paper we consider the dual Bézier Curve 

𝐵(𝑡) = 𝐵(𝑡) +  𝜀 𝐵∗ (𝑡)  where 𝐵, 𝐵∗  are Bézier curve of degree n with cotrol points 𝑃 , 𝑃 ∗ ∈ 𝑅  for 
𝑖 = 0,1, … , 𝑛. It is investigated the ruled surface according to Study’s theorem in this paper.  

 
          Keywords: Bézier curves, ruled surface, dual spherical projection. 

 
1.Introduction: 
 
Dual numbers denoted by 𝐷  were introduced in 1873 by William Clifford [1], and developed by 
Eduard Study [2]. It is necessary to make the following distinction: the word "dual vector" is defined 
in the literature as an element of dual vector space which is the duality of a vector space. However, the 
“dual vector” used in this study is an element of a vector space defined as the cartesian set of dual 
numbers (𝐷 = 𝐷 × 𝐷 × 𝐷) given by Clifford in 1843. After E.Study, with a dual spherical point 
corresponding to a directed line in R3 to study of a ruled surface is reduced to study of a spherical 
curve, many scientists studied in this area. Especially Hoschek [10] investigated integral invariants for 
characterization of the closed ruled surfaces. Gürsoy, Gürsoy and Küçük [3-7], Hacisalihoğlu [17] 
were studied the ruled surfaces with integral invariants which are stated as dual quantities.  

1. Materials and method 

1.1. Dual Numbers and D-module 
Let two dual vectors 𝑈 and 𝑉 be given as 𝑈 = 𝑈 + 𝜀𝑈∗ and 𝑉 = 𝑉 + 𝜀𝑉∗. Then the inner product of 
two dual vectors 𝑈 and 𝑉 is 〈𝑈, 𝑉〉 = 〈𝑈, 𝑉〉 + 𝜀(〈𝑈∗, 𝑉〉 + 〈𝑈, 𝑉∗〉). The norm of a dual vector 
𝑈 = 𝑈 + 𝜀𝑈∗ is a dual number such that  

 𝑈 = 〈𝑈, 𝑈〉 = 〈𝑈, 𝑈〉 + 2𝜀〈𝑈, 𝑈∗〉 = ‖𝑈‖ + 𝜀
〈 , ∗〉

‖ ‖
= 𝑢 + 𝜀𝑢∗ ∈ 𝐷  (1) 

if the real part of the dual vector is different from zero. i.e. 𝑈 ≠ 0. If the norm of a dual vector 𝑈 is 
1 + 𝜀0 = 1 then the vector 𝑈 is called dual unit vector [16]. 
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Proposition 2.1 [16]:Let a dual vector 𝑈 = 𝑈 + 𝜀𝑈∗ be given. If 𝑈 = 1 then ‖𝑈‖ = 1 and 
〈𝑈, 𝑈∗〉 = 0.  

Proposition 2.2 [16]:Let a dual vector 𝑈 = 𝑈 + 𝜀𝑈∗ be given. If 𝑈 ≠ 1 and 𝑈 ≠ 0 then 

            𝑈 =
‖ ‖

=
‖ ‖

+ 𝜀
∗ 〈 , ∗〉

‖ ‖

‖ ‖
=

‖ ‖
+ 𝜀

∗

‖ ‖
−

〈 , ∗〉

‖ ‖
= �̇� + 𝜀�̇�∗  (2) 

is a dual unit vector with direction of 𝑈.  

Definition 2.1: The set of dual unit vectors in D-module D3 is called unit dual sphere. i.e. unit dual 
sphere is defined as  

                 𝑈 = �̇� + 𝜀�̇�∗ ∈ 𝐷 : 𝑈 = 1   (3) 

Theorem 2.1. (E.Study)[3]: Every unit vector on the dual unit sphere 𝑈 = �̇� + 𝜀�̇�∗ (𝑈 ≠ 0) 
corresponds to oriented line in real space R3 by one to one. 

According to this theorem, a unit dual vector 𝑈 = �̇� + 𝜀�̇�∗ (𝑈 ≠ 0)  corresponds only one oriented 

line where the real vector �̇� shows the direction of this line and the real vector �̇�∗ shows the vectorial 

moment of the unit vector �̇�  with respect to the origin point 0. The vectorial moment of �̇� is given as 

�̇�∗  = 0𝑀 ∧ �̇� where M is a point on �̇�-oriented line and ∧ denotes the cross product in R3 [4]. 

 
Figure 1: The directed line L corresponding to dual unit vector 𝑈 = �̇� + 𝜀�̇�∗  

 

1.2. Ruled Surfaces 

A ruled surface can be described by a parametric representation of the form 

                               𝑋(𝑢, 𝑣) = 𝛼(𝑢) + 𝑣𝛽(𝑢),   𝑣 ∈ 𝑅  (4) 

where  𝛼(𝑢)  and 𝛽(𝑢)  are curves in R3 with 𝛼′(𝑢) ≠ 0  for every 𝑢 . The curve 𝛼(𝑢)  is called 
the directrix or base curve of the ruled surface and 𝛽(𝑢) is called the director curve.  Any curve 
𝑋(𝑢 , 𝑣)  with fixed parameter 𝑢 = 𝑢   is a generator line [11].  

Lemma 2.1: The Gaussian curvature of a ruled surface 𝑋(𝑢, 𝑣) ⊂ 𝑅  is everywhere nonpositive [11]. 
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If the Gaussian curvature of a ruled surface 𝑋(𝑢, 𝑣) ⊂ 𝑅  is zero then the ruled surface is called 
developable ruled surface or flat ruled surface [11]. 

Definition 2.2: A ruled surface parametrized by (4) is said to be noncylindrical  provided 𝛽(𝑢) ×
𝛽′(𝑢) never vanishes [11]. 

Lemma 2.2: Any noncylindrical ruled surface 𝑋(𝑢, 𝑣) has a reparametrization of the form 

                               𝑋(𝑢, 𝑣) = 𝜎(𝑢) + 𝑣𝛿(𝑢),   𝑣 ∈ 𝑅  (5) 

where ‖𝛿(𝑢)‖ = 1 and 〈𝜎′(𝑢), 𝛿′(𝑢)〉 = 0. The curve 𝜎 is called the striction curve of 𝑋(𝑢, 𝑣) [11]. 

Lemma 2.3: The striction curve of a noncylindrical ruled surface does not depend on the choice of 
base curve [11]. 

Definition 2.3 [11]: Let 𝑋(𝑢, 𝑣) be a noncylindrical ruled surface given by (5) then the distribution 
parameter of 𝑋(𝑢, 𝑣) is the function p defined by 

                               𝑝(𝑢) =
( ( ), ( ), ( ))

〈 ( ), ( )〉
,    (6) 

 

Theorem 2.2 [11]: Let 𝑋(𝑢, 𝑣) = 𝛽(𝑢) + 𝑣𝛿(𝑢) with ‖𝛿(𝑢)‖ = 1 parametrize a flat ruled surface. Then 

i) If 𝛽′(𝑢) = 0, then 𝑋 is a cone, 
ii) If 𝛿 (𝑢) = 0, then 𝑋 is a cylinder 
iii) If both 𝛽′(𝑢) and 𝛿 (𝑢) never vanish, then 𝑋 is tangent developable of its striction curve.  

 

 
Figure 2: A ruled surface 

 
 

3. Results 

Let 𝐵(𝑡) be a dual Bézier curve with control points 𝑃 , 𝑃 , … , 𝑃 ∈ 𝐷  where 𝑃 = 𝑃 + 𝜀𝑃 ∗, 𝑃 , 𝑃 ∗ ∈

𝑅  for 𝑖 = 0,1, … , 𝑛.   𝑃 = 𝑃 + 𝜀𝑃 ∗ ∈ 𝐷  Then for 𝑡 ∈ [0,1], the dual Bézier curve can be defined as  

𝐵(𝑡) = ∑ 𝐵 (𝑡)𝑃  (7) 
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Since each control point 𝑃 = 𝑃 + 𝜀𝑃 ∗ then for 𝑡 ∈ [0,1] the dual Bézier curve can be written as  
𝐵(𝑡) = ∑ 𝐵 (𝑡)𝑃 + 𝜀 ∑ 𝐵 (𝑡)𝑃 ∗        (8) 
     = 𝐵(𝑡) + 𝜀𝐵∗(𝑡)         

where 𝐵(𝑡) and 𝐵∗(𝑡) are real Bézier curves of degree n with control points 𝑃 , 𝑃 , … , 𝑃  and 
𝑃 ∗, 𝑃 ∗, … , 𝑃 ∗ respectively.    

Let the coordinate frame in R3 be denoted as {𝑒 , 𝑒 , 𝑒 }. Then the j.th coordinat element of any control 
point 𝑃 = 𝑃 , 𝑃 , 𝑃  in R3 for j = 1,2,3 is the inner product 𝑃 = 〈𝑃 , 𝑒 〉. So any control point 𝑃  is 
stated as 

𝑃 = ∑ 〈𝑃 , 𝑒 〉 𝑒 . (9) 

Similarly since any control point of 𝑃  in D3 is stated as  𝑃 = 𝑃 + 𝜀𝑃 ∗ = 𝑃 , 𝑃 , 𝑃 +

𝜀 𝑃 ∗, 𝑃 ∗, 𝑃 ∗  where 𝑃 , 𝑃 ∗ ∈ 𝑅  then  
𝑃 = ∑ 〈𝑃 , 𝑒 〉 𝑒 + 𝜀 ∑ 〈𝑃 ∗, 𝑒 〉 𝑒   (10) 

can be stated. The norm of the curve B(t) at any time t is 

‖𝐵(𝑡)‖ = 𝐵 (𝑡)𝑃 = 𝐵 (𝑡)𝑃  

          = ∑ ∑ 𝐵 (𝑡)〈𝑃 , 𝑒 〉 = ∑ 〈∑ 𝐵𝑖
𝑛(𝑡)𝑃𝑖

𝑛
𝑖=0 , 𝑒 〉 = ∑ 〈𝐵(𝑡), 𝑒 〉  (11) 

 Now from (26) for 𝑡 ∈ [0,1] the dual Bézier curve 𝐵(𝑡) can be expressed as  
      𝐵(𝑡) = ∑ 𝐵 (𝑡)𝑃 + 𝜀 ∑ 𝐵 (𝑡)𝑃 ∗ 
          = ∑ 𝐵 (𝑡) ∑ 〈𝑃 , 𝑒 〉 𝑒 + 𝜀 ∑ 𝐵 (𝑡) ∑ 〈𝑃 ∗, 𝑒 〉 𝑒  
          = ∑ ∑ 𝐵 (𝑡)〈𝑃 , 𝑒 〉 𝑒 + 𝜀 ∑ ∑ 𝐵 (𝑡)〈𝑃 ∗, 𝑒 〉 𝑒  (12) 

  

Figure 3: Unit dual Sphere and Projection curve 𝐵(𝑡) of the Bézier curve 𝐵(𝑡) to unit dual sphere 

The projection of the dual Bézier curve 𝐵(𝑡) to unit dual sphere D-module is a curve in Fig. 3 denoted 
by 𝐵(𝑡) and defined by  
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𝐵(𝑡) =
( )

‖ ( )‖
=

∑ ( )

∑ ( )
=

∑ ( )( ∗)

∑ ( )
= 𝐵(𝑡) + 𝜀𝐵∗(𝑡) (13) 

Since from (3) the norm of the curve 𝐵(𝑡) is 

𝐵(𝑡) = ‖𝐵(𝑡) + 𝜀𝐵∗(𝑡)‖ = ‖𝐵(𝑡)‖ + ε
〈 ( ), ∗( )〉

‖ ( )‖
 (14) 

The projection curve 𝐵(𝑡) can be stated as  

𝐵(𝑡) =
( )

‖ ( )‖
=

( )

‖ ( )‖
〈 ( ), ∗( )〉

‖ ( )‖

=
‖ ( )‖

− ε
〈 ( ), ∗( )〉

‖ ( )‖
𝐵(𝑡) (15) 

When (8) and (10) is also replaced by (15) the projection curve 𝐵(𝑡) of the dual Bézier curve 𝐵(𝑡) to 
unit dual sphere  

𝐵(𝑡) =
‖ ( )‖

− ε
〈 ( ), ∗( )〉

‖ ( )‖
∑ 𝐵 (𝑡) ∑ 〈𝑃 , 𝑒 〉 𝑒 + 𝜀 ∑ 𝐵 (𝑡) ∑ 〈𝑃 ∗, 𝑒 〉 𝑒   (16) 

                      =

⎝

⎜
⎛ 1

∑ ∑ 𝐵𝑖
𝑛

(𝑡)〈𝑃𝑖, 𝑒𝑗〉𝑛
𝑖=0

2
3
𝑗=1

− ε
∑ ∑ 𝐵𝑖

𝑛
(𝑡)𝐵𝑗

𝑛
(𝑡)〈𝑃𝑖, 𝑃𝑗

∗
〉𝑛

𝑗=0
𝑛
𝑖=0

∑ ∑ 𝐵𝑖
𝑛

(𝑡)〈𝑃𝑖, 𝑒𝑗〉𝑛
𝑖=0

2
3
𝑗=1

/

⎠

⎟
⎞

〈𝑃 , 𝑒 〉 𝑒 𝐵 (𝑡) + 𝜀 〈𝑃 ∗, 𝑒 〉 𝑒 𝐵 (𝑡)  

                    =
∑ ∑ 〈𝑃 , 𝑒 〉 𝑒 𝐵 (𝑡)

∑ ∑ 𝐵𝑖
𝑛

(𝑡)〈𝑃𝑖, 𝑒𝑗〉𝑛
𝑖=0

2
3
𝑗=1

+ ε

⎝

⎜
⎛ ∑ ∑ 〈𝑃 ∗, 𝑒 〉 𝑒 𝐵 (𝑡)

∑ ∑ 𝐵𝑖
𝑛

(𝑡)〈𝑃𝑖, 𝑒𝑗〉𝑛
𝑖=0

2
3
𝑗=1

−
∑ ∑ 𝐵𝑖

𝑛
(𝑡)𝐵𝑗

𝑛
(𝑡)〈𝑃𝑖, 𝑃𝑗

∗
〉𝑛

𝑗=0
𝑛
𝑖=0

∑ ∑ 𝐵𝑖
𝑛

(𝑡)〈𝑃𝑖, 𝑒𝑗〉𝑛
𝑖=0

2
3
𝑗=1

/
〈𝑃 , 𝑒 〉 𝑒 𝐵 (𝑡)

⎠

⎟
⎞

 

                = 𝐵(𝑡) + 𝜀𝐵∗(𝑡)  
can be written. Therefore this theorem can be stated as follows 

 
Theorem 3.1: Let 𝐵(𝑡) = 𝐵(𝑡) + 𝜀𝐵∗(𝑡) be a dual Bézier curve with control points 𝑃 , 𝑃 , … , 𝑃 ∈ 𝐷  
where 𝑃 = 𝑃 + 𝜀𝑃 ∗, 𝑃 , 𝑃 ∗ ∈ 𝑅  for 𝑖 = 0,1, … , 𝑛. Then the projection curve 𝐵(𝑡) of the dual Bézier 
curve 𝐵(𝑡) to unit dual sphere is  

      𝐵(𝑡) = 𝐵(𝑡) + 𝜀𝐵∗(𝑡)  
where  

   𝐵(𝑡) =
∑ ∑ 〈 , 〉 ( )

∑ ∑ ( )〈 , 〉

 (17) 

and  

    𝐵∗(𝑡) =
∑ ∑ 〈 ∗, 〉 ( )

∑ ∑ ( )〈 , 〉

−
∑ ∑ ( ) ( )〈 , ∗〉

∑ ∑ ( )〈 , 〉
/ ∑ ∑ 〈𝑃 , 𝑒 〉 𝑒 𝐵 (𝑡) (18) 

It can be written more simply as  

          𝐵(𝑡) =  
( )

‖ ( )‖
      and       𝐵∗(𝑡) =

∗( )

‖ ( )‖
−

〈 ( ), ∗( )〉

‖ ( )‖
𝐵(𝑡) (19) 

From Proposition 2.1  the inner product these vectors 〈𝐵(𝑡), 𝐵∗(𝑡)〉 = 0 satisfies.  
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 According to E.Study’s theorem any dual unit vector corresponds to a oriented line in R3. Since 
for every 𝑡 ∈ [0,1] the projection curve 𝐵(𝑡) of the dual Bézier curve 𝐵(𝑡) to unit dual sphere is a dual 
unit vector, for any 𝑡 ∈ [0,1], the projection curve 𝐵(𝑡 ) also corresponds to a oriented line in R3. So 
the projection curve 𝐵(𝑡) corresponds to a ruled surface in R3. The oriented line corresponding to 
𝐵(𝑡 ) is a line with direction of the vector 𝐵(𝑡 ) and its distance from origine is ‖𝐵∗(𝑡 )‖.   

 If 𝐵∗(𝑡) is denoted from (19) as 𝐵∗ =
∗

‖ ‖
−

〈 , ∗〉

‖ ‖
𝐵 for shortness, the magnitude ‖𝐵∗‖ of the 

dual part of the projection curve 𝐵(𝑡) of the dual Bézier curve 𝐵(𝑡) is obtained as follows:  

          ‖𝐵∗‖ =
𝐵∗

‖𝐵‖
−

〈𝐵,𝐵∗〉

‖𝐵‖3 𝐵  

              = 
‖ ‖

‖(‖𝐵‖ 𝐵∗ − 〈𝐵, 𝐵∗〉𝐵)‖ 

               = 1

‖𝐵‖3
〈 ‖𝐵‖2𝐵

∗
− 〈𝐵, 𝐵∗〉𝐵 , ‖𝐵‖2𝐵

∗
− 〈𝐵, 𝐵∗〉𝐵  〉  

               = 1

‖𝐵‖3
‖𝐵‖4〈𝐵∗, 𝐵∗〉 − 2‖𝐵‖2〈𝐵, 𝐵∗〉2 + 〈𝐵, 𝐵∗〉2〈𝐵, 𝐵〉    

               = 1

‖𝐵‖3
‖𝐵‖4〈𝐵∗, 𝐵∗〉 − 2‖𝐵‖2〈𝐵, 𝐵∗〉2 + 〈𝐵, 𝐵∗〉2‖𝐵‖2 

             = 1

‖𝐵‖2
‖𝐵‖2〈𝐵∗, 𝐵∗〉 − 〈𝐵, 𝐵∗〉2  

            = 
1

‖𝐵‖2
〈𝐵, 𝐵〉〈𝐵∗, 𝐵∗〉 − 〈𝐵, 𝐵∗〉2 

            = 
1

‖𝐵‖2
〈𝐵 × 𝐵∗, 𝐵 × 𝐵∗〉 =

‖𝐵×𝐵∗‖

‖𝐵‖2
=

‖𝐵∗‖𝑠𝑖𝑛𝜃

‖𝐵‖
 (20) 

where 𝜃 is an angle between the vectors 𝐵 and 𝐵∗.  
 Now the vector 𝐵(𝑡) and the magnitude of the vector 𝐵∗(𝑡) for 𝑡 = 0 and  𝑡 = 1  can be easily 
stated by end point interpolation property of Bézier curves. In case for 𝑡 ≠ 0 or 𝑡 ≠ 1 they can be 
calculated by the de Casteljau algorithm as follows: 

 
Theorem 3.2: From (20) the projection curve 𝐵(𝑡) of the dual Bézier curve 𝐵(𝑡) for 𝑡 = 0 

and  𝑡 = 1 are 

 

𝐵(𝑡) = 𝐵(𝑡)| + 𝜀𝐵∗(𝑡)| =
‖ ‖

+ 𝜀
∗

‖ ‖
−

〈 , ∗〉

‖ ‖3 𝑃   (21)    

𝐵(𝑡) = 𝐵(𝑡)| + 𝜀𝐵∗(𝑡)| =
‖ ‖

+ 𝜀
∗

‖ ‖
−

〈 , ∗〉

‖ ‖3 𝑃      (22) 

 
Theorem 3.3: The projection curve 𝐵(𝑡) of the dual Bézier curve 𝐵(𝑡) for any 𝑡 ∈ (0,1) is    

    𝐵(𝑡) = 𝐵(𝑡)| + 𝜀𝐵∗(𝑡)| = + 𝜀
∗

−
〈 ,

∗
〉

3 𝑃   (23)    

where 𝑃  and 𝑃 ∗ are the points computed in the de Casteljau algorithm. 
Since the projection curve 𝐵(𝑡) corresponds to a ruled surface in R3, we can obtain this ruled 

surface as follows:  
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For every 𝑡 ∈ [0,1] the dual unit vector 𝐵(𝑡) corresponds to a directed line in R3 according to 
Theorem 2.1 mentioned as above. If the positions of the points on the oriented lines with direction 
𝐵(𝑡) for every 𝑡 ∈ [0,1] is denoted by 𝛾(𝑡), then the vectorial moment of the unit vector 𝐵(𝑡) with 
respect to the origin is written as 

       𝐵∗(𝑡) =  𝛾(𝑡) × 𝐵(𝑡) (24) 
[18]. Here since the position vector 𝛾(𝑡) for every 𝑡 ∈ [0,1] is orthogonal to the moment vector 𝐵∗(𝑡), 
the position vector 𝛾(𝑡) lies on the plane of two vectors 𝐵(𝑡) and 𝐵(𝑡) × 𝐵∗(𝑡). So for every 𝑡 ∈ [0,1] 
the position vector 𝛾(𝑡) is written as  

 
   𝛾(𝑡) = 𝐵(𝑡)𝑐𝑜𝑠𝜃 + 𝐵(𝑡) × 𝐵∗(𝑡) 𝑠𝑖𝑛𝜃 (25) 
 

If (25) is substituted to (24) , then   

 
𝐵∗(𝑡) =  𝐵(𝑡)𝑐𝑜𝑠𝜃 + 𝐵(𝑡) × 𝐵∗(𝑡) 𝑠𝑖𝑛𝜃 × 𝐵(𝑡) 

                                               =  𝑠𝑖𝑛𝜃 𝐵(𝑡) × 𝐵∗(𝑡) × 𝐵(𝑡)  
                                               =  𝑠𝑖𝑛𝜃[〈𝐵(𝑡), 𝐵(𝑡)〉𝐵∗(𝑡) − 〈𝐵(𝑡), 𝐵∗(𝑡)〉𝐵(𝑡)] 
                                               =  ‖𝐵(𝑡)‖ 𝐵∗(𝑡)𝑠𝑖𝑛𝜃 
 

can be written. Since ‖𝐵(𝑡)‖ = 1 then   
 
       𝑠𝑖𝑛𝜃 = 1   and so    𝑐𝑜𝑠𝜃 = 0 
 (26) 

is founded. Consequently the position vectors 𝛾(𝑡) for every 𝑡 ∈ [0,1] 
 
       𝛾(𝑡) = 𝐵(𝑡) × 𝐵∗(𝑡) 
 (27) 

is obtained. From (19)  

 

        𝛾(𝑡) =
( )× ∗( )

‖ ( )‖
 (28) 

 
This curve is the directrix curve of corresponding ruled surface of the projection curve 𝐵(𝑡). 

Since the director curve of ruled surface is 𝛽(𝑡) = 𝐵(𝑡) [17] , the ruled surface corresponding to the 
projection curve 𝐵(𝑡) of dual Bézier curve 𝐵(𝑡) is 

          𝑋(𝑡, 𝜈) = 𝛾(𝑡) + 𝜈𝛽(𝑡) 

                    =
( )× ∗( )

‖ ( )‖
+ 𝜈

𝐵(𝑡)

‖𝐵(𝑡)‖
 (29) 

is obtained. So this theorem can be given as 
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Theorem 3.4 : Let 𝐵(𝑡) = 𝐵(𝑡) + 𝜀𝐵∗(𝑡) be a dual Bézier curve with control points 

𝑃 , 𝑃 , … , 𝑃 ∈ 𝐷  where 𝑃 = 𝑃 + 𝜀𝑃 ∗, 𝑃 , 𝑃 ∗ ∈ 𝑅  for 𝑖 = 0,1, … , 𝑛 and let 𝐵(𝑡)  be the projection 
curve of 𝐵(𝑡) to unit dual sphere in D3. Then the ruled surface 𝑋(𝑡, 𝜈) corresponding to 𝐵(𝑡) by 
E.Study’s theorem is 

        𝑋(𝑡, 𝜈) =
( )× ∗( )

‖ ( )‖
+ 𝜈

𝐵(𝑡)

‖𝐵(𝑡)‖
 (30) 

where 𝑡 ∈ [0,1] and 𝜈 ∈ 𝑅. 
In case 𝑡 = 0 or 𝑡 = 1 the parameter curves of this ruled surface 𝑋(0, 𝜈) and  𝑋(1, 𝜈) can be 

easily stated as  
Theorem 3.5 : Let 𝐵(𝑡) = 𝐵(𝑡) + 𝜀𝐵∗(𝑡) be a dual Bézier curve with control points 

𝑃 , 𝑃 , … , 𝑃 ∈ 𝐷  where 𝑃 = 𝑃 + 𝜀𝑃 ∗, 𝑃 , 𝑃 ∗ ∈ 𝑅  for 𝑖 = 0,1, … , 𝑛. Then the parameter curves 
𝑋(0, 𝜈) and  𝑋(1, 𝜈) of the ruled surface 𝑋(𝑡, 𝜈) corresponding to dual unit curve 𝐵(𝑡) obtained by 
projection of the curve 𝐵(𝑡) to the dual unit sphere under E.Study’s theorem are 

 𝑖)  𝑋(0, 𝜈) =
× ∗

‖ ‖
+ 𝜈

‖ ‖
  for 𝑡 = 0;    (31) 

 𝑖𝑖)  𝑋(1, 𝜈) =
× ∗

‖ ‖
+ 𝜈

‖ ‖
  for 𝑡 = 1;    (32) 

where 𝜈 ∈ 𝑅. 
In case for 𝑡 ≠ 0 and 𝑡 ≠ 1 the parameter curve 𝑋(𝑡 , 𝜈) can be calculated by the de 

Casteljau algorithm in theorem 2.1 as follows 
Theorem 3.6 : Let 𝐵(𝑡) = 𝐵(𝑡) + 𝜀𝐵∗(𝑡) be a dual Bézier curve with control points 

𝑃 , 𝑃 , … , 𝑃 ∈ 𝐷  where 𝑃 = 𝑃 + 𝜀𝑃 ∗, 𝑃 , 𝑃 ∗ ∈ 𝑅  for 𝑖 = 0,1, … , 𝑛. Then the parameter curve 
𝑋(𝑡 , 𝜈) of the ruled surface 𝑋(𝑡, 𝜈) corresponding to dual Bézier curve 𝐵(𝑡) for 𝑡 ∈ (0,1) is 

𝑋(𝑡 , 𝜈)  =
×

∗

+ 𝜈   ;    (33) 

where 𝑃  and 𝑃 ∗ are the points computed in the de Casteljau algorithm in Theorem 2.1. 
Now from (46) the directrix and director curve of the ruled surface 𝑋(𝑡, 𝜈) corresponding to the 

dual Bézier curve 𝐵(𝑡) = 𝐵(𝑡) + 𝜀𝐵∗(𝑡) are the curves as follows 

 𝛾(𝑡) =
( )× ∗( )

‖ ( )‖
  and 𝛿(𝑡) =

𝐵(𝑡)

‖𝐵(𝑡)‖
  (34) 

respectively. 

Proposition 3.1: Let 𝐵(𝑡) = 𝐵(𝑡) + 𝜀𝐵∗(𝑡) be a dual Bézier curve with control points 
𝑃 , 𝑃 , … , 𝑃 ∈ 𝐷  where 𝑃 = 𝑃 + 𝜀𝑃 ∗, 𝑃 , 𝑃 ∗ ∈ 𝑅  for 𝑖 = 0,1, … , 𝑛. Then 

‖𝐵(𝑡)‖ =
〈𝐵(𝑡),𝐵′(𝑡)〉

‖ ( )‖
 (35) 
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satisfies. 

Proof: ‖𝐵(𝑡)‖ = ∑ 〈𝐵(𝑡), 𝑒 〉 =
∑ 〈𝐵(𝑡), 〉

. ∑ 〈𝐵(𝑡), 〉
=

∑ 〈𝐵(𝑡), 〉〈𝐵′(𝑡), 〉

‖ ( )‖
=

〈𝐵(𝑡),𝐵′(𝑡)〉

‖ ( )‖
   

İs obtained.  

Proposition 3.2: Let 𝐵(𝑡) = 𝐵(𝑡) + 𝜀𝐵∗(𝑡) be a dual Bézier curve with control points 𝑃 , 𝑃 , … , 𝑃 ∈

𝐷  where 𝑃 = 𝑃 + 𝜀𝑃 ∗, 𝑃 , 𝑃 ∗ ∈ 𝑅  for 𝑖 = 0,1, … , 𝑛. and 𝛿(𝑡) be the director curve of the ruled 
surface 𝑋(𝑡, 𝜈) corresponding to the dual Bézier curve 𝐵(𝑡). Then  

𝛿′(𝑡) =
𝐵(𝑡)× 𝐵′(𝑡)×𝐵(𝑡)

‖𝐵(𝑡)‖3   (36)  

satisfies. 

Proof: From (34), 𝛿 (𝑡) =
𝐵(𝑡)

‖𝐵(𝑡)‖

′
=

𝐵′(𝑡)‖𝐵(𝑡)‖−𝐵(𝑡)(‖𝐵(𝑡)‖)
′

‖𝐵(𝑡)‖2   can be written. So from (51),  

 𝛿 (𝑡) =
𝐵(𝑡)

‖𝐵(𝑡)‖

′
=

𝐵′(𝑡)‖𝐵(𝑡)‖−𝐵(𝑡)
〈𝐵(𝑡),𝐵′(𝑡)〉

‖ ( )‖

‖𝐵(𝑡)‖2 =
𝐵′(𝑡)‖𝐵(𝑡)‖2−𝐵(𝑡)〈𝐵(𝑡),𝐵′(𝑡)〉

‖𝐵(𝑡)‖3 =
𝐵′(𝑡)〈𝐵(𝑡),𝐵(𝑡)〉−𝐵(𝑡)〈𝐵(𝑡),𝐵′(𝑡)〉

‖𝐵(𝑡)‖3  

      =
( )× ( )× ( )

‖ ( )‖
  

or 

 𝛿 (𝑡) =
𝐵′(𝑡)

‖𝐵(𝑡)‖
−

〈𝐵(𝑡),𝐵′(𝑡)〉𝐵(𝑡)

‖𝐵(𝑡)‖3  

is obtained. 
Proposition 3.3: Let 𝐵(𝑡) = 𝐵(𝑡) + 𝜀𝐵∗(𝑡) be a dual Bézier curve with control points 𝑃 , 𝑃 , … , 𝑃 ∈

𝐷  where 𝑃 = 𝑃 + 𝜀𝑃 ∗, 𝑃 , 𝑃 ∗ ∈ 𝑅  for 𝑖 = 0,1, … , 𝑛. and 𝛾(𝑡) be the directrix curve of the ruled 
surface 𝑋(𝑡, 𝜈) corresponding to the dual Bézier curve 𝐵(𝑡). Then  

𝛾 (𝑡) =
( )× ∗( )

‖ ( )‖
+

( )×( ∗) ( )

‖ ( )‖
− 2

〈𝐵(𝑡),𝐵′(𝑡)〉 ( )× ∗( )

‖ ( )‖
 (37) 

satisfies. 

Proof: 𝛾 (𝑡) =
( )× ∗( )

‖ ( )‖
=

( )× ∗( ) ‖ ( )‖ ( )× ∗( ) ‖ ( )‖

‖ ( )‖
 

                        =
( )× ∗( ) ( )×( ∗) ( ) ‖ ( )‖ ( )× ∗( ) ‖ ( )‖

〈𝐵(𝑡),𝐵′(𝑡)〉

‖ ( )‖

‖ ( )‖
  

                       =
( )× ∗( )

‖ ( )‖
+

( )×( ∗) ( )

‖ ( )‖
− 2

〈𝐵(𝑡),𝐵′(𝑡)〉 ( )× ∗( )

‖ ( )‖
 

is obtained. 
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Abstract 

In this work, some new properties of cofinitely eg-supplemented modules are studied. Every 

ring has unity and every module is unitary left module, in this work. It is clear that every cofinitely 

essential supplemented module is cofinitely eg-supplemented. Because of this, cofinitely eg-

supplemented modules are more general than cofinitely essential supplemented modules. 

Keywords: Cofinite Submodules, Essential Submodules, Cofinitely Supplemented Modules, g-

Supplemented Modules. 
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1. INTRODUCTION 

Throughout this paper all rings are associative with identity and all modules are unital left modules. 

Let R be a ring and M be an R-module. We denote a submodule N of M by N≤M. A submodule U 

of an R-module M is called a cofinite submodule of M if M/U is finitely generated. Let M be an R-module 

and N≤M. If L=M for every submodule L of M such that M=N+L, then N is called a small (or superfluous) 

submodule of M and denoted by NM. A submodule N of an R-module M is called an essential 

submodule, denoted by NM, in case KN≠0 for every submodule K≠0, or equvalently, NL=0 for L≤M 

implies that L=0. Let M be an R-module and K be a submodule of M. K is called a generalized small 

(briefly, g-small) submodule of M if for every essential submodule T of M with the property M=K+T 

implies that T=M, we denote this by KgM (in [15] , it is called an e-small submodule of M and denoted 

by KeM). Let M be an R-module and U,V≤M. If M=U+V and V is minimal with respect to this property, 

or equivalently, M=U+V and UVV, then V is called a supplement of U in M. M is said to be 

supplemented if every submodule of M has a supplement in M. M is said to be cofinitely supplemented if 

every cofinite submodule of M has a supplement in M. M is said to be essential supplemented (briefly, e-

supplemented) if every essential submodule of M has a supplement in M. M is said to be cofinitely 

essential supplemented (briefly, cofinitely e-supplemented) if every cofinite essential submodule of M has 

a supplement in M. Let M be an R-module and U,V≤M. If M=U+V and M=U+T with TV implies that 
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T=V, or equivalently, M=U+V and UVgV, then V is called a g-supplement of U in M. M is said to be 

g-supplemented if every submodule of M has a g-supplement in M. M is said to be essential g-

supplemented if every essential submodule of M has a g-supplement in M. M is said to be cofinitely g-

supplemented if every cofinite submodule of M has a g-supplement in M. The intersection of maximal 

submodules of an R-module M is called the radical of M and denoted by RadM. If M have no maximal 

submodules, then we denote RadM=M. The intersection of essential maximal submodules of an R-module 

M is called the generalized radical (briefly, g-radical) of M and denoted by RadgM (in [15] , it is denoted 

by RadeM). If M have no essential maximal submodules, then we denote RadgM=M. Let M be an R-

module and K≤V≤M. We say V lies above K in M if V/KM/K. 

More details about supplemented modules are in [3] and [14]. More informaitons about cofinitely 

supplemented modules are in [1]. More details about essential supplemented modules are in [11] and [12]. 

More details about cofinitely essential supplemented modules are in [5] and [6]. More informations about 

g-small submodules and g-supplemented modules are in [7] and [8]. The definition of cofinitely g-

supplemented modules and more informations about these modules are in [4]. The definition of essential 

g-supplemented modules and some properties of them are in [9]. 

 

Lemma 1.1. Let M be an R-module. The following assertions hold. 

(1) Every small submodule in M is g-small in M. 

(2) If K≤L≤M and LgM, then KgM and L/KgM/K. 

(3) Let N be an R-module and f : MN be an R-module homomorphism. If KgM, then f(K)gN. 

(4) If KgM, then (K+L)/LgM/L for every L≤M. 

(5) If L≤M and KgL, then KgM. 

(6) If K1,K2,...,KngM, then K1+K2+...+KngM. 

(7) Let K1,K2,...,Kn,L1,L2,...,Ln ≤M. If KigLi for every i=1,2,...,n, then K1+K2+...+KngL1+L2+...+Ln. 

Proof. See [7] and [8]. 

 

Lemma 1.2. Let M be an R-module. The following conditions hold. 

(1) RadgM is equal to the sum of g-small submodules of M. 

(2) RmgM for every mRadgM. 

(3) If N≤M, then RadgN≤RadgM. 

(4) If K,L≤M, then RadgK+RadgL≤Radg(K+L). 

(5) Let N be an R-module and f : MN be an R-module homomorphism. Then f(RadgM)≤RadgN. 

(6) If K,L≤M, then (RadgK+L)/L≤Radg[(K+L)/L]. If L≤RadgK, then (RadgK)/L≤Radg(K/L). 

(7) If M=iIMi, then RadgM=iIRadgMi. 
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(8) RadM≤RadgM. 

Proof. See [8, Lemma 2, Lemma 3 and Lemma 4]. 

 

2. COFINITELY ESSENTIAL g-SUPPLEMENTED MODULES 

Definition 2.1. Let M be an R-module. If every cofinite essential submodule of M has a g-supplement in 

M, then M is called a cofinitely essential g-supplemented (or briefly, cofinitely eg-supplemented) module. 

(See also [10]) 

 

Lemma 2.2. Every cofinitely supplemented module is cofinitely eg-supplemented. 

Proof. Let M be a cofinitely supplemented module and U be a cofinite essential submodule of M. Since U 

is a cofinite submodule of M and M is cofinitely supplemented, U has a supplement V in M. Here M=U+V 

and UVV. Since UVV, UVgV. Hence V is a g-supplement of U in M. Therefore, M is 

cofinitely eg-supplemented. 

 

Corollary 2.3. Let M=iIMi. If Mi is cofinitely supplemented for every iI, then M is cofinitely eg-

supplemented. 

Proof. Since Mi is cofinitely supplemented for every iI, by [1, Lemma 2.3], M=iIMi cofinitely 

supplemented. Then by Lemma 2.2, M is cofinitely eg-supplemented. 

 

Corollary 2.4. Let M be a cofinitely supplemented module. Then every M-generated module is cofinitely 

eg-supplemented. 

Proof. Clear from Corollary 2.3. 

 

Corollary 2.5. Let R be a ring. If RR is supplemented, then every R-module is cofinitely eg-supplemented. 

Proof. Since RR is supplemented, RR is cofinitely supplemented. Then by Corollary 2.4, every R-module is 

cofinitely eg-supplemented. 

 

Lemma 2.6. Every essential supplemented module is cofinitely eg-supplemented. 

Proof. Let M be an essential supplemented module and U be a cofinite essential submodule of M. Since M 

is essential supplemented and UM, U has a supplement V in M. Here M=U+V and UVV. Since 

UVV, UVgV. Hence V is a g-supplement of U in M. Thus every cofinite essential submodule of M 

has a g-supplement in M and M is cofinitely eg-supplemented. 

 

Corollary 2.7. Every supplemented module is cofinitely eg-supplemented. 

Proof. Since every supplemented module is essential supplemented, by Lemma 2.6, every supplemented 

module is cofinitely eg-supplemented. 
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Lemma 2.8. Every cofinitely g-supplemented module is cofinitely eg-supplemented. (See also [10]) 

Proof. Let M be a cofinitely g-supplemented module and U be a cofinite essential submodule of M. Since 

M is cofinitely g-supplemented and U is a cofinite submodule of M, U has a g-supplement in M. Hence 

every cofinite essential submodule of M has a g-supplement in M and M is cofinitely eg-supplemented. 

 

Corollary 2.9. Let M=iIMi. If Mi is cofinitely g-supplemented for every iI, then M is cofinitely eg-

supplemented. 

Proof. Since Mi is cofinitely g-supplemented for every iI, by [4, Lemma 2.6], M=iIMi cofinitely g-

supplemented. Then by Lemma 2.8, M is cofinitely eg-supplemented. 

 

Corollary 2.10. Let M be a cofinitely g-supplemented module. Then every M-generated module is 

cofinitely eg-supplemented. 

Proof. Clear from Corollary 2.9. 

 

Corollary 2.11. Let R be a ring. If RR is g-supplemented, then every R-module is cofinitely eg-

supplemented. 

Proof. Since RR is g-supplemented, RR is cofinitely g-supplemented. Then by Corollary 2.10, every R-

module is cofinitely eg-supplemented. 

 

Proposition 2.12. Let M be a cofinitely eg-supplemented module. If every nonzero submodule of M is 

essential in M, then M is cofinitely supplemented. 

Proof. Let U be a cofinite submodule of M. If U=0, then M is a supplement of U in M. Let U≠0. Then 

UM and since M is cofinitely eg-supplemented, U has a g-supplement V in M. Here M=U+V and 

UVgV. Since every nonzero submodule of M is essential in M, UVV. Then V is a supplement of U 

in M. Hence M is cofinitely supplemented. 

 

3. CONCLUSION 

Supplemented and g-supplemented modules are actual subjects in Module Theory and can be 

studied on these modules. 
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Abstract 

In this study, third-order cascade-connected discrete-time linear time-varying system is 

considered. This system is described by a third-order linear difference equation. Commutativity  

conditions (CCs) of third-order discrete-time linear time-varying systems are presented.  

 

          Keywords: Commutativity, Discrete-time, Third-order, Linear system  

 

1. Introduction 

 

Cascade connection of several simple subsystems to form a complex system is a common method 

for the realization of many engineering designs; this is important for the synthesis of especially electronic 

and electrical and systems. The order of connection of subsystems may be arbitrary or might depend on 

the special design methods and traditional techniques. However, when the system performance 

parameters such as sensitivity, linearity, stability, noise quality, robustness are important, it may cause 

drastic changes. Hence, the best order should be chosen so that the main function of the total system 

remains the same (commutativity). This is why commutativity appears to be significant in view of 

engineering applications.  

As shown in Fig. 1, by changing the connection order of two cascade-connected time-varying 

linear systems 𝐴  and 𝐵 , we say that 𝐴  and 𝐵  are commutative systems and (𝐴, 𝐵)  constitutes a 

commutative pair if input-output relations of the assembled systems 𝐴𝐵  and 𝐵𝐴 are identical. 

 

Figure 1: Cascade connections of differential systems 
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The commutativity was studied for the first time by Marshal [1] in 1977. He developed CCs of 

first-order continuous time-varying linear systems and proved that a linear time-varying system could be 

commutative only with another time-varying linear system. In 1982, CCs of second-order continuous 

time-varying linear systems were obtained by M. Koksal [2]. Then, in 1985, CCs of third- and fourth-

order continuous time-varying linear systems were presented by the same author [3]. After a long period 

of time, in 2011, commutativity of Euler differential systems was investigated , and explicit CCs of fifth-

order continuous time-varying linear systems were studied by M. Koksal and M. E. Koksal [4]. For the 

CCs of continuous time-varying linear systems, the last literature containing CCs of sixth-order systems 

was studied by S. Ibrahim and M. E. Koksal in 2021 [5].  

Even though there are many papers on the commutativity of time-varying linear analog systems, 

there are only a few literature on the commutativity of time-varying linear digital systems. The trend in 

the new technology is moving to the digital world from the analog world. The advantages of digital 

systems over analog systems in many cases are well known. Some of these advantages are; digital 

systems do not necessitate any hardware changes for achieving different transfer characteristics, and they 

can be tuned by only software. From this point of view, the investigation of CCs of discrete time-varying 

linear systems is very important.  

In 2015, explicit CCs of second-order discrete-time linear time-varying systems were studied by 

M. Koksal and M. E. Koksal [6]. The results were illustrated by numerical experiments. After that, in 

2019, CCs of first-order discrete-time linear time-varying systems were obtained by M. E. Koksal [7] 

with illustrative examples. In this study, third-order discrete-time linear time-varying systems are 

considered. Some CCs are given for these systems. 

 

2. Third-order Systems 

 

Let systems 𝐴  and 𝐵  be discrete-time linear time-varying systems defined as in the following 

equations: 

 𝐴:𝑎3(𝑘)𝑦𝐴(𝑘 + 3) + 𝑎2(𝑘)𝑦𝐴(𝑘 + 2) + 𝑎1(𝑘)𝑦𝐴(𝑘 + 1) + 𝑎0(𝑘)𝑦𝐴(𝑘) = 𝑥𝐴(𝑘), (1) 

𝐵: 𝑏3(𝑘)𝑦𝐵(𝑘 + 3) + 𝑏2(𝑘)𝑦𝐵(𝑘 + 2) + 𝑏1(𝑘)𝑦𝐵(𝑘 + 1) + 𝑏0(𝑘)𝑦𝐵(𝑘) = 𝑥𝐵(𝑘), (2) 

From the cascade connection in Fig. 1a, we know that  

𝑥(𝑘) = 𝑥𝐴(𝑘), 𝑦𝐴(𝑘) = 𝑥𝐵(𝑘), 𝑦𝐵(𝑘) = 𝑦(𝑘). 

So, Eq. (2) can be written as  

𝑏3(𝑘)𝑦𝐵(𝑘 + 3) + 𝑏2(𝑘)𝑦𝐵(𝑘 + 2) + 𝑏1(𝑘)𝑦𝐵(𝑘 + 1) + 𝑏0(𝑘)𝑦𝐵(𝑘) = 𝑥𝐵(𝑘) = 𝑦𝐴(𝑘). 

By writing 𝑘 + 1, 𝑘 + 2, 𝑘 + 3  instead of 𝑘  in the above equation, we obtain the following three 

equations:  

𝑏3(𝑘 + 1)𝑦𝐵(𝑘 + 4) + 𝑏2(𝑘 + 1)𝑦𝐵(𝑘 + 3) + 𝑏1(𝑘 + 1)𝑦𝐵(𝑘 + 2) + 𝑏0(𝑘+ 1)𝑦𝐵(𝑘 + 1) 
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= 𝑥𝐵(𝑘 + 1) = 𝑦𝐴(𝑘 + 1), 

 

𝑏3(𝑘 + 2)𝑦𝐵(𝑘 + 5) + 𝑏2(𝑘 + 2)𝑦𝐵(𝑘 + 4) + 𝑏1(𝑘 + 2)𝑦𝐵(𝑘 + 3) + 𝑏0(𝑘+ 2)𝑦𝐵(𝑘 + 2) 

= 𝑥𝐵(𝑘 + 2) = 𝑦𝐴(𝑘 + 2), 

 

𝑏3(𝑘 + 3)𝑦𝐵(𝑘 + 6) + 𝑏2(𝑘 + 3)𝑦𝐵(𝑘 + 5) + 𝑏1(𝑘 + 3)𝑦𝐵(𝑘 + 4) + 𝑏0(𝑘+ 3)𝑦𝐵(𝑘 + 3) 

= 𝑥𝐵(𝑘 + 3) = 𝑦𝐴(𝑘 + 3). 

 

Substituting the above three formulas (of 𝑦𝐴(𝑘 + 1), 𝑦𝐴(𝑘 + 2), 𝑦𝐴(𝑘 + 3))in Eq. (1) and considering 

𝑥𝐴(𝑘) = 𝑥(𝑘), 𝑥𝐵(𝑘) = 𝑦𝐴(𝑘)  for the cascade-connected system 𝐴𝐵, we obtain the following sixth-order 

difference equation:  

𝐴𝐵: 𝑎3(𝑘)𝑏3(𝑘 + 3)𝑦(𝑘 + 6) + [𝑎3(𝑘)𝑏2(𝑘 + 3)+ 𝑎2(𝑘)𝑏3(𝑘 + 2)]𝑦(𝑘 + 5) 

+[𝑎3(𝑘)𝑏1(𝑘 + 3) + 𝑎2(𝑘)𝑏2(𝑘+ 2) + 𝑎1(𝑘)𝑏3(𝑘 + 1)]𝑦(𝑘 + 4) 

+[𝑎3(𝑘)𝑏0(𝑘 + 3)+ 𝑎2(𝑘)𝑏1(𝑘 + 2) + 𝑎1(𝑘)𝑏2(𝑘+ 1) + 𝑎0(𝑘)𝑏3(𝑘)]𝑦(𝑘 + 3) 

+[𝑎2(𝑘)b0(𝑘 + 2) + 𝑎1(𝑘)b1(𝑘 + 1)+ 𝑎0(𝑘)b2(𝑘)]y(𝑘 + 2) 

+[𝑎1(𝑘)𝑏0(𝑘 + 1) + 𝑎0(𝑘)𝑏1(𝑘)]𝑦(𝑘 + 1) + 𝑎0(𝑘)𝑏0(𝑘)𝑦(𝑘) = 𝑥(𝑘),                     (3) 

In a similar manner in obtaining the equation of cascade-connected system 𝐴𝐵 , we can obtain the 

equation of 𝐵𝐴. From the cascade connection in Fig. 1b, we know that  

𝑥(𝑘) = 𝑥𝐵(𝑘), 𝑦𝐵(𝑘) = 𝑥𝐴(𝑘), 𝑦𝐴(𝑘) = 𝑦(𝑘). 

Then, Eq. (1) can be written as  

𝑎3(𝑘)𝑦𝐴(𝑘 + 3) + 𝑎2(𝑘)𝑦𝐴(𝑘 + 2) + 𝑎1(𝑘)𝑦𝐴(𝑘 + 1) + 𝑎0(𝑘)𝑦𝐴(𝑘) = 𝑥𝐴(𝑘) = 𝑦𝐵(𝑘). 

By writing 𝑘 + 1, 𝑘 + 2, 𝑘 + 3  instead of 𝑘  in the above equation, we obtain the following three 

equations:  

𝑎3(𝑘+ 1)𝑦𝐴(𝑘 + 4) + 𝑎2(𝑘 + 1)𝑦𝐴(𝑘 + 3) + 𝑎1(𝑘 + 1)𝑦𝐴(𝑘 + 2) + 𝑎0(𝑘 + 1)𝑦𝐴(𝑘 + 1) 

= 𝑥𝐴(𝑘 + 1) = 𝑦𝐵(𝑘 + 1), 

𝑎3(𝑘+ 2)𝑦𝐴(𝑘 + 5) + 𝑎2(𝑘 + 2)𝑦𝐴(𝑘 + 4) + 𝑎1(𝑘 + 2)𝑦𝐴(𝑘 + 3) + 𝑎0(𝑘 + 2)𝑦𝐴(𝑘 + 2) 

= 𝑥𝐴(𝑘 + 2) = 𝑦𝐵(𝑘 + 2), 

𝑎3(𝑘+ 3)𝑦𝐴(𝑘 + 6) + 𝑎2(𝑘 + 3)𝑦𝐴(𝑘 + 5) + 𝑎1(𝑘 + 3)𝑦𝐴(𝑘 + 4) + 𝑎0(𝑘 + 3)𝑦𝐴(𝑘 + 3) 

= 𝑥𝐴(𝑘 + 3) = 𝑦𝐵(𝑘 + 3), 

If we substitute the above formulas of 𝑦𝐵(𝑘 + 1),𝑦𝐵(𝑘 + 2),𝑦𝐵(𝑘 + 3) in Eq. (2) and use 𝑥𝐵(𝑘) =

𝑥(𝑘) ,𝑥𝐴(𝑘) = 𝑦𝐵(𝑘)  for the cascade-connected system 𝐵𝐴,  we obtain the following sixth-order 

difference equation:  

𝐵𝐴: 𝑏3(𝑘)𝑎3(𝑘+ 3)𝑦(𝑘 + 6) + [𝑏3(𝑘)𝑎2(𝑘+ 3) + 𝑏2(𝑘)𝑎3(𝑘+ 2)]𝑦(𝑘 + 5) 

+[𝑏3(𝑘)𝑎1(𝑘 + 3) + 𝑏2(𝑘)𝑎2(𝑘+ 2) + 𝑏1(𝑘)𝑎3(𝑘+ 1)]𝑦(𝑘 + 4) 

+[𝑏3(𝑘)𝑎0(𝑘+ 3)+ 𝑏2(𝑘)𝑎1(𝑘 + 2) + 𝑏1(𝑘)𝑎2(𝑘+ 1) + 𝑏0(𝑘)𝑎3(𝑘)]𝑦(𝑘 + 3) 

+[𝑏2(𝑘)𝑎0(𝑘+ 2) + 𝑏1(𝑘)𝑎1(𝑘 + 1) + 𝑏0(𝑘)𝑎2(𝑘)]𝑦(𝑘 + 2) 
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+[𝑏1(𝑘)𝑎0(𝑘+ 1)+ 𝑏0(𝑘)𝑎1(𝑘)]𝑦(𝑘 + 1) + 𝑏0(𝑘)𝑎0(𝑘)𝑦(𝑘) = 𝑥(𝑘)          (4) 

 
3. Commutativity 

 

If Eqs. (3) and (4) are compared, since systems 𝐴𝐵  and 𝐵𝐴 systems are identical (𝐴 and 𝐵  are 

commutative conjugates), the coefficients of the same 𝑦(𝑖) values are equalized. By equalizing, we obtain 
the following six equations: 

 
𝑎3(𝑘)𝑏3(𝑘 + 3) = 𝑏3(𝑘)𝑎3(𝑘+ 3),     𝑘 ≥ 0, (5) 

 

𝑎3(𝑘)𝑏2(𝑘 + 3) + 𝑎2(𝑘)𝑏3(𝑘 + 2) = 𝑏3(𝑘)𝑎2(𝑘+ 3) + 𝑏2(𝑘)𝑎3(𝑘+ 2),     𝑘 ≥ 1 (6) 

 

𝑎3(𝑘)𝑏1(𝑘 + 3) + 𝑎2(𝑘)𝑏2(𝑘 + 2) + 𝑎1(𝑘)𝑏3(𝑘 + 1) 

= 𝑏3(𝑘)𝑎1(𝑘 + 3) + 𝑏2(𝑘)𝑎2(𝑘 + 2) + 𝑏1(𝑘)𝑎3(𝑘+ 1),    𝑘 ≥ 2,                        (7) 

 

𝑎3(𝑘)𝑏0(𝑘 + 3) + 𝑎2(𝑘)𝑏1(𝑘 + 2) + 𝑎1(𝑘)𝑏2(𝑘 + 1)+ 𝑎0(𝑘)𝑏3(𝑘) 

= 𝑏3(𝑘)𝑎0(𝑘 + 3) + 𝑏2(𝑘)𝑎1(𝑘 + 2) + 𝑏1(𝑘)𝑎2(𝑘 + 1) + 𝑏0(𝑘)𝑎3(𝑘),     𝑘 ≥ 3           (8) 

 

𝑎2(𝑘)𝑏0(𝑘 + 2) + 𝑎1(𝑘)𝑏1(𝑘 + 1) + 𝑎0(𝑘)𝑏2(𝑘) 

= 𝑏2(𝑘)𝑎0(𝑘+ 2) + 𝑏1(𝑘)𝑎1(𝑘 + 1) + 𝑏0(𝑘)𝑎2(𝑘),     𝑘 ≥ 4,                           (9) 

 

𝑎1(𝑘)𝑏0(𝑘+ 1) + 𝑎0(𝑘)𝑏1(𝑘) = 𝑏1(𝑘)𝑎0(𝑘+ 1) + 𝑏0(𝑘)𝑎1(𝑘), 𝑘 ≥ 5.           (10) 
 

In the above, we have four unknown coefficients 𝑏3(𝑛),𝑏2(𝑛), 𝑏1(𝑛), 𝑏0(𝑛) and six equations. Here, we 

can find the unknown coefficients by using the iterative method. The general solution of 𝑏3(𝑛)  is found 

by giving the values 0,1,2, ⋯ to 𝑘, respectively in Eq. (5), and using the previous result each time as 

follows:  

𝑏3(𝑛) =

{
  
 

  
 
𝑎3(𝑛)

𝑎3(0)
𝑏3(0),    𝑛 = 3,6,9, ⋯  

𝑎3(𝑛)

𝑎3(1)
𝑏3(1),    𝑛 = 4,7,10,⋯

𝑎3(𝑛)

𝑎3(2)
𝑏3(2),    𝑛 = 5,8,11,⋯ 

 

Following the same procedure in Eq. (6) and using the values of 𝑏3(𝑛), We can find the formula of 

𝑏2(𝑛); 

𝑏2(𝑛) = 𝑏2(0)∏
𝑎3(3𝑖 − 1)

𝑎3(3𝑖 − 3)
+
𝑏3(0)

𝑎3(0)
∑[∏

𝑎3(𝑛 − 1− 3𝑘)

𝑎3(𝑛 − 3− 3𝑘)

𝑖−2

𝑘=0

]

𝑛

3

𝑖=1

𝑛

3

𝑖=1

𝑎2(𝑛+ 3− 3𝑖) 
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−
𝑏3(2)

𝑎3(2)
∑[∏

𝑎3(𝑛− 1− 3𝑘)

𝑎3(𝑛− 3− 3𝑘)

𝑖−1

𝑘=0

]

𝑛

3

𝑖=1

𝑎2(𝑛− 3𝑖),     𝑓𝑜𝑟 𝑛 = 0,3,6,⋯ 

 

𝑏2(𝑛) = 𝑏2(1)∏
𝑎3(3𝑖)

𝑎3(3𝑖 − 2)
−
𝑏3(0)

𝑎3(0)
∑[∏

𝑎3(𝑛− 1− 3𝑘

𝑎3(𝑛− 3− 3𝑘)

𝑖−1

𝑘=0

]

𝑛−1

3

𝑖=1

𝑛−1

3

𝑖=1

𝑎2(𝑛− 3𝑖) 

+
𝑏3(1)

𝑎3(1)
∑[∏

𝑎3(𝑛− 1− 3𝑘

𝑎3(𝑛 − 3− 3𝑘)

𝑖−2

𝑘=0

]

𝑛−1

3

𝑖=1

𝑎2(𝑛+ 3− 3𝑖),     𝑓𝑜𝑟 𝑛 = 1,4,7,⋯ 

 

𝑏2(𝑛) = 𝑏2(2)∏
𝑎3(3𝑖 + 1)

𝑎3(3𝑖 − 1)
−
𝑏3(1)

𝑎3(1)
∑[∏

𝑎3(𝑛− 1− 3𝑘

𝑎3(𝑛− 3− 3𝑘)

𝑖−1

𝑘=0

]

𝑛−2

3

𝑖=1

𝑛−2

3

𝑖=1

𝑎2(𝑛− 3𝑖) 

+
𝑏3(2)

𝑎3(2)
∑[∏

𝑎3(𝑛 − 1− 3𝑘)

𝑎3(𝑛 − 3− 3𝑘)

𝑖−2

𝑘=0

]

𝑛−2

3

𝑖=1

𝑎2(𝑛+ 3− 3𝑖),     𝑓𝑜𝑟 𝑛 = 2,5,8,⋯ 

In Eq. (7), by giving the values 0,1,2, ⋯ to 𝑘, respectively, and using the previous value of 𝑏1(𝑛), we 

obtain the formula of 𝑏1(𝑛) as follows: 

𝑏1(𝑛) =∑(∏
𝑎3(3𝑘 + 1)

𝑎3(3𝑘)

𝑛−3

3

𝑘=𝑖

)

𝑛

3

𝑖=1

[
𝑎1(3𝑖)

𝑎3(3𝑖 − 3)
𝑏3(3𝑖 − 3) −

𝑎1(3𝑖 − 3)

𝑎3(3𝑖 − 3)
𝑏3(3𝑖 − 2)] 

+∑(∏
𝑎3(3𝑘 + 1)

𝑎3(3𝑘)

𝑛−3

3

𝑘=𝑖

)

𝑛

3

𝑖=1

[
𝑎2(3𝑖 − 1)

𝑎3(3𝑖 − 3)
𝑏2(3𝑖 − 3) −

𝑎2(3𝑖 − 3)

𝑎3(3𝑖 − 3)
𝑏2(3𝑖 − 1)]  

+∏
𝑎3(3𝑖 − 2)

𝑎3(3𝑖 − 3)
𝑏1(0),

𝑛

3

𝑖=1

     𝑓𝑜𝑟 𝑛 = 3,6,9,⋯ 

 

𝑏1(𝑛) = ∑[∏
𝑎3(3𝑘 + 2)

𝑎3(3𝑘 + 1)

𝑛−4

3

𝑘=𝑖

]

𝑛−1

3

𝑖=1

[
𝑎1(3𝑖 + 1)

𝑎3(3𝑖 − 2)
𝑏3(3𝑖 − 2) −

𝑎1(3𝑖 − 2)

𝑎3(3𝑖 − 2)
𝑏3(3𝑖 − 1)] 

441



 

5th INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 

1-3 December 2021, Istanbul, Turkey 

 

 

ICOM 2021 

ISTANBUL / TURKEY 

+∑[∏
𝑎3(3𝑘 + 2)

𝑎3(3𝑘 + 1)

𝑛−4

3

𝑘=𝑖

]

𝑛−1

3

𝑖=1

[
𝑎2(3𝑖)

𝑎3(3𝑖 − 2)
𝑏2(3𝑖 − 2) −

𝑎2(3𝑖 − 2)

𝑎3(3𝑖 − 2)
𝑏2(3𝑖)] 

+∏
𝑎3(3𝑖 − 1)

𝑎3(3𝑖 − 2)
𝑏1(1)

𝑛−1

3

𝑖=1

,     𝑓𝑜𝑟 𝑛 = 4,7,10,⋯  

 

𝑏1(𝑛) = ∑[∏
𝑎3(3𝑘+ 3)

𝑎3(3𝑘+ 2)

𝑛−5

3

𝑘=𝑖

]

𝑛−2

3

𝑖=1

[
𝑎1(3𝑖 + 2)

𝑎3(3𝑖 − 1)
𝑏3(3𝑖 − 1) −

𝑎1(3𝑖 − 1)

𝑎3(3𝑖 − 1)
𝑏3(3𝑖)] 

+∑[∏
𝑎3(3𝑘 + 3)

𝑎3(3𝑘 + 2)

𝑛−5

3

𝑘=𝑖

]

𝑛−2

3

𝑖=1

[
𝑎2(3𝑖 + 1)

𝑎3(3𝑖 − 1)
𝑏2(3𝑖 − 1) −

𝑎2(3𝑖 − 1)

𝑎3(3𝑖 − 1)
𝑏2(3𝑖 + 1)] 

+∏
𝑎3(3𝑖)

𝑎3(3𝑖 − 1)
𝑏1(2)

𝑛−2

3

𝑖=1

,     𝑓𝑜𝑟 𝑛 = 5,8,11,⋯  

Finally, using the same way in Eq. (10), we find the formula of 𝑏0(𝑛); 

𝑏0(𝑛) = ∑
𝑎0(𝑖) − 𝑎0(𝑖 − 1)

𝑎1(𝑖 − 1)
𝑏1(𝑖 − 1)

𝑛

𝑖=1

+ 𝑏0(0) , 𝑛 = 1,2,3, ⋯ 

 

So, we obtain the formulas of 𝑏3(𝑛),𝑏2(𝑛), 𝑏1(𝑛), 𝑏0(𝑛)  and these are required for finding the 

commutative pair of system A, but additional conditions among the coefficients 𝑏𝑖(𝑛) for 𝑖 = 0,1,2,3 are 
required because of the fact that we have not used Eq. (8) and (9) for finding these coefficients.  
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Abstract 

We study the local geometry of the sub-Finsler structure associated with two bracket-generating 

vector fields in R³ and the L¹ norm of the controls. We provide a normal form of the two vector fields 

and we study two particular non-generic cases, describing the upper part of the cut locus for short 

geodesics.  

 

          Keywords: Optimal Control, sub-Finsler geometry, cut locus 

 

1. Introduction 

 

Let f and g be two smooth vector fields on R³ such that f,g and their Lie brackets [f,g] are linearly 

independent at every point. We endow R³ with a L¹ sub-Finsler distance, in the following way: for every 

pair of points x0, x1 in R³, we define the distance between them as the infimum of the functional 

               𝐽(𝒖) = ∫ |𝑢1(𝑡)|
1

0
+ |𝑢2(𝑡)|𝑑𝑡,      𝒖 = (𝑢1, 𝑢2),                   (1) 

taken over all real-valued L¹ functions u1 and u2 such that the solution of the Cauchy problem 

{
�̇�(𝑡) = 𝑢1(𝑡)𝑓(𝜉(𝑡)) + 𝑢2(𝑡)𝑔(𝜉(𝑡))

𝜉(0) = 𝑥0                                  
           (2) 

satisfies 𝜉(1) = 𝑥1. 

Stated as above, the problem of computing the distance between the two points is an optimal control 

problem, that can be treated with classical tools, such as Pontryagin Maximum Principle (PMP). Yet, 

in most cases, an admissible trajectory (that is, a solution of (2)) that satisfies PMP is not optimal on 

its whole length, but at some point, called the cut point, it loses its global optimality (that is, it ceases 

to be length minimizing). The set of all cut points of the trajectories with origin in x0  is called the cut 

locus to x0. Determining the cut locus (to some point x0) is thus important in order to compute the 

distances from x0 and to describe the properties of the metric, such as, for instance, the shape of the 

spheres centered at x0. 

 

The simplest case of L¹ sub-Finsler distance on R3 is the Heisenberg group, which has been studied in 

[4]. The cut locus and the form of the spheres of any radius have been characterized. A similar analysis 

in the generic case is however vary hard, as many issues due to the nonlinearity of f and g may arise; 

444

mailto:francesca.chittaro@univ-tln.fr


 

5th INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 

1-3 December 2021, Istanbul, Turkey 

 

 

ICOM 2021 

ISTANBUL / TURKEY 

on the other hand, it is very interesting to see how small perturbations of the Heisenberg system affect 

the shapes of the cut locus and of the sphere; this study can be done by concentrating on small (i.e., 

with small radius)  spheres: indeed, for short distances, the linear parts of the vector fields f and g (the 

ones corresponding to the Heisenberg system) dominate. 

 

In the article [3], the authors study the small spheres in the most generic case; more precisely, they 

provide a normal form for the vector fields f and g and single out two invariants of the metric (in the 

following, C1 and C2), whose signs allow to localize where a trajectory loses its local optimality 

(conjugate point), and, as byproduct, to give a bound on the cut points. Under the hypothesis that these 

invariants are non zero, the authors provide a complete description of the cut locus for small spheres; 

the classification of the different cases is given in terms of the values of C1 and C2.  In particular, in 

[3] it is shown that the cut locus is always symmetric with respect to the vertical axis and, depending 

on the values of two invariants, it can be constituted either by five smooth branches, or by only one 

smooth branch.  

 

In this paper, we are going on with the analysis started in [3]. In particular, we assume that one (and 

only one) between  C1 and C2 is zero. New invariants (called E1 and D1 in the following) appear in the 

determination of conjugate points and in the classification of the possible shapes of the cut locus. 

Some of these cases are quite different from the ones found in [3, 4] (for instance, the symmetry with 

respect to the vertical axis is broken): in particular, in this paper we are showing two of them, one in 

which the cut locus is made by three smooth branches, one other in which the cut locus is not 

connected. 

 

 

2. Preliminaries 

 

Normal form of the vector fields f and g 

 

Before tackling the resolution of the problem, it is worth to find a normal form of the vector fields f 

and g. In this paper, we are restricting our attention to a specific sub-class of sub-Finsler L¹ structures, that 

is, those that are related to a specific sub-Riemannian structure. Indeed, let  h1, h2  be two vector fields on 

R³, such that h1, h2, and [h1, h2] are linearly independent at every point and that h1 and h1 are orthonormal 

with respect  to some scalar product on R³. Then, it has  been proved in [1, 5] that  there exist local coordinates 

(q1, q2, q3) in which the vector fields h1, h2  have the form 

ℎ1 = (

1 + 𝑞2
2𝛽(𝑞1, 𝑞2, 𝑞3)

−𝑞1𝑞2𝛽(𝑞1, 𝑞2, 𝑞3)
−𝑞2

2
(1 + 𝛾(𝑞1, 𝑞2, 𝑞3))

)      ℎ2 = (

−𝑞1𝑞2𝛽(𝑞1, 𝑞2, 𝑞3)

1 + 𝑞1
2𝛽(𝑞1, 𝑞2, 𝑞3)

𝑞1

2
(1 + 𝛾(𝑞1, 𝑞2, 𝑞3))

), 
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where β,γ are two functions that vanish on (0,0,q3), together with the (first order) partial derivatives of γ  

with respect to q1 and q2.  

We assume that the vector fields f, g are related to h1, h2  in the following way: there exist a non-singular 

matrix M such that (
𝑓
𝑔
) = 𝑀(

ℎ1
ℎ2
). We call such sub-Finsler L¹ structures compatible with a sub-Riemannian 

structure. 

We can apply another change of variables and write, in the new variables (x,y,z), 

𝑓 = (

1 + 𝑥𝑦𝐿11(𝑥, 𝑦, 𝑧) + 𝑦
2𝐿12(𝑥, 𝑦, 𝑧)

𝑥𝑦𝐿21(𝑥, 𝑦, 𝑧) + 𝑦
2𝐿22(𝑥, 𝑦, 𝑧)

−
𝑦
2
+ 𝑥𝑦𝐿31(𝑥, 𝑦, 𝑧) + 𝑦

2𝐿32(𝑥, 𝑦, 𝑧)

)      𝑔 = (

−𝑥2𝐿11(𝑥, 𝑦, 𝑧) − 𝑥𝑦𝐿12(𝑥, 𝑦, 𝑧)

1 − 𝑥2𝐿21(𝑥, 𝑦, 𝑧) − 𝑥𝑦𝐿22(𝑥, 𝑦, 𝑧)
𝑥
2
− 𝑥2𝐿31(𝑥, 𝑦, 𝑧) − 𝑥𝑦𝐿32(𝑥, 𝑦, 𝑧)

) 

where Lij, for i=1,2,3, j=1,2, are smooth functions that can be developed in power series as  

𝐿𝑖𝑗(𝑥, 𝑦, 𝑧) = 𝑎𝑥𝑖𝑗𝑥 + 𝑎𝑦𝑖𝑗𝑦 +
1

2
(𝑥𝑦𝑧) (

𝜔𝑥𝑥𝑖𝑗 𝜔𝑥𝑦𝑖𝑗 𝜔𝑥𝑧𝑖𝑗
𝜔𝑦𝑥𝑖𝑗 𝜔𝑦𝑦𝑖𝑗 𝜔𝑦𝑧𝑖𝑗
𝜔𝑧𝑥𝑖𝑗 𝜔𝑧𝑦𝑖𝑗 𝜔𝑧𝑧𝑖𝑗

)(
𝑥
𝑦
𝑧
) + ℎ. 𝑜. 𝑡 

The terms axij,  ayij and ωabij, i=1,2,3, j=1,2, a,b=x,y,z,  are called the invariants of the metric. Indeed, the 

Heisenberg system corresponds to the case where all invariants are null. If only a finite (possibly zero) 

number of invariants are assumed to be zero,  then we say that the case is generic. 

 

The minimum time problem 

Let us consider the optimal control problem (1)-(2) with x0=0. Performing the time reparametrization 

𝑠(𝑡) = ∫ |𝑢1(𝑟)|
𝑡

0
+ |𝑢2(𝑟)|𝑑𝑟  , the problem (1)-(2) can be rewritten as the following minimum-time 

problem  

Problem (T) : minimize the final time T, over all trajectories of the control system (2) such that ξ(T)=x1 and 

the controls u1,u2 are measurable functions satisfying the constraint 

|u1(t)|+|u2(t)|≤1 . 

Pontryagin Maximum Principle (PMP) is a celebrated first-order necessary optimality condition. Here 

below, we recall it in a formulation adapted to the minimum time problem under study; for more references, 

see for instance [2]. First of all, let us define the control-dependent Hamiltonian 

h(P,X,u)=u1F(P,X)+u1G(P,X), where P=(px,py,pz)∈R³ and F(P,X)=<P,f(X)>, G(P,X)=<P,g(X)>. PMP states 

that, if ξ : [0,T]→R³ is an optimal solution for the minimum-time problem and u(.) is its associated control 

function, then there exist a Lipschitz curve P(.) and a constant ν∈{0, 1} such that P(t)≠0 and h(P(t),ξ 

(t),u(t))= ν for all t∈[0,T], and  

𝑑𝑃(𝑡)

𝑑𝑡
=

−𝜕ℎ

𝜕𝑋
(𝑃(𝑡), 𝜉(𝑡), 𝑢(𝑡))     

𝑑𝑋(𝑡)

𝑑𝑡
=

𝜕ℎ

𝜕𝑃
(𝑃(𝑡), 𝜉(𝑡), 𝑢(𝑡))    (3) 
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ℎ (𝑃(𝑡), 𝜉(𝑡), 𝑢(𝑡)) = 𝑚𝑎𝑥
|𝑤1|+|𝑤2|≤1

ℎ (𝑃(𝑡), 𝜉(𝑡), 𝑤).   (4) 

The curves  (P,ξ): [0,T]→R³×R³ satisfying the conditions here above (for some admissible control u) are  

called extremals of the optimal control problem; their projections ξ(.) are called geodesics. If the constant ν 

is equal to 1, we say that the extremal is normal. Otherwise, it is said to be abnormal. 

Remark 1: Under the assumption that {f,g,[f,g]} is a basis for R³ at every point, it is easy to prove that there 

is no abnormal extremals and that the control associated with an extremal takes values on the boundary of 

the set Q={(u1,u2):|u1|+|u2|≤1}. Moreover, as along any extremal the Hamiltonian h is equal to 1, and since 

ξ(0)=0, at least one between |px(0)| or |py(0)| is 1; in particular, both |px(0)| are |py(0)| less than or equal to 1. 

Thanks to  (4), the value of the control is determined by the relative values of F and G along the extremal: 

take some interval I ⊂ [0, T], and let (P,ξ) : [0, T]→R³× R³  be some extremal; then 

• if |F(P(t),ξ(t))|≠|G(P(t),ξ(t))| ∀t ∈ I, then, on I, the control takes value on one of the vertices of Q. In this 

case, (P(t),ξ(t))|I  is said to be a regular bang arc. 

• if |F(P(t),ξ(t))|=|G(P(t),ξ(t))|∀t ∈ I, then the control takes values on one of the sides of Q, and, in particular, 

it is not uniquely determined. Indeed, if for instance F(P(t),ξ(t))= G(P(t),ξ(t)) > 0 ∀t ∈ I,  then any control of 

the form (α,1−α), α ∈ [0, 1], realizes the maximum in equation (4). In this case,  (P(t),ξ(t))|I  is said to be a 

singular arc. 

When an extremal crosses transversely one of the subsets {F =G} or {F = −G}, the control switches from 

one vertex of Q to another one; in particular, by continuity of the extremals and from the fact that F and G 

cannot be both zero along an extremal, a control satisfying PMP can switch only from one vertex of Q to a 

neighboring one; an extremal such that the associate control switches from vertex to vertex is called bang-

bang. F and G are called the switching functions, and the subsets {F = G} and {F = −G} are called switching 

surfaces. The derivatives of the switching functions along an extremal are respectively given by �̇� = −𝑢2and 

�̇� = 𝑢1𝛩, where Θ(P,X)=<P,[f,g](X)>. 

 

Local and global optimality of geodesics 

 

Clearly, if a geodesic is time-minimizing between its two endpoints, then it is time-minimizing also 

between any two intermediate points of its. However, in general a geodesic is not time-minimizing on its 

whole length, but at some point it ceases to be optimal; the point where a geodesics loses its optimality is 

called a cut point, defined as it follows. 
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Definition 1. Let ξ be an admissible curve of the control system (2). We define  tcut (ξ) ={sup t > 0 : ξ| [0,t] is 

time-minimizing}, and we call it cut time of the geodesic ξ. If tcut(ξ)<+∞, we say that ξ(tcut) is the cut point 

to ξ(0) along ξ. We call the cut locus (to the origin) the set of all cut points of geodesics starting from x0. 

In optimal control, it is worth investigating also the local optimality of geodesics; in particular, in this paper 

we are interested in optimality in the strong topology, accordingly to the following definition: we say that 

an admissible trajectory ξ is locally optimal if there exists a neighborhood U of its graph in R × R³ such that 

ξ is time minimizing among all admissible trajectories with graph contained in U.  

In optimal control, a usual method to detect the loss of local optimality is to look for the points of non-

invertibility of the exponential map (see for instance [3, 4]); these points are called conjugate points. For the 

problem under concern, the exponential map is defined as 

𝑒𝑥𝑝: (𝑃⁰, 𝑠) ↦ 𝜉(𝑠), 

where (P(s),ξ(s)) is the value at the time s of the extremal with initial condition equal to (P0,x0). We remark 

that, as we always have |px(0)| = 1 or |py(0)| = 1 (see Remark 1), then the exponential mapping is a function 

of three variables.  

This map is well defined only if  (P(s),ξ(s)) is a regular bang-bang extremal (see [7]), therefore we can use 

it only for studying the local optimality of regular bang-bang extremals. Moreover, this map is smooth, 

except at the pairs (P⁰,s) such that (P(s), ξ(s)) belongs to a switching surface: at this points, the exponential 

map has well-defined, but different, “left” and “right” derivatives.  On the other hand, it is well known (see 

again [7]) that bang-bang extremals cannot lose their local optimality along bang arcs, so that we must 

concentrate on what happens at the switching points. This justifies the following definition. 

Definition 2. Let (P,ξ) be a regular bang-bang extremal for Problem (T). The first conjugate time along (P,ξ) 

is defined as 

tconj (P,ξ) = inf {t > 0 : ∃ t1 < t < t2 such that JExp(P⁰, t1)JExp(P⁰, t2) < 0} , 

where JExp(P⁰, t) denotes the Jacobian  of Exp(P⁰, t). We also call ξ(tconj) the first conjugate point along 

(P,ξ) . The set of all conjugate points associated to extremals starting from the origin is called the first 

conjugate locus (from the origin).  

The Heisenberg system 

 

As already mentioned in the introduction, the simplest pair of vector fields such that f, g and their Lie 

brackets [f,g] are linearly independent at every point corresponds to the Heisenberg group (also known 

as Brockett integrator), and it has already been studied in [4]. Since it constitutes a starting point for the 

study of the generic case, it is worth recalling the main properties of its time-optimal synthesis; we refer to 
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[4] for all details. First, we recall that the vector fields are respectively given by f=(1,0,-y/2) and 

g=(0,1,x/2). 

Let us apply PMP to problem (P); since the control system does not depend on z, the adjoint vector pz is 

constant along every extremal; moreover, Θ(P,X)≡pz. This fact has two consequences: 

• Singular arcs are characterized by pz≡0; therefore, if an extremal contains a singular arc, then the 

whole extremal is singular. 

• Given any bang-bang concatenation, the sequence of its associated controls is uniquely determined 

by the initial one and the sign of pz : indeed, if pz  > 0 (respectively, pz  < 0), the controls follow the 

vertices of Q in the counterclockwise (respectively, clockwise) sense. 

In particular, the only possible extremals are either singular or bang-bang.  

We notice moreover that the problem exhibits a discrete symmetry: it is invariant by rotations of multiples 

of π/2 around the z axis. For these reasons, it suffices to compute only the extremals whose initial adjoint 

vector P(0)=(p0
x,p

0
y,p

0
z) satisfies p0

x=1,  |p0
y|≤ 1 and p0

z ≥ 0; indeed, all other extremals can be recovered 

from these ones by applying a suitable transformation. 

First of all, we consider the case in which p0
y ∈ [−1, 1) and p0

z> 0. Since F(P(0),ξ(0)) = 1 > |p0
y| = 

|G(P(0),ξ(0))|, then the control associated with the extremal at t=0 is (1,0) ; actually, the control is (1,0) on 

the whole interval [0,T1), where T1 is the smallest (positive) time satisfying F(P(T1),ξ(T1)) = 

G(P(T1),ξ(T1)); by computations, T1 =(1-p0
y)/ p

0
z. After this time, the control equals (0,1), until the time T2 

satisfying F(P(T2),ξ(T2)) = −G(P(T2),ξ(T2)), given by T2 = T1 + ∆T , with ∆T =2/p0
z. After T2, the control 

switches every ∆T. 

In the special case p0
x= p0

y = 1, explicit integrating the Hamiltonian system and applying equation (4), it is 

easy to see that the first control is (0,1); repeating the same analysis as above, we see that the control 

switches every ∆T , following the same sequence as above. 

Let ξ be a geodesic corresponding to an extremal with p(0) = (1, p0
y,p

0
z), |p

0
y| < 1; integrating the system, 

we see that, for t∈[T4 , 8/p0
z], the expression of the geodesic is given by 

{

𝑥(𝑡) = 𝑡 − 4𝛥𝑇
𝑦(𝑡) = 0

𝑧(𝑡) = 4𝛥𝑇2
 

that is, its value depends only on t and on p0
z, but not on p0

y. In particular, at t = T4 = (7-p0
y)/ p

0
z, ξ meets 

all other geodesics with initial adjoint vector (1,𝑝𝑦
0~ ,p0

z),  𝑝𝑦
0~> p0

y, and coincides with them up to the time 8/ 

p0
z. Moreover, for every ε>0, we can always find some q > p0

y such that the graph of the geodesic with 
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initial adjoint covector equal to  (1,q,p0
z) is ε-close (in the uniform norm) to the graph of ξ. In other words, 

at t = T4 the trajectory ξ loses its local optimality; the fourth switching time is then its conjugate time. 

The cut time is obviously less than or equal to the conjugate time. To verify if these two times are 

different, we must look at intersections of the trajectory under study with other trajectories whose graph 

does not belong to a neighborhood of its graph; in particular, these trajectories are those whose initial 

control is not (1,0) (that is, the first component of their initial adjoint vector is not 1). By computations, it 

is possible to prove that such intersections occur either at the conjugate time, either at 8/p0
z. Therefore, for 

every trajectory, the fourth switching time T4 is both the conjugate time and the cut time. 

To complete the analysis, we now consider a singular extremal with p0
 x=p0

 y= 1 and pz = 0. As already 

said, every control of the form (α(t), 1 − α(t)), with α(t) ∈ [0, 1] ∀t, realizes the maximum in (4). First of 

all, by direct integration we notice that 𝑥(𝑇) + 𝑦(𝑇) = ∫ |𝑢1(𝑡)|
𝑇

0
+ |𝑢2(𝑡)|𝑑𝑡 = 𝑇, so that a singular extremal 

is necessarily optimal (as no point (x1,y1,z1) can be reached in a time less than |x1|+|y1|). Moreover, it is 

possible to prove that every point reached by a singular trajectory satisfies |z(T)| ≤ |x(T)y(T)|/2, and, 

conversely, that every point (x1,y1,z1) satisfying this bound can be reached by a singular trajectory. In 

particular, the minimum time for reaching such points is |x1|+|y1|. 

 

3. Local expansion of geodesics 

 

Jets of short geodesics 

 

As already anticipated in the Introduction, we are interested in the local problem only, that is, we study the 

optimal synthesis from the origin for small times. In this paper, we focus on final points (x1,y1,z1) such that  

|z1| > |x1 y1|/2, that is, they are reached by means of bang-bang extremals. 

Since, in the nilpotent case, the switching times are inversely proportional to the third component of the 

adjoint vector (at time zero) pz⁰, small times correspond to large values for pz⁰. Let (P(t),ξ(t)) be an 

extremal of (T) with pz⁰>>1, and let u(t) be its associated control. Following the same techniques of [1, 3, 

5], we perform the time reparametrization 

𝜏(𝑡) = ∫ 𝑝𝑧

𝑡

0

(𝑠)𝑑𝑠 

and we define the new variables px=px/pz, py=py/pz, ρ=1/pz  and  𝛩=Θ/pz. We set  ρ0=ρ(0).  

In order to compute the jets of the extremal (P(t),ξ(t)), we expand it in power series of ρ0: 
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{
 
 
 

 
 
 

𝑥(𝜏) = 𝜌0𝑥1(𝜏) + 𝜌0
2𝑥2(𝜏) + 𝜌0

3𝑥3(𝜏) + 𝜌0
4𝑥4(𝜏) + 𝑂(𝜌0

5)

𝑦(𝜏) = 𝜌0𝑦1(𝜏) + 𝜌0
2𝑦2(𝜏) + 𝜌0

3𝑦3(𝜏) + 𝜌0
4𝑦4(𝜏) + 𝑂(𝜌0

5)

𝑧(𝜏) = 𝜌0𝑧1(𝜏) + 𝜌0
2𝑧2(𝜏) + 𝜌0

3𝑧3(𝜏) + 𝜌0
4𝑧4(𝜏) + 𝜌0

5𝑧5(𝜏) + 𝑂(𝜌0
6)

𝑝�̄�(𝜏) = 𝜌0𝑝𝑥1(𝜏) + 𝜌0
2𝑝𝑥2(𝜏) + 𝜌0

3𝑝𝑥3(𝜏) + 𝜌0
4𝑝𝑥4(𝜏) + 𝑂(𝜌0

5)

𝑝�̄�(𝜏) = 𝜌0𝑝𝑦1(𝜏) + 𝜌0
2𝑝𝑦2(𝜏) + 𝜌0

3𝑝𝑦3(𝜏) + 𝜌0
4𝑝𝑦4(𝜏) + 𝑂(𝜌0

5)

𝜌(𝜏) = 𝜌0 + 𝜌0
2𝜌2(𝜏) + 𝜌0

3𝜌3(𝜏) + 𝜌0
4𝜌4(𝜏) + 𝑂(𝜌0

5)

  (5) 

where xi, yi, zi ,pxi, pyi   and  ρi are function of the reparametrized time to be determined. Plugging  (5) into  

(3), we can see that 
𝑑𝜌

𝑑𝜏
= 𝑂(𝜌0

5),so that ρ(τ)=ρ 0+ O(ρ0⁵). The control system (2) can be thus written as 

{
 
 
 

 
 
 

𝑑𝑥

𝑑𝜏
(𝜏) = 𝑢1𝜌0 + (𝑢2𝑥1 − 𝑢1𝑦2)(𝑎𝑥11𝑥1

2 + (𝑎𝑥12 + 𝑎𝑦11)𝑥1𝑦1 + 𝑎𝑦12𝑦1
2)𝜌0

4 + 𝑂(𝜌0
5)

𝑑𝑦

𝑑𝜏
(𝜏) = 𝑢2𝜌0 + (𝑢2𝑥1 − 𝑢1𝑦2)(𝑎𝑥21𝑥1

2 + (𝑎𝑥22 + 𝑎𝑦21)𝑥1𝑦1 + 𝑎𝑦22𝑦1
2)𝜌0

4 + 𝑂(𝜌0
5)

𝑑𝑧

𝑑𝜏
(𝜏) = (𝑢2𝑥1 − 𝑢1𝑦2) (

1

2
𝜌0
2 + (𝑎𝑥31𝑥1

2 + (𝑎𝑥32 + 𝑎𝑦31)𝑥1𝑦1 + 𝑎𝑦32𝑦1
2)𝜌0

4)

+1

2
(
(𝑢2𝑥4 − 𝑢1𝑦4) + (𝑢2𝑥1 − 𝑢1𝑦2)𝜔𝑥𝑥31𝑥1

3 + (𝜔𝑥𝑥32 + 𝜔𝑥𝑦31 + 𝜔𝑦𝑥31)𝑥1
2𝑦1

+(𝜔𝑥𝑦32 + 𝜔𝑦𝑥32 + 𝜔𝑦𝑦31)𝑥1𝑦1
2 + 𝜔𝑦𝑦32𝑦1

3
)𝜌0

5 + 𝑂(𝜌0
6).

Analogousl

y, plugging (5) into (3), we obtain the equations for the jets of the (rescaled) adjoint vectors px and py. These 

equations can be integrated at each order in ρ0 , in order to obtain the expression of the functions xi, yi, zi ,pxi, 

pyi . For the analysis carried out in this paper, it is sufficient to stop at the fourth order for x and y, at the 

third one for px and py, and at the fifth one for z (that is, we need three order after the first nonzero one).. 

 

The power series for the switching times are computed analogously. Consider, for instance, an extremal with 

px(0) = 1 and |py(0)|< 1 which implies that, along the first bang-arc, the associated control is u=(1,0). The 

switching (reparametrized) time τ1 is determined by the condition F(t(τ1))=G(t(τ1))=1 (we recall indeed 

that F(t(0))=1 and that F is constant for u2=0). Plugging the expansions for (P(t(τ)),ξ(t(τ))) into  𝛩 and 

factorizing in powers of ρ0, we obtain the coefficients 𝛩�̄� in the expansion 𝛩 = 1 + 𝛩1𝜌0 + 𝛩2𝜌0
2 + 𝛩3𝜌0

3 

Writing τ1 as the power series τ1=τ10+τ11ρ02 +τ12ρ02 +..., and imposing, at each order in  ρ0, the equality  

1 = 𝐺(𝑡(𝜏1)) = 𝑝𝑦(0) + ∫ �̄�
𝜏1

0

(µ(𝑡(𝜏)), 𝜉(𝑡(𝜏))) 𝑑𝜏

𝑝𝑦(0) + ∫ (1 + 𝜌0𝛩1¯ +. . . )
𝜏⁰1

0

𝑑𝜏 + ∫ (1 + 𝜌0𝛩1¯ +. . . )
𝜏⁰1+𝜌0𝜏¹1

𝜏⁰1

𝑑𝜏+. . . ,

 

we can identify all the coefficients τ1k, k≥0. We proceed in the same way for the other switching times.  In 

particular, we obtain τ1
0 = px(0) − py(0)  and (τk+1

0 − τk
0 ) = 2 ∀k ≥ 1, that is, at the zeroth order in ρ0 the 

switching times for the generic system coincide with those of the nilpotent case (see [4]). 

 

Notation: In the following, we are classifying the bang-bang geodesics according to their initial adjoint 

vector: 
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• γf and γ−f denote the set of the geodesics ξ associated with extremals satisfying F(P(0),ξ(0)) > 

|G(P(0),ξ(0))|  and F(P(0),ξ(0))<-|G(P(0),ξ(0))|, respectively; such trajectories start with control 

equal to u = (1, 0) and u = (−1, 0), respectively, and are characterized by px(0)=±1. 

 

• γg and γ−g  denote a geodesics whose extremal  satisfies G(P(0),ξ(0)) > |F(P(0),ξ(0))| and 

G(P(0),ξ(0)) <- |F(P(0),ξ(0))|, respectively; in particular, these trajectories start with control equal to 

u = (0, ±1) and are characterized by py(0)=±1. 

 

Conjugate times and loss of local optimality 

 

We are now ready to compute the (power expansion of the) Jacobian of the exponential map.  

For extremals such that  p0
x=1 (respectively, p0

x=-1), and |p0
y|≤ 1 we obtain 

𝐽𝐸𝑥𝑝(𝑝𝑦
0, 𝑝𝑧

0, 𝜏) =

{
  
 

  
 

0                                                                 𝑖𝑓        0 ⩽ 𝜏 < 𝜏2(𝑝𝑦
0, 𝑝𝑧

0)

4𝜌0
3 + 𝑂(𝜌0

4)                                                           𝑖𝑓     𝜏2(𝑝𝑦
0, 𝑝𝑧

0) < 𝜏 < 𝜏3(𝑝𝑦
0, 𝑝𝑧

0)

8𝜌0
3 + 𝑂(𝜌0

4)                                                           𝑖𝑓       𝜏3(𝑝𝑦
0, 𝑝𝑧

0) < 𝜏 < 𝜏4(𝑝𝑦
0, 𝑝𝑧

0)

32𝐶1𝜌0
5 + 32(𝐷1𝑝𝑦⁰ ± 𝐸1)𝜌0

6 + 𝑂(𝜌0
7)          𝑖𝑓       𝜏4(𝑝𝑦

0, 𝑝𝑧
0) < 𝜏 < 𝜏5(𝑝𝑦

0, 𝑝𝑧
0)

−8𝜌0
3 + 𝑂(𝜌0

4)                                                    𝑖𝑓     𝜏5(𝑝𝑦
0, 𝑝𝑧

0) < 𝜏 < 𝜏6(𝑝𝑦
0, 𝑝𝑧

0)

    (6) 

where C1=ax31, D1 = 9ax21 −15ωxx31 and E1 = 3ax11 −3ax22 −3ay21 +5ωxx32 +5ωxy31 +5ωyx31. In particular, we 

notice that the Jacobian is be constant (with respect to time) along each bang arc, at least up to the order we 

computed. 

Analogously, for extremals such that  p0
y=1 (respectively, p0

y=-1), and |p0
x|≤ 1 we obtain 

𝐽𝐸𝑥𝑝(𝑝𝑥
0, 𝑝𝑧

0, 𝜏) =

{
 
 

 
 

0                                                            𝑖𝑓    0 ⩽ 𝜏 < 𝜏2(𝑝𝑥
0, 𝑝𝑧

0)

4𝜌0
3 + 𝑂(𝜌0

4)                                                         𝑖𝑓     𝜏2(𝑝𝑥
0, 𝑝𝑧

0) < 𝜏 < 𝜏3(𝑝𝑦
0, 𝑝𝑧

0)

8𝜌0
3 + 𝑂(𝜌0

4)                                                      𝑖𝑓   𝜏3(𝑝𝑥
0, 𝑝𝑧

0) < 𝜏 < 𝜏4(𝑝𝑥
0, 𝑝𝑧

0)

32𝐶2𝜌0
5 − 32(𝐷2𝑝𝑥0 ∓ 𝐸2)𝜌0

6 + 𝑂(𝜌0
7)          𝑖𝑓      𝜏4(𝑝𝑥

0, 𝑝𝑧
0) < 𝜏 < 𝜏5(𝑝𝑥

0, 𝑝𝑧
0)

−8𝜌0
3 + 𝑂(𝜌0 

4 )                                                   𝑖𝑓     𝜏5(𝑝𝑥
0, 𝑝𝑧

0) < 𝜏 < 𝜏6(𝑝𝑥
0, 𝑝𝑧

0)

   (7) 

where C2=ay32, D2 =-9ay12 −15ωyy32 and E2 = -3ax12 −3ay11 −3ay22 -5ωxy32 +5ωyx32 -5ωyy31. 

Based on Definition 2 and on formulas (6) and (7), we can state the following results. 

 

Proposition 1. If ax31 < 0, then the geodesics with initial adjoint vector (p0
x,p

0
y,p

0
z) satisfying p0

x=1, p0
y∈[-

1,1)  and  p0
z  large enough lose local optimality at the fourth switching time (τ4); if  ax31 > 0, they lose local 

optimality at the fifth switching time (τ5). The same result holds for geodesics with initial adjoint vector 

satisfying p0
x=-1 and p0

y∈(-1,1]  (and  p0
z  large enough).  

Analogously, the conjugate time for all extremals satisfying  p0
y=1, p0

x ∈[-1,1)  and  p0
z  large enough   

coincides with τ4 if ay32 < 0 and with τ5 if ay32 > 0. 

 

Proposition 2. Consider the geodesics with initial adjoint vector (p0
x,p

0
y,p

0
z) satisfying  |p0

x|=1,|p0
y|≤ 1  and  

p0
z  large enough. Assume that ax31 = 0 and |E1|≠|D1|. If E1 <−|D1| (respectively, E1>|D1|), then the fourth 
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(respectively, fifth) switching time is the conjugate time for all considered geodesics. If |E1|< |D1|, then the 

value of p0
y  determines whether the conjugate time coincides with the fourth or the fifth switching time. In 

particular, the conjugate time coincides with the fourth  (respectively, fifth)  switching time for geodesics 

satisfying   D1 p
0

y+E1<0 (respectively, D1 p
0

y+E1>0). 

 

Propositions 1 and 2 show that the conjugate locus (and, as we will see later, the cut locus) is determined by 

the value of the invariants C1 and  C2 , and, if these are zero, also by D1, E1, D2, and E2. In the following, we 

will see that another invariant intervene in the classification of the cut locus:  for the purpose of future 

computations, we  set A=4ax32+4ay31. 

 

4. Local structure of the cut locus for small spheres 

 

Computation of the intersection of fronts 

 

The first conjugate time of an extremal tells when the extremal ceases to be locally optimal and, as we 

already saw, is determined by the change in sign of the Jacobian of the exponential map; it corresponds to 

the first time when a geodesic meets other geodesics of the same kind (for instance, a trajectory with p0
x = 1 

meets other trajectories with p0
x = 1, but different p0

y). On the other hand, a geodesic may lose its optimality 

before the first conjugate time, if it intersects some ‘‘far’’ geodesic, that is, a geodesic with a different initial 

control (that is, belonging to another family γ·). 

This phenomenon is shown in Figure 1; in the picture on the left, we see that the geodesics of the set γf are 

crossing those of the sets γg and γ-g, giving rise to the intersections plotted in dotted line; as we will see 

below, these intersections will contribute to the cut locus (this configuration in particular occurs when A>0, 

C2<0 and C1<0 or, if C1<0, E1<-|D1|). On the right, we see another case, in which the geodesics of the set γg  

are intersecting those of the sets γg and γ-f (this configuration occurs for instance when A<0, C2<0 and C1<0 

or, if C1<0, E1<-|D1|). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: In magenta (respectively orange, blue, purple), the intersection with a plane of constant 

coordinate z of the fronts of the geodesics of the sets γf (respectively γ-f, γg and  γ-g), before the fourth 

switching time. The intersection between the fronts are plotted in  dotted line.  The arrows show the 

direction in which the fronts are moving as time increases. 
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The strategy we use to detect and describe the intersections among  

“far” geodesics is sketched here below, for the particular case of the geodesics of the kind γf and those of the 

kind γg.  All other cases are computed similarly. 

We fix ρ0 > 0 small enough, q∈[−1,1) and a time T>0. Let ξf be the geodesics associated with the extremal 

(Pf,ξf ) with initial adjoint vector Pf(0)=(1,q,1/ρ0 ), and let ξg be the geodesic associated with some extremal 

with initial covector (β,1,1/𝜌0~ ) (that is, ξf is of the kind γf and ξg of the king γg). As we are looking for 

intersections between the two geodesics,𝜌0~  must be close to ρ0; for this, we set 𝜌0~  = ρ0 + a2 ρ0
2+ a3 ρ0

3 +..., 

where the coefficient ak will be determined later. As, for ρ0 small enough, the geodesics are close to those of 

the Heisenberg system (the difference being O(ρ0
4)), we are also expecting that the two geodesics 

intersect only if β is close to 1; for this, we set β = 1 + β2 ρ0
2+ β3 ρ0

3 +.... 

Finally, since the jets of the geodesics are computed with respect to the reparametrized time, and each 

geodesics possesses its own reparametrization, we must make sure that we are comparing the two geodesics 

at the same (real) time T.  This correspond to imposing 

𝑇 = ∫ 𝜌
𝜏

0

(𝑠)𝑑𝑠 = ∫ 𝜌~
𝜏~

0

(𝑠)𝑑𝑠 

where τ= τ3 + δ0 + δ1ρ0 + δ2 ρ
2
0 + · · · and 𝜏~= 𝜏3~ + 𝛿0~ + 𝛿1~𝜌0 + 𝛿2~𝜌0

2+. ..,  τ3  and  𝜏3~denoting respectively 

the third switching times of ξf and ξg.  Remark that the  analytical expression of the functions xi, yi, zi ,pxi, pyi  

in (5) change at each switching time. Then we must to choose which arc bang of the geodesic ξf we want to 

consider (same for the geodesic ξg). Inspired from the Heisenberg system, in which they met along the fourth 

bang arc, we impose that both δ0 + δ1ρ0 + δ2 ρ
2
0+... and 𝛿0~ + 𝛿1~𝜌0 + 𝛿2~𝜌0

2+. ..are non-positive. 

We now compute the jets of ξf(t(τ)) and ξg(t(𝜏~)), and we impose the equality ξf(t(τ))=ξg(t(𝜏~)), up to the fourth 

order in ρ0 for the coordinates x, y and to the fifth one for the coordinate z.  Thanks to this, we are able to 

recover the values for the coefficients ak, βk, δk, k ≤ 3, as functions of the invariants and of q. In particular, 

we obtain 

𝛽 = 1 + 2(1 − 𝑞)𝐶1𝜌0
2 + 2(1 − 𝑞) (𝐸1 +

𝑞+2

3
𝐷1) 𝜌0

4 + 𝑂(𝜌0
4).     (8) 

As β must be contained in the interval [−1, 1], this intersection occurs only if C1 ≤ 0 and, for C1 = 0 (the case 

we are studying), if 3E1+(q+2)D1≤0. We obtain also 

𝜏4 − 𝜏 = 2(𝑞 − 1)𝐶1𝜌0
2 + 2(𝑞 − 1) (𝐸1 +

2𝑞+1

3
𝐷1) 𝜌0

4..            (9) 

Then, this intersection occurs before the conjugate time only if C1 ≤ 0 and, if C1 = 0, if  3E1+(2q+1)D1≤0. 

These two conditions are indeed existence conditions for the intersection. 

In order to picture the shape of this intersection, we compute its suspension, that is, the intersection of its 

graph with the plane {z = 4ζ2}, where ζ is a positive constant close to ρ0 (that is ζ=ρ0+O(ρ0 
2)); to do so, it 

suffices to set ρ0 = ζ+r2 ζ2+r3 ζ3 +... , and to find those rk that guarantee zf(t(τ))=4ζ2 +O(ζ6). Then, we plug 

this expansion for ρ0 into the expressions of  xf(t(τ)) and  yf(t(τ)). If C1 = 0, we obtain the curve 
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{
𝑥 = −(1 + 𝑞)𝜁 + ((1 + 12𝑞 − 5𝑞2)

𝐴

4
+ (𝑞 − 3)𝐶2) 𝜁

3 +𝑂(𝜁4)

𝑦 = 4𝐴𝜁3 −
2

3
(𝐷1𝑞

2 + (3𝐸1 + 𝐷1)(1 + 𝑞) − 𝑐1)𝜁
4 + 𝑂(𝜁5).

     (10) 

where c1 is a constant depending on the invariants of the metric.  We rermark that, up to fourth order terms 

in ζ, (10)  is a horizontal segment of length ∼ 2ζ.  

All other kinds of intersections may be computed in an analogous way; for instance, consider a geodesic, 

that we call ξ-f, associated with the extremal (P-f,ξ-f) with initial adjoint vector P-f(0)=(-1,q,1/ρ0), and a 

geodesic ξ-g  associated with some extremal with initial covector (β,-1, 1/𝜌0~ ) (in particular, ξf is a geodesic 

of the kind γf and ξ-g is of the kind γ-g). Proceeding as above, we see that this intersection may occur only if 

C1≤0 and, if C1=0 if 3E1+(2-q)D1≥0 and 3E1+(1-2q)D1≥0. If these existence conditions are met, the 

suspension at the plane {z = 4ζ2} is given by 

{
𝑥 = (1 − 𝑞)𝜁 − ((1 − 12𝑞 − 5𝑞2)

𝐴

4
− (𝑞 + 3)𝐶2) 𝜁

3 + 𝑂(𝜁4)

𝑦 = −4𝐴𝜁3 −
2

3
(𝐷1𝑞

2 + (3𝐸1 + 𝐷1)(1 − 𝑞) − 𝑐1)𝜁
4 + 𝑂(𝜁5).

     (11) 

Remark 2 : in the nilpotent case, because of the discrete symmetry around the z-axis, the suspension of cut 

locus has a “cross” shape and is symmetric for rotations of kπ/2 around the z-axis. In the generic case C1C2≠0, 

studied in [3], the symmetry among the geodesics of the sets γf and γ-f (as well as the one between the sets 

γg and γ-g ) remains, and the cut locus is invariant for rotations of kπ around the z-axis. As we will see below, 

in the cases presented in this paper, this symmetry does not survive.  

 

Case study 1 

 

In the first case we are presenting, we assume that the main invariants of the metric satisfy the 

following inequalities:  

A>0      C1 =0     C2 <0     E1 <-|D1|<0. 

As stated in Proposition 1 the conjugate times are completely determined by the values of the invariants 

C1, C2 ,E1  and D1. More precisely: 

• the geodesics of the kind  γf,  γg and  γ-g lose optimality before their fourth switching time; 

• the geodesics of the kind γ-f may be optimal up to their fifth switching time, if they do not cross 

other geodesics before. 

To detect the lost of local optimality of the geodesics of the sets  γf, γg and γ-g, whose conjugate time is the 

fourth switching time, as in the Heisenberg case, we  at what happens in the Heisenberg case itself. Therefore, 

we search for their intersection with the geodesics of the type γg, γ-f and γf, respectively. 
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For what concerns the geodesics of the kind γf, we notice that, as E1< -|D1|, then both conditions (8) and (9) 

hold true for every |q|≤1, so that the intersection is always possible.  

We then study the intersections among the geodesics of the kind  γg, (respectively, γ-g) with those of the kind 

γ-f  (γf), following the same procedure explained above; we obtain that these intersection always occur when 

C2<0 (as in the case we are studying) and that their suspension at the plane{z = 4ζ2} are respectively 

described by the curves 

{
𝑥 = (4𝐴 + 2(1 − 𝛽)𝐶2)𝜁

3 + 𝑂(𝜁4)

𝑦 = (𝛽 − 1)𝜁 + ((1 − 12𝛽 − 5𝛽2)
𝐴

4
−

1

24
(5 + 9𝛽 − 9𝛽2 − 5𝛽3)𝐶2) 𝜁

3 +𝑂(𝜁4),
       

{
𝑥 = −(4𝐴 + 2(1 + 𝜂)𝐶2)𝜁

3 + 𝑂(𝜁4)

𝑦 = (𝜂 + 1)𝜁 − ((1 + 12𝜂 − 5𝜂2)
𝐴

4
−

1

24
(5 − 9𝜂 − 9𝜂2 + 5𝜂3)𝐶2) 𝜁

3 + 𝑂(𝜁4),
     (12) 

where β,η∈[−1, 1) respectively denote the second component of the initial covector of the geodesic  γg  and 

γ-g. 

Taking the limit of (10) and (12) for  q, η → −1, we see that the two curves must intersect. In particular (as 

shown in Figure 1), they “bound” the wavefront made by the geodesics of the set γf, so that we conclude that 

these geodesics lose their optimality by intersecting these curves.  

On the contrary, it is easy to see that the curves (10) and (11) do not intersect. Moreover, the existence 

condition  3E1+(1-2q)D1≥0 for the intersection between the geodesics of the set γ-f and those of the set γ-g is 

never satisfied. Then, we cannot repeat the same reasonment as above to “bound” the wavefront made by 

the geodesics of the kinds γg and γ-g ; on the other hand, looking for instance at Figure 1, we see that the two 

fronts will likely meet. Studying this intersection as usual, we can find that indeed it is allowed when C2≤0, 

and that its suspension is a segment with slope equal to -1. This sets the cut locus for the geodesics of the 

kinds γg and γ-g. 

It is left to prove how the geodesics of the set γ-f lose optimality; some of them, with initial covector (-

1,py
0,pz

0) with  py
0~1, lose optimality before the fourth switching time, intersecting the geodesics of the set 

γg, as seen above. On the other hand, by studying all cases we can prove that all other intersection of the 

geodesics of the kind γ-f before their fourth switching time do not occur: therefore, we must consider these 

geodesics after their fourth switching time. By computations, we can prove that they lose optimality when 

intersecting the front of the geodesics of the set  γg; the suspension of the intersection is a small arc of length 

O(ζ4), described by  

{
𝑥 = 4𝐴𝜁3 + (

−2

3
𝐷1𝑞

3 + (𝐸1 + 𝐷1)𝑞
2 − 2𝐸1𝑞 −

1

3
(𝐷1 + 5𝐸1 + 4𝑑1)) 𝜁

4 + 𝑂(𝜁5)

𝑦 = −4𝐴𝜁3 − (2𝐷1𝑞
2 − 4𝐸1𝑞 −

2

3
𝑐1) 𝜁

4 + 𝑂(𝜁5).
 (13) 
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Summing up, the suspension at the plane {z = 4ζ2} of the cut locus is the three-branches C¹-smooth curve 

plotted in Figure 2.  

 

  

 

 

 

 

 

 

Figure 2. The cut locus in the case 1. On the left, in magenta (respectively blue, orange, purple) the 

wavefronts of the geodesics of the set γf (respectively, γg, γ-f and γ-g). The suspension of the cut locus is 

shown in the central figure: in red  the intersections between the geodesics of the set γf and those of the set 

γg, in green  the intersections between γ-g and γf (respectively, γg and γ-f), in purple the intersection of the 

geodesics of the set  γ-f after the fourth switching time with those of the set  γg. On the right, the cut locus.   

 

Case study 2 

We now analyze the case in which the main invariants of the metric satisfy the following inequalities:  

A>0      C1 =0     C2 <0     0<E1 <D1. 

As stated in Proposition 1, the conjugate times are completely determined by the values of the invariants 

C1, C2 ,E1  and D1. In particular: 

• the geodesics of the sets  γg and  γ-g lose optimality before their fourth switching time; 

• the geodesics of the set the  γf with initial adjoint vector (1,py
0,pz

0) satisfying p0
y≤-E1/D1 lose 

optimality before the fourth switching time, the other ones lose local optimality at the fifth 

switching time (see Proposition 2); 

• analogously, the geodesics of the kind  γ-f  with initial adjoint vector (1,py
0,pz

0) satisfying p⁰y≤E1/D1 

lose optimality before the fourth switching time, the other ones lose local optimality at the fifth 

switching time. 

We moreover spot these main differences with respect to the case we studied above: 
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• the condition (8) is never satisfied, so that the intersection between the geodesics of the set γf 

(before their fourth switching time) with those of the set  γg does not occur; 

• on the other hand, the condition 3E1+(1-2py
0)D1≥0 for the intersections of  the geodesics of the set 

γ-f (before their fourth switching time) with those of the kind γ-g is verified only if 

py
0≤(1+3E1/D1)/2. In particular, if 3E1/D1<1, then  (1+3E1/D1)/2<1, so that the geodesics of the 

kind γ-f with py>(1+3E1/D1)/2 do not intersect those of the set  γ-g.  

To understand how the geodesics lose their optimality, we plot the suspension of the wavefront (that is, we 

fix some time T and some constant ζ>0, and we compute Exp(P0,T)∩{z=4ζ2}). As can be seen in 

Figure(fronte 2), the wavefront of geodesics of the family γf is self-intersecting: in particular, the cut locus 

for the geodesics of the set γf  with py
0≤E1/D1 corresponds with their intersection with (a part of) the 

geodesics of the same family that have already passed their fifth switching time. The geodesics with  

py
0≥E1/D1 lose optimality after the fourth switching time, either for the self-intersection of the wavefront 

just described, or because they meet the geodesics of the kind γg .  

 

 

 

 

 

 

 

 

 

 

Figure 3 in magenta (respectively blue, orange, purple) the wavefronts of the geodesics of the set γf 

(respectively, γg, γ-f and γ-g). 

 

 

As for the geodesics of the kind γ-f , we can distinguish two cases: if  3E1/D1≥1, then their cut point is 

determined by the intersection with  the geodesics of the kind γ-g, before the fourth switching time (see Figure 

3, on the left). If instead 3E1/D1<1, then only the geodesics with py≤(1+3E1/D1)/2  intersects those of the set  

γ-g; for the other ones, the cut point is determined by the intersection with  the geodesics of the kind γg, after 

the fourth switching time (see Figure 4, on the right). This gives rise to a disconnected cut locus.   
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Figure 4 : The cut locus (below) and its suspension (above) in the case 2. On the left,  the case   3E1/D1≥1, 

on the right,   3E1/D1<1. 

 

6. Conclusion 

 

In this paper, we study the upper part of the cut locus for the sub-Finsler L1 problem, in some generic 

cases. In particular, we present two cases quite different from those founded in [3], where  the most generic 

cases are studied.  

Further researches will include the classification of all cases, and the study of the other parts of the 

cut locus. 
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Abstract 

In this study, we define new surfaces of adjoint curves as tangent surface under Frenet -Serret 

frame in 3D Euclidean space. Also, we construct new characterizations for tangent surfaces of adjoint 

curves.  

 

   Keywords: Tangent surface, Adjoint curve, Frenet-Serret frame. 

 

1. Backround on Serret-Frenet Frame and Adjoint Curve 

 

By way of design and style, this model is kind of a moving frame with regards to a particle. In the 

quick stages of regular differential geometry, the Frenet-Serret(F-S) frame was applied to create a curve 

in location. After that, F-S frame is established by way of subsequent equations for a presented 

framework [1], 
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where T=  and   are the curvature and torsion of  , respectively. Let s  be arc-length parameter. 

Then, these formulas are written as  
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Definition 11: Let   be a regular curve s  arc-length parametrized, },,{  BNT  be F-S frame of .  

Then, the adjoint curve of   according to F-S frame is given as [2] 
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Theorem 2: 2 Let   be a regular curve arc-length parametrized, },,{  BNT  be F-S frame of  ,   be 

adjoint curve of   according to F-S frame and   and   be curvature and torsion of  . Denote by 

},,{  BNT  F-S frame of   and by   and   be curvature and torsion of .  Then, the following 

equations hold [2]: 

 

 .=,=,=  TBNNBT −  

 

 .==    

   

 

2. Tangent Surfaces of Adjoint Curves with F-S Frame in 3E  

 

In this topic, after making some reminders about the characterization of surfaces, we get results 

and characterizations about tangent surfaces of adjoint curves. 

Let n  be the standard unit normal vector field on a surface   defined by 

 

 ,=
ts

tsn







 

 

where s  is arc-lenght, t  is time parameter and ts ts  /=,/=  . Then, the first fundamental form I  

and the second fundamental form II  of a surface   are defined by 

 

 
,2=

,2=

22

22

gdtfdsdteds

GdtFdsdtEds

++

++

II

I
 

where 

 
.,=,,=,,=

,,=,,=,,=

ngnfne

GFE

ttstss

tttsss




 

 

On the other hand, the Gaussian curvature K  and the mean curvature H  are 

 

 
( )22

2

2

2
=,=

FEG

GeFfEg
H

FEG

feg
K

−

+−

−

−
 

 

and the principal curvatures 1k  and 2k  are respectively, written as [3-7] 
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 .=,= 2

2

2

1 KHHkKHHk −−−+  

  

  

Theorem 3: 3 The surface is minimal if and only if it has vanishing mean curvature [1,4].   

 

  

Definition 4: 4 The tangent surface of a regular space curve   is given as [5]  

 

 .=),( T
T tts +  

    

Theorem 5: 5 Let   be a regular curve s  arc-length parametrized,   be adjoint curve of  . Denote by 

I , I  and II , II  be the first and the second fundamental forms of the tangent surfaces of   and  . 

Then the following states hold:  

 

 

.==

,2)(1=

,2)(1=

2

2222

2222

dst

dtdsdtdst

dtdsdtdst













−

+++

+++

IIII

I

I

 

 

Proof: From the definition of tangent surface, the tangent surface of   is written as 

 

 .=),( 
  T

T

tts +  

 

Therefore, the following equalities are obtained: 

 

 

,=0,=,=

,)(=

,=

2



















NT

BNT

NT

TTT

T

T

stttt

'

ss

s

ttt

t

+++

+

 

 

and, from the equalities, the unit normal vector field of 
T

 surface is found as  

 

 .=
)(

== 

















B

TNT

TT

TT

−
+





t

t
n

ts

ts  

 

These equalities are obtained similarly for the tangent surface of   curve. Then, with the help of Theorem 

2 and of the equations we gave at the beginning of this section, we obtain  
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0.====

,==

1,====

1=,1= 2222













ggff

tee

GGFF

tEtE

−

++

 

 

Hence, the first and the second fundamental forms of the tangent surfaces of   and   are obtained as 

 

 

.==

,2)(1=

,2)(1=

2

2222

2222

dst

dtdsdtdst

dtdsdtdst













−

+++

+++

IIII

I

I

 

   

Corollary 6: 6 Let   be a regular curve s  arc-length parametrized,   be adjoint curve of  . Denote by 

K , K  and H , H  be the Gaussian curvatures and the mean curvatures of the tangent surfaces of   

and  , respectively. Then the following states hold: 

 

 
.

4

1
=

0,==

2







Ht
H

KK

 

 

Proof: With the proof of Theorem 5, we get 

 

 

( )
,

2
=

2
=

2

2
=

0,==

2
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and, similarly, 
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.

2
=

2

2
=
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Hence, we obtain  
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.
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1
=

0,==

2
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Corollary 7: 7 Let   be a regular curve s  arc-length parametrized,   be adjoint curve of  . Then, the 

tangent surfaces of   and   can never be minimal.   

 

Proof: From the Theorem 3 and the proof of Corollary 6, since 0=    and 0=   , the proof is 

clear.    

  

Corollary 8: 8 Let   be a regular curve s  arc-length parametrized,   be adjoint curve of  . Denote by 

1
k , 

1
k  and 

2
k , 

2
k  be the first and the second principal curvatures of the tangent surfaces of   and  , 

respectively. Then the following states hold: 

 

 
.

1
=
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Proof: With the proof of Theorem 5, we get 
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and, similarly, 
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Hence, we obtain  
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Abstract 

In this paper, authors found a new result regarding Hermite-Hadamard type integral inequalities using 

generalized fractional integral operators. Furthermore, a new interesting integral identity about Hermite-

Hadamard type integral is derived. By using this identity as an auxiliary result, some new bounds with 

respect to Hermite-Hadamard type integral inequalities pertaining to s-convex functions are established. It 

is pointed out that several special cases are deduced from the main results for suitable choices of function 

inside the generalized fractional integral operators. In order to show the efficient of our main results, some 

applications to special means for different positive real numbers and error bound estimates for trapezoidal 

quadrature formula are obtain as well.  

    Keywords: Hermite-Hadamard type integral inequality, s -convex functions, generalized fractional    

integral operators, special means, error estimates. 

 

1. Introduction and Preliminaries 

 
Definition 1. A function f: I ⊆ ℝ ⟶ ℝ is said to be convex on I, if  

f(tx + (1 − t)y) ≤ tf(x) + (1 − t)f(y)                                                    (1) 

holds for all x, y ∈ I and t ∈ [0,1]. 

 

In their paper [1], Hudzik and Maligranda considered, among others, the class of functions which are s-

convex in the second sense. This class is defined in the following way:  

 

Definition 2. A function f: [0, +∞[ ⟶ ℝ is said to be s-convex in the second sense, if 

 

f(tx + (1 − t)y) ≤ tsf(x) + (1 − t)sf(y)                                      (2) 

 

holds for all x, y ∈ [0, +∞[, t ∈ [0,1] and for some fixed s ∈ ]0,1]. 

Authors of recent decades have studied convex and  s-convex in the second sense function, see  [2] - [8]. 
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The following inequality, named Hermite – Hadamard inequality, is one of the most famous inequalities in 

the literature for convex functions. 

Theorem 1. Let 𝑓: 𝐼 ⊆ ℝ ⟶ ℝ  be a convex function on 𝐼  and  𝑎1, 𝑎2  ∈ 𝐼 , with 𝑎1 <  𝑎2 . Then the 

following inequality holds: 

𝑓 (
𝑎1 +  𝑎2

2
) ≤

1

 𝑎2 − 𝑎1
∫ 𝑓(𝑥)𝑑𝑥

𝑎2

𝑎1

≤
𝑓(𝑎1 + 𝑎2)

2
.                               (3) 

The trapezium type inequality has remained an area of great interest due to its wide applications 

in the field of mathematical analysis. For other recent results which generalize, improve and extend 

the inequality (1) through various classes of convex functions interested readers are referred to [2]-[10]. 

Let us recall some special functions and evoke some basic definitions as follows: 

Definition 3. For a1, a2 > 0 the incomplete beta function is defined by 

β𝑥(a1, a2) = ∫ ta1−1(1 − t)a2−1dt, 0 < x ≤ 1.                                            (4)

x

0

 

Definition 4. For α > 0,  the integral representation of gamma function is given as 

Γ(α) = ∫ tα−1exp (−t)dt.                                                             (5)

+∞

0

 

One can note that 

Γ(α + 1) = αΓ(α)                                                                    (6) 

Definition 5. [11]  Let f ∈ L[a1, a2].  Then Riemann-Liouville fractional integrals of order α > 0  with 

a1 ≥ 0 are defined as  

𝒥a1
+

α f(x) =
1

Γ(α)
∫ (x − t)α−1f(t)dt

x

a1

,       (x > a1)                                (7) 

and 

𝒥a2
−

α f(x) =
1

Γ(α)
∫ (t − x)α−1f(t)dt

a2

x

,         (x < a2).                              (8) 
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Definition 6. [12]  Let f ∈ L[a1, a2] (the set of all integrable functions on [a1, a2]). Left- and right-hand 

sided fractional integral operators of order α ∈ (0, 1) with exponential kernel are given as 

ℑa1
+

α f(x) =
1

α
∫ exp [−

1 − α

α
(x − t)]

x

a1

f(t)dt,     (x > a1)                         (9) 

and 

ℑa2
−

α f(x) =
1

α
∫ exp [−

1 − α

α
(t − x)]

a2

x

f(t)dt,    (x < a2).                       (10) 

Remark 1. The function φ: [0, +∞[ ⟶ [0, +∞[, which is constructed from the work of Sarikaya et al. 

[13], has the following four conditions: 

∫
φ(τ)

τ
dτ < +∞,

1

0

 

1

A1
≤

φ(τ1)

φ(τ2)
≤ A1 for 

1

2
≤

τ1

τ2
≤ 2,                                                       (11) 

φ(τ2)

τ2
2 ≤ A2

φ(τ1)

τ1
2  for τ1 ≤ τ2 

and  

|
φ(τ2)

τ2
2 −

φ(τ1)

τ1
2 | ≤ A3|τ2 − τ1|

φ(τ2)

τ2
2  for 

1

2
≤

τ1

τ2
≤ 2, 

where A1, A2 and A3 > 0 are independent of τ1, τ2 > 0.  

Moreover, Sarikaya et al. [13] used the above function ς in order to define the following fractional integral 

operators. 

Definition 7. The generalized left-side and right-side fractional integrals are given as follows: 

Iφa1
+
 f(x) = ∫

φ(x − t)

x − t
f(t)dt       (x > a1)                                               (12)

x

a1

 

and 

Iφa2
−
 f(x) = ∫

φ(t − x)

t − x
f(t)dt       (x < a2)

a2

x

,                                             (13) 
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respectively. 

Furthermore, Sarikaya et al. [13]  noticed that the generalized fractional integrals given by Definition 7 

may contain some types of fractional integrals such as the Riemann-Liouville and other fractional integrals 

for some special choices of function φ.  

Motivated by the above results and literature, the aim of this paper is to establish in the next section, a new 

interesting result regarding Hermite-Hadamard type integral inequalities using generalized fractional 

integral operators. Furthermore, a new integral identity about Hermite-Hadamard type integral will be 

derived. By using this identity as an auxiliary result, some new bounds with respect to Hermite-Hadamard 

type integral inequalities pertaining to s-convex functions will be established. It is pointed out that several 

special cases will be deduced from the main results for suitable choices of function inside the generalized 

fractional integral operators. In order to show the efficient of our main results, some applications to special 

means for different positive real numbers and error bound estimates for trapezoidal quadrature formula will 

be obtain as well.  

2. Main Results 

Before we give our main results, let us denote by 

𝒜(t) ∶= ∫
φ((a2 − a1)s)

s
f(s)ds

t

0

. 

Theorem 2. Let f: [a1, a2] → ℝ be a s-convex function on [a1, a2], then the following inequalities for 

generalized fractional integral hold: 

f (
a1 + a2

2
) ≤  

1

2s𝒜(1)
[ Iφf(a1)a2

−
 + Iφf(a2)

a1
+
 ] ≤

Φ∗(s)

2s𝒜(1)
[f(a1) + f(a2)],          (14) 

where  

Φ∗(s): = ∫
φ((a2 − a1)t)

t
[ts + (1 − t)s]

1

0

dt. 

Proof. For tϵ [0, 1], let x = a1 + t(a2 − a1) and 𝑦 = a1 + (1 − t)(a2 − a1). From s-convexity we have 

f (a1 +
a2 − a1

2
) = f (

a1 + a2

2
) = f (

x + y

2
) ≤

f(x) + f(y)

2s
, 

i.e. 

2sf (
a1 + a2

2
) ≤ f((1 − t)a1 + ta2) + f(ta1 + (1 − t)a2). 
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Multiplying both sides by 
φ((a2−a1)t)

t
 and integrating the resulting inequality with respect to t over (0, 1], 

we obtain 

 

2sf (
a1 + a2

2
) ∫  

φ((a2 − a1)t)

t
dt

1

0

≤ ∫  
φ((a2 − a1)t)

t

1

0

f((1 − t)a1 + ta2)dt + ∫  
φ((a2 − a1)t)

t

1

0

f(ta1 + (1 − t)a2)dt. 

Hence, 

2sf (
a1 + a2

2
) 𝒜(1) ≤ [ Iφf(a1)a2

−
 + Iφf(a2)

a1
+
 ].                            (15) 

So, the first inequality is proved. 

 

To prove the other half of the inequality, since f is s-convex, we have 

f((1 − t)a1 + ta2) + f(ta1 + (1 − t)a2) ≤  (1 − t)sf(a1) + tsf(a2) + tsf(a1) + (1 − t)sf(a2)

= [f(a1) + f(a2)][(1 − t)s + ts] 

so,   f((1 − t)a1 + ta2) + f(ta1 + (1 − t)a2) ≤ [f(a1) + f(a2)][(1 − t)s + ts]. 

Multiplying both sides by 
φ((a2−a1)t)

t
 and integrating by t over (0, 1], we get 

∫  
φ((a2 − a1)t)

t

1

0

f((1 − t)a1 + ta2)dt + ∫  
φ((a2 − a1)t)

t

1

0

f(ta1 + (1 − t)a2)dt

≤ [f(a1) + f(a2)] ∫  
φ((a2 − a1)t)

t
[(1 − t)s + ts]dt

1

0

. 

So,  

Iφf(a1)a2
−
 + Iφf(a2)

a1
+
 ≤ [f(a1) + f(a2)]Φ∗(s).                                        (16) 

 

Using (15) and (16), then the inequality (14) holds.∎ 

 

Corollary 1. In Theorem 2, if we take φ(t) = t, then we have the following inequality 

f (
a1 + a2

2
) ≤

1

2s−1(a2 − a1)
∫ f(t)dt

a2

a1

≤
1

2s−1(s + 1)
[f(a1) + f(a2)]. 

 

Corollary 2. In Theorem 2, if we choose φ(t) =
tα

Γ(α)
, then the inequalities (14) become the 

inequalities 
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f (
a1 + a2

2
) ≤  

Γ(α + 1)

2s(a2 − a1)α
[𝒥a2

−
α f(a1) + 𝒥a1

+
α f(a2)] ≤ [

1

α + s
+ β(α, s + 1)] [f(a1) + f(a2)], 

where 𝒥a2
−

α f and 𝒥a1
+

α f  are the fractional Riemann integrals. 

 

Corollary 3. If we take φ(t) =
t

α
exp [(−

1−α

α
) t] in Theorem 2, then the following inequality is obtained  

f (
a1 + a2

2
) ≤  

1 − α

2s [exp ((−
1−α

α
) (a2 − a1)) − 1]

[ℑa2
−

α f(a1) + ℑa1
+

α f(a2)]

≤
(1 − α)Δ(s)

2s [exp ((−
1−α

α
) (a2 − a1)) − 1]

[f(a1) + f(a2)], 

where ℑa2
−

α  and ℑa1
+

α  are the left- and right-hand sided fractional integral operators with exponential kernel 

and  

Δ(s) ∶= ∫
(a2−a1)

α

1

0
exp [(−

1−α

α
) (a2 − a1)t] [ts + (1 − t)s]dt. 

 

For establishing some new results regarding general fractional integrals we need to prove the 

following basic lemma. 

 

Lemma 1. Let f: [a1, a2] → ℝ be a differentiable function on (a1, a2). If f ′ ∈ L(P), then the following 

identity for generalized fractional integrals holds: 

 

f(a1) + f(a2)

2
−

1

2𝒜(1)
[ Iφf(a2)

a1
+
 + Iφf(a1)a2

−
 ]

=
(a2 − a1)

2𝒜(1)
∫ [𝒜(1 − t) − 𝒜(t)]f ′(ta1 + (1 − t)a2)

1

0

dt. 

 

We denote 

ℋf,𝒜(a1, a2) ∶=
(a2 − a1)

2𝒜(1)
∫ [𝒜(1 − t) − 𝒜(t)]f ′(ta1 + (1 − t)a2)

1

0

dt.              (17) 

 

Proof.  Integrating by parts (2.4) and changing the variable of integration, we have 
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ℋf,𝒜(a1, a2) =
(a2 − a1)

2𝒜(1)
∙ {∫ 𝒜(1 − t)f ′(ta1 + (1 − t)a2)dt

1

0

− ∫ 𝒜(t)f ′(ta1 + (1 − t)a2)dt
1

0

}

=
(a2 − a1)

2𝒜(1)

∙ {−
𝒜(1 − t)f(ta1 + (1 − t)a2)

(a2 − a1)
|

1
 
0

−
1

a2 − a1
∫  

φ((a2 − a1)(1 − t))

(1 − t)
f(ta1 + (1 − t)a2)

1

0

+  
𝒜(t)f(ta1 + (1 − t)a2)

a2 − a1
|

1
 
0

−
1

a2 − a1
∫

φ((a2 − a1)t)

t
f(ta1 + (1 − t)a2)dt

1

0

}

=
(a2 − a1)

2𝒜(1)
∙ {

𝒜(1)f(a2)

(a2 − a1)
−

1

(a2 − a1)
Iφf(a1)a2

−
 +

𝒜(1)f(a1)

(a2 − a1)
−

1

(a2 − a1)
Iφf(a2)

a1
+
 }

=
f(a1) + f(a2)

2
−  

1

2𝒜(1)
[ Iφf(a2)

a1
+
 + Iφf(a1)a2

−
 ].  

Lemma 1 is proved. ∎ 

 

Theorem 3. Let f: [a1, a2] → ℝ be a differentiable function on (a1, a2). If |f ′|
q
 is  s-convex function on 

[a1, a2] for q > 1 with p−1 + q−1 = 1, then the folowing inequality for generalized fractional integrals 

holds: 

|ℋf,𝒜(a1, a2)| ≤
(a2 − a1)

2𝒜(1)
√K𝒜(p)
p

∙ [
|f ′(a1)|

q
+ |f ′(a2)|

q

s + 1
]

1

q

,                       (18) 

where  

K𝒜(p) ∶= ∫ |𝒜(1 − t) − 𝒜(t)|pdt
1

0
. 

Proof. From Lemma 1, s-convexity of |f ′|q ,  Hölder’s inequality and properties of the modulus,  

we have 

|ℋf,𝒜(a1, a2)| ≤
(a2 − a1)

2𝒜(1)
∫ |𝒜(1 − t) − 𝒜(t)||f ′(ta1 + (1 − t)a2)|

1

0

dt

≤
(a2 − a1)

2𝒜(1)
(∫ |𝒜(1 − t) − 𝒜(t)|pdt

1

0

)

1

p

(∫ |f ′(ta1 + (1 − t)a2)|
q

dt
1

0

)

1

q

≤
(a2 − a1)

2𝒜(1)
√K𝒜(p)
p

(∫ ((1 − t)s|f ′(a2)|
q

+ ts|f ′(a1)|
q

)
1

0

dt)

1

q

=
(a2 − a1)

2𝒜(1)
√K𝒜(p)
p

∙ [
|f ′(a1)|

q
+ |f ′(a2)|

q

s + 1
]

1

q

 

Theorem 3 is proved. ∎ 
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Corollary 4. Taking p =  q =  2 in Theorem 3, we get 

|ℋf,𝒜(a1, a2)| ≤
(a2 − a1)

2𝒜(1)
√K𝒜(2) √

|f ′(a1)|q + |f ′(a2)|q

s + 1
 

Corollary 5. Choosing  φ(t) = t, and s = 1 in Theorem 3, we obtain  Theorem 2.3 of [3]. 

 

Corollary 6. Taking φ(t) =
tα

Γ(α)
 and s = 1 in Theorem 3, we have Theorem 8 of [14]. 

Theorem 4. Let f: [a1, a2] → ℝ be a differentiable function on (a1, a2). If |f ′|
q
 is  s-convex function on 

[a1, a2] for q ≥ 1, then the following inequality for generalized fractional integrals holds: 

 

|ℋf,𝒜(a1, a2)| ≤
(a2 − a1)

2𝒜(1)
[K𝒜(1)]

1−
1

q[D𝒜(s)]
1

q[|f ′(a1)|
q

+ |f ′(a2)|
q

]
1

q,                 (19) 

where 

D𝒜(s) ∶= ∫ ts|𝒜(1 − t) − 𝒜(t)|dt
1

0
. 

Proof. From Lemma 1, s -convexity of |f ′|q , the well–known power mean inequality and 

properties of the modulus, we have 

|ℋf,𝒜(a1, a2)| ≤
(a2 − a1)

2𝒜(1)
∫ |𝒜(1 − t) − 𝒜(t)||f ′(ta1 + (1 − t)a2)|

1

0

dt

≤
(a2 − a1)

2𝒜(1)
∙ (∫ |𝒜(1 − t) − 𝒜(t)|dt

1

0

)

1−
1

q

∙ (∫ |𝒜(1 − t) − 𝒜(t)||f ′(ta1 + (1 − t)a2)|
q

1

0

dt)

1

q

≤
(a2 − a1)

2𝒜(1)
[K𝒜(1)]

1−
1

q (∫ |𝒜(1 − t) − 𝒜(t)|(ts|f ′(a1)|
q

+ (1 − t)s|f ′(a2)|
q

)
1

0

dt)

1

q

=
(a2 − a1)

2𝒜(1)
[K𝒜(1)]

1−
1

q[D𝒜(s)]
1

q[|f ′(a1)|
q

+ |f ′(a2)|
q

]
1

q. 

Theorem 4 is proved. ∎ 

 

We point out some special cases of Theorem 4. 

 

Corollary 7. Taking q = 1 in Theorem 4, we get 

 

|ℋf,𝒜(a1, a2)| ≤
(a2 − a1)

2𝒜(1)
D𝒜(s)[|f ′(a1)| + |f ′(a2)|]. 
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Corollary 8. Choosing φ(t) = t in Theorem 4, we have 

 

|ℋf,𝒜(a1, a2)| ≤
a2 − a1

4 ∙ 2
s−1

q

∙ (
1

(s + 1)(s + 2)
)

q

∙ [|f ′(a1)|
q

+ |f ′(a2)|
q

]
1

q. 

 

Corollary 9. Taking φ(t) =
tα

Γ(α)
 in Theorem 4, we obtain 

|ℋf,𝒜(a1, a2)| ≤
a2 − a1

2
[

1

α + 1
(1 −

1

2α
)]

1−
1

q

[β1

2

(s + 1, α + 1) − β1

2

(α + 1, s + 1) +
1

α + s + 1
]

∙ [|f ′(a1)|
q

+ |f ′(a2)|
q

]
1

q. 

 

3. Applications 

 

Consider the following special means for different positive real numbers a1, a2, where a1 <  a2: 

 The arithmetic mean 

A(a1, a2) =
a1 + a2

2
; 

 The generalized log–mean 

Ln(a1, a2) = [
a2

n+1 − a1
n+1

(n + 1)(a2 − a1)
]

1

n

;   n ∈ ℤ\{−1, 0}. 

Now, by using the main results in Section 2, we give the following interesting applications. 

 

Proposition 1 Let 0 < a1 <  a2. Then for some fixed s ∈ (0, 1], where q > 1 with  p−1 + q−1 = 1, the 

following inequality holds: 

|A (a1

s

q
+1

, a2

s

q
+1

) − Ls

q
+1

s

q
+1

(a1, a2)| ≤
(s + q)

2q
∙

(a2 − a1)

√p + 1
p ∙ (

2

s + 1
)

1

q

∙ A
1

q(a1
s , a2

s ).           (20) 

 

Proof. Applying f(x) =
x

s
q

+1

s

q
+1

 and φ(t) = t in Theorem 3, we can obtain the result immediately. ∎ 

 

Proposition 2. Let 0 < a1 <  a2 . Then for some fixed s ∈ (0, 1]  with q > 1, the following inequality 

holds: 

 

|A (a1

s

q
+1

, a2

s

q
+1

) − Ls

q
+1

s

q
+1

(a1, a2)| ≤
(s + q)(a2 − a1)

q ∙ 2
2+

s−2

q

∙ [
1

(s + 1)(s + 2)
]

1

q

∙ A
1

q(a1
s , a2

s ).        (21) 
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Proof. Taking f(x) =
x

s
q

+1

s

q
+1

 and φ(t) = t in Theorem 4, we can derive the result directly. ∎ 

Next, we provide some new error estimates for the trapezoidal formula. 

 

Let Q be the partition of the points a1 = x0 < x1 < ⋯ < xn = a2 of the closed interval [a1, a2].  

Let consider the following quadrature formula  

∫ f(x)dx
b

a

∶= T(f, Q) + E(f, Q), 

where  

T(f, Q) ∶= ∑
f(xi) + f(xi+1)

2

n−1

i=0

(xi+1 − xi) 

is the trapezoidal version and E(f, Q) is denote their associated approximation error. 

 

Proposition 3. Let  f: [a1, a2] ⟶ ℝ be a differentiable function on (a1, a2), where a1 < a2.  If |f ′|
q
 is  s-

convex function on [a1, a2] for q > 1 with p−1 + q−1 = 1, then the following inequality holds: 

|E(f, Q)| ≤  
1

2
(

1

p + 1
)

1

p

∙ ∑(xi+1 − xi)
2

n−1

i=0

∙ [
|f ′(xi)|

q
+ |f ′(xi+1)|

q

s + 1
]

1

q

.             (22) 

Proof.  Applying Theorem 3 for φ(t) = t on the subintervals [xi, xi+1]  (i = 0, 1, … , n − 1) of partition Q, 

we have 

|
f(xi) + f(xi+1)

2
−

1

xi+1 − xi
∫ f(x)dx

xi+1

xi

| ≤
(xi+1 − xi)

𝟐

2(xi+1 − xi)
∙ (

1

p + 1
)

𝟏

𝐩

∙ [
|f ′(xi)|

q
+ |f ′(xi+1)|

q

s + 1
]

1

q

. 

|
f(xi) + f(xi+1)

2
(xi+1 − xi) − ∫ f(x)dx

xi+1

xi

| ≤
(xi+1 − xi)

𝟐

2
∙ (

1

p + 1
)

𝟏

𝐩

∙ [
|f ′(xi)|

q
+ |f ′(xi+1)|

q

s + 1
]

1

q

. 

Summing up with respect to i for i = 0, 1, … , n − 1, we get 

|E(f, Q)| ≤  
1

2
(

1

p + 1
)

1

p

∙ ∑(xi+1 − xi)
2

n−1

i=0

∙ [
|f ′(xi)|

q
+ |f ′(xi+1)|

q

s + 1
]

1

q

. 

Proposition 3 is proved. ∎ 

 

Proposition 4. Let f: [a1, a2] ⟶ ℝ be a differentiable function on (a1, a2), where a1 < a2.  If |f ′|
q
 is  s-

convex function on [a1, a2] for q ≥ 1 , then the following inequality holds: 

|E(f, Q)| ≤
1

2
2+

s−2
q

∙ (
1

(s+1)(s+2)
)

1

q
∙ ∑ (xi+1 − xi)

2n−1
i=0 ∙ [

|f′(xi)|
q

+|f′(xi+1)|
q

s+1
]

1

q

.           (23)  
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Proof.  The proof is analogous as in Proposition 3 but using Theorem 4 and φ(t) = t. ∎ 

 

4. Conclusion 

In this paper, we found a new interesting integral identity regarding Hermite-Hadamard type integral 

inequalities using generalized fractional integral operators. Furthermore, a new interesting integral identity 

about Hermite-Hadamard type integral is derived. By using this identity as an auxiliary result, some new 

bounds with respect to Hermite-Hadamard type integral inequalities pertaining to s-convex functions are 

established. It is pointed out that several special cases are deduced from the main results for suitable choices 

of function inside the generalized fractional integral operators. In order to show the efficient of our main 

results, some applications to special means for different positive real numbers and error bound estimates 

for trapezoidal quadrature formula are obtain as well. These ideas and techniques of this paper may 

stimulate further research in these directions for different class of convex functions for interested readers. 
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Abstract 

In this article, we define the notion of prime ideals of Γ-near-rings on weak nearness 

approximation spaces and explain some of the concepts and definitions. Then, we study some basic 

properties of prime ideals of Γ-nearness near-rings. Γ-nearness near-rings is different from Γ-nearness 

rings and Γ-nearness semirings since Γ does not have to be group in Γ-nearness near-rings. Because of 

this, some properties defined in Γ-nearness rings and Γ-nearness semirings show some changes in Γ-

nearness near-rings. 

 

          Keywords: Near set, Near ring, Nearness approximation space, Weak nearness approximation 

space, Near-ring, Gamma-near-ring, Nearness near-ring, Gamma nearness near-ring. 

 

1. Introduction 

 

The concept Γ-rings, a generalization of a ring was introduced by Nobusawa in 1964 [1] and generalized 

by Barnes in 1966 [2]. Pilz defined near-rings (also near ring or nearring) that is an algebraic structure 

similar to a ring but satisfying some axioms [3]. A generalization of both the concepts near-ring and the 

ring, namely Γ-near-ring was introduced by Satyanarayana in 1984 and later studied by the authors like 

Satyanarayana [4], [5], Booth [6], Booth and Groenewald [7], [8], Jun, Sapancı and Öztürk [9]. 

In 2002, Peters introduced near set theory, which is a generalization of rough set theory [10]. In this 

theory, Peters defined an indiscernibility relation by using the features of the objects to determine the 

nearness of the objects [11], [12], [13]. The concept of nearness has a different approach for algebraic 

structures. Because, in the concept of ordinary algebraic structures, such a structure that consists of a 

nonempty set of abstract points with one or more binary operations, which are required to satisfy certain 

axioms. Also, the sets are composed of abstract points. Perceptual objects (non-abstract points) can be 

used on weak nearness approximation space to define nearness algebraic structures. This is more useful 

than working with abstract points for many areas such as engineering applications, image analysis and so 

on. In 2012, İnan and Öztürk investigated the concept of nearness groups [14] and other algebraic 

approaches of near sets in [15], [16], [17], [18], [19], [20], [21], [22], [23]. In 2021, Uçkun and Genç 

defined near-rings on nearness approximation spaces [24]. 

479



 

5th INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 

1-3 December 2021, Istanbul, Turkey 

 

 

ICOM 2021 

ISTANBUL / TURKEY 

The aim of this paper is to define the concept of prime ideals of Γ-nearness near-rings and to study some 

properties. Γ-nearness near-rings is different from Γ-nearness rings [20] and Γ-nearness semirings [21] 

because Γ does not have to be group in Γ-nearness near-rings. Because of this, some properties defined in 

Γ-nearness rings and Γ-nearness semirings show some changes in Γ-nearness near-rings. 

 

 

2. Preliminaries 

 

An object description is specified by means of a tuple of function values Φ(𝑥) deal with an object 

𝑥 ∈ 𝑋. 𝐵 ⊆ ℱ is a set of probe functions and these functions stand for features of sample objects 𝑋 ⊆ 𝒪. 

Let 𝜑𝑖 ∈ 𝐵 , that is 𝜑𝑖  : 𝒪 → ℝ . The functions showing object features supply a basis for Φ: 𝒪 →

ℝ𝐿 , Φ(𝑥) = (𝜑1(𝑥), 𝜑2(𝑥), . . . , 𝜑𝐿(𝑥))  a vector consisting of measurements deal with each functional 

value 𝜑𝑖(𝑥), where the description length |Φ| = 𝐿 (Hata! Başvuru kaynağı bulunamadı.). 

The selection of functions 𝜑𝑖 ∈ 𝐵 is very fundamental by using to determine sample objects. 𝑋 ⊆

𝒪 are near each other if and only if the sample objects have similar characterization. Each 𝜑 shows a 

descriptive pattern of an object. Hence, △𝜑𝑖
 means △𝜑𝑖

= |𝜑𝑖(𝑥)′ − 𝜑𝑖(𝑥)|,  where 𝑥, ′𝑥 ∈ 𝒪 . The 

difference 𝜑  means to a description of the indiscernibility relation “ ∼𝐵  ” defined by Peters in 

Hata! Başvuru kaynağı bulunamadı.. 𝐵𝑟 is probe functions in 𝐵 for 𝑟 ≤ |𝐵|. 

   

Definition 1 [11]:  

[𝑐]𝑙 ∼𝐵= {(𝑥, 𝑥)′ ∈ 𝒪 × 𝒪| △𝜑𝑖
= 0∀𝜑𝑖 ∈ 𝐵 𝐵 ⊆ ℱ} 

means indiscernibility relation on 𝒪, where description length 𝑖 ≤ |Φ|. ∼𝐵𝑟
 is also indiscernibility relation 

determined by utilizing 𝐵𝑟. 

 

 Near equivalence class is stated as [𝑥]𝐵𝑟
= {𝑥 ∈ ′𝒪|𝑥 ∼𝐵𝑟

𝑥}′ . After getting near equivalence 

classes, quotient set 𝒪 ∕∼𝐵𝑟
= {[𝑥]𝐵𝑟

|𝑥 ∈ 𝒪} = 𝜉𝒪,𝐵𝑟
 and set of partitions 𝑁𝑟(𝐵) = {𝜉𝒪,𝐵𝑟

|𝐵𝑟 ⊆ 𝐵} can be 

found. By using near equivalence classes, 𝑁𝑟(𝐵)∗𝑋 = ⋃[𝑥]𝐵𝑟∩𝑋≠⌀ [𝑥]𝐵𝑟
 upper approximation set can be 

attained. 

 

Definition 2 [18]: 

 Let 𝒪 be a set of sample objects, ℱ a set of the probe functions, ∼Br
 an indiscernibility relation,and Nr a 

collection of partitions. Then, (𝒪, ℱ, ∼Br
, Nr(B)) is called a weak nearness approximation space. 

 

Theorem 1[18]: 

Let (𝒪, ℱ, ∼Br
, Nr) be a weak nearness approximation space and X, Y ⊂ 𝒪. Then the following statements 

hold: 
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i) 𝑋 ⊆ 𝑁𝑟(𝐵)∗𝑋, 

ii)𝑁𝑟(𝐵)∗(𝑋 ∪ 𝑌) = 𝑁𝑟(𝐵)∗𝑋 ∪ 𝑁𝑟(𝐵)∗𝑌, 

iii) 𝑋 ⊆ 𝑌 implies 𝑁𝑟(𝐵)∗𝑋 ⊆ 𝑁𝑟(𝐵)∗𝑌, 

iv) 𝑁𝑟(𝐵)∗(𝑋 ∩ 𝑌) ⊆ 𝑁𝑟(𝐵)∗𝑋 ∩ 𝑁𝑟(𝐵)∗𝑌.  

 

Definition 3 Hata! Başvuru kaynağı bulunamadı.:  

 Let (𝒪, ℱ, ∼Br
, Nr(B)) be a weak nearness approximation space, G ⊆ 𝒪 and “ ⋅ ”a operation by ⋅∶ G × G →

Nr(B)∗G. G is called a group on 𝒪 or shortly nearness group if the following properties are satisfied: 

  

    i)  𝑥 ⋅ 𝑦 ∈ 𝑁𝑟(𝐵)∗𝐺 for all 𝑥, 𝑦 ∈ 𝐺, 

 

    ii)  (𝑥 ⋅ 𝑦) ⋅ 𝑧 = 𝑥 ⋅ (𝑦 ⋅ 𝑧) property holds in 𝑁𝑟(𝐵)∗𝐺 for all 𝑥, 𝑦, 𝑧 ∈ 𝐺, 

 

    iii) There exists 𝑒 ∈ 𝑁𝑟(𝐵)∗𝐺 such that 𝑥 ⋅ 𝑒 = 𝑥 = 𝑒 ⋅ 𝑥 for all 𝑥 ∈ 𝐺, 

 

    iv) There exists 𝑦 ∈ 𝐺 such that 𝑥 ⋅ 𝑦 = 𝑒 = 𝑦 ⋅ 𝑥 for all 𝑥 ∈ 𝐺. 

Lemma 1 Hata! Başvuru kaynağı bulunamadı.: 

 Let S be a Γ-nearness semiring. If   ∼Br
 is a congruence indiscernibility relation on S, then [x]Br

+

[y]Br
⊆ x + y]Br

, [β]Br
+ [γ]Br

⊆ β + γ]Br
, [x]Br

αy]Br
⊆ xαy]Br

 for all x, y ∈ S, and α, β, γ ∈ Γ.  

 

 

Lemma 2 Hata! Başvuru kaynağı bulunamadı.:  Let S be a Γ-nearness semiring. The following properties 

hold: 

 

i) If X, Y ⊆ S, then (Nr(B)∗X) + (Nr(B)∗Y) ⊆ Nr(B)∗(X + Y), 

 

ii) If X, Y ⊆ S, then (Nr(B)∗X)Γ(Nr(B)∗Y) ⊆ Nr(B)∗(XΓY).  

 

Definition 4 Hata! Başvuru kaynağı bulunamadı.: Let M and Γ be additive Abelian groups. M is said to 

be a Γ-ring if there exists a mapping M × Γ × M → M (the image of (a, α, b) is denoted by aαb). M is 

called a Γ-near-ring (in the sense of Barnes) on 𝒪 − 𝒪′ or shortly a Γ-nearness near-ring and denoted by 

(M, +,⋅) satisfying the following conditions: 

i)  

 (a + b)αc = aαc + bαc, 

 a(α + β)b = aαb + aβb, 

 aα(b + c) = aαb + aαc, 

 

ii)  (aαb)βc = aα(bβc) for all a, b, c ∈ M and α, β ∈ Γ. 
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Definition 5 Hata! Başvuru kaynağı bulunamadı.:  Let (𝒪, ℱ, ∼Br
, Nr(B), νNr

) be a nearness 

approximation spaces, “+” and “⋅” be binary operations defined on 𝒪. M ⊆ 𝒪 is called a near-ring on 

nearness approximation spaces or shortly nearness near-ring if the following properties are satisfied: 

 

NN1) (M, +) is a nearness group (it does not need to be commutative), 

NN2) (M,⋅) is a nearness semigroup, 

NN3) for all x, y, z ∈ M, (x + y) ⋅ z = (x ⋅ z) + (y ⋅ z) property holds in Nr(B)∗M.  

 

Definition 6 Hata! Başvuru kaynağı bulunamadı.:  Let M = {a, b, c, … } ⊆ 𝒪, and Γ = {α, β, … } ⊆ 𝒪′ 

where (𝒪, ℱ, ∼Br
, Nr(B)) and (𝒪′, ℱ, ∼Br

, Nr(B)) are two different weak near approximation spaces. “ ⋅ 

”a operation by ⋅: M × M → Nr(B)∗M. M is called a Γ-near-ring (in the sense of Barnes) on 𝒪 − 𝒪′ or 

shortly a Γ-nearness near-ring and denoted by (M, +,⋅) if the following conditions are satisfied: 

 

𝐺𝑁𝑅1) (𝑀, +) is a nearness group on 𝒪 with identity element 0𝑀 (not necessarily abelian), 

 

𝐺𝑁𝑅2) for all 𝑎, 𝑏, 𝑐 ∈ 𝑀 and 𝛼, 𝛽 ∈ Γ such that (𝑎𝛼𝑏)𝛽𝑐 = 𝑎𝛼(𝑏𝛽𝑐) hold in 𝑁𝑟(𝐵)∗𝑀, 

 

𝐺𝑁𝑅3) for all 𝑎, 𝑏, 𝑐 ∈ 𝑀 and 𝛼 ∈ Γ such that (𝑎 + 𝑏)𝛼𝑐 = 𝑎𝛼𝑐 + 𝑏𝛼𝑐 hold in 𝑁𝑟(𝐵)∗𝑀.  

 

Theorem 2 Hata! Başvuru kaynağı bulunamadı.: Let M be a Γ-nearness near-ring and {Hi|i ∈ I} be a 

nonempty family of Γ-ideal of M, where an arbitrary index set I. 

 

𝑖) If 𝑁𝑟(𝐵)∗(⋂ 𝐻𝑖𝑖∈𝐼 ) = ⋂ 𝑁𝑟(𝐵)∗𝐻𝑖𝑖∈𝐼 , then ⋂ 𝐻𝑖𝑖∈𝐼  is a Γ-ideal of 𝑀. 

 

𝑖𝑖) ⋃ 𝐻𝑖𝑖∈𝐼  is a Γ-ideal of 𝑀.  

 

3. Prime Ideals of 𝚪-nearness near-ring 

  

Definition 7: Let P be an ideal of Γ-nearness near-ring M. P is called  

 

i) a Γ-prime ideal of M if for all ideals I and J of M, IΓJ ⊆ Nr(B)∗P implies I ⊆ P or J ⊆ P. 

 

ii) a Γ-semiprime ideal of M if for all ideals I and J of M, I2 = IΓJ ⊆ Nr(B)∗P implies I ⊆ P or J ⊆

P. 
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Definition 8: Let X be a nonempty subset of a Γ-nearness near-ring M. Let {Ai: i ∈ I} be a family of all 

ideals in M that contain X. If 

 ⋂i∈Δ (Nr(B)∗Ai) = Nr(B)∗(⋂i∈Δ Ai), 

then ⋂i∈I Ai is called the ideal generated by the set X and it is denoted by (X). 

The elements of X  is called the generators of ideal (X) . If X = {x1, x2, ⋯ , xn} , then (X) =

(x1, x2, ⋯ , xn). Thus, we call (X) is finitely generated.  

If X = {a},  then (X) = (a) is called the principal ideal generated by a. 

Theorem 3: Let P be a Γ-prime ideal of M. Then, the following conditions are equivalent. 

𝑖) 𝑃 is prime, 

𝑖𝑖) For every two ideals 𝐼, 𝐽 of 𝑀, it implies that 𝐼 ⊈ 𝑃 and 𝐽 ⊈ 𝑃 ⇒ 𝐼Γ𝐽 ⊈ 𝑁𝑟(𝐵)∗𝑃, 

𝑖𝑖𝑖) For every two elements 𝑎, 𝑏 ∈ 𝑀, 𝑎 ∉ 𝑃 and 𝑏 ∉ 𝑃 ⇒ (𝑎)Γ(𝑏) ⊈ 𝑁𝑟(𝐵)∗𝑃. 

 

Proof.  

𝑖) ⇒ 𝑖𝑖) Assume that 𝑃 is a Γ-prime ideal of 𝑀, 𝐼 ⊈ 𝑃 and 𝐽 ⊈ 𝑃. If possible, suppose that 𝐼Γ𝐽 ⊆

𝑁𝑟(𝐵)∗, then 𝐼 ⊆ 𝑃 or 𝐽 ⊆ 𝑃 since 𝑃 is a Γ-prime ideal of 𝑀. Thus, we received a contradiction. From here, 

we have 𝐼Γ𝐽 ⊈ 𝑁𝑟(𝐵)∗. 

𝑖𝑖) ⇒ 𝑖𝑖𝑖)  Let 𝑎 ∉ 𝑃  and 𝑏 ∉ 𝑃  be elements of 𝑀 . In this case, we get (𝑎) ⊈ 𝑃  and (𝑏) ⊈ 𝑃 . 

Therefore, by hypothesis, (𝑎)Γ(𝑏) ⊈ 𝑁𝑟(𝐵)∗𝑃. 

𝑖𝑖𝑖) ⇒ 𝑖) For elements 𝑎, 𝑏 ∈ 𝑀 , 𝑎 ∉ 𝑃  and 𝑏 ∉ 𝑃 , and so (𝑎) ⊈ 𝑃  and (𝑏) ⊈ 𝑃 . Suppose that 

(𝑎) ⊈ 𝑃  and (𝑏) ⊈ 𝑃  such that (𝑎)Γ(𝑏) ⊆ 𝑁𝑟(𝐵)∗𝑃 . Since 𝑎 ∉ 𝑃  and 𝑏 ∉ 𝑃 , then by hypothesis 

(𝑎)Γ(𝑏) ⊈ 𝑁𝑟(𝐵)∗𝑃, which is contradiction. In this case, (𝑎)Γ(𝑏) ⊆ 𝑁𝑟(𝐵)∗𝑃 ⇒ (𝑎) ⊆ 𝑃 and (𝑏) ⊆ 𝑃. 

Therefore, 𝑃 is a prime ideal of 𝑀. 

Definition 9: Let M be a Γ-nearness near-ring. Then, M is called Γ-prime near ring if 0 is a Γ-prime ideal 

of M.  

Theorem 4: Let M be a Γ-nearness near-ring and {Ai|i ∈ I} be a nonempty family of Γ-prime ideal of M, 

where an arbitrary index set I. 

𝑖) If 𝑁𝑟(𝐵)∗(⋂ 𝐴𝑖𝑖∈𝐼 ) = ⋂ 𝑁𝑟(𝐵)∗𝐴𝑖𝑖∈𝐼 , then ⋂ 𝐴𝑖𝑖∈𝐼  is a Γ-prime ideal of 𝑀. 

𝑖𝑖) If 𝐴1 ⊆ 𝐴2 ⊆ 𝐴3 ..., then ⋃ 𝐴𝑖𝑖∈𝐼  is a Γ-prime ideal of 𝑀.  

Proof. 

 𝑖) ⋂ 𝐴𝑖𝑖∈𝐼  is a Γ-ideal of 𝑀 by Theorem 2. Suppose that 𝑃1Γ𝑃2 ⊆ 𝑁𝑟(𝐵)∗(⋂ 𝐴𝑖𝑖∈𝐼 ) for any Γ-ideals 𝑃1 and 

𝑃2  of 𝑀 . In this case, 𝑃1Γ𝑃2 ⊆ 𝑁𝑟(𝐵)∗(⋂ 𝐴𝑖𝑖∈𝐼 ) = ⋂ 𝑁𝑟(𝐵)∗𝐴𝑖𝑖∈𝐼  from hypothesis. Thus, 𝑃1Γ𝑃2 ⊆

⋂ 𝑁𝑟(𝐵)∗𝐴𝑖𝑖∈𝐼 , and so 𝑃1Γ𝑃2 ⊆ 𝑁𝑟(𝐵)∗𝐴𝑖 for all 𝑖 ∈ 𝐼. Because 𝐴𝑖’s are Γ-prime ideals of 𝑀 for all 𝑖 ∈ 𝐼, 

then 𝑃1 ⊆ 𝐴𝑖 or 𝑃2 ⊆ 𝐴𝑖 for all 𝑖 ∈ 𝐼. From here, we attain that 𝑃1 ⊆ ⋂ 𝐴𝑖𝑖∈𝐼   or 𝑃2 ⊆ ⋂ 𝐴𝑖𝑖∈𝐼  . 

 

𝑖𝑖) From Theorem 2.(ii), ⋃ 𝐴𝑖𝑖∈𝐼  is a Γ-ideal of 𝑀. Assume that 𝑃1Γ𝑃2 ⊆ 𝑁𝑟(𝐵)∗(⋃ 𝐴𝑖𝑖∈𝐼 ) for any ideals 

𝑃1 and 𝑃2 of 𝑀. In this case, we get 𝑃1Γ𝑃2 ⊆ ⋃ 𝑁𝑟(𝐵)∗𝐴𝑖𝑖∈𝐼  by Theorem 1.(ii). There is at least one 𝑖𝑛 ∈ 𝐼 
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such that 𝑃1Γ𝑃2 ⊆ 𝑁𝑟(𝐵)∗𝐴𝑖𝑛
. As 𝐴𝑖𝑛

 is prime ideal of 𝑀  for 𝑖𝑛 ∈ 𝐼 , 𝑃1 ⊆ 𝐴𝑖𝑛
 or 𝑃2 ⊆ 𝐴𝑖𝑛

 for 𝑖𝑛 ∈ 𝐼. 

Therefore, 𝑃1 ⊆ ⋃ 𝐴𝑖𝑖∈𝐼  or 𝑃2 ⊆ ⋃ 𝐴𝑖𝑖∈𝐼 . 

 

Definition 10: A Γ-nearness near-ring M is called simple if M has no proper ideal.  

 

Theorem 5: If Γ-nearness near-ring M is simple, then either M is Γ-prime or MΓM = {0} ∈ Nr(B)∗M.  

Proof.  

Suppose that 𝐼 and 𝐽 are ideals of 𝑀. Since 𝑀 is simple, we have 𝐼 = 𝑀 or 𝐼 = 0 and 𝐽 = 𝑀 or 𝐼 = 0. 

Therefore, for the ideals 𝐼 and 𝐽 of 𝑀, we have the equation 𝐼Γ𝐽 = 0, then 𝐼 = 0 or 𝐽 = 0, or 𝐼 = 𝐽 = 𝑀. If 

𝐼 = 0 or 𝐽 = 0, then 𝑀 is Γ-prime near ring. Otherwise, 𝑀Γ𝑀 = {0} ∈ 𝑁𝑟(𝐵)∗𝑀 if 𝐼 = 𝐽 = 𝑀.  

 

 

4. Conclusion 

As a recent study of Γ-nearness near-ring, it is defined that the notion of prime ideals in Γ-nearness near-

ring. Afterward, it is explained that some of the concepts and definitions. We believe that these properties 

will be more useful theoretical development for Γ-nearness near-ring theory. 
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Abstract 

In [1], Agarwal et al. presented some comparison theorems on the oscillation of second order 

functional dynamic equations with a neutral term. They studied a class of neutral dynamic equations 

under assumptions that allow applications to equations with both delayed and advanced arguments. In 

this work, by extending the ideas exploited in [1] and [2], we attempt to establish several new 

comparison theorems for oscillation of second order mixed neutral noncanonical dynamic equations, 

based on comparisons with associated second order linear non-neutral dynamic equations on time 

scales.   

 

1. INTRODUCTION 

 

The study of analysis on time scales was introduced by Hilger in his Ph. D. dissertation [3] in 1988 in 

order to unify continuous and discrete analysis. This new and exciting type of mathematics is more 

general and versatile than the traditional theories of differential and difference equations as it can, under 

one framework, mathematically describe continuous-discrete hybrid processes. In fact, the progressive 

field of dynamic equations on time scales contains links and extends the classical theories of differential 

and difference equations. For instance, if  = , we have a result for difference equations, if = , we 

obtain a result for differential equations [4]. The usual notation and concepts from the time scale calculus 

as can be found in Bohner and Peterson [5] will be used throughout the study without further mention. 

In [1], Agarwal et al. considered the second order dynamic equation of neutral type of the form 

( ) ( ) ( ) ( )( ) ( ) ( )( ) 0r t x t p t x t q t x g t


  + + =   
                                             (1) 

on an arbitrary time scale  , where ,r p  and q are real-valued positive right dense continuous functions 

on , the deviating arguments , :g →  are rd − continuous, and ( ) ( )lim lim .
t t

t g t
→ →

= =   On the 

basis of conditions ( )0 1p t   or ( ) 1p t   and under assumption of  
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( )
0

,
t

s

r s




                                                                              (2) 

they studied both neutral delay ( ). ., ( )i e t t   and neutral advanced ( ). ., ( )i e t t   cases separately, and 

derived several comparison theorems that guarantee the oscillation of all solutions of equation (1). The 

main objective of this study is to generalize the results given in [1], to the second order dynamic 

equations with delayed and advanced arguments in the neutral term of the form 

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) 0r t x t p t x t m t x t q t x g t 


  + + + =   
                            (E) 

on an arbitrary time scale ,  where , ,r p m and q  are real-valued positive rd −continuous functions on 

,  the deviating arguments , , :g  →  are rd −continuous functions such that,   and   are strictly 

increasing, ( ) ( ),t t t    and ( ) ( )lim lim .
t t

t g t
→ →

= =   For these formulation, we consider equation (E) 

in the case when (2) holds, that is, in noncanonical form. For the simplicity and without further mention, 

we use the notations:  

( ) ( ) ( ) ( )( ) ( ) ( )( ),y t x t p t x t m t x t = + +  

( )
( )

( )
( )

1

: : .

t

t t

s s
A t and B t

r s r s


 

= =   

As usual, all occurring functional inequalities considered in this work are assumed to hold eventually, that 

is, they are satisfied for all sufficiently large .t   

2. MAIN RESULTS 

Set 

( )
( ) ( )( )

( )

( )( )( )1 1

1 1
1 0

p t
t

m t m t m t


  
− −

 
 = − − 
 
 

 

and 

( )
( ) ( )( )

( )( )
( )

( )

( )( )( )
( )( )( )

( )

11

1 1

1 1
1 0

F tF t p t
t

m t F t F tm t m t

 


  

−−

− −

 
 = − − 
 
 

 

where 1−  denotes the inverse function of  , and F is a −differentiable function that will be specified 

later. Our first result is the following theorem. 
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Theorem 1. Suppose that (2) holds, ( )( ) ( ),t g t    ( ) 0,p t   ( ) 1,m t   ( ) ( ) ( ) 0r t A t t−    for all 

0[ , ) ,t t    where ( )t  is the forward jump operator and ( )t  is the graininess function defined on the 

time scale .  Assume further that there exist positive real valued −  differentiable functions ,f F  such 

that 

( )
( ) ( )

( )
( )

( ) ( )
( )0 0

f t F t
f t and F t

r t B t r t A t

 −  +                                               (3)        

for all sufficiently large 
1 0[ , ) .t t    If the second order dynamic equations 

( ) ( ) ( ) ( )( )( )
( )( )( )

( )( )
( )( )

1

1 0
f g t

r t z t q t g t z t
f t


  



−


 −  + =                                 (4) 

and 

( ) ( ) ( ) ( )( )( ) ( )( )1 0r t z t q t g t z t  


 −  + =                                          (5) 

are oscillatory, then Eq. (E) is oscillatory. 

Proof. Suppose to the contrary that ( )x t  is a nonoscillatory (say positive) solution of Eq. (E). Then we 

may assume that ( ) 0,x t   ( )( ) 0,x t   ( )( ) 0,x t   and ( )( ) 0x g t   for 
0[ , ) .t t    In view of (E), we 

obtain 

( ) ( ) ( ) ( )( ) 00 [ , ) .r t y t q t x g t for t t





  = −                                       (6) 

So, ( ) ( )r t y t
 is strictly decreasing, and ( )y t

 is eventually of one sign. Assume first that ( ) 0y t   for 

1 0[ , ) [ , ) .t t t      From the definition of the neutral term, we see that the inequality 

( )
( )

( ) ( ) ( ) ( )( )
1

x t y t x t p t x t
m t

 = − −   

                                
( )

( )
( )( )
( )( )

( )
( )( )( )
( )( )( )

11

1 1

1 y ty t
y t p t

m t m t m t

 

  

−−

− −

 
  − −
 
 

                           (7)                 

holds for 
1[ , ) .t t    Since ,y   and   are increasing functions, the inequalities ( )( ) ( )1y t y t−   and 

( )( )( ) ( )1y t y t −   are fulfilled. So, we obtain from (7) that 
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( )( )
( ) ( )( )

( )

( )( )( )
( ) ( ) ( )

1 1

1 1
1 ,

p t
x t y t t y t

m t m t m t
 

  
− −

 
  − − =
 
 

 

and it follows from (E) that 

( ) ( ) ( ) ( )( )( ) ( )( )( )1 1 0.r t y t q t g t y g t  


 − −  +    

On the other hand, in view of (3) and the fact that 

( ) ( )
( ) ( )

( )
( )

( )
( )

1 1
1 ,

t t

t t

r s y s s
y t y t s r t y t

r s r s




 

= +     
 

   

we arrive to the conclusion 

( )
( )

( ) ( ) ( ) ( )
( ) ( )( )

y t y t f t y t f t

f t f t f t


   −

=  
 

 

                                             
( )

( ) ( )( )
( )

( ) ( )
( ) 0,

y t f t
f t

f t f t r t B t


 

 −   
 

 

that is, /y f  is nonincreasing on 
1[ , ) .t   If we set  

( )
( ) ( )

( )
,

r t y t
u t

y t



=                                                                    (8) 

then we obtain 

( ) ( ) ( )( )( )
( )( )( )

( )( )
( )
( )

( )
( )( )

1 2

1
y g t u t y t

u t q t g t
y t r t y t


 

 

−

 − − −                                (9) 

                        ( ) ( )( )( )
( )( )( )

( )( )
( )
( )

( )
( ) ( ) ( )

1 2

1 .
f g t u t y t

q t g t
f t r t y t t y t


 

 

−

−


 − −

+
 

Thus,  

( ) ( ) ( )( )( )
( )( )( )

( )( )
( )

( ) ( ) ( )

1 2

1 0
f g t u t

u t q t g t
f t r t t u t


 

 

−

 −+ + 
+
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for large .t Therefore, we get by results of [6]  that, Equation (4) is nonoscillatory, which is a 

contradiction.  

Next, assume that ( ) 0y t   for 
1 0[ , ) [ , ) .t t t     Then, the inequality (7) holds again, and if we 

define the function u  by (8), we see that ( ) 0u t   for 
1[ , ) .t t    Since ( ) ( )r t y t

 is strictly decreasing, 

we get ( ) ( ) ( ) ( )r s y s r t y t   for [ , ) .s t    Integrating this inequality from t  to , we have 

( ) ( ) ( ) ( )
( )

, [ , ) .
t

s
y y t r t y t t

r s






 +    

Letting →  in the latter inequality yields 

( ) ( ) ( ) ( ) 10 , [ , ) .y t r t y t A t t t

 +    

Thus, we obtain ( ) ( )1/u t A t −  and ( ) ( ) ( ) ( )/ 1/y t y t r t A t  − .  In view of (3) and these inequalities, 

we have 

( )
( )

( )
( ) ( )( )

( )
( ) ( )

( ) 0,
y t y t F t

F t
F t F t F t r t A t




   

 +       
   

                                     (10) 

that is, /y F  is nondecreasing. So, we obtain from (7) and (10) that 

( )( )
( ) ( )( )

( )( )
( )

( )

( )( )( )
( )( )( )

( )
( ) ( ) ( )

11

1 1

1 1
1 ,

F tF t p t
x t y t t y t

m t F t F tm t m t

 
 

  

−−

− −

 
  − − =
 
 

 

Differentiating ( )u t  and using this last inequality, we obtain  

( ) ( ) ( )( )( )
( )( )( )

( )( )
( )
( )

( )
( ) ( ) ( )

1 2

1
y g t u t y t

u t q t g t
y t r t y t t y t


 

 

−

 −


 − −

+
                   (11) 

( ) ( )( )( )
( )
( )

( )
( ) ( ) ( )

2

1 u t y t
q t g t

r t y t t y t
 



−


 − −

+
 

( ) ( )( )( )
( )

( ) ( ) ( )

2

1 .
u t

q t g t
r t t u t

 


− − −
+

 

Due to 
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( ) ( ) ( )
( ) ( ) ( )

( )
0,

r t B t t
r t t u t

B t




−
+    

the function ( )u t  satisfies 

( ) ( ) ( )( )( )
( )

( ) ( ) ( )

2

1 0
u t

u t q t g t
r t t u t

 


 −+ + 
+

 

for large .t Therefore, we get by results of [6] that, Equation (5) is nonoscillatory, which is a contradiction 

that proves the theorem.  

Theorem 2. Suppose that (2) holds, ( )( ) ( ),t g t    ( ) 0,p t   ( ) 1,m t   ( ) ( ) ( ) 0r t A t t−    for all 

0[ , ) ,t t    where ( )t  is the forward jump operator and ( )t  is the graininess function defined on the 

time scale .  Assume further that there exist positive real valued −  differentiable functions ,f F  such 

that (3) holds for all sufficiently large 
1 0[ , ) .t t    If the second order dynamic equations 

( ) ( ) ( ) ( )( )( ) ( )( )1 0r t z t q t g t z t  


 −  + =   

and 

( ) ( ) ( ) ( )( )( )
( )( )( )

( )( )
( )( )

1

1 0
F g t

r t z t q t g t z t
F t


  



−


 −  + =   

are oscillatory, then Eq. (E) is oscillatory. 

Proof. Suppose to the contrary that ( )x t  is a nonoscillatory (say positive) solution of Eq. (E). Then we 

may assume that ( ) 0,x t   ( )( ) 0,x t   ( )( ) 0,x t   and ( )( ) 0x g t   for 
0[ , ) .t t    In view of (E), 

one can see that (6) holds again, ( ) ( )r t y t
 is strictly decreasing, and ( )y t

 is eventually of one sign. 

Assume first that ( ) 0y t   for 
1 0[ , ) [ , ) .t t t     Following a similar procedure to the proof of first 

case in Theorem 1, we see that inequality (9) holds. Due to ( )( ) ( ),t g t    and y is strictly increasing, 

we have from (9) that 

( ) ( ) ( )( )( )
( )
( )

( )
( ) ( ) ( )

2

1 .
u t y t

u t q t g t
r t y t t y t

 


 −


 − −

+
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The remainder of the proof is similar to that of first case in Theorem 1. Next, assume that ( ) 0y t   for 

1 0[ , ) [ , ) .t t t      From the proof of Theorem 1, we see that /y F  is nondecreasing and inequality 

(11) holds. Due to ( )( ) ( ),t g t    we derive from (11) that 

( ) ( ) ( )( )( )
( )( )( )

( )( )
( )
( )

( )
( ) ( ) ( )

1 2

1 .
F g t u t y t

u t q t g t
F t r t y t t y t


 

 

−

 −


 − −

+
 

The rest of the proof is similar to that of second case in Theorem 1. We omit the details. 

 

Remark 1. One can obtain similar comparison theorems for the cases where 

( )( ) ( ),t g t       ( ) 1,p t       ( ) 0,m t       ( ) ( ) ( ) 0r t A t t−   

and  

( )( ) ( ),t g t       ( ) 1,p t       ( ) 0,m t       ( ) ( ) ( ) 0r t A t t−  . 

In order to obtain these results, it is necessary to define some appropriate functions that to replace the 

functions   and  , and will provide the inequalities arising in the proofs, see for example [2, Lemma 

2.5]. The details are left to the reader.  
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Abstract 

In the last decade, much research has been done on localization for wireless sensor networks. The 

location information of a sensor node is the main problem in processing the sensed data in wireless sensor 

networks (WSNs). A promising solution for static distributed sensors is localization using mobile beacons. 

The main challenge in WSN is to design and develop an optimal path planning scheme for a mobile beacon 

to reduce the time required for location determination. In this paper, we compare six path plans described 

in the literature with different numbers of nodes in Uniform, Beta, Weibull and Gamma networks. 

Accuracy-Priority Trilateration is used as the method for position determination. The performance of 

network localization is evaluated and compared using MATLAB simulations. 

Keywords: Path planning, sensor localization, wireless sensor networks 

 

1. Introduction 

Wireless sensor network technology has advanced in many different applications, such as 

environmental monitoring, military battlefield information gathering, remote medical care, disaster relief, 

and so on. In the field of wireless sensor network research, there are several important issues such as 

localization, deployment, high bandwidth demand, energy consumption, coverage, etc. Localization is one 

of the most important topics because location information is usually useful for coverage, deployment, 

routing, localization service, target tracking and rescue. Most existing localization techniques for WSNs 

can be classified into two main groups based on a key classification: range-based or range-free. Range-free 

techniques use only connectivity information between sensors and beacons [1]. Range-based techniques 

use distance/angle information to locate a node, while range-free techniques use connectivity information 

to locate it. Range-free techniques are inexpensive, less complex, and do not require additional hardware, 

but range-based techniques provide better results in terms of localization accuracy [2]. Some common 

range-based techniques are Received Signal Strength Indicator (RSSI), Time of Arrival (ToA), Time 

Difference of Arrival (TDoA), and Angle of Arrival (AoA) [3]. 

Many outdoor positioning applications require the configuration of a GPS receiver to support sensor 

node positioning. The device GPS enables mobile anchors to determine their position and transmit their 

current position. Based on the position reports, the surrounding nodes are able to calculate their own 

position [4]. However, the cost is too high and each sensor node has a significant GPS positioning error, 

resulting in a large gap in sensor node location information. Localization algorithms can overcome this 

problem if they are able to estimate the location of sensors based on knowledge of the absolute positions of 
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a few sensors. Generally, these small portions of sensor nodes with known location information are called 

beacons. Ordinary sensors that need to be located urgently are called unknown nodes. 

Localization methods fall into four groups:  

(1) static beacons and static nodes such as the methods proposed in [5],  

(2) static beacons and mobile nodes such as the systems proposed in [6],  

(3) mobile beacons and static nodes such as the methods proposed in [7],  

(4) mobile beacons and mobile nodes such as the methods in [8]. 

The rest of the paper is divided into four sections: Section 2, provides the overview of simulation 

environment. Localization technique is discussed in Section 3. Finally, the paper is concluded with 

simulation results in Section 4. 

 

2. Design of Simulation Environment   

Node placement is either deterministic or nondeterministic depending on the region in which it is 

applied. Due to the different detection probabilities, the same sensor placement approach is not suitable for 

all applications. Some of the applications are well suited and achieve better performance when the sensors 

are uniformly distributed, but a few require intensive distribution of nodes in particularly sensitive 

locations, especially the intrusion detection applications. Equations 1 to 4 apply respectively to the 

Uniform, Beta, Weibull and Gamma probability distributions [9-12]. 

 

Table 1. Distributions and density functions 

Distributions Density Functions Eqs. 

Uniform Distribution 

 
𝑓(𝑥) = {

1

𝑏 − 𝑎
, 𝑎 ≤ 𝑥 ≤ 𝑏

0, otherwise
 (1) 

Beta Distribution 

𝑓(𝑥) = {

1

𝐵(𝛼, 𝛽)
𝑥𝛼−1(1 − 𝑥)𝛽−1, 0 < 𝑥 < 1

0, otherwise

 

𝐵(𝛼, 𝛽) = ∫ 𝑥𝛼−1(1 − 𝑥)𝛽−1𝑑𝑥
1

0

 

(2) 

Weibull Distribution 𝑓(𝑥) =
𝛼𝑥𝛼−1

𝜆𝛼
𝑒(

𝑥

𝜆
)

𝛼

 (3) 

Gamma Distribution 𝑓(𝑥) = {
𝛽𝛼𝑥𝛼−1𝑥−𝛽𝑥

Γ(𝛼)
, 𝑥 > 0

0, otherwise

 (4) 
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Figure 1 shows the Uniform, Beta, Weibull and Gamma distributions of 100 nodes in a 150x150 area. 

Sensors within the communication range are shown with blue dashed lines. For the distributions other than 

the uniform distribution, it can be seen that the sensors are congregated in a certain area. 

  
(a) Uniform (b) Beta 

  
 

(c) Weibull (d) Gamma 

 

Figure 1: Distribution of 100 nodes (a) Uniform, (b) Beta, (c) Weibull, and (d) Gamma 

 

One of the biggest challenges in applications that use a mobile anchor and unknown static nodes is 

designing the path that the mobile anchor will follow. In this paper, we consider six models for planning 

mobile paths based on a grid layout (Figure 2). The most obvious difference between the path models 

is that the start and end coordinates are different and they follow different paths in the grid layout.  
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·  Anchor points                 Mobile anchor trajectory Starting coordinate  ending coordinate  

   
(a) Hilbert (b) Moore (c) Macrotile 

   
(d) Scan (e) Beta (f) Gamma  

Figure 2: Paths, (a) Hilbert, (b) Moore, (c) Macrotile, (d) Scan, (d) Beta and (f) Gamma  

 

3. Localization technique 

Trilateration is the most commonly used technique to estimate the position of unknown nodes in 

WSN. Each unknown node receives beacon messages from an anchor node. Once an unknown node 

receives adequate number of beacon messages, it starts the process of localization. Each unknown node 

calculates its respective distances using the received beacon messages.  The position of the node is 

calculated using trilateration. 

Considering the 2-D environment for the unknown sensor node S at position (x, y) and the anchor 

nodes at positions (𝑥0, 𝑦0), (𝑥1, 𝑦1), (𝑥2, 𝑦2) and respective distances 𝑑0, 𝑑1 and 𝑑2 the position of S (in 

Figure 3) can be estimated by solving the following equations. 

 

𝑑0 = √(𝑥0 − 𝑥)2 + (𝑦0 − 𝑦)2                                                        (5) 

𝑑1 = √(𝑥1 − 𝑥)2 + (𝑦1 − 𝑦)2                                                        (6) 

𝑑2 = √(𝑥2 − 𝑥)2 + (𝑦2 − 𝑦)2                                                        (7) 
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Figure 3: Accuracy-Priority Trilateration (APT) 

 

Accuracy-Priority Trilateration (APT) is a technique that estimates the location of sensors by considering 

the three closest beacon messages among the received messages. This technique provides high localization 

accuracy compared to other trilateration techniques. 

To simplify the complexity of the environment, the following assumptions were made and a 

simulation environment was used in this paper; 

• The unknown nodes and the mobile anchor are two types of sensor nodes in the network 

• 100 unknown nodes are randomly introduced into the network with distributions of Uniform, Beta, 

Weibull and Gamma 

• All sensors in WSN are identical and homogeneous 

• The distance between two consecutive anchor points in the trajectory is set to 10 m 

• A mobile anchor is ready to traverse the whole network in straight lines, depending on each path 

pattern 

• There are no obstacles in the environment 

• The mobile anchor has sufficient energy to move and broadcast location information during the 

localization process 

• The communication range (CR) of each sensor node in the network is 12.5m, 15.625m, 18.75m and 

25m 

• Each mobile node and the anchor node communicate with each other when both nodes are in their 

transmission range 

• Each Monte Carlo simulation is created with a specific set of input parameters and run 100 times 

with different fields. The results are then averaged. 
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4. Simulation Results and Conclusions 

 

The 150m x150m region of the simulation field was created using uniform, Beta, Weibull, and Gamma 

distributions. We tested six path plans available in the literature using 100 nodes and one mobile node. 

Table 2 shows the maximum time required to find the sensor nodes. Each Monte Carlo simulation is created 

with a specific set of input parameters and run 100 times with different fields. The results are then averaged. 

The simulations were repeated for the 12.5m (R12), 15.625m (R15), 18.75m (R18) and 25m (R25) coverage 

areas for each distribution. From the table, it can be seen that the Beta, Gamma and Weibull distributions 

provide the best time for Hilbert, and Scan statics path planning respectively. The environment with 

obstacles is not considered in this paper. They will be addressed in our future work. 

 

Table 2: The maximum time required to locate the sensor nodes 

 Coverage Hilbert Moore Macrotile Scan Beta Gamma 

Uniform 

R12 254.31 254.95 254.27 254.29 255.36 253.68 

R15 254.11 255.07 254.08 253.99 255.77 254.11 

R18 254.15 254.78 254.08 254.03 255.59 253.69 

R25 254.43 255.09 254.05 253.99 255.51 254.04 

Weibull 

R12 247.60 252.63 229.12 223.56 254.54 245.11 

R15 248.95 254.92 234.04 228.04 252.64 244.14 

R18 247.58 254.53 232.80 230.55 254.26 243.88 

R25 246.35 252.35 233.09 228.51 254.08 243.97 

Beta 

R12 237.62 241.61 240.54 248.35 240.18 248.41 

R15 240.10 243.66 240.36 248.60 241.29 248.75 

R18 239.13 242.61 241.67 248.46 243.92 248.06 

R25 237.19 241.22 241.44 248.21 244.41 248.54 

Gamma 

R12 248.79 249.04 225.51 225.29 243.40 245.19 

R15 244.43 247.06 231.79 230.70 247.45 244.62 

R18 250.42 251.80 226.15 225.71 246.65 245.54 

R25 247.49 252.22 228.12 228.03 248.47 242.43 
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Abstract 
In this study, a numerical scheme based on fractional Bernoulli wavelets is introduced for 

solving distributed –order fractional partial differential equations, where the fractional derivative is 
considered in the Caputo definition. For this purpose, the spectral collocation method via Gauss 
quadrature is employed to reduce the main problem to an algebraic linear system.  

 
          Keywords: distributed-order fractional partial differential equation, Bernoulli wavelets, collocation 

method, Gauss quadrature. 

 
1. Introduction 
 
 Distributed-order fractional differential equations (FDEs) can be seen as a generalization of constant-
order FDEs .  Distributed-order  FDEs might contain fractional derivatives which are integrated over the 
order of the differentiation   within a given interval .  These differential equations are widely used in 
different disciplines such as   control systems ,  distributed order system identifcation ,  diffusion -  wave 
phenomena ,  dielectric material ,  viscoelasticity model ,  and electronic oscillator .  Analytic solutions for 
distributed-order FDEs have been deeply studied .  The existence and uniqueness properties of solutions of 
distributed-order FDEs can be found ,  for instance ,  in [1]-[2]. In [3],  the authors study the well-posedness 
of the solutions .  In general ,  it is not easy to determine   an exact solution for a distributed-order FDE . 
Therefore several numerical methods for solving   distributed-order FDEs have been proposed ,  such as 
Legendre spectral element method ,  block-pulse wavelet method ,  hybrid of block-pulse functions and 
Taylor polynomials ,  finite   volume method ,  finite difference schemes ,  hybrid functions of block-pulse 
functions   and Bernoulli polynomials ,  the Petrov-Galerkin spectral method ,  Chebyshev 
collocation   method ,  a method using the trapezoidal quadrature rule ,  and Laguerre Petrov-
Galerkin   spectral method [4]-[5] .  Different from the distributed-order fractional ordinary differential 
equations ,  there are only a few numerical methods available for solving distributed-order fractional   partial 
differential equations (DOFPDEs) ,  such as meshless method [6] ,  finite element method [7] ,  fractional 
pseudo-spectral method [8],  and Legendre operational matrix methods [9] .  In recent 
decades ,  wavelets ,  and their operational matrices of fractional and non-fractional derivetives and 
integration ,  played important role in numerically solving the problems in fractional   calculus .  The 
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solutions of fractional differential equations (FDEs) can contain some fractional power terms   which 
cannot be approximated by using classical integer order bases .  To increase the efficiency   of the numerical 
methods ,  fractional-order polynomials and wavelets were introduced by applying  the transformation 
𝑥 → 𝑡 ,   𝛼 > 0 of variables to the integer-order polynomials and wavelets . 
 
Main problem 
 
 In the current research ,  we consider the following two-dimensional DOFPDE : 

𝜌(𝛼) 𝐷 𝑢(𝑥, 𝑡) 𝑑𝛼 = 𝑢 (𝑥, 𝑡) + 𝐻(𝑥, 𝑡),           (𝑥, 𝑡) ∈ [0,1] × [0,1],               (1)  

 subject to the following initial and boundary conditions 
𝑢(𝑥, 0) =  𝑓(𝑥),         𝑢(0, 𝑡) =  𝑞 (𝑡),          𝑢(1, 𝑡)  =  𝑞1(𝑡),                                 (2)  

 where 𝐻, 𝑓, 𝑞  and 𝑞  are continuous functions ,  and 𝜌(𝛼) is a continuous non-negative weight function  
satisfying [2]: 

𝜌(𝛼) ≥ 0,          𝜌(𝛼) dα = μ > 0. 

 The proofs for the existence ,  continuity ,  smoothness and uniqueness of the solution were given in [2] . 
 The aim of this study is introducing a new approach based on fractional order Bernoulli wavelets .  The 
operational matrices of Bernoulli wavelets and the Gauss-Legendre quadrature are applied to acquire the 
approximated solution of problem (1)-(2) . 
 
2. Preliminaries on fractional calculus 
 
In this section ,  we present some basic   definitions and concepts on fractional calculus that are essential   for 
subsequent discussion .  There are various definitions for   fractional integration and derivative 
operators .  However ,  the fractional   Riemann-Liouville integration and fractional Caputo 
derivative   operators have been used in this study . 
 
Definition 2.1.  The Riemann-Liouville fractional integral operator of nonnegative   order  𝛼 is defined as 
[10]: 

𝐽 𝑓(𝑥) =
1

Γ(𝛼)
(𝑥 − 𝑡)  𝑓(𝑡) 𝑑𝑡,          𝑥 > 0,                                                   (3) 

 where 𝐽 𝑓(𝑥) = 𝑓(𝑥). 
 
2.1. Riemann-Liouville fractional integral for polynomials 
 
  The Riemann-Liouville fractional integrals for the polynomials are   defined as  
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𝐽 𝑥 =
Γ(𝛽 + 1)

Γ(𝛽 + 𝛼 + 1)
𝑥 ,           𝛽 > −1.                                                                (4) 

 
 Also the mentioned operator is   linear ,  that is for real constant 𝜆 we have  
 

𝐽 {𝜆𝑓(𝑥) + 𝑔(𝑥)} = 𝜆𝐽 {𝑓(𝑥)} + 𝐽 {𝑔(𝑥)}.                                                       (5) 
Definition 2.2. The Caputo fractional derivative operator of nonnegative order  𝛼 is defined as [10] 
 

𝐷 𝑓(𝑥) =
1

Γ(𝑛 − 𝛼)

𝑓( )(𝑡)

(𝑥 − 𝑡)
 𝑑𝑡,        𝑛 − 1 < 𝛼 ≤ 𝑛,       𝑛 ∈ ℕ.          (6) 

 
2.2. Caputo fractional derivative for polynomials 
 
For the Caputo derivative we have [10]:  
 

𝐷 𝑥 = 0,           𝛽 ∈ ℕ ,          𝛽 < ⌈𝛼⌉, 
and  

𝐷 𝑥 =
Γ(𝛽 + 1)

Γ(𝛽 + 1 − 𝛼)
𝑥 , 𝛽 ∈ ℕ ,          𝛽 ≥ ⌈𝛼⌉      𝑜𝑟     𝛽 ∈ ℝ − ℕ ,          𝛽 > ⌊𝛼⌋. 

 
 Similar to the Riemann-Liouville   fractional integral operator ,  the Caputo fractional derivative   operator is 
linear ,  that is ,  for real constant 𝜆 ,  we have 
 

𝐷 {𝜆𝑓(𝑥) + 𝑔(𝑥)} = 𝜆 𝐷 {𝑓(𝑥)} + 𝐷 {𝑔(𝑥)}. 
 
2.3. Relations between Reimann-Liouville fractional integral and   Caputo fractional derivative  
 
 The relations between Reimann-Liouville fractional integral and   Caputo fractional derivative operators 
can be addressed by the   following identities [11]: 
 

𝐷 𝐽 𝑓(𝑥) = 𝑓(𝑥),                                                                                          (7) 
and 

𝐽 𝐷 𝑓(𝑥) = 𝑓(𝑥) −
𝑓( )(0)

𝑗!
𝑥 .                                                            (8)  
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3. Review on Bernoulli wavelets 
 
In this section   definitions of Fractional Bernoulli   Wavelets (FBWs) and their operational matrix of 
Caputo fractional derivative are described . 
 
3.1. BWs and FBWs  
 

  Definition 3.1. BWs of order 𝑚  ,  which are denoted by 𝜓 (𝑡) = 𝜓(𝑘, 𝑛, 𝑚, 𝑡)  ,  consist of   four 

arguments ,  𝑘 :  a positive integer , 𝑛 = 1,2, … , 2 , 𝑛 = 𝑛 − 1   and 𝑡  is the normalized time .  These 
wavelets are  defined on the interval [0 ,  1) ([12]) as : 
 

𝜓 (𝑡) = 2 𝐵 (2 𝑡 − 𝑛)𝜒   ,  ,                                                (9) 

 where 𝐵 (𝑡) = 1  and 

𝐵 (𝑡) =
𝐵 (𝑡)

Λ
,           𝑚 > 0,                                                          (10) 

and Λ =
( ) ( !)

( )!
𝜗   is the normality coefficient. The functions 𝐵 , 𝑚 = 0,1, … , 𝑀 − 1  are 

known Bernoulli   polynomials ,  defined as  

𝐵 (𝑡) =
𝑚

𝑗
 𝜗 𝑡                                                               (11) 

 where 𝜗 ≔ 𝐵 (0) are the Bernoulli numbers .  Therefore Bernoulli wavelets for 𝑚 > 0 can be rewritten as  

 

𝜓 , (𝑡) = Θ
𝑚

𝑗
 𝜗 2 ( )  𝑡 −

𝑛

2
𝜒   ,  ,                         (12) 

where Θ =
 ( !)

( ) ( !)
  and 𝜓 , (𝑡) = 2 𝜒   ,  . 

 
Definition 3.2.  Fractional Bernoulli Wavelets are   denoted by 𝜓 ,  and constructed by changing 

the   variable 𝑡 to 𝑥 ,   (𝛼 > 0) on the BWs   [12] ,  that is  
 

 𝜓 , ≔ 𝜓 , (𝑥 ) = 𝛩
𝑚

𝑗
 𝜗 2 ( ) 𝑥 −

𝑛

2
𝜒

  ,    
.        (13) 
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Remak. The Bernoulli polynomials satisfies  the following relation [12] : 
 

𝐵 (𝑥)𝐵 (𝑥)𝑑𝑥 =
(−1) 𝑚! 𝑛!

(𝑚 + 𝑛)!
𝜗 ,            𝑚, 𝑛 ≥ 1.                                   (14)  

 
 Thus these polynomials are not   orthogonal ,  consequently the FBWs ,  which are constructed by   Bernoulli 
polynomials ,  are not orthogonal ,  too. 
 
3.2. Function approximation by FBWs 
 

 A function 𝑓 ∈ 𝐿 [0,1] could   be approximated by FBWs ,  as 

𝑓(𝑥) = 𝑐 , 𝜓 , (𝑥),                                                                                  (15) 

 by truncating the infinite series   (15) in some suitable 𝑘 and 𝑀 ,  we get   

𝑓(𝑥) ≃ 𝑐 , 𝜓 , (𝑥) = 𝐶 Ψ , (𝑥),                                                           (16) 

 

 where 𝐶  and Ψ ,  are 2 × 𝑀-dimensional column vectors and defined as 

 

𝐶 = 𝑐 , , … , 𝑐 , , … , 𝑐 , , … , 𝑐 , ,                                          (17) 

 

Ψ , = 𝜓 , , … , 𝜓 , , … , 𝜓
,

, … , 𝜓
,

 .                                         (18) 

 
 In order to determine the coefficients in (16) ,  we put 
 

𝜂 ≔ 𝑓(𝑥)𝜓 , (𝑥)𝑥  𝑑𝑥,                                                         (19) 

and 

𝜆 ,
,

≔ 𝜓 , (𝑥)𝜓 , (𝑥)𝑥  𝑑𝑥.                                                  (20) 

 
 Now substituting (16) in (19) ,  we get   
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𝜂 ≃ 𝑐 , 𝜓 , (𝑥)𝜓 , (𝑥)𝑥 𝑑𝑥 = 𝑐 ,  𝜆 ,
,

= 𝐶 Λ
,

,    

where 

Λ
,

= 𝜆 ,
,

, … , 𝜆 ,
,

, … , 𝜆
,

,
, … , 𝜆

,

,
, 

 so by putting 

𝑇 = 𝜂 , , … , 𝜂 , , … , 𝜂 , , … , 𝜂 ,  , 

and 

Λ = Λ , , … , Λ , , … , Λ , , … , Λ ,

× × ×
, 

 the vector 𝐶  is evaluated by 

𝐶 = 𝑇 Λ  .                                                                                       (21) 
 
 The two variable function 𝑣(𝑥, 𝑡) could be approximated by two   dimensional FBWs as 
  

𝑣(𝑥, 𝑡) = 𝑣 , , , 𝜓 , (𝑥)𝜓 , (𝑡) = Ψ , (𝑥)𝑉 Ψ , (𝑥) ,    (22) 

 
 where 𝑉 is (2 × 𝑀 ) × (2 × 𝑀 ) dimensional coefficient matrix , where 

𝑣 , , , = 𝛼 〈〈𝑣(𝑥, 𝑡), 𝜓 , (𝑡) 〉 , 𝜓 , (𝑥)〉  ,                                       (23) 

𝑛 = 1,2, … , 2 ,           𝑟 = 1,2, … , 2 ,          𝑚 = 0,1, … , 𝑀 − 1,         𝑠 = 0,1, … , 𝑀 − 1. 

 It is clear that for 𝑘 = 𝑘 = 𝑘  and 𝑀 = 𝑀 = 𝑀, 𝑉  is (2 × 𝑀)  dimensional square coefficient 
matrix . 
 
Theorem 3.1. ([12]) Let 𝑢(𝑥, 𝑡) ∈ 𝐶 , (𝐷) be approximated by two dimensional FBWs as  

𝑢(𝑥, 𝑡) ≃ 𝑢 , , , (𝑥, 𝑡) = Ψ , (𝑡)𝑉Ψ , (𝑥),  there exist constants 𝐶 ∈ ℝ , 𝑖 = 1,2,3  such 

that  

𝑢(𝑥, 𝑡) − 𝑢 , , , (𝑥, 𝑡) ≤  
𝐶

𝐴
+

𝐶

𝐴
+

𝐶

𝐴 𝐴
,                                                            (24) 

 

 where 𝐴 = 𝑀 ! 2 ( ) , 𝑖 = 1,2. 
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3.3. Operational matrix of Riemann-Liouville fractional integration 
 

 The Riemann-Liouville fractional integration of Ψ   can be obtained as 
 

𝐽 Ψ (𝑥) = ℱ , Ψ (𝑥),                                                                            (25) 

 where ℱ ,   is relative operational square matrix of dimension 2 × 𝑀 and could be evaluated by  using 
equation (4) and (13) as follows  

𝐽 𝜓 , (𝑥) = Θ
𝑚
𝑗 𝜗 2 ( )𝐽 𝑥 −

𝑛

2
,                                  (26) 

 

𝑛

2
≤ 𝑥 ≤

𝑛 + 1

2
.   

On the other   hand  

𝐽 𝑥 −
𝑛

2
=

𝑗

𝑖
−

𝑛

2

Γ(𝛼𝑖 + 1)

Γ(𝛼𝑖 + 𝜉 + 1)
𝑥 .                                             (27) 

 Thus ,  using equation (26)-(27) ,  we can write   

𝐽 𝜓 , (𝑥) = Θ 𝐴 , 𝑥 ,                                                                    (28) 

where  

𝐴 , =
𝑚

𝑗
𝜗 2 ( )

𝑗

𝑖
−

𝑛

2

Γ(𝛼𝑖 + 1)

Γ(𝛼𝑖 + 𝜉 + 1)
. 

Now we expand 𝑥  in   terms of FBWs : 
 

𝑥 ≃ 𝑑 ,
,

𝜓 , (𝑥),                                                         (29) 

 
By (28)-(29), we get  

𝐽 𝜓 , (𝑥) = 𝜂 , , ,
,

𝜓 , (𝑥),   

where 𝜂 , , ,
,

= ∑ ∑ 𝐴 , 𝑑 ,
,

. Thus we have  
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ℱ , =

⎝

⎜
⎛

 ℱ
,

      0      ⋯      0    

0           ℱ
,

  ⋯     0  
⋮            ⋮         ⋱        ⋮  

 0          0       ⋯  ℱ
,

⎠

⎟
⎞

2𝑘−1×𝑀 × 2𝑘−1×𝑀

,                                (30) 

 
 where 

ℱℱ ,
= 𝜂 , , ,

,
, 𝜂 , , ,

,
, … , 𝜂 , , ,

,

×
 

 
and 𝟎  is a 1 × 𝑀 -dimensional row matrix which its all entries are zero . 
 
4. Numerical implementation 
 
 By using properties of FBWs ,  their   operational matrices of derivative and Riemann-Liouville 
fractional   integration ,  collocation method and Gauss-Legendre quadrature ,  a new   approach is introduced 

in this section for solving DOFPDEs .  For   this purpose ,  we first expand  
( , )

 by FBWs of  order  as 

𝜕 𝑢(𝑥, 𝑡)

𝜕𝑥 𝜕𝑡
≃ Ψ , (𝑥) 𝑈Ψ , (𝑡),                                                (37) 

 where 𝑈 is 2 𝑀 × 2 𝑀 -dimensional unknown   coefficients matrix .  Integrating (37) with respect 
to 𝑡 and using the initial condition ,  we have  

𝜕 𝑢(𝑥, 𝑡)

𝜕𝑥
≃ Ψ , (𝑥) 𝑈𝐼 Ψ , (𝑡) + 𝑓′′(𝑥),                                                                          (38) 

 and by integrating (38) twice with respect to 𝑥 and using the Dirichlet boundary conditions ,  we get  
 
                  𝑢(𝑥, 𝑡) ≃ 𝐼 Ψ , (𝑥) 𝑈𝐼 Ψ , (𝑡) − 𝑥𝐼 Ψ , (1) 𝑈𝐼 Ψ , (𝑡)   

 

      +(1 − 𝑥) 𝑞 (𝑡) − 𝑞 (0) + 𝑥 𝑞 (𝑡) − 𝑞 (0) + 𝑓(𝑡),                                                    (39) 

 Now for obtaining 𝐷  𝑢(𝑥, 𝑡)  ,  we can write 
 

             𝐷  𝑢(𝑥, 𝑡) ≃ 𝐼 Ψ , (𝑥) 𝑈𝐼 Ψ , (𝑡) − 𝑥𝐼 Ψ , (1) 𝑈𝐼 Ψ , (𝑡) 

 
          +(1 − 𝑥) 𝐷 {𝑞 (𝑡)} + 𝑥 𝐷 {𝑞 (𝑡)} .                                                                                 (40) 

 
 Now we apply the Gauss-Legendre quadrature to determine the left hand side integral of equation (1) :  
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𝜌(𝛼) 𝐷  {𝑢(𝑥, 𝑡)} 𝑑𝑡 ≃
1

2
 𝜔 𝜌 

𝜂 + 1

2
 𝐷  {𝑢(𝑥, 𝑡)} ,                         (41) 

where 𝜔  and 𝜂  are the weights and the nodes of Gauss-Legendre quadratre ,  respectively .  Also 

𝐷 {𝑢(𝑥, 𝑡)} is achivied by (41) .  So by substituting equations (38)-(41) in the main problem ,  we obtain  

an algebraic equation .  For solving it ,  we employ collocation method ,  that is; the algebraic equation is 

discritize in the collocation nodes 𝑥 , 𝑡  ,  where  

 

⎩
⎪
⎨

⎪
⎧𝑥 =

2𝑖 − 1

2 𝑀
,             𝑖 = 1, … , 2 𝑀 ,

 

𝑡 =
2𝑗 − 1

2 𝑀
,             𝑗 = 1, … , 2 𝑀 .

  

 

 Therefore an algebraic system with 2 𝑀 𝑀  linear equations with unknown coefficients ,  which 
can be solved by some iterative technique . 
 
 5. Illustrative example 
 
In this section for showing the accuracy and efficiency of the proposed method, we solve an example. 
 
Example 1. Consider the following DOFPDE  
 

Γ
5

2
− 𝛼  𝐷 𝑢(𝑥, 𝑡)𝑑𝑡 = 𝑢 (𝑥, 𝑡) + 𝐻(𝑥, 𝑡),  

where 

𝐻(𝑥, 𝑡) =
√𝑡 (𝑥 − 1)  3√𝜋 (𝑡 − 1)(𝑥 − 1) 𝑥 − 8𝑡(15𝑥 − 10𝑥 + 1)Ln (𝑡)

4𝐿𝑛(𝑡)
 , 

 subject to the initial and boundary conditions  
 

𝑢(𝑥, 0) =  0, 𝑢(0, 𝑡) =  0, 𝑢(1, 𝑡) =  0, (𝑥, 𝑡)  ∈  [0, 1]  ×  [0, 1], 
 

 where the exact solution of this problem is 𝑢(𝑥, 𝑡) = 𝑡  𝑥  (𝑥 − 1) . 
 
 We put 𝑘 = 𝑘 = 𝑘  and  𝑀 = 𝑀 = 𝑚  and solved this problem for 𝛾 = 0.5, 𝑘 = 2 and 𝑀 = 2,3,4 .  The 
numerical results are tabulated in tables 1 − 2 . 

Table 1 .  Numerical solutions of example 1 for 𝛾 = 0.5, 𝑡 = 1, 𝑘 = 2 and 𝑀 = 2,3,4. 
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𝑥 𝑀 = 2            𝑀 = 3             𝑀 = 4      𝐸𝑥𝑎𝑐𝑡 
0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 

0.000000      0.000000       0.000000 
0.006513      0.006558       0.006561 
0.016402      0.016370       0.016386 
0.021584      0.021615       0.021609 
0.020705      0.020729       0.020736 
0.015596      0.015621       0.015625 
0.009244      0.009224       0.009216 
0.003881      0.003977       0.003969 
0.001109      0.001019       0.001024 
0.000007      0.000084       0.000081 
0.000000      0.000000       0.000000 

0.000000 
0.006561 
0.016384 
0.021609 
0.020736 
0.015625 
0.009216 
0.003969 
0.001024 
0.000081 
0.000000 

 
Table 2 . 𝜖  and 𝜖   of example 1 for 𝛾 = 0.5 ,   𝑡 = 1 ,  𝑘 = 2  and 𝑀 = 2,3,4. 

 𝑀 = 2                 𝑀 = 3                  𝑀 = 4     
𝜖  
 
𝜖    

1.689 × 10     7.240 × 10    1.349 × 10  
 

7.772 × 10     1.086 × 10    5.149 × 10  
 
6. Conclusion 
 
In this paper, a numerical method for solving distributed –order Caputo fractional partial differential 
equations is presented. First fractional Bernoulli wavelets and their operational matrices of integration are 
defined and then applied to transform the main problem to an algebraic system. The spectral collocation 
method and  Gauss quadrature are employed for solving the obtained system. The introduced method is 
simple and applicable and can be extended for solving other classes of distributed-order fractional 
equations. 
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On Summability of Infinite Series and Fourier Series 
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Abstract 

In this paper, two known theorems on absolute Riesz summability factors of infinite and Fourier 

series are generalized to | , , ; |n kA p    summability method by using  -quasi-monotone sequences. 

 

 Keywords:  -quasi-monotone sequences, infinite series, Fourier series. 

 

1. Introduction 
 
A sequence ( )nB  is said to be  -quasi-monotone if 0,nB   0nB   ultimately and ,n nB     where 

( )n   is a sequence of positive numbers (see [1]). Let na  be a given  infinite series with the  

partial sums  ns . Let  np  be a sequence of positive numbers such that 

              
0

, ( 0, 1).
n

n v m m
v

P p as n P p m 


             

The sequence-to-sequence transformation 

             
0

1 n

n v v
vn

p s
P




    

defines the sequence ( )n  of the ( , )nN p  mean of the sequence ( )ns , generated by the sequence of 

coefficients ( )np  (see [2]). The series na  is said to be summable , ,n k
N p  1,k   if (see [3])   

1

1
1

,

k

kn
n n

n n

P

p
 







 
   

 
  

and it is said to be summable , , ; , 1, 0n k
N p k     and   is real number, if  (see [4]) 

 

    

( 1)

1
1

.

k k

kn
n n

n n

P

p

 

 

 





 
   

 
  

Let  nvA a  be a normal matrix, i.e., a lower triangular matrix of non-zero diagonal entries. The series 

na   is said to be summable | , , ; | ,n kA p    1,k   0   and   is real number, if  (see [5]) 
( 1)

1
1

| ( ) ( ) | ,

k k

kn
n n

n n

P
A s A s

p
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where 

           
0

( )
n

n nv v
v

A s a s


  ,       0,1,...n   

 
If we take 1  , then | , , ; |n kA p     summability reduces to | , ; |n kA p  summability method (see [6]). If 

we take  1   and 0   , then | , , ; |n kA p   summability reduces , n k
A p summability method (see [7]). 

Also, if we take 1  , then , , ;n k
N p    summability reduces to  , ;n k

N p   summability method (see 

[8]). Finally, if we take 1   and 0  , then , , ;n k
N p    summability reduces to , n k

N p  summability 

method. 

            If we write 
0

/ ,
n

n v v
v

X p P


  then ( )nX  is a positive increasing sequence tending to infinity with n.  

 
2. Known Results 
 
In [9], Bor has proved the following theorem and lemmas. 
 
Theorem 2.1. Let 0n   as n  and ( )np  be a sequence of positive numbers such that ( )n nP O np  

as n . Suppose that there exists a sequence of numbers ( )nB  which is  -quasi-monotone with 

,n nnX     n nB X  is convergent and n nB   for all .n  If the condition  

     

                                                    
1

( )
m

kn
n m

n n

p
t O X as m

P

                                                 (1) 

 

is satisfied, where ( )nt  denotes the n-th ( ,1)C  mean of the sequence ( )nna , then the series n na   is 

summable  , n k
N p , 1k  . 

 
Lemma 2.1. Under the conditions of Theorem 2.1, we have  
 
                                                         | | (1)n nX O    as  .n                                                                (2) 

 

Lemma 2.2.  Let ( )nB  is  -quasi-monotone with ,n nnX     n nB X  is convergent, then  

(1)    m ,m mmX B O as                                                              (3) 

1

.n n
n

nX B




                                                                                (4) 

 
 

513



 

5th INTERNATIONAL ONLINE CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 

1-3 December 2021, Istanbul, Turkey 
 

 

ICOM 2021 
ISTANBUL / TURKEY 

3. Main Result 
 
There are some different works on absolute matrix summability of infinite series (see [10-19]). Now, let 

us mention some notations. Let  nvA a  be a normal matrix, two lower semimatrices ( )nvA a and 

ˆ ˆ( )nvA a  are given as follows: 

                                                            , , 0,1,...
n

nv ni
i v

a a n v


                                                   (5) 

                                                             00 00 00 1,
ˆ ˆ, , 1, 2,...nv nv n va a a a a a n                                         (6) 

 

                                       
0 0

n n

n nv v nv v
v v

A s a s a a
 

                                    (7) 

                                                                               
0

ˆ
n

n nv v
v

A s a a


   .                                                       (8) 

 

Theorem 3.1. Let  nvA a  be a positive normal matrix such that  

                                                                        ,...,1,0,10  nan                                                          (9)         

                                                                     1,n v nva a   for  1,n v                                                        (10) 

                                                                             ,n
nn

n

p
a O

P

 
  

 
                                                              (11) 

                                                                                         , 1
ˆ ˆ( ) ,n v v nva O v a                                                                  (12) 

                                          

( 1) 1 ( 1)
1

1

ˆ( ) ,

k k k k k k
m

n v
v nv

n v n v

P P
a O as m

p p

         


 

    
           

                   (13) 

where , 1
ˆ ˆ ˆ( ) .v nv nv n va a a     If all conditions of  Theorem 2.1 are satisfied with the condition (1) replaced 

by  

 
( 1)

1

,

k k k
m

kn
n m

n n

P
t O X as m

p

    



 
  

 
                                            (14)       

then the series n na   is summable | , , ; | ,n kA p    1,k   0   and ( 1) 0.k k k        
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4. Proof of Theorem 3.1 

Let ( )n  denotes A -transform of the series 
n na  . Then, by (7) and (8), we have 

1

ˆ .
n

n nv v v
v

a a


    
 
                                                                      
By Abel’s transformation, we get   

1

1 1 1

ˆ ˆn v n
nv v nn n

n v r r
v r r

a a
ra ra

v n

 

  

 
    

 
    

          
1

1

ˆ ˆ
( 1) ( 1)

n
nv v nn n

v v n
v

a a
v t n t

v n

 



 
     

 
     

                      
1 1 1

, 1 , 1 1
1 1 1

1 1 1
ˆ ˆ ˆ

n n n
v

v nv v v n v v v n v v nn n n
v v v

tv v n
a t a t a a t

v v v n
   

  

  
  

  
              

                         ,1 ,2 ,3 ,4.n n n n                  

To prove Theorem 3.1, by Minkowski’s inequality, it is sufficient to show that   

          

( 1)

,
1

k k
k

n
n r

n n

P

p

   




 
   

 
   for  1,2,3,4.r   

First, using Hölder’s inequality, we have  

     

( 1) ( 1)
1 1 1

,1
2 2 1

ˆ(1) ( )

k k k k km m n
k

n n
n v nv v v

n n vn n

P P
O a t

p p

   



   
  

  

     
       

    
                                                                                                                  

                               

( 1) 11 1 1

2 1 1

ˆ ˆ(1) ( ) ( )

k k km n n
k kn

v nv v v v nv
n v vn

P
O a t a

p

 



    

  

    
      

   
    

                                           

( 1) 1
1 1

2 1

ˆ(1) ( )

k k k
m n

k kn
v nv v v

n vn

P
O a t

p

 



   
 

 

   
    

  
   

                                           

( 1) 1
1

1

1 1

ˆ(1) ( )

k k k
m m

k k n
v v v v nv

v n v n

P
O t a

p

 

 

   




  

 
  

 
   

                                           

( 1)

1

(1)

k k k
m

kv
v v

v v

P
O t

p

 



  



 
  

 
     

                                           

( 1) ( 1)
1

1 1 1

(1) (1)

k k k k k k
m n m

k kr r
v r m r

v r rr r

P P
O t O t

p p

   

 

     


  

   
     

   
    

                                           
1

1

(1) (1) (1) ,
m

v v m m
v

O B X O X O as m




               

                                 

by virtue of the hypotheses of  Theorem 3.1 and Lemma 2.1. 
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Again, using Hölder’s inequality, we get  

    

( 1) ( 1)
1 1 1

,2
2 2 1

ˆ(1) ( )

k k k k km m n
k

n n
n v nv v v

n n vn n

P P
O v a t

p p

   



   
  

  

     
        

    
                                                                                                                                                                               

                                          

( 1)
1 1

2 1
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k k
m n

kn
v nv v v

n vn

P
O v a t
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11

1
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kn

v nv v
v

v a B





 
 

 
  

                                          

( 1)
1 1

2 1
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kn
v nv v v

n vn

P
O v a t
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1

ˆ( )

kn

v nv
v
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( 1) 1
1 1

2 1

ˆ(1) ( )

k k k
m n

kn
v nv v v

n vn

P
O v a t

p

 



   
 

 

   
     

  
                                            

                                          

( 1) 1
1

1 1

ˆ(1) ( )

k k k
m m

k n
v v v nv

v n v n

P
O vB t a

p

     


  

 
  

 
   

                                         

( 1)

1

(1)

k k k
m

k v
v v

v v

P
O v B t

p

    



 
  

 
  

                                          
( 1) ( 1)

1

1 1 1

(1) (1)

k k k k k k
m v m

k kr r
v r m r

v r rr r

P P
O v B t O mB t

p p

        


  

   
     

   
    

                                         
1 1

1 1

(1) (1) (1) (1) ,
m m

v v v v m m
v v

O v B X O B X O mB X O as m
 

 

        

by virtue of the hypotheses of Theorem 3.1 and Lemma 2.2. 

Now,  for 3,r   we get 

   

( 1) ( 1)
1 1 1

,3 1
2 2 1

ˆ(1) ( )

k k k k km m n
k

n n
n v nv v v

n n vn n

P P
O a t

p p
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1
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v nv v v v nv
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P
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1 1

1
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v nv v v
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P
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kv
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as in ,1n . 
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Finally, we get 

      

( 1) ( 1)

,4
1 1

(1)

k k k k
m m

k k kkn n
n nn n n

n nn n

P P
O a t

p p

   



   

 

   
    

   
                                                  

                                           

( 1)

1

(1)

k k k
m

kn
n n

n n

P
O t

p

 



  



 
  

 
 (1) ,O as m 

 
 
as in ,1n . 

 
5. An Application to Fourier Series 
 

Recently, some works on absolute summability of Fourier series have been done (see [20]-[23]). Let 

f  be a periodic function with period 2  and Lebesgue integrable over  , .   The trigonometric 

Fourier series of f  is defined as    

                         0
1 0

1
( ) cos sin ( )

2
n n n

n n

f x a a nx b nx C x
 

 

      

where  

                          0

1
( )a f x dx






  , 
1

( ) cosna f x nxdx





  , 
1

( )sin .nb f x nxdx





    

Write    
1

( ) ( ) ( )
2

t f x t f x t       and  1

0

1
( ) ( ) .

t

t u du
t

    If  1( ) 0, ,t BV   then ( ) (1)nt x O , 

where ( )nt x   is the n -th  ,1C  mean of the sequence  ( )nnC x  (see [24]). By using this fact, in [9], 

Bor has obtained the following theorem. 

 

Theorem 5.1.  If  1( ) 0,t BV  and the sequences    ,  n np   and  nX  satisfy the conditions of  

Theorem 2.1,  then the series ( )n nC x   is summable , n k
N p , 1k  .  

 

Theorem 5.1 is generalized as in the following form. 

 

Theorem 5.2.  If  1( ) 0,t BV  and the sequences    ,  ,n np   nB and  nX  satisfy the conditions 

of  Theorem 3.1,  then the series ( )n nC x   is summable , , ;n k
A p   ,  1,k   0    and 

 1 0.k k k     
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6. Conclusions 
 

If  we take 1,   0   and nv v na p P in Theorem 3.1, then we get Theorem 2.1. Similarly, if we take 

1,   0   and nv v na p P  in Theorem 5.2, then we get Theorem 5.1. 
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Abstract 

In this paper, new common fixed point theorems are presented. Indeed, we will propose new 

theorems related to the fixed points of some operators. We discuss the admissibility of two multi-valued 

mappings in the category of complete b-metric spaces to obtain the existence of a common fixed point. 

 

          Keywords: Common fixed point,  -admissible multi valued mapping. 

 

1. Introduction 

 

Fixed point theory is a branch of pure mathematics, it is showed that this theory is one of the main tools 

to use in order to tackle the qualitative properties of differential and integral equations in general and 

existence and uniqueness ofsolutions to these equations in particular. 

In 1973, Geraghty [1], studied a generalization of Banach contraction principle. Popescu [6], defined the 

concept of triangular   -orbital admissible mappings and proved the unique fixed point theorems for the 

mentioned mappings. On the other hand, Karapinar [2], proved the existence of a unique fixed point for a 

triangular    -admissible mapping which is a generalized     -Geraghty contraction type mapping.  

A significant number of mathematicians utilized the classical results in the fixed point theory to discuss 

solutions of initial and boundary value problems ([8,4,5]). While others establish new fixed point 

theorems and applied them to prove the existence and oneness of solutions to variety of differential 

equations [3,7,9]. 

In this work, we study the admissibility of two multi-valued mappings in the category of complete b-

metric spaces to obtain the existence of a common fixed point. 

 

2. Preliminaries 

 

Let   be a set of all increasing and continuous functions   ,    )  ,    ) with the property ( )  

  and only if     and  (  )    ( ) for      

Let   be the family of all functions   ,    )  ,  
 

  
) such that for any bounded sequence *  + of 

positive real numbers,  (  )    implies       
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Let (   ) be a  -metric space. Take   ( ) the set of bounded and closed sets in  . For     and 

       ( ), we define 

 

 (   )     
   

 (   )  

 

 (   )     
   

 (   )  

 

Define a mapping     ( )    ( )  ,   ) such that  

 

 (   )     {   
   

 (   )    
   

 (   )}  

 

for every       ( )  Then the mapping   forms a  -metric. 

Throughout the article   denotes  . 

Definition 2.1. Let           ( )  be two multi-valued mappings and      ,    )  be a 

function. Then the pair (     ) is said to be triangurlar   -admissible if the following conditions hold: 

( ) (     )  is   -admissible;  that is,  (   )    implies   (       )    and   (       )   , where 

 

  (   )     * (   )          +  

 

(  )  (   )    and  (   )    imply  (   )     

3. Main results 

 

Now, we are ready to state and prove our main results. 

The following key lemma is essential to proceed in proving the main results. It states that the 

admissibility of a pair of multi-valued functions will guarantee the existence of a sequence of points with 

diameter greater than 1. 

Lemma 3.1. Let           ( ) be two multi-valued mappings such that the pair (     ) is triangular 

  -admissible. Assume that there exists      with   (       )   . Define a sequence *  + in  by 

            and              , where           . Then for      * +  with      , we 

have  (     )   . 

Proof. Form   (       )    we get  (     )   . Since (     )  is   -admissible, we obtain

  (         )   , hence  (     )    and so  (         )   , then  (     )   , with continuing 

this process we obtain,  (       )   . 
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By (  ) from definition of triangular   -admissible andregarding as;  (       )    and , deduce. Again 

with continuing this process and from      we find out  (     )   . 

The following theorem gives the existence of a common fixed point for two mappings    and    under 

less hypotheses than the results existing in literature. 

Theorem 3.2. Let (   ) be an  -complete  -metric space (with    ), and       ,    ) be a 

function. Suppose that           ( ) are mappings such that 

 

 (   ) (   (       ))   ( ( (   ))) ( (   ))    ( (   ))                                      ( ) 

 

erwhw 

 (   )     { (   )  (     )  (     ) 
 (      )   (     )

  
}   

and 

 

 (   )     * (      )  (     )+                                                                                                    ( ) 

 

roh     dna      .Moreover suppose 

( )  (     ) is triangular   -admissible; 

(  ) there exists      with   (       )   ; 

(   ) if for every sequence *  + in   with  (       )   for all     * + and       , then there 

exists a subsequence {  ( )} or *  + etir  (  ( )  )   . 

Then    and    have a common fixed point    . 

Corollar 3.3. Let (   )  be an  -complete  -metric space, and       ,    )  be a 

function. Suppose that           are mappings such that 

 

 (   ) (   (       ))   ( ( (   ))) ( (   ))                                                                     ( ) 

 

roh    dna    . Moreover suppose 

( )  (     ) is triangular   -admissible; 

(  ) there exists      with  (       )   ; 

(   ) if for every sequence *  + in   with  (       )    for all     * + and       , then there 

exists a subsequence {  ( )} or *  + etir  (  ( )  )   rohdff  . 

Then    and    have a common fixed point    . 

Moreover, if the following condition hold: 

    Either  (   )    or  (   )    when ever           and            

Then    and    have a unique common fixed point. 
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Proof. The proof of the existence of a common fixed point of    and    is based on Theorem 3.2. 

We claim that if           and          , then    . By hypotheses, if    , then either 

 (   )    oh  (   )   .Suppose that (   )   , then 

 

 ( (   ))   ( (     ))   (   (     ))   (   ) (   (     )) 

 

  ( ( (   ))) ( (   ))   ( (   ))             

 

which is contradiction. So     . Similarly, if  (   )   , we can prove     . 
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Abstract 
This paper deals with pseudo concircular Ricci Symmetric spacetimes with some special 

conditions. In the first section, we give the definition of pseudo concircular Ricci symmetric manifold 
(PCRS)n. In the second section, some properties of the Z-symmetric tensor are mentioned. In the third 
section, we consider this tensor on (PCRS)n manifold and we give some theorems. In the last section, 
considering some special conditions, we discuss the properties of these spacetimes. 
          Keywords: Pseudo concircular Ricci symmetric manifold, Z-symmetric tensor, divergence-free Z-

symmetric tensor, perfect fluid. 

1. Introduction 
 
Because of its property of free mobility, the manifold of constant sectional curvature which is the most 
simple non-flat manifold as the model space for the universe was considered by Riemann and Helmholtz. 
In 1926, Cartan [1] generalized this manifold to locally symmetric manifold and he obtained a 
classification of such a manifold. Cartan [1] introduced locally symmetric manifold if its curvature tensor 
R satisfies the relation ∇R=0 where ∇ denotes the operator of the covariant differentation with respect to 
the metric tensor g. 

During the last eight decades, the generalization of these manifolds have been carried out by many 
authors around the world by several ways. Some of them are conformally symmetric manifold by Chaki 
and Gupta [2], recurrent manifold by Walker [3], conformally recurrent space by Adati and Miyazawa 
[4], pseudosymmetric manifold by Chaki [5], pseudo-symmetric manifold by Deszcz [6], semi-symmetric 
manifold by Szabo [7], weakly symmetric manifold by Binh and Tamassy, weakly symmetric manifold 
by Selberg [8], pseudo Ricci symmetric manifolds by Chaki [9], weakly Ricci symmetric manifold by 
Tamassy and Binh [10], generalized pseudo Ricci symmetric manifold by Chaki and Koley [11], pseudo 
symmetric and pseudo Ricci symmetric manifolds by De and Gazi [12], generalized pseudo Ricci 
symmetric manifolds by Altay Demirbag [13], weakly and pseudo symmetric spaces by Özen and Altay 
[14], etc. 

However, the notion of pseudo symmetry by Chaki and Deszcz are different and that of weakly 
symmetry by Selberg and Tamassy and Binh are also different. 

A non-flat Riemannian manifold (Mn,g) (n>2) is said to be pseudo symmetric [5] if its curvature 
tensor R satisfies the condition 
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(∇X R)(Y,Z)W=2A(X)R(Y,Z)W+A(Y)R(X,Z)W+A(Z)R(Y,X)W 

A(W)R(Y,Z)X+g(R(Y,Z)W,X)ρ, 
 

where A is a non-zero associated 1-form, ρ is a vector field defined by g(X,ρ)=A(X), for every vector 
field X and ∇ denotes the operator of the covariant differentiation with respect to the metric tensor g. If 
A=0 then this manifold reduces to a symmetric manifold in the sense of Cartan. 

Again, a Riemannian manifold is said to be Ricci symmetric if the condition ∇S=0 holds, where S 
is the Ricci tensor of type (0,2). 

A Riemannian manifold is called Ricci recurrent [15] if the Ricci tensor S satisfies the relation 
∇S=A⊗S where A is a non-zero 1-form. 

Every locally symmetric manifold is Ricci symmetric but not conversely and every recurrent 
manifold is Ricci recurrent but the converse does not hold, in general. Every Ricci symmetric manifold is 
Ricci recurrent but not conversely. 

A non-flat Riemannian manifold which is called generalized Ricci recurrent [16] if the Ricci 
tensor of this manifold satisfies the relation 

 
(∇X S)(Y,Z)=A(X)S(Y,Z)+B(X)g(Y,Z), 

 
where A and B are two non-zero 1-forms. 

 
If the 1-form B=0 then the generalized Ricci recurrent manifold reduces to a Ricci recurrent 

manifold. 
In 1988, Chaki [9] introduced pseudo Ricci symmetric manifold and it is defined as a non-flat 

Riemannian manifold (Mn,g)(n≥3) whose Ricci tensor S of type (0,2) satisfies the condition 
 
 
  (∇𝑋𝑋𝑆𝑆)(𝑌𝑌,𝑍𝑍) = 2𝐴𝐴(𝑋𝑋)𝑆𝑆(𝑌𝑌,𝑍𝑍) + 𝐴𝐴(𝑌𝑌)𝑆𝑆(𝑋𝑋,𝑍𝑍) + 𝐴𝐴(𝑍𝑍)𝑆𝑆(𝑌𝑌,𝑋𝑋),    (1) 
 

where A and ∇ are stated as in the definition of pseudosymmetric manifold. Such an n-dimensional 
manifold is denoted by (PRS)n. 

A transformation of an n-dimensional Riemannian manifold M, which transforms every geodesic 
circle of M into a geodesic circle, is called a concircular transformation, [17, 18]. 

A concircular transformation is always a conformal transformation [17]. A geodesic circle means 
a curve in M whose first curvature is constant and whose second curvature is identically zero. Hence, the 
geometry of concircular transformation is named by the concircular geometry, is a generalization of 
inverse geometry in the sense that the change of metric is more general than that induced by a circle 
preserving diffeomorphism. 
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The concircular curvature tensor, an interesting invariant under this transformation is defined by 
[18, 19]  
 
 
  �̅�𝐶(𝑋𝑋,𝑌𝑌)𝑍𝑍 = 𝑅𝑅(𝑋𝑋,𝑌𝑌)𝑍𝑍 − 𝑟𝑟

𝑛𝑛(𝑛𝑛−1)
[𝑔𝑔(𝑌𝑌,𝑍𝑍)𝑋𝑋 − 𝑔𝑔(𝑋𝑋,𝑍𝑍)𝑌𝑌],    (2) 

 

where R is the Riemannian curvature tensor and r is the scalar curvature. 

The notion of pseudo concircularly symmetric manifold was introduced by De and Tarafdar [20]. 
A non-flat semi-Riemannian manifold (𝑀𝑀𝑛𝑛,𝑔𝑔) is called pseudo concircularly symmetric manifold if its 
curvature tensor satisfies the condition 

 
 (∇𝑋𝑋�̅�𝐶)(𝑌𝑌,𝑍𝑍)𝑊𝑊 = 2𝐴𝐴(𝑋𝑋)�̅�𝐶(𝑌𝑌,𝑍𝑍)𝑊𝑊 + 𝐴𝐴(𝑌𝑌)�̅�𝐶(𝑋𝑋,𝑍𝑍)𝑊𝑊 
 +𝐴𝐴(𝑍𝑍)�̅�𝐶(𝑌𝑌,𝑋𝑋)𝑊𝑊 + 𝐴𝐴(𝑊𝑊)�̅�𝐶(𝑌𝑌,𝑍𝑍)𝑋𝑋 + 𝑔𝑔(�̅�𝐶)(𝑌𝑌,𝑍𝑍)𝑊𝑊,𝑋𝑋)𝜌𝜌 

 
where A is a non-zero 1-form, 𝑔𝑔(𝑋𝑋,𝜌𝜌) = 𝐴𝐴(𝑋𝑋), for every vector field X and ∇ denotes the operator of the 
covariant differentiation with respect to the metric tensor g. 

Let {𝑒𝑒𝑖𝑖 ,    𝑖𝑖 = 1,2, . . . ,𝑛𝑛} be an orthonormal basis of the tangent space at each point of the manifold 
and let 

 
  𝑃𝑃(𝑋𝑋,𝑌𝑌) = ∑𝑛𝑛

𝑖𝑖=1 �̅�𝐶(𝑋𝑋, 𝑒𝑒𝑖𝑖 , 𝑒𝑒𝑖𝑖 ,𝑌𝑌),    (3) 
 

then from (1.2), we get 

  𝑃𝑃(𝑋𝑋,𝑌𝑌) = 𝑆𝑆(𝑋𝑋,𝑌𝑌) − 𝑟𝑟
𝑛𝑛
𝑔𝑔(𝑋𝑋,𝑌𝑌).    (4) 

 

The tensor P is called the concircular Ricci tensor [21], which is a symmetric tensor of type (0,2). 
The present paper deals with a type of non-flat Riemannian manifold (𝑀𝑀𝑛𝑛,𝑔𝑔)(𝑛𝑛 ≥ 2) whose concircular 
Ricci tensor P is not identically zero and satisfies the condition (1) 
 
  (∇𝑋𝑋𝑃𝑃)(𝑌𝑌,𝑍𝑍) = 2𝐴𝐴(𝑋𝑋)𝑃𝑃(𝑌𝑌,𝑍𝑍) + 𝐴𝐴(𝑌𝑌)𝑃𝑃(𝑋𝑋,𝑍𝑍) + 𝐴𝐴(𝑍𝑍)𝑃𝑃(𝑌𝑌,𝑋𝑋),                                                  
(5) 

where A and ∇ has the meaning as before. Such a manifold is called pseudo concircular Ricci symmetric 
manifold and it is denoted by (𝑃𝑃𝐶𝐶𝑅𝑅𝑆𝑆)𝑛𝑛. 

A vector field 𝜉𝜉 in a Riemannian manifold 𝑀𝑀 is called torse-forming if it satisfies the condition 
∇𝑋𝑋𝜉𝜉 = 𝛼𝛼𝑋𝑋 + 𝜆𝜆(𝑋𝑋)𝜉𝜉, where 𝑋𝑋 ∈ 𝑇𝑇𝑀𝑀, 𝜆𝜆(𝑋𝑋) is a linear form and 𝛼𝛼 is a scalar function, [22, 23, 24].  

In the local transcription, this reads  
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  𝜉𝜉,𝑖𝑖
ℎ = 𝛼𝛼𝛿𝛿𝑖𝑖ℎ + 𝜉𝜉ℎ𝜆𝜆𝑖𝑖    (6) 

 

where 𝜉𝜉ℎ and 𝜆𝜆𝑖𝑖 are the components of 𝜉𝜉 and 𝜆𝜆 respectively, and 𝛿𝛿𝑖𝑖ℎ is the Kronecker symbol. A torse-
forming vector field 𝜉𝜉 is called, [23, 24], 

i. recurrent if 𝛼𝛼 = 0, i.e,  
   
𝜉𝜉,𝑖𝑖
ℎ = 𝜉𝜉ℎ𝜆𝜆𝑖𝑖    (7) 

 
ii. concircular if the 1-form 𝜆𝜆𝑖𝑖 is gradient covector (i.e., 𝜆𝜆𝑖𝑖 = 𝜆𝜆,𝑖𝑖), i.e, 

 
𝜉𝜉,𝑖𝑖
ℎ = 𝛼𝛼𝛿𝛿𝑖𝑖ℎ    (8) 

 
iii. convergent if it is concircular and 𝛼𝛼 = 𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐. 𝑒𝑒𝑒𝑒𝑒𝑒(𝜆𝜆). 

 

A 𝜑𝜑(𝑅𝑅𝑖𝑖𝑐𝑐)-vector field is a vector field on an n dimensional Riemannian manifold (M, g) with the 
metric g and Levi-Civita connection ∇, which satisfies the condition, [25]  

  ∇𝜑𝜑 = 𝜇𝜇𝑅𝑅𝑖𝑖𝑐𝑐,    (9) 
 

where 𝜇𝜇 is some constant and 𝑅𝑅𝑖𝑖𝑐𝑐 is the Ricci tensor. Obviously, when (M, g) is an Einstein space, the 
vector field 𝜑𝜑 is concircular. Moreover, when 𝜇𝜇 = 0, the vector field 𝜑𝜑 is covariantly constant. In the 
following we suppose that 𝜇𝜇 ≠ 0 and (M, g) is neither an Einstein space nor a vacuum solution of the 
Einstein equations. In a locally coordinate neighbourhood U(x), the equation (9) is written as  

  𝜑𝜑,𝑖𝑖
ℎ = 𝜇𝜇𝑆𝑆𝑖𝑖ℎ,    (10) 

 

where 𝜑𝜑𝑖𝑖 and 𝑆𝑆𝑖𝑖ℎ are components of 𝜑𝜑 and 𝑅𝑅𝑖𝑖𝑐𝑐, respectively. After lowering indices, (10) has the form  

  𝜑𝜑𝑖𝑖,𝑗𝑗 = 𝜇𝜇𝑆𝑆𝑖𝑖𝑗𝑗 ,    (11) 
 

where 𝜑𝜑𝑖𝑖 = 𝜑𝜑𝛼𝛼𝑔𝑔𝑖𝑖𝛼𝛼 and 𝑆𝑆𝑖𝑖𝑗𝑗 = 𝑔𝑔𝑖𝑖𝛼𝛼𝑆𝑆𝑗𝑗𝛼𝛼. 
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2. Z-Tensor 
 

A (0,2) symmetric tensor is generalized Z tensor if it satisfies 

  𝑍𝑍𝑘𝑘𝑘𝑘 = 𝑆𝑆𝑘𝑘𝑘𝑘 + 𝜙𝜙𝑔𝑔𝑘𝑘𝑘𝑘 ,                (12) 
 

where 𝜙𝜙 is an arbitrary scalar function. The scalar �̅�𝑍 is the trace of Z-tensor of from (12) 

  �̅�𝑍 = 𝑔𝑔𝑘𝑘𝑘𝑘𝑍𝑍𝑘𝑘𝑘𝑘 = 𝑟𝑟 + 𝑛𝑛𝜙𝜙.                (13) 
 

The classical Z tensor is obtained with the choice 𝜙𝜙 = − 1
𝑛𝑛
𝑟𝑟. Shortly, the generalized Z-tensor is 

called as the Z-tensor. From the Z-tensor, we can find several well known structures on Riemannian 
manifolds: 

1) If 𝑍𝑍𝑘𝑘𝑘𝑘 = 0 then this manifold (Z-flat) reduces to an Einstein manifold, 𝑆𝑆𝑖𝑖𝑗𝑗 = (𝑟𝑟
𝑛𝑛

)𝑔𝑔𝑖𝑖𝑗𝑗,[26]. 
2) If ∇𝑗𝑗𝑍𝑍𝑘𝑘𝑘𝑘 = 𝜆𝜆𝑗𝑗𝑍𝑍𝑘𝑘𝑘𝑘 then this manifold (Z-recurrent) reduces to a generalized Ricci recurrent 

manifold [16, 27]. The condition is equivalent to ∇𝑗𝑗𝑆𝑆𝑘𝑘𝑘𝑘 = 𝜆𝜆𝑗𝑗𝑆𝑆𝑘𝑘𝑘𝑘 + (𝑛𝑛 − 1)𝜇𝜇𝑗𝑗𝑔𝑔𝑘𝑘𝑘𝑘  where 
(𝑛𝑛 − 1)𝜇𝜇𝑗𝑗 = (𝜆𝜆𝑗𝑗 − ∇𝑗𝑗)𝜙𝜙 . Moreover, if (𝜆𝜆𝑗𝑗 − ∇𝑗𝑗)𝜙𝜙 = 0  then our manifold reduces to a 
Ricci recurrent manifold. 

3) If 
  ∇𝑗𝑗𝑍𝑍𝑘𝑘𝑘𝑘 = ∇𝑘𝑘𝑍𝑍𝑗𝑗𝑘𝑘 ,                (14) 
 
i.e, Z is a Codazzi tensor [28], then ∇𝑗𝑗𝑆𝑆𝑘𝑘𝑘𝑘 − ∇𝑘𝑘𝑆𝑆𝑗𝑗𝑘𝑘 = (𝑔𝑔𝑗𝑗𝑘𝑘∇𝑘𝑘 − 𝑔𝑔𝑘𝑘𝑘𝑘∇𝑗𝑗)𝜙𝜙. Multiplying the 
last equation by 𝑔𝑔𝑘𝑘𝑘𝑘, we find ∇𝑗𝑗[𝑟𝑟 + 2(𝑛𝑛 − 1)𝜙𝜙] = 0. Then, we obtain 

∇𝑗𝑗𝑆𝑆𝑘𝑘𝑘𝑘 − ∇𝑘𝑘𝑆𝑆𝑗𝑗𝑘𝑘 =
1

2(𝑛𝑛 − 1)
(𝑔𝑔𝑘𝑘𝑘𝑘∇𝑗𝑗 − 𝑔𝑔𝑗𝑗𝑘𝑘∇𝑘𝑘)𝑟𝑟. 

This condition defines a nearly conformal symmetric manifold, (𝑁𝑁𝐶𝐶𝑆𝑆)𝑛𝑛. This condition 
was introduced and studied by Roter [29]. Conversely, a (𝑁𝑁𝐶𝐶𝑆𝑆)𝑛𝑛 manifold has a Z-tensor 
of Codazzi type if the condition ∇𝑗𝑗[𝑟𝑟 + 2(𝑛𝑛 − 1)𝜙𝜙] = 0 is satisfied. 

4) Einstein’ s equations [30] with cosmological constant Λ and energy-stress tensor 𝑇𝑇𝑘𝑘𝑘𝑘 may 
be written as 𝑍𝑍𝑗𝑗𝑘𝑘 = 𝑘𝑘𝑇𝑇𝑗𝑗𝑘𝑘 where 𝜙𝜙 = −1

2
𝑟𝑟 + Λ and k is the gravitational constant. 

The Z-tensor may be considered as a generalized Einstein gravitational tensor with 
arbitrary scalar function 𝜙𝜙. 
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Conditions on the enery-momentum tensor determine constraints on the tensor Z: the 
vacuum solution Z=0 determines an Einstein space Λ = (𝑛𝑛−2

2𝑛𝑛
)𝑟𝑟 ; conservation of total 

energy-momentum (∇𝑘𝑘𝑇𝑇𝑘𝑘𝑘𝑘 = 0)  gives ∇𝑘𝑘𝑍𝑍𝑘𝑘𝑘𝑘 = 0  and ∇𝑘𝑘(1
2
𝑟𝑟 + 𝜙𝜙) = 0 ; the condition 

∇𝑗𝑗𝑍𝑍𝑘𝑘𝑘𝑘 = 0 describes a spacetime with conserved enery-momentum density. 

This manifold has received a great deal of attention and is studied in considerable detail by many 
authors [31, 32, 33, 34, 35]. Motivated by the above studies, in the present, we examine the properties of 
Z-tensor on (𝑃𝑃𝐶𝐶𝑅𝑅𝑆𝑆)4 spacetime. 

 

 
3. Z-tensor on (𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷)𝒏𝒏 
 

In this section, we consider a manifold (𝑃𝑃𝐶𝐶𝑅𝑅𝑆𝑆)𝑛𝑛 with the Z-tensor. 

In local coordinates, from (4) and (12), the relation between the Z-tensor and the concircular Ricci 
symmetric tensor is found as 

  𝑍𝑍𝑖𝑖𝑗𝑗 = 𝑃𝑃𝑖𝑖𝑗𝑗 + (𝑟𝑟
𝑛𝑛

+ 𝜙𝜙)𝑔𝑔𝑖𝑖𝑗𝑗 .                (15) 
 

The covariant derivative of (15) can be obtained as follows 

  𝑍𝑍𝑖𝑖𝑗𝑗,𝑘𝑘 = 𝑃𝑃𝑖𝑖𝑗𝑗,𝑘𝑘 + (𝑟𝑟,𝑘𝑘
𝑛𝑛

+ 𝜙𝜙𝑘𝑘)𝑔𝑔𝑖𝑖𝑗𝑗 .                (16) 
 

Let us consider an n-dimensional pseudo concircular Ricci symmetric manifold. Hence, we have 
from (5) 

  𝑃𝑃𝑖𝑖𝑗𝑗,𝑘𝑘 = 2𝐴𝐴𝑘𝑘𝑃𝑃𝑖𝑖𝑗𝑗 + 𝐴𝐴𝑖𝑖𝑃𝑃𝑘𝑘𝑗𝑗 + 𝐴𝐴𝑗𝑗𝑃𝑃𝑖𝑖𝑘𝑘.                (17) 
 

Then using (17), the expression (16) can be written as 

  𝑍𝑍𝑖𝑖𝑗𝑗,𝑘𝑘 = 2𝐴𝐴𝑘𝑘𝑃𝑃𝑖𝑖𝑗𝑗 + 𝐴𝐴𝑖𝑖𝑃𝑃𝑘𝑘𝑗𝑗 + 𝐴𝐴𝑗𝑗𝑃𝑃𝑖𝑖𝑘𝑘 + (𝑟𝑟,𝑘𝑘
𝑛𝑛

+ 𝜙𝜙𝑘𝑘)𝑔𝑔𝑖𝑖𝑗𝑗 .                (18) 
 

By the aid of (4), (18) reduces to 
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  𝑍𝑍𝑖𝑖𝑗𝑗,𝑘𝑘 = 2𝐴𝐴𝑘𝑘𝑆𝑆𝑖𝑖𝑗𝑗 + 𝐴𝐴𝑖𝑖𝑆𝑆𝑘𝑘𝑗𝑗 + 𝐴𝐴𝑗𝑗𝑆𝑆𝑖𝑖𝑘𝑘 −
𝑟𝑟
𝑛𝑛

(2𝐴𝐴𝑘𝑘𝑔𝑔𝑖𝑖𝑗𝑗 + 𝐴𝐴𝑖𝑖𝑔𝑔𝑘𝑘𝑗𝑗 + 𝐴𝐴𝑗𝑗𝑔𝑔𝑖𝑖𝑘𝑘) + (𝑟𝑟,𝑘𝑘
𝑛𝑛

+ 𝜙𝜙𝑘𝑘)𝑔𝑔𝑖𝑖𝑗𝑗           (19) 
 

Differentiating the equation (12) then we get 

  𝑍𝑍𝑖𝑖𝑗𝑗,𝑘𝑘 = 𝑆𝑆𝑖𝑖𝑗𝑗,𝑘𝑘 + 𝜙𝜙𝑘𝑘𝑔𝑔𝑖𝑖𝑗𝑗 .                (20) 
 

Multiplying the equation (20) by 𝑔𝑔𝑖𝑖𝑘𝑘, (20) transforms into 

  𝑍𝑍𝑗𝑗,𝑘𝑘
𝑘𝑘 = 𝑆𝑆𝑗𝑗,𝑘𝑘

𝑘𝑘 + 𝜙𝜙𝑗𝑗 .                (21) 
 

Now, let us assume that the Z-tensor is divergence-free. Thus, from (21), we find 

  𝑆𝑆𝑗𝑗,𝑘𝑘
𝑘𝑘 = −𝜙𝜙𝑗𝑗 . (22) 

 

Considering the Ricci identity 𝑆𝑆𝑗𝑗,𝑘𝑘
𝑘𝑘 = 1

2
𝑟𝑟,𝑗𝑗, we get from (22) 

  𝑟𝑟,𝑗𝑗 = −2𝜙𝜙𝑗𝑗 . (23) 
 

On the other hand, if we multiply the equation (19) by 𝑔𝑔𝑖𝑖𝑘𝑘 and if we assume that the Z-tensor is 
divergence-free then we obtain 

  𝐴𝐴𝑖𝑖𝑆𝑆𝑖𝑖𝑗𝑗 = 𝑟𝑟
𝑛𝑛
𝐴𝐴𝑗𝑗 −

1
3

(𝑟𝑟,𝑗𝑗

𝑛𝑛
+ 𝜙𝜙𝑗𝑗). (24) 

 

Putting (23) in (24), the equation (24) reduces to 

  𝐴𝐴𝑖𝑖𝑆𝑆𝑖𝑖𝑗𝑗 = 𝑟𝑟
𝑛𝑛
𝐴𝐴𝑗𝑗 + (2−𝑛𝑛)

3𝑛𝑛
𝜙𝜙𝑗𝑗 . (25) 

 

In the next section, we consider spacetimes with the property (25). 
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4. Perfect Fluid (𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷)𝟒𝟒 Spacetime with Z-Tensor 
 

Now, we consider a perfect fluid (𝑃𝑃𝐶𝐶𝑅𝑅𝑆𝑆)4  spacetime with the Z-tensor. To find a model of 
universe, Einstein obtained the field equations of general relativity. The universe on a large scale shows 
isotropy and homogeneity and the matter contents of the universe(stars, galaxies, nebulas, etc.) can be 
assumed to be that of a perfect fluid. Let us consider the Einstein’s field equation without the 
cosmological constant  given by  

  𝑆𝑆(𝑋𝑋,𝑌𝑌) − 𝑟𝑟
2
𝑔𝑔(𝑋𝑋,𝑌𝑌) = 𝑘𝑘𝑇𝑇(𝑋𝑋,𝑌𝑌),  (26) 

 

where S, r, T, k denote the Ricci tensor, the scalar curvature, the energy momentum tensor and 
gravitational constant, respectively. 

The energy momentum tensor T of a perfect fluid is given by [36] 

  𝑇𝑇(𝑋𝑋,𝑌𝑌) = (𝜎𝜎 + 𝑒𝑒)𝐴𝐴(𝑋𝑋)𝐴𝐴(𝑌𝑌) + 𝑒𝑒𝑔𝑔(𝑋𝑋,𝑌𝑌),  (27) 
 

where 𝜎𝜎 is the energy density, p is the isotropic pressure, 𝑔𝑔(𝑋𝑋,𝜌𝜌) = 𝐴𝐴(𝑋𝑋) and 𝜌𝜌 is a unit timelike vector 
field.  

Now, if we compare the equations (26) and (27) then we find 

  𝑆𝑆𝑖𝑖𝑗𝑗 = 𝑘𝑘(𝜎𝜎 + 𝑒𝑒)𝐴𝐴𝑖𝑖𝐴𝐴𝑗𝑗 + (𝑘𝑘𝑒𝑒 + 𝑟𝑟
2
)𝑔𝑔𝑖𝑖𝑗𝑗 .  (28) 

 

From (28), we get 

  𝑟𝑟 = 𝑘𝑘(𝜎𝜎 − 3𝑒𝑒). (29) 
 

Thus, putting (29) in (28), it can be found that 

  𝑆𝑆𝑖𝑖𝑗𝑗 = 𝑘𝑘(𝜎𝜎 + 𝑒𝑒)𝐴𝐴𝑖𝑖𝐴𝐴𝑗𝑗 + 𝑘𝑘
2

(𝜎𝜎 − 𝑒𝑒)𝑔𝑔𝑖𝑖𝑗𝑗 . (30) 
 

For a perfect fluid spacetime (𝑃𝑃𝐶𝐶𝑅𝑅𝑆𝑆)4 admitting divergence-free Z-tensor, we get from (25) 

  𝐴𝐴𝑖𝑖𝑆𝑆𝑖𝑖𝑗𝑗 = 𝑟𝑟
4
𝐴𝐴𝑗𝑗 −

1
6
𝜙𝜙𝑗𝑗 . (31) 
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On the other hand, multiplying (30) by 𝐴𝐴𝑖𝑖, it can be obtained that 

  𝐴𝐴𝑖𝑖𝑆𝑆𝑖𝑖𝑗𝑗 = −𝑘𝑘
2

(𝜎𝜎 + 3𝑒𝑒)𝐴𝐴𝑗𝑗 . (32) 
 

Thus, comparing the equations (29), (31) and (32), we find 

  𝜙𝜙𝑗𝑗 = 9𝑘𝑘
2

(𝜎𝜎 + 𝑒𝑒)𝐴𝐴𝑗𝑗 . (33) 
 

Hence, we have the following theorem: 

Theorem 1.  In a perfect fluid (𝑃𝑃𝐶𝐶𝑅𝑅𝑆𝑆)4 spacetime with divergence-free Z-tensor, the associated 
vector fields 𝐴𝐴𝑗𝑗 and 𝜙𝜙𝑗𝑗 are parallel and the relation between them is  

 𝜙𝜙𝑗𝑗 = 9𝑘𝑘
2

(𝜎𝜎 + 𝑒𝑒)𝐴𝐴𝑗𝑗 . 

Now, differentiating the equation (26), it can be found 

  𝑘𝑘𝑇𝑇𝑖𝑖𝑗𝑗,𝑘𝑘 = 𝑆𝑆𝑖𝑖𝑗𝑗,𝑘𝑘 −
𝑟𝑟,𝑙𝑙
2
𝑔𝑔𝑖𝑖𝑗𝑗 . (34) 

 

Hence, multiplying (34) by 𝑔𝑔𝑖𝑖𝑗𝑗, we get 

  𝑇𝑇,𝑘𝑘 = − 1
𝑘𝑘
𝑟𝑟,𝑘𝑘 . (35) 

 

         Comparing (23) and (35), we find 

  𝑇𝑇,𝑘𝑘 = 2
𝑘𝑘
𝜙𝜙𝑘𝑘 . (36) 

 

If we differentiate (36) then 

  𝑇𝑇,𝑘𝑘𝑙𝑙 = 2
𝑘𝑘
𝜙𝜙𝑘𝑘,𝑙𝑙. (37) 

 

Now, we assume that 𝜙𝜙𝑘𝑘 is a torse-forming vector field. Then from (6) and (37), we can find 
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  𝑇𝑇,𝑘𝑘𝑙𝑙 = 2
𝑘𝑘

(𝛼𝛼𝑔𝑔𝑘𝑘𝑙𝑙 + 𝛾𝛾𝑙𝑙𝜙𝜙𝑘𝑘). (38) 
 

𝜙𝜙𝑘𝑘 is a vector field generated by 𝜙𝜙 with the condition 𝜙𝜙𝑘𝑘𝜙𝜙𝑘𝑘 = −1 in this spacetime, 𝛼𝛼 is a scalar 
function and 𝛾𝛾𝑙𝑙 is a vector field. Thus, by the aid of (6), 

𝜙𝜙𝑘𝑘𝜙𝜙𝑘𝑘,𝑙𝑙 = 0 = 𝛼𝛼𝜙𝜙𝑙𝑙 − 𝛾𝛾𝑙𝑙. 

Then 

  𝛾𝛾𝑙𝑙 = 𝛼𝛼𝜙𝜙𝑙𝑙. (39) 
 

If we put (39) in (38), we get 

  𝑇𝑇,𝑘𝑘𝑙𝑙 = 2𝛼𝛼
𝑘𝑘

(𝑔𝑔𝑘𝑘𝑙𝑙 + 𝜙𝜙𝑙𝑙𝜙𝜙𝑘𝑘). (40) 
 

Multiplying (40) by 𝑔𝑔𝑘𝑘𝑙𝑙, 

  Δ𝑇𝑇 = 𝑔𝑔𝑘𝑘𝑙𝑙𝑇𝑇,𝑘𝑘𝑙𝑙 = 6𝛼𝛼
𝑘𝑘

(41) 
 

Thus, we have the following theorem: 

 

Theorem 2.  In a perfect fluid (𝑃𝑃𝐶𝐶𝑅𝑅𝑆𝑆)4 spacetime admitting divergence-free Z-tensor if the 
associated vector field 𝜙𝜙𝑘𝑘 is torse-forming then the Laplacian of the trace function of the energy 
momentum tensor is found as  

 𝛥𝛥𝑇𝑇 = 6𝛼𝛼
𝑘𝑘

 

where 𝛼𝛼 is a scalar function, k is the gravitational constant.  

 

Corollary 2.1.  In a perfect fluid (𝑃𝑃𝐶𝐶𝑅𝑅𝑆𝑆)4 spacetime admitting divergence-free Z-tensor if the 
associated vector field 𝜙𝜙𝑘𝑘 is torse-forming then the trace function of the energy momentum tensor cannot 
be harmonic.  
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Proof. If we assume that T is harmonic then from (41) we find 𝛼𝛼 = 0. Thus, we cannot define a 
torse-forming vector field such as (6). This completes the proof.  

 

Now, assume that 𝜙𝜙𝑘𝑘 is 𝜙𝜙(𝑅𝑅𝑖𝑖𝑐𝑐) vector field. Then, from (11), we have 

  𝜙𝜙𝑘𝑘,𝑙𝑙 = 𝜇𝜇𝑆𝑆𝑘𝑘𝑙𝑙 (42) 
 

where 𝜇𝜇 is a scalar function. 

Multiplying (42) by 𝜙𝜙𝑘𝑘, and remembering that 𝜙𝜙𝑘𝑘𝜙𝜙𝑘𝑘,𝑙𝑙 = 0, we get 

  𝜇𝜇𝑆𝑆𝑘𝑘𝑙𝑙𝜙𝜙𝑘𝑘 = 0. (43) 
 

Since 𝜇𝜇 ≠ 0 then one can obtain 

  𝑆𝑆𝑘𝑘𝑙𝑙𝜙𝜙𝑘𝑘 = 0. (44) 
 

On the other hand, multiplying (30) by 𝜙𝜙𝑘𝑘, we find 

  𝑆𝑆𝑘𝑘𝑙𝑙𝜙𝜙𝑘𝑘 = 𝑘𝑘(𝜎𝜎 + 𝑒𝑒)𝐴𝐴𝑘𝑘𝐴𝐴𝑙𝑙𝜙𝜙𝑘𝑘 + 𝑘𝑘
2

(𝜎𝜎 − 𝑒𝑒)𝜙𝜙𝑙𝑙. (45) 
 

If we put (44) in (45) then one can get 

  𝑘𝑘(𝜎𝜎 + 𝑒𝑒)𝐴𝐴𝑘𝑘𝐴𝐴𝑙𝑙𝜙𝜙𝑘𝑘 + 𝑘𝑘
2

(𝜎𝜎 − 𝑒𝑒)𝜙𝜙𝑙𝑙 = 0. (46) 
 

Now, multiplying (46) by 𝐴𝐴𝑙𝑙, we obtain 

  𝐴𝐴𝑘𝑘𝜙𝜙𝑘𝑘(𝜎𝜎 + 3𝑒𝑒) = 0. (47) 
 

We know from (33) that 𝐴𝐴𝑘𝑘 is parallel to 𝜙𝜙𝑘𝑘. Thus, 𝐴𝐴𝑘𝑘𝜙𝜙𝑘𝑘 ≠ 0. Finally, we get 

  𝜎𝜎 = −3𝑒𝑒. (48) 
 

In this case, by putting the condition (48) in (30), the Ricci tensor reduces to 
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  𝑆𝑆𝑖𝑖𝑗𝑗 = −2𝑘𝑘𝑒𝑒(𝐴𝐴𝑖𝑖𝐴𝐴𝑗𝑗 + 𝑔𝑔𝑖𝑖𝑗𝑗). (49) 
 

Hence, we have the following theorem: 

 

Theorem 3.  In a perfect fluid (𝑃𝑃𝐶𝐶𝑅𝑅𝑆𝑆)4 spacetime admitting divergence-free Z-tensor if the 
associated vector field 𝜙𝜙𝑘𝑘 is 𝜙𝜙(𝑅𝑅𝑖𝑖𝑐𝑐) then the Ricci tensor of this spacetime is in the following form  

 𝑆𝑆𝑖𝑖𝑗𝑗 = −2𝑘𝑘𝑒𝑒(𝐴𝐴𝑖𝑖𝐴𝐴𝑗𝑗 + 𝑔𝑔𝑖𝑖𝑗𝑗). 

 

Now, by using (48) in (27), we get 

  𝑇𝑇𝑖𝑖𝑗𝑗 = 𝑒𝑒(−2𝐴𝐴𝑖𝑖𝐴𝐴𝑗𝑗 + 𝑔𝑔𝑖𝑖𝑗𝑗). (50) 
 

Multiplying (50) by 𝐴𝐴𝑖𝑖, we find 

  𝐴𝐴𝑖𝑖𝑇𝑇𝑖𝑖𝑗𝑗 = 3𝑒𝑒𝐴𝐴𝑗𝑗 . (51) 
 

Hence, we have the following theorem: 

 

Theorem 4.  In a perfect fluid (𝑃𝑃𝐶𝐶𝑅𝑅𝑆𝑆)4 spacetime admitting divergence-free Z-tensor if the 
vector field 𝜙𝜙𝑘𝑘 is 𝜙𝜙(𝑅𝑅𝑖𝑖𝑐𝑐) then 3𝑒𝑒 is an eigenvalue of the energy-momentum tensor 𝑇𝑇𝑖𝑖𝑗𝑗 corresponding to 
the eigenvector 𝜌𝜌 where 𝑔𝑔(𝑋𝑋,𝜌𝜌) = 𝐴𝐴(𝑋𝑋).  

 

Now, if we use (42) in (37), we obtain 

  𝑇𝑇,𝑘𝑘𝑙𝑙 = 2𝜇𝜇
𝑘𝑘
𝑆𝑆𝑘𝑘𝑙𝑙. (52) 

 

Multiplying (52) by 𝑔𝑔𝑘𝑘𝑙𝑙, the Laplacian of the trace function of the energy-momentum tensor is 
found as from (29) and (48) 
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  𝑔𝑔𝑘𝑘𝑙𝑙𝑇𝑇,𝑘𝑘𝑙𝑙 = Δ𝑇𝑇 = −12𝜇𝜇𝑒𝑒,    (𝜇𝜇 ≠ 0). (53) 
 

Thus, we have the following theorem: 

Theorem 5.  In a perfect fluid (𝑃𝑃𝐶𝐶𝑅𝑅𝑆𝑆)4 spacetime admitting divergence-free Z-tensor if the 
vector field 𝜙𝜙𝑘𝑘 is 𝜙𝜙(𝑅𝑅𝑖𝑖𝑐𝑐) then the trace function of the energy-momentum tensor is proportional with the 
isotropic pressure and the relation between them is  

 Δ𝑇𝑇 = −12𝜇𝜇𝑒𝑒,    (𝜇𝜇 ≠ 0) 

where p is the isotropic pressure and 𝜇𝜇 is constant. 

Corollary 5.1.  In a perfect fluid (𝑃𝑃𝐶𝐶𝑅𝑅𝑆𝑆)4 spacetime admitting divergence-free Z-tensor if the 
vector field 𝜙𝜙𝑘𝑘 is 𝜙𝜙(𝑅𝑅𝑖𝑖𝑐𝑐) then the trace function of the energy-momentum tensor cannot be harmonic.  

Proof. From (53), if Δ𝑇𝑇 = 0 then 𝑒𝑒 must be zero since (𝜇𝜇 ≠ 0). If 𝑒𝑒 = 0 then from (48), 𝜎𝜎 = 0. In 
this case, 𝑆𝑆𝑖𝑖𝑗𝑗 = 0. So, the trace function of the energy-momentum tensor cannot be harmonic. Thus, the 
proof is completed.  

 

 

 
5. References 
 
1. Cartan, E. 1926.  Surune classe remarquable d’ espaces de Riemannian,   Bull.Soc.Math.France,  54,  

214-264. 

2. Chaki, M.C., Gupta, B. 1963. On conformally symmetric spaces, Indian J. Math.,  5,  113-122. 

3. Walker, A.G. 1951.  On Ruse’ s space of recurrent curvature,   Proc. London Math. Soc,  52, 36-64. 

4. Adati, T., Miyazawa,T. 1967. On a Riemannian space with recurrent conformal curvature, Tensor 

(N.S),  18,  348-354. 

5. Chaki, M.C. 1987.  On pseudo symmetric manifolds,   An. Stiint. Univ. "Al. I. Cuza"Iasi,  33,  53-58. 

6. Deszcz, R. 1992.  On pseudosymmetric spaces,   Bull. Belg. Math. Soc., Series A,  44,  1-34. 

7. Szabo, Z.I. 1982.  Structure theorems on Riemannian spaces satisfying R(X, Y )R = 0. The local 

version,   J. Diff. Geom.,  17, 531-582. 

537



 
5th INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 
1-3 December 2021, Istanbul, Turkey 

 

 
ICOM 2021 

ISTANBUL / TURKEY 

8. Selberg, A. 1956. Harmonic analysis and discontinuous groups in weakly symmetric Riemannian 

spaces with applications to Dirichlet series,   Indian Math. Soc.,  20,  47-87. 

9. Chaki, M.C. 1988.  On pseudo Ricci symmetric manifolds,   Bulg. J. Phys.,  15,  526-531. 

10. Tamassy, L., Binh, T.Q. 1989.  On weakly symmetric and weakly projectively symmetric Riemannian 

manifolds,   Colloq. Math. Soc. Janos Balyai,  56,  663-670. 

11. Chaki, M.C., Koley, S. 1993.  On generalized pseudo Ricci symmetric manifolds,   Persodica Math. 

Hung.,  28(2), 123-129. 

12. De, U.C., Gazi, A.K. 2012.  On pseudo Ricci symmetric manifolds,   An. Stiint. Univ. Al. I. Cuza Iasi 

Mat. (N.S.) , Tom. LVIII, f.1 209-222. 

13. Altay Demirbag, S. 2014.  Generalized pseudo Ricci symmetric manifolds with semi-symmetric 
metric connection,   Kawait J. Sci.,  41(3),  81-101. 

14. Özen, F., Altay, S. 2001.  On weakly and pseudo symmetric Riemannian spaces,   Indian J. Pure 
Appl. Math.,  33(10), 1477-1488. 

15. Patterson, E.M. 1952.  Some theorems on Ricci-recurrent spaces,   J. Lond. Math. Soc.,  27, 287-295. 

16. De, U.C.,  Guha, N., Kamilya, D. 1995  On generalized Ricci-recurrent manifolds,   Tensor (N.S),  56,  

312-317. 

17. Kuhnel, W. 1988. Conformal transformations between Einstein spaces,   Conformal Geometry (Bonn, 

1985(1986)), 105-146, Aspects Math., E12, Vieweg, Braunschweig. 

18. Yano, K. 1940.  Concircular geometry I, Concircular transformations,   Proc. Imp. Acad. Tokyo,  16, 

195-200. 

19. Yano, K., Bochner, S. 1953.  Curvature and Betti numbers,   Annals of Mathematics Studies 32, 

Princeton University Press. 

20. De, U.C., Tarafdar, M. 1992.  On pseudo concircular symmetric manifolds,   Bull. Cal. Math. Soc.,  

84, 77-80. 

21. De, U.C., Ghosh, G.C. 2005.  On weakly concircular Ricci symmetric manifolds,   South East Asian 

J. Math. and Math. Sci.,  3(2),  9-15. 

22. Caristi, G., Ferrara, M. 2001.  On torse-forming vector valued 1-forms,   Differ. Geom. Dyn. Syst.,  

3(2), 13-16. 

23. Yano, K. 1944.  On Torse Forming Directions in Riemannian Spaces,   Proc. Imp. Acad., Tokyo,  20,  

340-345. 

538



 
5th INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 
1-3 December 2021, Istanbul, Turkey 

 

 
ICOM 2021 

ISTANBUL / TURKEY 

24. Mikesh, J., Chodorova, M. 2010.  On concircular and torse-forming vector fields on compact 
manifolds,   Acta Math. Acad. Paedogog. Nyhazi. (N.S.),  26, 329-335. 

25. Hinterleitner, İ., Kiosak, V.A. 2008.  ϕ({Ric})-vector fields in Riemannian spaces,   Archivum 

Mathematicum,  44(5),  385-390. 

26. Besse, A.L. 1987.  Einstein Manifolds,   Springer. 

27. Mishra, R.S. 1984.  Structures on a differentiable manifold and their applications,   Chandroma 

Prakoshan, Allahabad. 

28. Derdzinski, A., Shen, C.L. 1983. Codazzi tensor fields, curvature and Pontryagin forms,   Proc. Lond. 

Math. Soc.,  47,  15-26. 

29. Roter, W. 1987.  On a generalization of conformally symmetric metrics,   Tensor (NS),  46,  278-286. 

30. de Felice, F., Clarke, C.J.S. 1990.  Relativity on curved manifolds,   Cambridge University Press. 

31. De, U.C., Mantica, C.A., Suh, Y.J. 2015.  On weakly cyclic Z symmetric manifolds,   Acta Math. 
Hungar.,  146(1), 153-167. 

32. De, U.C., Pal, P. 2014.  On almost pseudo-Z-symmetric manifolds,   Acta Univ. Palacki., Fac. rer. 

nat., Mathematica,  53(1),  25-43. 

33. Mantica, C.A., Molinari, L.G. 2012.  Weakly Z symmetric manifolds,   Acta Math. Hungar.,  135, 80-

96. 

34. Mantica, C.A., Suh, Y.J. 2012.  Pseudo Z symmetric riemannian manifolds with harmonic curvature 

tensors,   Int. J. Geom. Meth. Mod. Phys.,  9(1), 1250004 1–21. 

35. Mantica, C.A., Suh, Y.J. 2012.  Recurrent Z forms on Riemannian and Kaehler manifolds,   Int. J. 

Geom. Meth. Mod. Phys.,  9, 1250059 1–26. 

36. O’ Neill, B. 1983.  Semi-Riemannian Geometry with Applications to the Relativity,   Academic Press, 

New York-London. 

 

539



 

5th INTERNATIONAL CONFERENCE ON MATHEMATICS 

“An Istanbul Meeting for World Mathematicians” 

1-3 December 2021, Istanbul, Turkey 

 

 

ICOM 2021 

ISTANBUL / TURKEY 

The strong  versions  of  the order-McShane and Henstock integrals in Rıesz space 

Mimoza Shkëmbi1 , John Shkëmbi2 

1 Department of Mathematics,  University of Elbasan, Albania, 
            2 Department of  Electrical  Engineering  and Computer Science,USMA,West Point, U.S.A. 

E-mail(s): mimoza-sefa@yahoo.com, jshkembi14@gmail.com  

 

 

Abstract 

In this article we consider a strong versions of  the order-McShane (Henstock)  integral on Banach lattice. 

We define the property 𝑜(𝑆∗M), 𝑜(𝑆∗H)  and we compare  the order type integrals, showing that order - 

strongly type integrals  respect almost everywhere equality  for   order- bounded functions. Another 

interesting difference is that  the order- strong  McShane integrability of a function imply that it has the 

property 𝑜(𝑆∗M),but this condition cannot be used for the order-strong Henstock integrability and the 

property 𝑜(𝑆∗H). 

 

Keyword(s) Riesz space,   (o)-strongy Henstock integral,  (o)- strongly Mcshane integral. 

 

 

1. Introduction and preliminaries  

Recently, there are many papers paying attention to the integration in Riesz space. There are introduced  

and studied the notions of order-type integrals, for functions taking their values in ordered vector spaces, 

and in Banach lattices. In particular we can see [3], [7], [11], [10], [9], [5], [4], [8] [12]. We are affected 

from the works of  Candeloro and Sambucini [6] as well as Boccuto et al.[1-2] about order –type integrals. 

In this article we consider a strong versions of  the order-McShane (Henstock)  integral on Banach lattice. 

We define the property o(𝑆∗M), 𝑜(𝑆∗H)  and we compare  the order type integrals, showing that  order -

strongly type integrals  respect almost everywhere equality  for order- bounded functions. Another 

interesting difference is that  the order-strong  McShane integrability of a function imply that it has the 

property o(𝑆∗M) but this condition cannot be used for the order- strong Henstock integrability and the 

property o(𝑆∗H). 

From now on, T will denote a compact metric space, and μ: 𝔅 → ℝ0
+ any regular, nonatomic 𝜎-additive 

measure on the 𝜎-algebra 𝔅 of Borel subsets of T. 

  

A sequence (𝑟𝑛)𝑛 is said to be order-convergent (or (o)-convergent ) to r, if there exists a sequence (𝑝𝑛)𝑛 ∈

𝑅, such that 𝑝𝑛 ↓ 0 and |𝑟𝑛 − 𝑟| ≤ 𝑝𝑛, ∀ 𝑛 ∈ ℕ. 

(see also [4], [10]), and we will write(𝑜) lim 𝑟𝑛 = 𝑟.𝑛  
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A gage is any map 𝛾: 𝑇 → ℝ+. A partition 𝛱 of T is a finite family 𝛱 = {(𝐸𝑖, 𝑡𝑖): 𝑖 = 1, … . , 𝑘} of pairs 

such that the sets 𝐸𝑖 are pairwise disjoint sets whose union is T and the points 𝑡𝑖 are called tags. If all tags 

satisfy the condition 𝑡𝑖 ∈ 𝐸𝑖  then the partition is said to be of Henstock type, or a Henstock partition. 

Otherwise, if 𝑡𝑖 is not necessary  to be in 𝐸𝑖, we say that it is a free or McShane partition. 

Given a gage  𝛾, we say that  𝛱 is 𝛾-fine if d(𝑤, 𝑡𝑖) < 𝛾(𝑡𝑖) for every w ∈ 𝐸𝑖 and i = 1, . . . ,k. Clearly, a 

gage 𝛾 can also be defined as a mapping associating with each point 𝑡𝑖 ∈ T an open ball centered at  𝑡𝑖and 

cover 𝐸𝑖. 

Let us assume now that X is any Banach lattice with an order-continuous norm. For the sake of completeness 

we recall the main notions of integral we are interested in. 

Definition 1.1. 

A function 𝑓: 𝑇 → 𝑋 is called (o)- McShane integrable ((oH)-integrable) and 𝐽 ∈ 𝑋 is its (o)-McShane 

integral ((oH)-integral) if for every  (o)- sequence (𝑏𝑛)𝑛 in X, there is a corresponding sequence (𝛾𝑛)𝑛of 

gauges (𝛾𝑛(𝑡): 𝑇 → ]0, +∞[ such that for every n and (𝛾𝑛) -fine M-partition (H-partition) {(𝐸𝑖, 𝑡𝑖), 𝑖 =

1, … , 𝑝} of T  holds the inequality 

 

|𝜎(𝑓, 𝛱) − 𝐽| ≤ 𝑏𝑛.   (1) 

 Where 𝜎(𝑓, Π) = ∑ 𝑓(𝑡𝑖)
𝑝
𝑖=1 μ(𝐸𝑖). We denote  

𝐽 = (𝑜𝑀) ∫ 𝑓
𝑇

. 

respectively 

     𝐽 = (𝑜𝐻) ∫ 𝑓
𝑇

. 

 

Proposition1.2. 

 Let   𝑓, 𝑔: 𝑇 →  𝑋 be two bounded maps, such that  𝑓 =  𝑔  𝜇 −almost everywhere in T.  Then 𝑓 is  (𝑜𝑀)-  

integrable if and only if g is (𝑜𝑀)- integrable, and the integral is the same. 

Proof. Let use denote by  M any majorant for  |𝑓| and  |𝑔|. Assume that 𝑓 is   (𝑜𝑀)-i integrable. 

Let   𝑁 = {𝜏 ∈ 𝑇: 𝜑(𝜏) ≠ 0} 

and  

    𝑁𝑖 = {𝜏 ∈ 𝑁,
2𝑀

𝑛
𝑖 < 𝜑 ≤

2𝑀

𝑛
(𝑖 + 1)}. 

Since 𝜇(𝑁) = 0 , we have also 𝜇(𝑁𝑖) ≤
𝑏

𝑛
 ,  and pick any open set 𝐺𝑖and  𝜇(𝐺𝑖) <

1

𝑛
.  

Define a gauge  
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𝛿𝑛(𝜏) = {
𝛾𝑛(𝜏)                                                         𝑝ë𝑟 𝜏 ∈ 𝑇 ∖ 𝑁

𝛾𝑛 (𝜏) 𝑖 𝑡𝑖𝑙𝑙ë                   𝑝ë𝑟 𝜏 ∈ 𝑁𝑖: ]𝜏 − 𝛾𝑛 (𝜏), 𝜏 + 𝛾𝑛 (𝜏)[ ⊂ 𝐺𝑖
 

 Let as fix any tagged 𝛿𝑛-fine partition  Π: (𝐸𝑖, 𝜏𝑖)i  and we remark the following facts : 

∣ 𝜎(𝑓, 𝛱) − 𝐽 ∣≤ 𝑏𝑛 

 𝜎(𝑓, 𝛱) = ∑ 𝑓(𝜏𝑖)𝜏𝑖∈ 𝑁 𝜇 (𝐸𝑖) + ∑ 𝑓(𝜏𝑖)𝜏𝑖∉ 𝑁 𝜇 (𝐸𝑖), 

𝜎(𝑔, 𝛱) = ∑ 𝑔(𝜏𝑖)𝜏𝑖∈𝑁 𝜇 (𝐸𝑖) + ∑ 𝑔(𝜏𝑖)𝜏𝑖∉𝑁 𝜇 (𝐸𝑖), 

And   

  Sup {∑ ∣ 𝑓(𝜏𝑖) ∣𝜏𝑖∈𝑁 𝜇 (𝐸𝑖), ∑ ∣ 𝑔(𝜏𝑖) ∣𝜏𝑖∈𝑁 𝜇 (𝐸𝑖)} ≤
𝑀

𝑛
, 

While  

 ∑ 𝑓(𝜏𝑖)𝜏𝑖∉𝑁 𝜇 (𝐸𝑖) = ∑ 𝑔(𝜏𝑖)𝜏𝑖∉𝑁 𝜇 (𝐸𝑖). 

So,we deduce : 

 ∣ 𝜎(𝑔, 𝛱) − 𝐽 ∣≤ |∑ 𝑓(𝜏𝑖)𝜏𝑖∉𝑁 𝜇 (𝐸𝑖) − 𝐽 ∣ + ∑ ∣ 𝑔(𝜏𝑖) ∣𝜏𝑖∈𝑁 𝜇 (𝐸𝑖) ≤ 

 ≤∣ 𝜎(𝑓, 𝛱) − 𝐽 ∣ + ∑ ∣ 𝑓(𝜏𝑖) ∣𝜏𝑖∈𝑁 𝜇 (𝐸𝑖) + ∑ ∣ 𝑔(𝜏𝑖) ∣𝜏𝑖∈𝑁 𝜇(𝐸𝑖) ≤ 𝑏𝑛 + 2
𝑀

𝑛
  

 ∣ 𝜎(𝜑, 𝛱) − 𝐽 ∣≤∣ 𝜎(𝑓, 𝛱) − 𝐽 ∣ +∣ 𝜎(𝑔, 𝛱) − 𝐽 ∣≤ 𝑏𝑛 + 𝑏𝑛 + 2
𝑀

𝑛
= 2 (𝑏𝑛 +

𝑀

𝑛
). 

 So  2(𝑏𝑛 + 𝑀𝑛−1)𝑛 and  (𝛿𝑛 )𝑛 are respectively the  (𝑜)-sequence and the corresponding sequence of 

gages proving that 𝜑 is  (𝑜𝑀)- i integrable with  integral 𝐽. Hence 𝜑 = 𝑓 − 𝑔: 𝑇 → 𝑋 is(𝑜)- McShane   

integrable and (𝑜𝑀) ∫ 𝜑 = 0
𝑇

 and 𝑓 = 𝑔 𝜇 −almost everywhere in T. 

Definition 1.3 

A function  𝑓: 𝑇 → 𝑋 is said to be  (𝑜)- strongly McShane (Henstock-Kurzweil)  integrable on 𝑇  if  there 

is an additive function : P(𝑇) → X such that for every  (𝑜)- sequence (𝑏𝑛)𝑛  in X, there is a corresponding 

sequence     (𝛾𝑛)𝑛, of gauges 𝛾𝑛: 𝑇 → ]0, +∞[ such that for every n and (𝛾𝑛) -fine  M-partition (H-partition) 

{(𝐸𝑖, 𝑡𝑖), 𝑖 = 1, … , 𝑝} of T  holds the inequality 

∑  |𝑓(𝑡𝑖)𝜇(𝐸𝑖) − 𝐹(𝐸𝑖)|𝑘
𝑖=1  ≤ 𝑏𝑛 (2) 

Denote by o(𝑆𝑀) o(𝑆𝐻)  the set of functions 𝑓: 𝑇 → 𝑋  which  are (𝑜)-strongly McShane (Henstock-

Kurzweil)  integrable on 𝑇 . 

Theorem 1.4 

If for  𝑓: 𝑇 → 𝑋   we have 𝑓 = 0 almost everywhere in 𝑇 then is (𝑜)- strongly McShane integrable and 

consequently also (𝑜)-strongly -Henstock-Kurzweil integrable. 

Proof. By Theorem 1.2 the real function 𝑓: |𝑇| → ℝ   is (𝑜)-McShane integrable and (𝑜𝑀) ∫ |𝑓(𝑡𝑖)| = 0
𝑇

. 
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This means that  for every  (𝑜)- sequence (𝑏𝑛)𝑛  in X, there is a corresponding sequence     (𝛾𝑛)𝑛, of gauges 

𝛾𝑛: 𝑇 → ]0, +∞[ such that for every n and (𝛾𝑛) -fine  M-partition  {(𝐸𝑖, 𝑡𝑖), 𝑖 = 1, … , 𝑝} of T  holds the 

inequality 

∑  |𝑓(𝑡𝑖)𝜇(𝐸𝑖)|

𝑘

𝑖=1

=  ∑  |𝑓(𝑡𝑖)|𝜇(𝐸𝑖) ≤

𝑘

𝑖=1

𝑏𝑛 

And therefore 𝑓: 𝑇 → 𝑋    is (𝑜)-strongly McShane integrable with the additive function for 

every: 𝐹(𝐸) = 0  for every 𝐸 ∈ ℑ. 

Theorem 1.5. [6].  

Let 𝑓: 𝑇 → 𝑋 be any mapping. Then f is (𝑜)– Henstock integrable ( (o)- McShane integrable) if and only 

if there exist an (𝑜) –sequence (𝑏𝑛)𝑛 and a corresponding sequence (𝛾𝑛)𝑛 of gages, such that for every n, 

as soon as Π′′,Π′ are two -𝛾𝑛 fine Henstock (McShane) partitions, the following holds true:     

∣ 𝜎(𝑓, Π′′) − 𝜎(𝑓, Π′) ∣ ≤ 𝑏𝑛 (3) 

Lemma 1.6. (Saks-Henstock). 

Assume that  𝑓: 𝑇 → 𝑋  is (𝑜) – McShane integrable. Given (o) - sequence (𝑏𝑛)𝑛  assume that a  

corresponding sequence (𝛾𝑛)𝑛 of gauges (𝛾𝑛(𝑡): 𝑇 → ]0, +∞[ on T such that for every n 

and for every 𝛾𝑛-fine M- partition Π= {(𝐸𝑖, 𝑡𝑖): 𝑖 = 1, … . , 𝑘},  of T holds the inequality  

 

 |∑ 𝑓(𝑡𝑖)
𝑘
𝑖=1 𝜇(𝐸𝑖) − (𝑜𝐻) ∫ 𝑓

𝑇
| ≤ 𝑏𝑛 (4) 

 

 Then if {(𝐹𝑗 , 𝜏𝑗): 𝑗 = 1, … . , 𝑚} is an arbitrary 𝛾𝑛-fine M-system we have  

|∑ (𝑓(𝜏𝑗)𝑚
𝑗=1 𝜇(𝐹𝑗) − (𝑜𝐻) ∫ 𝑓)

𝐹𝑗
| ≤ 𝑏𝑛  (5) 

 

 

2. The property o(𝑺∗M)  o(𝑺∗H)    

Definition 2.1 

 A  function 𝑓: 𝑇 → 𝑋  has the property 𝑜(𝑆∗𝑀), 𝑜(𝑆∗𝐻) if for every (𝑜)- sequence(𝑏𝑛)𝑛 in X, there is a 

corresponding sequence  (𝛾𝑛)𝑛, of gauges 𝛾𝑛: 𝑇 → ]0, +∞[ such that for every n and (𝛾𝑛) -fine  M-partition 

(H-partition) {(𝐸𝑖, 𝑡𝑖), 𝑖 = 1, … , 𝑝}    and {(𝐿𝑗 , 𝑠𝑗), 𝑗 = 1, … 𝑙}   of T  holds the inequality 

 ∑ ∑ |𝑓(𝑡𝑖) − 𝑓(𝑠𝑗|𝑙
𝑗=1

𝑘
𝑖=1  𝜇(𝐸𝑖 ∩ 𝐿𝑗) ≤ 𝑏𝑛 (4) 
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Proposition 2.2. 

 If 𝑓: 𝑇 → 𝑋   has the property  o(𝑆∗𝑀)  then it has the property  o(𝑆∗𝐻). 

In general the inclusion o(𝑆∗𝑀)  ⊂ 𝑜 (𝑆∗𝐻) is proper ,i.e.for any infinite dimensional Banach lattices 𝑋 

there is a function 𝑓: 𝑇 → 𝑋   for which 𝑓 ∈ 𝑜(𝑆∗𝐻) but  𝑓 ∉ 𝑜(𝑆∗𝑀) 

 

Theorem 2.3 

If   a function 𝑓: 𝑇 → 𝑋  has the property  𝑜(𝑆∗𝑀) , 𝑜(𝑆∗𝐻) then 𝑓 is  𝑜𝑀 (𝑜𝐻 )– integrable. 

Proof. If {(𝐽𝑖, 𝑡𝑖), 𝑖 = 1, … 𝑘} and  {(𝐿𝑗 , 𝑠𝑗), 𝑗 = 1, … 𝑙} are (𝛾𝑛) -fine  M-partition (H-partition) of 𝑇 we 

have 

 𝜇(𝐽𝑖) = ∑  𝜇(𝐽𝑖 ∩ 𝐿𝑗)𝑙
𝑗=1  

and 

 𝜇(𝐿𝑗) = ∑  𝜇(𝐽𝑖 ∩ 𝐿𝑗)𝑘
𝑖=1  

Hence 

  |∑ 𝑓(𝑡𝑖)𝜇(𝐽𝑖)
𝑘
𝑖=1 − ∑ 𝑓(𝑠𝑗)𝜇(𝐿𝑗)𝑙

𝑗=1 | 

 = |∑ ∑ 𝑓(𝑡𝑖)𝜇𝑘
𝑖=1

𝑙
𝑗=1 (𝐽𝑖 ∩ 𝐿𝑗) − ∑ ∑ 𝑓(𝑠𝑗)𝜇𝑙

𝑗=1
𝑘
𝑖=1 (𝐽𝑖 ∩ 𝐿𝑗)| 

 

  = |∑ ∑ (𝑓(𝑡𝑖) − 𝑓(𝑠𝑗))𝜇𝑘
𝑖=1

𝑙
𝑗=1 (𝐽𝑖 ∩ 𝐿𝑗)| 

 

 ≤ ∑ ∑ |𝑓(𝑡𝑖) − 𝑓(𝑠𝑗)|𝜇𝑘
𝑖=1

𝑙
𝑗=1 (𝐽𝑖 ∩ 𝐿𝑗) ≤ 𝑏𝑛. 

 And by Definition 2.1 and  Cauchy criterion this yields the statement. 

Corollary 2.4 

If a  function 𝑓: 𝑇 → 𝑋   has the property 𝑜(𝑆∗𝑀),  then function |𝑓|: 𝑇 → 𝑋 is  (𝑜𝑀)- integrable. 

If a  function 𝑓: 𝑇 → 𝑋   has the property 𝑜(𝑆∗𝐻),  then function |𝑓|: 𝑇 → 𝑋 is  (𝑜𝐻)- integrable. 

Proof. Since 

||𝑓(𝑡𝑖)| − |𝑓(𝑠𝑖)|| ≤ |𝑓(𝑡𝑖) − 𝑓(𝑠𝑖)| 

For any choice  of  𝑡𝑖, 𝑠𝑖 ∈  𝑇 we can see that the function, |𝑓|: 𝑇 → 𝑋    has the property 𝑜(𝑆∗𝑀) ( 𝑆∗𝑜𝐻) 

and theorem  2.3 implies its 𝑜𝑀 ( 𝑜𝐻)- integrability. 

Lemma 2.5 
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If 𝑓: 𝑇 → 𝑋   has the property 𝑜(𝑆∗𝑀) then it is  (o)- strongly 𝑀-integrable on   𝑇. 

Proof. If 𝑓: 𝑇 → 𝑋 has the property 𝑜(𝑆∗𝑀) then, by Definition 2.1  for every (𝑜)- sequence (𝑏𝑛) 𝑛 in X, 

there is a corresponding sequence (𝛾𝑛)𝑛 , of gauges 𝛾𝑛 :  𝑇 → ]0, +∞[, such that for every n holds the 

inequality 

∑ ∑ |𝑓(𝑡𝑖) − 𝑓(𝑠𝑗)|𝜇𝑙
𝑗=1

𝑘
𝑖=1 (𝐽𝑖 ∩ 𝐿𝑗) ≤

𝑏𝑛

2
  

for  any two  (𝛾𝑛) -fine  M-partition  {(𝐽𝑖, 𝑡𝑖), 𝑖 = 1, … 𝑘}, and {(𝐿𝑗 , 𝑠𝑗), 𝑗 = 1, … 𝑙} of  𝑇.  

Assume  that {(𝐽𝑖, 𝑡𝑖), 𝑖 = 1, … 𝑘} is an arbitrary (𝛾𝑛) -fine  M-partition 𝑇. By Theorem [2.3] we have  𝑓 ∈

𝑜ℳ and therefore 𝑓 is (𝑜𝑀)- integrable on every interval  𝐽𝑖, 𝑖 = 1, … 𝑘   by  Cauchy  criterion, for  the 

existence of the -(𝑜𝑀)- integral. Hence for the given  (𝑜)-sequence (𝑏𝑛)𝑛  there is a corresponding 

sequence (𝛾 ,
𝑛

)𝑛 of gauges (𝛾 ,
𝑛

:  𝑇 → ]0, +∞[, such that  (𝛾 ,
𝑛

)𝑛 ≤ (𝛾𝑛)𝑛 for  t ∈ 𝑇  and such that  for any 

(𝛾 ,
𝑛

) -fine  M-partition {(𝐿(𝑖)
𝑗, 𝑠(𝑖)

𝑗
) , 𝑗 = 1, … 𝑙(𝑖), 𝑖 = 1, … 𝑘} of the  𝐽𝑖 we have  

 |∑ 𝑓(𝑠𝑗
(𝑖)

)𝜇(𝐿𝑗
(𝑖)

)𝑙(𝑖)

𝑗=1 − (𝑜𝑀) ∫ 𝑓
𝐽𝑖

| 

 = |∑ [𝑓(𝑠𝑗
(𝑖)

)𝜇(𝐿𝑗
(𝑖)

)𝑙(𝑖)

𝑗=1 − (𝑜𝑀) ∫ 𝑓]
𝐿

𝑗
(𝑖) | ≤

𝑏𝑛

2𝑘
.  

 Note that {(𝐿(𝑖)
𝑗, 𝑠(𝑖)

𝑗
) , 𝑗 = 1, … 𝑙(𝑖), 𝑖 = 1, … 𝑘}  is a (𝛾𝑛) -fine  M-partition   of the interval 𝑇 and that for 

any   𝑖 = 1, … 𝑘 we have 

 𝑓(𝑡𝑖) 𝜇(𝐽𝑖) = ∑ 𝑓(𝑡𝑖)
𝑙(𝑖)

𝑗=1 𝜇(𝐽𝑖 ∩ 𝐿𝑗
(𝑖)

) 

and, because of the additivity of the indefinite integral 

𝐹(𝐽) =  𝑜𝑀) ∫ 𝑓
𝐽

, also 

 𝐹(𝐽𝑖) = ∑ 𝐹(𝐽𝑖 ∩ 𝐿𝑗
(𝑖)

)𝑙(𝑖)

𝑗=1  

Hence 

  ∑ |𝑓(𝑡𝑖)𝜇(𝐽𝑖) − 𝐹(𝐽𝑖)|𝑘
𝑖=1 = 

 

 = ∑ |∑ 𝑓(𝑡𝑖)𝜇(𝐽𝑖 ∩ 𝐿𝑗
(𝑖)

) − ∑ 𝐹(𝐽𝑖 ∩ 𝐿𝑗
(𝑖)

)𝑙(𝑖)

𝑗=1
𝑙(𝑖)

𝑗=1 |𝑘
𝑖=1  

 

 = ∑ |∑ (𝑓(𝑡𝑖)
𝑙(𝑖)

𝑗=1 − 𝑓(𝑠𝑗
(𝑖)

))𝜇(𝐽𝑖 ∩ 𝐿𝑗
(𝑖)

) + ∑ [𝑓(𝑠𝑗
(𝑖)

)𝜇(𝐽𝑖 ∩ 𝐿𝑗
(𝑖)

) − 𝐹(𝐽𝑖 ∩ 𝐿𝑗
(𝑖)

)𝑙(𝑖)

𝑗=1 ]|𝑘
𝑖=1  
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 ≤ ∑ |∑ (𝑓(𝑡𝑖) − 𝑓(𝑠𝑗
(𝑖)

))𝜇(𝐽𝑖 ∩ 𝐿𝑗
(𝑖)

)𝑙(𝑖)

𝑗=1 |𝑘
𝑖=1  

 

 + ∑ |∑ [𝑓(𝑠𝑗
(𝑖)

)𝜇(𝐽𝑖 ∩ 𝐿𝑗
(𝑖)

) − 𝐹(𝐽𝑖 ∩ 𝐿𝑗
(𝑖)

)]𝑙(𝑖)

𝑗=1 |𝑘
𝑖=1  

 

 ≤ ∑ ∑ |𝑓(𝑡𝑖) − 𝑓(𝑠𝑗
(𝑖)

)|𝑙(𝑖)

𝑗=1
𝑘
𝑖=1 𝜇(𝐽𝑖 ∩ 𝐿𝑗

(𝑖)
) 

 

 + ∑ |∑ [𝑓(𝑠𝑗
(𝑖)

)𝜇(𝐽𝑖 ∩ 𝐿𝑗
(𝑖)

) − 𝐹(𝐽𝑖 ∩ 𝐿𝑗
(𝑖)

)]𝑙(𝑖)

𝑗=1 |𝑘
𝑖=1  

 <
𝑏𝑛

2
+ ∑

𝑏𝑛

2𝑘

𝑘
𝑖=1 = 𝑏𝑛 

 This shows 𝑓 is 𝑜(𝑆𝑀)- integrable  on T. 

The same holds if (𝑜𝑀) is replaced by (𝑜𝐻) and H- partitions  are used instead of  M- partitions. 

Lemma 2.6 

If a function 𝑓: 𝑇 → 𝑋 is (𝑜)- strongly McShane integrable on  T, then it has the property o( 𝑆∗𝑀). 

Proof. By Definition 1.3 that for every  (𝑜)- sequence (𝑏𝑛)𝑛  in X, there is a corresponding sequence (𝛾𝑛)𝑛, 

of gauges 𝛾𝑛 : 𝑇 → ]0, +∞[ such that for every n and (𝛾𝑛) -fine  M-partition {, (𝐽𝑖, 𝑡𝑖), 𝑖 = 1, … 𝑘} of T  

holds the inequality 

 ∑ |𝑓(𝑡𝑖)𝜇(𝐽𝑖) − 𝐹(𝐽𝑖)|𝑘
𝑖=1 <

𝑏𝑛

2
  

Where 𝐹  is the additive interval function from Definition  1.3. If we have two (𝛾𝑛) -fine  M-partition 

{(𝐽𝑖, 𝑡𝑖), 𝑖 = 1, … 𝑘}and  {(𝐿𝑗 , 𝑠𝑗), 𝑗 = 1, … 𝑙}  of T, then  

 ∑ ∑ |𝑓(𝑡𝑖) − 𝑓(𝑠𝑗)|𝑙
𝑗=1

𝑘
𝑖=1 𝜇(𝐽𝑖 ∩ 𝐿𝑗) 

 

 = ∑ ∑ |𝑓(𝑡𝑖)𝜇(𝐽𝑖 ∩ 𝐿𝑗) − 𝑓(𝑠𝑗)𝜇(𝐽𝑖 ∩ 𝐿𝑗)|𝑙
𝑗=1

𝑘
𝑖=1  

 

 = ∑ ∑ |𝑓(𝑡𝑖)𝜇(𝐽𝑖 ∩ 𝐿𝑗) − 𝐹(𝐽𝑖 ∩ 𝐿𝑗)𝑙
𝑗=1

𝑘
𝑖=1  

 

+𝐹(𝐽𝑖 ∩ 𝐿𝑗) − 𝑓(𝑠𝑗)𝜇(𝐽𝑖 ∩ 𝐿𝑗)| 
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 ≤ ∑ ∑ |𝑓(𝑡𝑖)𝜇(𝐽𝑖 ∩ 𝐿𝑗) − 𝐹(𝐽𝑖 ∩ 𝐿𝑗)| +𝑙
𝑗=1

𝑘
𝑖=1  

 

 ∑ ∑ |𝐹(𝐽𝑖 ∩ 𝐿𝑗) − 𝑓(𝑠𝑗)𝜇(𝐽𝑖 ∩ 𝐿𝑗)|𝑙
𝑗=1 ≤ 𝑏𝑛

𝑘
𝑖=1  

Because evidently{(𝐽𝑖 ∩ 𝐿𝑗 , 𝑡𝑖), 𝑖 = 1, … 𝑘, 𝑗 = 1, … 𝑙}, dhe  {(𝐽𝑖 ∩ 𝐿𝑗 , 𝑠𝑗), 𝑗 = 1, … 𝑙, 𝑖 = 1, … 𝑘}  are (𝛾𝑛) -

fine  M-partition of 𝑇.  Hence f has the property 𝑜(𝑆∗𝑀). 

Note that reasoning use to prove Lemma 2.6 cannot be used for (o) strong Henstock-Kurzweil integrability 

and the property o(𝑆∗𝐻). 

Using Lemmas  2.5 and 2.6 we obtain the following result. 

Theorem 2.7  

A function 𝑓: 𝑇 → 𝑋 has the property 𝑜(𝑆∗𝑀) if and only if  is (𝑜)- strongly McShane integrable on  T.  

Theorem 2.8 

If  a function  𝑓: 𝑇 → 𝑋  has the property 𝑜(𝑆∗𝑀) then  

  |(𝑜𝑀) ∫ 𝑓
𝑇

| ≤ (𝑜𝑀) ∫ |𝑓|
𝑇

 (5) 

Proof. Theorems [2.7]  and [2.3]  imply the (𝑜)-McShane integrability of  𝑓 and Collollary 2.4 yields the 

(𝑜)-McShane integrability of    |𝑓|. Let (𝑜)- sequence (𝑏𝑛)𝑛  be given .Then by  Definition 1.1 there is a 

corresponding sequence (𝛾𝑛)𝑛, of gauges 𝛾𝑛: 𝑇 → ]0, +∞[ such that for every n and (𝛾𝑛) -fine  M-partition 

{, (𝐼𝑖 , 𝑡𝑖), 𝑖 = 1, … 𝑝} of T  holds the inequalities 

 

 |∑ 𝑓(𝑡𝑖)𝜇(𝐼𝑖) −𝑝
𝑖=1 (𝑜𝑀) ∫ 𝑓

𝑇
| ≤ 𝑏𝑛 

 

 |∑ |𝑓(𝑡𝑖)|𝜇(𝐼𝑖) −𝑝
𝑖=1 (𝑜𝑀) ∫ |𝑓|

𝑇
| ≤ 𝑏𝑛 

For a fixed (𝛾𝑛) -fine  M-partition {(𝐼𝑖, 𝑡𝑖), 𝑖 = 1, … 𝑝}  of T we obtain    

 |(𝑜𝑀) ∫ 𝑓
𝑇

| ≤ |∑ 𝑓(𝑡𝑖)𝜇(𝐼𝑖) − (𝑜𝑀) ∫ 𝑓
𝑇

𝑝
𝑖=1 | + |∑ 𝑓(𝑡𝑖)𝜇(𝐼𝑖)

𝑝
𝑖=1 | 

 < 𝑏𝑛 + ∑ |𝑓(𝑡𝑖)|𝜇(𝐼𝑖)
𝑝
𝑖=1 ≤ 𝑏𝑛 + |∑ |𝑓(𝑡𝑖)|𝜇(𝐼𝑖)

𝑝
𝑖=1 − (𝑜𝑀) ∫ |𝑓|

𝑇
| + (𝑜𝑀) ∫ |𝑓|

𝑇
 

 ≤ 2𝑏𝑛 + (𝑜𝑀) ∫ |𝑓|
𝑇

. 
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So, (𝑏𝑛)𝑛 is the (𝑜)- sequence proving the statement of the theorem. 

Proposition 2.9 Let  𝑋 be Dedekind  complete Riesz Space . A function f: [a, b] → X  is  (oM)  integrable 

on  I ⊂ [a,b], if and only if,  for every (𝑜)- sequence(𝑏𝑛)𝑛 in X, there is a corresponding sequence  (𝛾𝑛)𝑛, 

of gauges 𝛾𝑛:[a, b]  → ]0, +∞[ such that for every n and (𝛾𝑛) -fine  M-partition {(𝐼𝑖 , 𝑡𝑖), 𝑖 = 1, … , 𝑛}    and 

{(𝐸𝑗 , 𝑠𝑗), 𝑗 = 1, … 𝑚}   of [a, b] = 𝐼 holds the inequality 

 

 ∑ ∑ |f(ti) − f(sj)||Ii ∩ Ej|
n
j=1

m
i=1 ≤ 𝑏𝑛 

Proof. Suppose   that the function f has the property   o(S∗M).  Let  we consider   two (𝛾𝑛) -fine M- 

partition {(𝐼𝑖, 𝑡𝑖), 𝑖 = 1, … , 𝑛},{(𝐸𝑗 , 𝑠𝑗), 𝑗 = 1, … 𝑚} of I. 

We have        |Ii| = ∑ |Ii ∩ Ej|
m
j=1       and         |Ej| = ∑ |Ii ∩ Ej|

n
i=1  

we observe that            |∑ f(ti)
n
i=1 |Ii| − ∑ f(sj)

m
j=1 |Ej||. 

  = |∑ ∑ f(ti)|Ii ∩ Ej|
n
i=1

m
j=1 − ∑ ∑ f(sj)|Ii ∩ Ej|

m
j=1

n
i=1 | ≤ 

                                  |∑ ∑ f(ti)
m
j=1

n
i=1 − f(sj)|Ii ∩ Ej|| ≤ 𝑏𝑛 

Since f  has the property o(S∗M) we have proved the conditions of necessary. 

For the converse let we set  ℱ = {Ki,j = Ii ∩ Ej, Ii, Ej }  are respectively elements of partitions π 1,and π2, 

  , Ki,j
° K

i′,j′
°  

We know that |f(ti) − f(sj)| = f(ti) ∨ f(sj) − f(ti) ∧ f(sj).Define the tags  tij and  sij as  follows     

f(tij) =  f(ti) ∨ f(sj) and  f(sij) =  f(ti) ∧ f(sj). 

We   get   |f(ti) − f(sj)| = f(tij) − f(sij). 

Let  π′ = {(Ki,j; tij): Ki,j ∈ ℱ}  and  π′′ = {(Ki,j; sij): Ki,j ∈ ℱ}. By the Lemma Henstock    π′and  π′′are 

(𝛾𝑛) -fine  M-partition 

of I, so by hypothesis we have 

 |𝜎(𝑓, π′) − 𝜎(𝑓, π′′)| ≤ |𝜎(𝑓, π′) − (oM) ∫ f
b

a
| + 𝜎(𝑓, π′) |−(oM) ∫ f

b

a
| ≤ 2𝑏𝑛 . On the other hand 

∑ ∑ |f(ti) − f(sj)||Ii ∩ Ej|
m
j=1

n
i=1 = |∑ [f(tij) − f(sij)]Ki,j

|Ii ∩ Ej|| 

= |𝜎(𝑓, π′) − 𝜎(𝑓, π′′)|  which proves the theorem. 
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 Conclusion   

In this article we define the property 𝑜(𝑆∗M), o(𝑆∗H)  and we compare  the order type integrals, showing 

that  order-strongly type integrals  respect almost everywhere equality  for   order- bounded functions.We 

arrive new result in relation with (o)-strong Henstock ones. The order- strong  McShane integrability of a 

function imply that it has the property 𝑜(𝑆∗M) but this condition cannot be used for the order-strong 

Henstock integrability and the property 𝑜(𝑆∗H). 
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Abstract 

This paper study the numerical method for solving differential equation. The continuous least square 

method  (CLSM) alonside with the 𝐿2  norm are used to obtain explicit solution and the minimum 

approximation error respectively. 

   

Keywords: Differential Equation, Continuous Least Square Method and 𝐿2 norm. 

 

1. Introduction 

The CLSM is an important issue in solving ODEs, which play a great role in mathematical physics. The 

efforts of finding several methods for solving problems of ODEs has been practice by many researchers[1, 

2]. The (CLSM) is use to solve complex problems involving ODEs, FDEs and PDEs [3, 4, 5]. The authors 

in [6, 7, 8] introduced numerical approximation approach that involve curves and surfaces which play a 

vital role in numerical analysis. 

 

The aim of this paper to promote numerical technique for (ODEs). The  𝐿2 norm alongside with the 

(CLSM) are used to obtain the minimum approximation error and numerical approximate solution, 

respectively. 

 

2. Priliminaries 

In this research, the CLSM for solving ODEs is considered. 

 

L(y) = f(x) for  x ∈  domain Ω 

 

W(y) = g(x) for  x ∈  domain  𝛿Ω. 

 

Where L stand for differential operator and Ω indicates the domain in 𝑅1 𝑜𝑟 𝑅2 𝑜𝑟 𝑅3, while W refers to 

the boundary operator. The approximate solution of ODEs can be written as 

ỹ = ∑ 𝑞𝑖

𝑛

𝑖=1

𝐶𝑖(𝑋). (2.1) 
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𝐶𝑖(𝑋) and 𝑞𝑖 represent the weighted basis function and  the coefficients (weights) respectively, the 𝑞𝑖 is 

realize using the  CLSM. Let the residual 𝑅𝐿(X) and 𝑅𝑊(X) be defined as  

 

𝑅𝐿(x, ỹ)   =  L (ỹ)–  f(x)     for    x ∈ 𝑑𝑜𝑚𝑎𝑖𝑛 Ω . (2.2) 

  

𝑅𝑊(x, ỹ) = 𝑤 (ỹ) − 𝑔(𝑥)    𝑓𝑜𝑟  𝑥 ∈ 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝛿Ω. (2.3) 

 

Substituting 𝑦𝑒𝑥𝑎𝑐𝑡  into Eq. (2.2) and Eq. (2.3) leads to 𝑅𝐿(x, 𝑦𝑒𝑥𝑎𝑐𝑡) = 0  and 𝑅𝑊(x, 𝑦𝑒𝑥𝑎𝑐𝑡) = 0 

respectively. 

 

3. Continuous Least Square Method  

The CLSM is an approximation process that involves the use of 𝐿2 norm to solve ODEs, the 𝑞𝑖 from Eq. 

(2.1) are obtain using the CLSM, considering the Minimize error function as 

 

𝐸 =  ∫ 𝑅𝐿
2 (𝑥, �̃�)𝑑𝑥

𝛺

+  ∫ 𝑅𝑊
2 (𝑥, �̃�)𝑑𝑥

𝛼𝛺

. (3.1) 

The first derivative of Eq. (3.1) with respect to 𝑞𝑖 and equating to zero leads to 

 

𝜕𝐸

𝜕𝑞𝑖
= 0, 𝑓𝑜𝑟 𝑖 = 1, … 𝑁, 

which yields  

∫ 𝑅𝐿(𝑥, �̃�)

𝛺

 
𝜕𝑅𝐿

𝜕𝑞𝑖
𝑑𝑥 +  ∫ 𝑅𝑊(𝑥, �̃�)

𝛼𝛺

 
𝜕𝑅𝐿

𝜕𝑞𝑖
𝑑𝑥 = 0     𝑖 = 1, … , 𝑁. (3.2) 

 

Eq. (3.2) is algebraic equation which can be written in the form of 

 

𝑀𝑎 = 𝑏. (3.3) 

 

Note that M is n x n matrix,  𝑎 = [𝑞1, 𝑞2 , 𝑞3, … , 𝑞𝑛  ]T, and some column vector b. 

 

4. Example  

In this section, we make use of the results obtained from the CLSM and implement it by considering an 

example. 

 

4.1 Example 1: Consider the 2nd-order initial value problem.  
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𝑑2𝑦

𝑑𝑥2
+ (𝑥 + 1)

𝑑𝑦

𝑑𝑥
+ √5 𝑦 = 0, 𝑦(0) = 0.3,  𝑦𝐼(0) = 0.4, (4.1) 

 

where 0 ≤ 𝑥 ≤ 1.  Let  

𝐿(𝑥, 𝑦) =
𝑑2𝑦

𝑑𝑥2
+ (𝑥 + 1)

𝑑𝑦

𝑑𝑥
+ √5 𝑦 (4.2) 

 

Step 1: Let the polynomial. 

�̃� = ∑ 𝑞𝑖

𝑁

𝑖=1

𝑥𝑖 + 𝑦0.  (4.3) 

 

Step 2: We set 𝑦0 = 0.3 and 𝑞1 = 0.4 in Eq. (4.3) to satisfy the boundary condition. 

 

Step 3: The residual  

𝑅(𝑥) =
𝑑2�̃�

𝑑𝑥2
+ (𝑥 + 1)

𝑑�̃�

𝑑𝑥
+ √5 𝑦.̃ (4.4) 

 

By replacing  �̃�(𝑥) from Eq. (4.3) into Eq.  (4.4), we will get:  

 

𝑅(𝑥) =
𝑑2 (∑ 𝑞𝑖

𝑁
𝑖=1 𝑥𝑖 + 0.3 )

𝑑𝑥2
+ (𝑥 + 1)

𝑑 (∑ 𝑞𝑖
𝑁
𝑖=1 𝑥𝑖 + 0.3 )

𝑑𝑥

+ √5 (∑ 𝑞𝑖𝑥𝑖

𝑁

𝑖=1

+ 0.3)   

(4.5) 

 

Step 4: The minimum error is obtain by considering 

 

𝐸 = ∫ 𝑅2(𝑥)𝑑𝑥.
1

0

 (4.6) 

 

Step 5: The continous least square solution is obtain by solving Eq. (4.6).   

 

𝜕𝐸

𝜕𝑞𝑖
= 0, 𝑓𝑜𝑟   𝑖 = 1, . . , 𝑁, (4.7) 

∫ 𝑅(𝑥)
𝜕𝑅

𝜕𝑞𝑖

1

0

𝑑𝑥 = 0, 𝑖 = 1, . . . , 𝑁. (4.8) 
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Substituting Eq. (4.5) into Eq. (4.8) for N = 3, we obtain the following matrices with the help of Matlab 

program 

 

𝐷 =  (
45.6127 61.6099
61.6099 89.0385 

) ,    𝑏 = (
16.5054
21.2004 

) ,     𝑎 = (
𝑞2

𝑞3
). (4.9) 

 

Solving Eq. (4.9) lead to  

 

𝑞1 = 0.4, 𝑞2 = −0.615629, 𝑞3 = 0.187878.   

 

And the approximate solution is given as 

 

�̃� = 0.187878 𝑥3 − 0.615629 𝑥2 + 0.4  𝑥 + 0.3. (4.10) 

 

The exact solution is given by 

𝑦𝑒𝑥𝑎𝑐𝑡 = 0.2560850487909125ⅇ−𝑥−
𝑥2

2 (1. HermiteH[−1 + √5,
1

√2
+

𝑥

√2
]

− 0.5189851135455146Hypergeometric1F1[
1

2
(1 − √5),

1

2
, (

1

√2
+

𝑥

√2
)2]).. 

(4.11) 

 

The approximate with exact solutions and the error are depicted in figure 4.1 and figure 4.2 for 𝑁 = 3 

 

 
                                      Figure 4.1: Showing the result ofExample 1 with N = 3. 
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                                           Figure 4.2: Showing the Error plots of Example 1 with N=3. 

 

For 𝑁 = 5, we obtain the following matrices  

𝐷 =  (

45.61 61.61 77.88 94.25
61.61 89.03 116.91 145.00 
77.88 116.91 158.05 200.27
94.25 145.00 200.27 258.15

) ,   𝑏 = (

16.51
21.20
25.91
30.62

) ,     𝑎 = (

𝑞2

𝑞3

𝑞4

𝑞5

). (4.12) 

 

And the approximate solution is  

 

�̃� = −0.0649883𝑥5 + 0.209667𝑥4 − 0.0367039𝑥3 − 0.535967𝑥2 + 0.4𝑥 + 0.3. (4.12) 

 

The approximate with exact solutions and the error are depicted in figure 4.3 and figure 4.4 for 𝑁 =5 

 

 
 Figure 4.3: Showing the results of Example 1 with N = 5. 
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Figure 4.4: Showing the Error plots of Example 1 with N=6. 

 

The comparison between the exact CLSM and error are depicted in figure 4.5 and figure 4.6 for 𝑁 = 3 

and that of N = 5.  

 

 
Figure 4.5: Showing the results of Example 1 with N = 3 and N=6 
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Figure 4.6: Showing the Error plots of Example 1 with N=3 and N=6. 

 

 

x Y  exact Y  CLSM.  

with N = 3 

y  CLSM 

with N = 5 

Errors with 

N = 3 

Errors with N = 5 

0 0.3      0.3     0.3         0        0 

0.1 0.334628 0.334032 0.334624 0.000596543 4.18861 × 10−7 

0.2 0.358591 0.356878 0.358582 0.00171316 8.66736 × 10−6 

0.3 0.372317 0.36967 0.372312 0.00265057 4.31975 × 10−6 

0.4 0.376591 0.373524 0.376598 0.00306711 7.5654 × 10−6 

0.5 0.372476 0.369577 0.372494 0.00289852 0.0000175481 

0.6 0.361227 0.358955 0.361243 0.00227139 0.0000166093 

0.7 0.344201 0.342784 0.344205 0.00141683 4.45457 × 10−6 

0.8 0.322781 0.322191 0.322773 0.000590218 8.16031 × 10−6 

0.9 0.298305 0.298303 0.298297 1.2752× 10−6 7.54997 × 10−6 

1.0 0.272007 0.2722489 0.272008 0.000242287 1.30805 × 10−6 

 

Table 4.1: Data of errors analysis with N=3 and N=6 for 2nd - order ODE  

 

5. Conclusion 

This paper investigates numerical methods for solving differential equation. The (CLSM) together with the 

𝐿2 norm is used to find better approximation with minimal error by solving differential equations, The 

results obtained is shown to be equivalent with the exact solution with minimum error. The results are 

supported with MATLAB and Wolfram Mathematica 11. 
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Abstract 

We discuss the statistical physics approach to the application of small-scale artificial neural 

networks (ANNs) well-trained with data collected from the ‘Ab Initio’ principle, as it was proposed 

by Wang, Jiang, and Zhou in 2020 for mimicking the microscopic statistical states of a quantum 

system. Such networks could be used for efficient numerical modeling of different statistical systems: 

spin structures, phase transitions, and others related statistical systems. We investigate the alternative 

network configuration based on the Hodgkin – Huxley elements and demonstrate that the reproduction 

of the macroscopic states for the Ising quantum system can be done with a sufficiently smaller number of 

neurons, and with a lower computational cost.  

 

Keywords: Ising ferromagnetic model, data collection, Hodgkin-Huxley neuron. 

 

1. Introduction 

 

For the purpose of modeling microscopic states of quantum physical systems, a set of different 

approaches has been proposed in the literature: generic machines and quantum simulators [1], intricate 

neural networks [2], the wave-function Ansatz [3], and others. All those approaches could be applied for 

efficient numerical modeling of different physical systems: spin structures, phase transitions, and 

other related statistical systems. 

 In the Wang-Jiang-Zhou paradigm [4], the small-scale artificial neural networks (ANNs) have 

been trained with data collected from the ‘Ab Initio’ principle. By this method, the quantum ensemble 

and the distribution of micro-states are built with an autoregressive neural network in the form of Masked 

Autoencoder for Distribution Estimation (MADE) [5]. The Wang-Jiang-Zhou network gets the data on 

the microscopic states of the quantum system from experiments or the first-principle calculations and then 

produces the probability distributions of these microscopic states. Particularly, in [4] the Ising 

ferromagnetic model has been studied. Thus, this well-trained MADE predicts the macroscopic phase 

state of the system based on the microscopic computations.  
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Here we discuss the alternative approach to construct small-scale artificial neural networks 

consisting of Hodgkin – Huxley (HH) elements [6] for modeling macroscopic states of the Ising quantum 

system. We demonstrate that in the frame of our model it can be done with a sufficiently smaller number 

of neurons, and with a lower computational cost.  

 

 

2. Networks for the Ising Quantum System 

 

Ising Ferromagnetic Model 

 

The Hamiltonian of the Ising ferromagnetic model [7] has a form: 

 



j

jj

ji

ji
jiij shssJH

,

)(s  ,                                               (1) 

where the spin variables si are equal to –1 or +1, and Jij are positive (ferromagnetic). We consider here the 

simplified case, where all J = 1, and the parameters of the interaction with the external field h = 0. 

Our example is represented with the cyclic Ising quantum model consisting of three interacting 

spins s1, s2, s3 (Fig. 1).  

 

 

Figure 1. Configuration of the three spin cyclic Ising model. 

 

The probabilities of the microscopic states are given by the equations of the type [4] (here i,j,k = 

1,2,3): 
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s

                                        (2) 

The computations in paradigm (2) consistently follow the principles “from bottom to top”: one 

should start with the probabilities for the particular spins, and gradually end up with the characteristics of 

the whole statistical system.  

Eqs. (2) for the microscopic probabilities serve for the computation of the macroscopic properties 

of the system: 

.)(log)( ss pTH                                                            (3) 

Eq.(3) provides the information about the macroscopic characteristics of the quantum statistical system 

based on the computation of the microscopic state probabilities, like in (2). 

 

Deep MADE Network for the Ising Model 

 

Deep learning MADE network for the three spin Ising model is represented in Fig. 2. 

 

 

 
Figure 2. Deep learning MADE for the three spin cycle Ising model [4]. 
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The MADE network in Fig. 2 must be trained at a fixed temperature T, and it reproduces the phase 

structure of the Ising system by the computation of the set for the probabilities (2), for further details see 

[4].  

One can see in Fig. 2, that the architecture of the MADE network is quite complex even for a 

small number of spins in the Ising model. Such a network must have input (red) and output (green) layers, 

and also a few hidden (blue) layers to evaluate the full set of (2). 

 

3. Small Scale Hodgkin – Huxley Network for the Modeling Macroscopic States 

 

Ordinary Differential Equation Model for Hodgkin – Huxley Neuron 

As an alternative approach, we propose here to mimic the system in Fig. 1 with the small-scale 

ANN consisting of Hodgkin – Huxley neurons based on the phenomenological model [6] for the 

membrane action potential produced in the axons of real cells under the external electrical or optogenetic 

stimulations. Each HH neuron is represented with the system of four non-linear ordinary differential 

equations: 

.)()1()(

;)()1()(

;)()1()(

;)()()()( 43

hvhv
dt

dh

nvnv
dt

dn

mvmv
dt

dm

tIEvgEvngEvhmg
dt

dv
C

hh

nn

mm

ClClKKNaNaM















           (4) 

Here v(t) stands for the axon membrane action potential, m(t), n(t), h(t) are the membrane gate variables, 

and the control signal I(t) is represented by the sum of external and synaptic currents entering the cell. 

The nonlinear functions of the action potential v are given by: 
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The set of constants covers the potentials ENa (the equilibrium potential at which the net flow of Na ions 

is zero), EK (the equilibrium potential at which the net flow of K ions is zero), ECl (the equilibrium 

potential at which leakage is zero) in mV, the membrane capacitance CM and the conductivities gNa (the 

sodium channel conductivity), gK (the potassium channel conductivity), gCl (the leakage channel 

conductivity) in mS/cm2: 

.36.10;3.0

;12;36

;115;120







ClCl

KK

NaNa

Eg

Eg

Eg

                                                       (6) 

The important property of the model (4)-(6) is the existence of a threshold: the control current I 

does not stimulate a spiking or bursting regime in the output v if it stays below a certain level. If the 

current overcome a minimum threshold level, the HH neuron produces a spike; for the current stimulus 

above a certain greater level, the outcome is a spike train, etc. The magnitude of the spikes almost does 

not change as the current magnitude increases.  

Macroscopic States of the Ising System via the Resting / Spiking HH Neuron Regimes 

Our approach is based on the following idea: the ANN should evaluate the Hamiltonian energy 

levels rather than the probabilities of the microscopic states. The network possesses an algorithm which 

computes in a simple and fast manner the Hamiltonian of our quantum system, and the ANN output 

following a set of microscopic inputs must reproduce the correct probabilities for the macroscopic states 

based on the all possible set of the microscopic states like in Table 1.  

In Table 1 we collect all possible microscopic states of the three spin cyclic Ising model in Fig. 1 

(23 = 8 microstates) versus the corresponding macroscopic states (they are marked in Table 1 with the 

blue and red color, with the probabilities 2/8 = 0.25 and 6/8 = 0.75).  
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Table 1. Macrostates vs microstates for the three spin cycle Ising model 

s
1
 −1 −1  −1 −1 +1 +1 +1 +1  

 

microstates 
s

2
 −1  −1 +1 +1 −1 −1 +1 +1 

s
3
 −1  +1 −1 +1 −1 +1 −1 +1 

s
1
s

2
 +1  +1 −1 −1 −1 −1 +1 +1  

products of 

microstates 
s

2
s

3
 +1  −1 −1 +1 +1 −1 −1 +1 

s
3
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1
 +1  −1 +1 −1 −1 +1 −1 +1 
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1
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s
2
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3
 

+ 
s

3
s

1
 

 

+3 
 

−1 
 

−1 
 

−1 
 

−1 
 

−1 
 

−1 
 

+3 
 

macrostates 

 

 The set of possible macroscopic states in Table 1 defines the Hamiltonian of the system: 

.1;)( 133221  JssssssJH                                                  (7) 

and, therefore, the probabilities, as in (2): 

.),,( 321
T

H

esssp


                                                           (8) 

 Now let’s demonstrate that a single HH neuron is enough to reproduce the probabilities of all 

macroscopic states of the cyclic Ising system of three spins, see Fig. 3.  
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Figure 3. Single Hodgkin − Huxley neuron network for the evaluation  

of the macroscopic states via the resting / spiking regime. 

 

 

 Such a system of three spins has two principally different macroscopic configurations: a) all three 

spins are co-oriented, or b) one of them is oriented opposite towards the other two companions), see Table 

1. By that, to evaluate them, we need two different dynamical regimes of the HH neuron, such as resting 

and spiking.  

Let’s define the current I entering to the HH neuron in Fig. 3 as: 

,
4

1)(
threshold

133221 I
ssssss

I 



                                           

 (9) 

where Ithreshold is the threshold level creating a single spike. Thus, the resting outcome of the membrane 

action potential v of HH neuron corresponds to the macroscopic state s1s2+s2s3+s3s1=−1 with I = 0, while 

the single spike outcome has s1s2+s2s3+s3s1=+3 with I = Ithreshold. The probabilities to get a resting / 

spiking outcome for the HH neuron follow exactly the probabilities of the corresponding macroscopic 

states of the Ising system (7). 

 

4. Conclusions 

 

The concept of an ANN dealing with the probabilities of macroscopic states of a statistical system 

rather than with the probabilities of microscopic states involves sufficiently less number of neurons. 

Usage of neurons with the threshold input (i.e. with the different dynamical regimes as outcome 

properties), such as Hodgkin – Huxley neuron, allows decreasing the number of neurons in the network. 

The computational costs to evaluate the spin products sisj is much less than the computational 

costs for the exponents ot chain products of the probabilities (2). 
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Particularly, for the cyclic system of three Ising elements, one HH neuron is enough to analyze all 

the probabilities of the macroscopic states. For a greater number of the Ising spins, the number of HH 

elements in the ANN is also sufficiently smaller to compare with MADE network. 
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Abstract 

 

In this study, we examine the notions of Wijsman   ,   -  summability and Wijsman    statistical 

convergence for sequences of sets with regards to (briefly, w.r.t)  the intuitionistic fuzzy norm (briefly, 

IFN) (   ), reveal their relationship, and make some observations about these classes. We mainly study 

the relation between these two new methods and the relation between Wijsman     statistical 

convergence and Wijsman   statistical convergence for sequences of sets in the corresponding 

intuitionistic fuzzy normed space. 

 

          Keywords: Wijsman convergence, Wijsman     statistical convergence, intuitionistic fuzzy normed 

space. 

 

1. Introduction 

 

Statistical convergence was firstly examined by Fast [1]. Some beneficial results on this topic can be 

found in [2-3]. As a consequence of the study of ideal convergence defined by Kostyrko et al [4], there 

has been valuable studies to discover summability works of the classical theories. Ideal convergence 

became a noteworthy topic in summability theory after the studies of [5-7]. In other direction, the idea of 

 -statistical convergence was worked by Mursaleen [8] as an extension of the ,   --summability of 

Leinder [9].  -statistical convergence is a special case of the more general A-statistical convergence 

studied in Ref. [10]. 

Theory of fuzzy sets (FSs) was firstly given by Zadeh [11]. This work affected deeply all the scientific 

fields. The Theory of FSs has submitted to employ imprecise, vagueness and inexact data [11]. FSs, have 

been widely implemented in different disciplines and technologies. The Theory of FSs cannot always 

cope with the lack of knowledge of membership degrees. That is why Atanassov [12] investigated the 

theory of IFS which is the extension of the theory of FSs. Kramosil and Michalek [13] investigated fuzzy 

metric space (FMS) utilizing the concepts fuzzy and probabilistic metric space. The FMS as a distance 

between two points to be a non-negative fuzzy number was examined by Kaleva and Seikkala [14]. 

George and Veeramani [15] gave some qualifications of FMS. Some basic features of FMS were given 

and significant theorems were proved in [16]. Moreover, FMS has used by practical researches as for 

example decision-making, fixed point theory, medical imaging. Park [17] generalized FMSs and defined 
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IF metric space (IFMS). Park utilized George and Veeramani’s [15] opinion of using t-norm and t-

conorm to the FMS meantime describing IFMS and investigating its fundamental properties. The concept 

of IF-normed spaces (IFNS for shortly) was given by Lael and Nourouzi [18]. Statistical convergence, 

ideal convergence and different features of sequences in INFS were examined by several authors [19-22]. 

Recently, convergence of sequences of sets was studied by several authors. Nuray and Rhoades [23] 

presented the idea of statistical convergence of set sequences and established some essential theorems. 

Convergence for sequences of sets became a notable topic in summability theory after the studies of (see, 

[24-27]). 

 

2. Main Results 

 

In this section we deal with the relation between these two new methods and with relations between 

Wijsman     statistical convergence and Wijsman   statistical convergence for sequences of sets 

with regards to the IFN. 

 

Definition 2.1. Let (         )  be an IFNS. Then, a sequence *  +  is named to be Wijsman 

   statistically convergent to     w.r.t the IFN (   ) and is indicated by 

 

  
(   )
→    . (   )(  )/ 

 

if for each       and      

 

{    
 

 
|*    | (      )   (     )|         | (      )   (     )|    +|   }     

 

Let    be the family of all finite subsets of  . Then,    is an admissible ideal in  , and Wijsman 

   statistical convergence coincides with the notion of Wijsman statistical convergence in IFNS. 

 

Let   (  ) be a non-decreasing sequence of positive numbers tending to   such that         

        The collection of such a sequence   will be demonstrated by    

The generalized de Valée-Pousin mean is given by 

 

  ( )  
 

  
∑   
    

  

 

where    ,         -  Now, we acquire our new definitions. 
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Definition 2.2. A sequence *  + is named to be Wijsman    ,   -  summable to     w.r.t the IFN 

(   ) and is signified by 

 

   ,   -
(   )           

 

if for each     and      

 

*    | (    (  )  )   (    ( )  )|         | (    (  )  )   (    ( )  )|    +     

 

Definition 2.3. A sequence *  + is named to be Wijsman      statistically convergent or       

convergent to     w.r.t the IFN (   ) and is indicated by 

 

     
(   )

               .     
(   )

/  

 

if for every       and      

 

{    
 

  
|*     | (      )   (     )|        | (      )   (     )|    +|   }     

 

We can indicate by  (   )(  )   
(   )(  ) ,   -

(   )(  )  the collections of all    statistically 

convergent,      
(   )

 convergent and    ,   -
(   )  convergent sequences, respectively. 

 

Theorem 2.1. Let (         ) be an IFNS and let   (  ) be a sequence in    

a. If     .,   -
(   )(  )/  then     (  

(   )(  )), 

b. If      ( )  the space of all bounded set sequences of   and     (  
(   )(  ))  then 

    .,   -
(   )(  )/  

c.   
(   )(  )    ( )  ,   -

(   )(  )    ( )  

 

Proof. a. By hypothesis, for every       and      let     .,   -
(   )(  )/  We acquire 
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∑(| (      )   (     )|    | (      )   (     )|) 

    

 ∑ (| (      )   (     )|    | (      )   (     )|)

     | (      )  (     )|    

   | (      )  (     )|   

  |*     | (      )   (     )|         | (      )   (     )|    +|  

 

Then, notice that 

 

 

  
|*     | (      )   (     )|         | (      )   (     )|    +|    

 

 
 

  
∑| (      )   (     )|   (   )    | (      )   (     )|     

    

  

 

which means that 

 

{    
 

  
|*     | (      )   (     )|        | (      )   (     )|    +|   }

 { 

   
 

  
{∑| (      )   (     )|          ∑| (      )   (     )|

    

   

    

}

   }  

 

Since     .,   -
(   )(  )/  we directly see that     (  

(   )(  ))  consequently the result is 

obtained. 

 

b. We assume that      ( ) and     (  
(   )(  ))  The inequalities | (      )   (     )|  

    or | (      )   (     )|    hold for all k. Let      Then, we get 
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∑(| (      )   (     )|    | (      )   (     )|) 

    

 ∑ (| (      )   (     )|    | (      )   (     )|)

     | (      )  (     )|    

   | (      )  (     )|   

 ∑ (| (      )   (     )|    | (      )   (     )|)

    | (      )  (     )|    

   | (      )  (     )|   

 
 

  
|*     | (      )   (     )|        | (      )   (     )|    +|     

 

Emphasize that  

 

 (   )(   )  {    
 

  
|*     | (      )   (     )|        | (      )   (     )|    +|

 
 

 
}     

 

If    (   )
 (   )  then we have 

 

 

  
∑| (      )   (     )|

    

         
 

  
∑| (      )   (     )|

    

     

 

Now 

 

 (   )(   )  { 

   
 

  
∑| (      )   (     )|         

    

 

  
∑| (      )   (     )|

    

     }  

 

Hence,  (   )(   )   (   )(   ) and so, according to definition of an ideal,  (   )(   )     Hence, we 

conclude that      .,   -
(   )(  )/   

(c). This easily follows from (a) and (b). 
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Theorem 2.2. 

a.  (   )(  )    
(   )(  ) if          

  

 
    

b. If          
  

 
        strongly (by that we mean that   a subsequence (  )   

 
  for which 

(
   

  
) .

 

 
/     and * ( )    +   ) then  (   )(  )    

(   )(  )  

 

Proof. a) For given       and      we get 

 

 

 
|*    | (      )   (     )|         | (      )   (     )|    +|

 
 

 
|*     | (      )   (     )|         | (      )   (     )|    +|

 
  
 

 

  
|*     | (      )   (     )|         | (      )   (     )|    +|  

 

If          
  

 
   then from the definition {    

  

 
 
 

 
 } is finite. For every     and      

 

{    
 

  
|*     | (      )   (     )|        | (      )   (     )|    +|   }

 {    
 

 
|*     | (      )   (     )|        | (      )   (     )|    +|

 
 

 
 }  {    

  
 
 
 

 
 } 

 

Since I is admissible, the set on the right-hand side belongs to I and this completed the proof of (a). 

(b) The proof is standard. 

 

Theorem 2.3. If          
  

 
    then   

(   )(  )   
(   )(  )  

 

Proof. Let     be given. Since          
  

 
    we can select     such that  .

  

 
    /    

 

 
  

or  .
  

 
    /  

 

 
 , for all      Now notice that, for every    , every     and     
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|*    | (      )   (     )|         | (      )   (     )|    +|

 
 

 
|*       | (      )   (     )|         | (      )   (     )|    +|

 
 

 
|*     | (      )   (     )|        | (      )   (     )|    +|

 
    
 

 
 

 
|*     | (      )   (     )|        | (      )   (     )|    +|

   (  
 

 
)  

 

 
|*     | (      )   (     )|        | (      )   (     )|    +|

 
 

 
 
 

 
|*     | (      )   (     )|        | (      )   (     )|    +|  

 
Hence 
 

{    
 

 
|*     | (      )   (     )|        | (      )   (     )|    +|   }

 {    
 

  
|*     | (      )   (     )|        | (      )   (     )|    +|  

 

 
}

 *         +  
 

If      
(   )

         then the set on the right-hand side belongs to I and so the set on the left-

hand side also belongs to I. This shows that *  + is Wijsman   statistically convergent to     

w.r.t the IFN (   ). 

 

Theorem 2.4. Let (         ) be an IFNS such that 
 

 
   

 

 
   

 

 
   and .  

 

 
  / .  

 

 
  /  

  
 

 
    If X is a Banach space then   

(   )(  )   ( ) is a closed subset of  ( )  

 

Proof. We first assume that *  +    
(   )(  )   ( ) is a convergent set sequence and it converges 

to    ( )  We need to denote that     
(   )(  )   ( )  Presume that      (  

(   )(  )) for 

all      Let *  + be a strictly decreasing positive numbers converging to zero. We can identify an 

    such that     (| (     )   (   
    )|)  

 

 
   for all      Select     

 

 
  Now assume 

 

 (   )(    )  {    
 

  
|{     | (    

   )   (      )|    
  
 
   | (    

   )   (      )|  
  
 
 }|

  }   ( ) 

and 
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 (   )(    )  { 

   
 

  
|{     | (    

     )   (        )|

   
  
 
   | (    

     )   (        )|  
  
 
 }|   }   ( ) 

 

Since  (   )(    )   (   )(    )   ( )  and    ( )  we can select    (   )(    )   (   )(    )  

Then 

 
 

  
|{     | (    

   )   (      )|    
  
 
   | (    

   )   (      )|

 
  
 
    | (    

     )   (        )|    
  
 
   | (    

     )   (        )|  
  
 
}|

       

 

Since      and  (   )(    )   (   )(    )   ( )  is finite, we can select   so that        

Hence, there have to exist a      for which at the same time, | (    
   )   (      )|    

  

 
 or 

| (    
   )   (      )|  

  
 

 and | (    
     )   (        )|    

  

 
 or | (    

     )  

 (        )  
  

 
|  For a given      select 

 

 
   such that .  

 

 
  / .  

 

 
  /       and 

 

 
   

 

 
       Then, we get 

 

| (     
 

 
)   (    

  
 

 
)|  | (       

 

 
)   (    

    
 

 
)|  

  
 
 
  
 
 
  
 

 

 

and 

 

| (    
   )   (    

     )|      (| (    
 

 
)   (    

  
 

 
)|)      (| (    

 

 
)   (    

    
 

 
)|)

 
  
 
 
  
 
 
  
 

 

Hence, we obtain 

| (      )   (        )|

 [| (     
 

 
)   (    

  
 

 
)|  | (    

    
 

 
)   (       

 

 
)|]  | (    

  
 

 
)

  (    
    

 

 
)|  

  
 
 
  
 
    

and similarly 
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| (      )   (        )|        

 

This gives that *  + is Cauchy sequence in X and let        as    . We have denote that 

    (  
(   )(  ))  For any     and       select     such that     

 

 
  

 

    (| (     )   (   
   )|)   

 

 
  

| (      )   (     )|    
 

 
 

or 

| (      )   (     )|   
 

 
  

 

Now 

 
 

  
|*     | (      )   (     )|     +|

 
 

  
|{ 

    | (     
 

 
)   (    

 
 
 

 
)| [| (    

  
 

 
)  (     

 

 
)| | (     

 

 
)  (    

 

 
)|]

    }|  
 

  
|{     | (    

 
 
 

 
)   (     

 

 
)|  

 

 
  }| 

 

and similarly 
 

  
|*     | (      )   (     )|       +|  

 

  
|{     | (    

 
 
 

 
)   (    

 

 
)|    

 

 
  }|  

It follows that 

{    
 

  
|*     | (      )   (     )|         | (      )   (     )|    +|   }

 { 

   
 

  
|{     | (    

  
 

 
)   (    

 

 
)|    

 

 
    | (    

  
 

 
)   (    

 

 
)|

 
 

 
 }|   } 

 

for any given      Hence     (  
(   )

(  ))  
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4. Conclusion 

 

In this paper we examine the notions of Wijsman   ,   -  summability and Wijsman 

   statistical convergence for sequences of sets w.r.t the IFN, investigate their relationship, and make 

some observations about these classes. We intend to unify these two approaches and use ideals to define 

the concept of Wijsman     statistical convergence w.r.t the IFN (   ). Our study of Wijsman 

    statistical convergence and Wijsman   statistical convergence for sequences of sets in IFNS 
also provides a tool to deal with convergence problems of sequences of fuzzy real numbers. These 
results can be used to think the convergence problems of sequences of fuzzy numbers having a 
chaotic pattern in IFNS. 
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Abstract 

In economics an important issue is the balance between the production of the main sectors of 
economy and the external demand of the production. Refereeing to the Leontief model, the structure of 
each industry’s production activity is represented by appropriate structural coefficients that describe 
relationships between the inputs that the industry absorbs and the output that it produces. We study the 
economic development of Albania for ten-year period. We solve the problem in different algebraic ways 
using matrices theory. Then, we implement the solutions in R programming language and analyze the final 
results.  
 

Key words: Leontief model, matrix solution, R programming language 
 

1. Introduction 
Leontief is well known for his work in economics. His theory called the Leontief Input-Output model serves 
as a simplified model to predict a production. Many other authors followed the research in this area based 
on his model [4], [9], [10], [11], [12 ] 
The motivation for this paper steams from the role of matrices theory in solving economic problems as [6], 
[7], [8], [9]. Part of his work was to apply the basic concepts of linear algebra [1], [2], [3] to model supply 
and demand within simple economies. More cases from business, economic are treated in [5].  
One of this model is Leontief Input-Output model. There are many sectors in economy that are related to 
each other in the way that interchange among them. An input-output table presents the correlation among 
the sectors. The rows of the table describe the delivers of the total amount of a product or primary input to 
all uses. The columns of the table describe the input requirements to produce the gross output totals.  
In this paper, first we present Leontief model for the Albanian case in a ten -years period (2009-2018). 
Second, we solve algebraically the matrix equation in three different ways, and finally we implement the 
solutions in R programming language and analyzing the final results. 
 
 
. 
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2. Materials and methods 

The input-output model is a linear model based on Leontief production functions and a given vector of final 
uses. In constructing an input-output (I-O) table [4], the entries can be in physical units or in terms of 
monetary values. We present here a general Input output table 

 
       

 
Purchases by: Intermediate Users 

Final 
demand Total demand 

  Sectors   
  Agriculture Manufactory Services   
 Agriculture X11 X12 X13 d1 X1 
 Manufactory X21 X22 X23 d2 X2 
 Services X31 X32 X33 d3 X3 

 Total Supply X1 X2 X3   
 

where: 
𝑋𝑋𝑖𝑖  value of the output of sector i (i=1,2,3) 
𝑋𝑋𝑖𝑖𝑖𝑖   the amount of the 𝑖𝑖th sector ‘output used by the 𝑗𝑗th sector used to produce its output  
𝑎𝑎𝑖𝑖𝑖𝑖 = 𝑋𝑋𝑖𝑖𝑖𝑖

𝑋𝑋𝑖𝑖
   the input output coefficients, can be interpreted as the amount of input 𝑖𝑖 used per unit output 

of product 𝑗𝑗  
𝑑𝑑𝑖𝑖  government purchases of the output of sector 𝑖𝑖+ personal consumption expenditures for the 

output of sector 𝑖𝑖+ export of the output of sector 𝑖𝑖(component of demand vector 𝑑𝑑) 
 
Input-Output table can be described mathematically as a set of equations that must be satisfied 
simultaneously for the gross output of each sector to balance the intermediate and final demand for its 
product. Thus we have 

 
𝑋𝑋𝑖𝑖 = ∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖 + 𝑑𝑑𝑖𝑖3

𝑖𝑖=1 , 𝑖𝑖 = 1,2,3 
 
The matrix equation with the Leontief Input Output model is: 

 
𝑋𝑋 = 𝐴𝐴𝑋𝑋 + 𝑑𝑑 (∗) 

where 

𝑋𝑋 = �
𝑋𝑋1
𝑋𝑋2
𝑋𝑋3
�, 𝐴𝐴 = �

𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

� and 𝑑𝑑 = �
𝑑𝑑1
𝑑𝑑2
𝑑𝑑3
�.  

 
The Leontief model that we present here is based on input-output data for the Albania economy 
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for ten-years period (2009-2018), with data for 35 sectors grouped into three larger sectors: Agriculture, 
Manufacturing and Services. The data base used is from Institution of Statistic of Albania. We use the input 
output tables in million ALL. 
By the data given we have the coefficient matrix of this model for the Albanian economy for a period of 
ten years. 
 

Coefficient matrix 2009 
  Agriculture Manufacturing Services demand vector 
Agriculture 0.22 0.07 0.01 171940.628 
Manufacturing 0.05 0.46 0.28 481683.8785 
Services 0.02 0.10 0.22 690636.1794 
     
  Coefficient matrix 2010 
  Agriculture Manufacturing Services demand vector 
Agriculture 0.21 0.06 0.01 191957.8241 
Manufacturing 0.05 0.44 0.30 584186.4459 
Services 0.02 0.09 0.17 726615.1231 

     
Coefficient matrix 2011 

  Agriculture Manufacturing Services demand vector 
Agriculture 0.21 0.06 0.01 207056.7264 
Manufacturing 0.05 0.46 0.30 611470.3872 
Services 0.02 0.10 0.18 790696.6981 

     
Coefficient matrix 2012 

  Agriculture Manufacturing Services demand vector 
Agriculture 0.21 0.05 0.01 221704.8264 
Manufacturing 0.06 0.48 0.24 618344.6566 
Services 0.02 0.10 0.23 783256.1524 

     
Coefficient matrix 2013 

  Agriculture Manufacturing Services demand vector 
Agriculture 0.22 0.05 0.01 227416.6248 
Manufacturing 0.05 0.46 0.24 593212.1841 
Services 0.01 0.11 0.24 771085.3199 

     
Coefficient matrix 2014 

  Agriculture Manufacturing Services demand vector 
Agriculture 0.22 0.05 0.01 240331.827 
Manufacturing 0.04 0.45 0.23 627624.8854 
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Services 0.02 0.11 0.23 818754.001 
 
     

Coefficient matrix 2015 
  Agriculture Manufacturing Services demand vector 
Agriculture 0.22 0.05 0.01 251438.2512 
Manufacturing 0.04 0.45 0.20 616490.6918 
Services 0.01 0.12 0.26 834807.4808 
     

Coefficient matrix 2016 
  Agriculture Manufacturing Services demand vector 
Agriculture 0.21 0.04 0.01 267756.8281 
Manufacturing 0.05 0.49 0.22 621907.629 
Services 0.02 0.10 0.25 888740.9504 

Coefficient matrix 2017 
  Agriculture Manufacturing Services demand vector 
Agriculture 0.21 0.04 0.01 274718.8105 
Manufacturing 0.06 0.47 0.23 646805.4327 
Services 0.02 0.11 0.24 963626.073 

     
Coefficient matrix 2018 

  Agriculture Manufacturing Services demand vector 
Agriculture 0.19 0.03 0.01 290331.0325 
Manufacturing 0.06 0.47 0.23 674861.1705 
Services 0.02 0.12 0.23 1020588.468 

 
The goal is to find the production vector 𝑋𝑋 that gives a perfectly balance economy. The question is:  
 

How to solve the matrix equation 𝑋𝑋 = 𝐴𝐴𝑋𝑋 + 𝑑𝑑? 
 
For finding solution we use different algebraic ways [1], [2], [3] [5] some of these are the following: 
The first method is by using the inverse matrix: 
The solution of the matrix equation (∗) is  
 

𝑋𝑋 = 𝐴𝐴𝑋𝑋 + 𝑑𝑑 ⟹ ( 𝐼𝐼 − 𝐴𝐴)𝑋𝑋 =  𝑑𝑑 ⟹ 𝑋𝑋 = (𝐼𝐼 − 𝐴𝐴)−1𝑑𝑑 
 
The second method is Gaussian elimination 
Gaussian Elimination demonstrates the algorithm of row reduction used for solving systems of linear 
equations of the form 𝐴𝐴𝐴𝐴 =  𝑏𝑏. 
 
The third method is 𝑄𝑄𝑄𝑄-factorization 
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The 𝑄𝑄𝑄𝑄-factorization is used when the rank of the matrix 𝐼𝐼 − 𝐴𝐴 is equal to the number of columns, for 𝑄𝑄  
an orthogonal matrix (𝑄𝑄𝑇𝑇𝑄𝑄 = 𝐼𝐼) and 𝑄𝑄 a triangular matrix. The solution of the matrix equation (∗) is: 
 

𝑋𝑋 = 𝐴𝐴𝑋𝑋 + 𝑑𝑑 ⟹ ( 𝐼𝐼 − 𝐴𝐴)𝑋𝑋 =  𝑑𝑑 ⟹ 𝑄𝑄𝑄𝑄𝑋𝑋 = 𝑑𝑑 ⟹ 𝑄𝑄𝑇𝑇𝑄𝑄𝑄𝑄𝑋𝑋 = 𝑄𝑄𝑇𝑇𝑑𝑑 ⟹ 𝑄𝑄𝐴𝐴 = 𝑄𝑄𝑇𝑇𝑑𝑑 
 
The last equation 𝑄𝑄𝐴𝐴 = 𝑄𝑄𝑇𝑇𝑑𝑑 is solved by back substitution. 
If the matrix 𝐼𝐼 − 𝐴𝐴 is invertible, then the 𝑄𝑄  matrix is invertible, consequently the 𝑄𝑄𝑄𝑄- factorization is 
interpreted in another way: 
 

𝑋𝑋 = 𝐴𝐴𝑋𝑋 + 𝑑𝑑 ⟹ ( 𝐼𝐼 − 𝐴𝐴)𝑋𝑋 =  𝑑𝑑 ⟹ 𝑄𝑄𝑄𝑄𝑋𝑋 = 𝑑𝑑 ⟹ 
𝑋𝑋 = (𝑄𝑄𝑄𝑄)−1𝑑𝑑 = 𝑄𝑄−1𝑄𝑄−1𝑑𝑑 ⟹ 𝐴𝐴 = 𝑄𝑄−1𝑄𝑄𝑇𝑇𝑑𝑑 

 
3. Implementation of the solution of Leontief model by modeling in R program language 

We implement the algebraic solutions in 𝑄𝑄 programming language. The packages solve () and matlib (). 
are used for modeling the solutions in 𝑄𝑄 
 

• Inverse matrix 
𝑓𝑓1 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓(𝐴𝐴𝑖𝑖 ,  𝑑𝑑𝑖𝑖) 
𝐼𝐼 = 𝑑𝑑𝑖𝑖𝑎𝑎𝑑𝑑�1,  𝑓𝑓𝑓𝑓𝑓𝑓𝑛𝑛(𝐴𝐴)� 
𝑠𝑠𝑖𝑖 = 𝑠𝑠𝑓𝑓𝑛𝑛𝑠𝑠𝑠𝑠(𝐼𝐼 − 𝐴𝐴𝑖𝑖 ,  𝑑𝑑𝑖𝑖) 
𝑝𝑝𝑝𝑝𝑖𝑖𝑓𝑓𝑓𝑓(“𝑠𝑠𝑖𝑖") 
𝑝𝑝𝑝𝑝𝑖𝑖𝑓𝑓𝑓𝑓(𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 𝑓𝑓𝑖𝑖𝑠𝑠𝑠𝑠(𝑓𝑓1(𝐴𝐴,𝑑𝑑𝑖𝑖))  
 
Arguments:  
𝐴𝐴𝑖𝑖  coefficient matrix for years 𝑖𝑖 
𝑑𝑑𝑖𝑖  right-hand side vector 
𝐼𝐼  unitary matrix with dimension the same as matrix 𝐴𝐴𝑖𝑖 
𝑠𝑠𝑖𝑖  the solution that we will find by using invers matrix 
𝑝𝑝𝑝𝑝𝑖𝑖𝑓𝑓𝑓𝑓(“𝑠𝑠𝑖𝑖") we have the result 
𝑝𝑝𝑝𝑝𝑖𝑖𝑓𝑓𝑓𝑓(𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 𝑓𝑓𝑖𝑖𝑠𝑠𝑠𝑠(𝑓𝑓1(𝐴𝐴,𝑑𝑑𝑖𝑖)) execution time 
 

• Gaussian elimination 
Usage : 
𝑓𝑓2 =aussianElimination(𝐼𝐼 − 𝐴𝐴𝑖𝑖 ,𝑑𝑑𝑖𝑖 , 𝑓𝑓𝑓𝑓𝑛𝑛 =  𝑠𝑠𝑠𝑠𝑝𝑝𝑓𝑓(.𝑀𝑀𝑎𝑎𝑓𝑓ℎ𝑖𝑖𝑓𝑓𝑠𝑠$𝑑𝑑𝑓𝑓𝑓𝑓𝑏𝑏𝑛𝑛𝑠𝑠. 𝑠𝑠𝑝𝑝𝑠𝑠), 𝑠𝑠𝑠𝑠𝑝𝑝𝑏𝑏𝑓𝑓𝑠𝑠𝑠𝑠 =  𝐹𝐹𝐴𝐴𝐹𝐹𝐹𝐹𝐹𝐹,  𝑛𝑛𝑎𝑎𝑓𝑓𝑠𝑠𝐴𝐴 =
 𝐹𝐹𝐴𝐴𝐹𝐹𝐹𝐹𝐹𝐹 ,𝑓𝑓𝑝𝑝𝑎𝑎𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑠𝑠 =  𝐹𝐹𝐴𝐴𝐹𝐹𝐹𝐹𝐹𝐹) 
𝑝𝑝𝑝𝑝𝑖𝑖𝑓𝑓𝑓𝑓(𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 𝑓𝑓𝑖𝑖𝑠𝑠𝑠𝑠(𝑓𝑓2) 
Arguments 
𝐴𝐴𝑖𝑖  coefficient matrix for years 𝑖𝑖 
𝑑𝑑𝑖𝑖  right-hand side vector 
tol  tolerance for checking for 0 pivot 
verbose logical  if TRUE, print intermediate steps 
latex logical if TRUE, and verbose is TRUE, print intermediate steps using LaTeX equation 
outputs rather than R output 
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fractions logical if TRUE, try to express non-integers as rational numbers 
𝑝𝑝𝑝𝑝𝑖𝑖𝑓𝑓𝑓𝑓(𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 𝑓𝑓𝑖𝑖𝑠𝑠𝑠𝑠(𝑓𝑓2) execution time 
 

• QR factorization 
𝑓𝑓3 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓(𝐴𝐴𝑖𝑖 ,  𝑑𝑑𝑖𝑖) 
𝐼𝐼 = 𝑑𝑑𝑖𝑖𝑎𝑎𝑑𝑑�1,  𝑓𝑓𝑓𝑓𝑓𝑓𝑛𝑛(𝐴𝐴)� 
𝑠𝑠𝑝𝑝(𝐼𝐼 − 𝐴𝐴𝑖𝑖)   
𝑄𝑄𝑄𝑄𝑖𝑖 = 𝑠𝑠𝑝𝑝(𝐼𝐼 − 𝐴𝐴𝑖𝑖)  
𝐹𝐹𝑖𝑖 = 𝑠𝑠𝑓𝑓𝑛𝑛𝑠𝑠𝑠𝑠. 𝑠𝑠𝑝𝑝(𝑄𝑄𝑄𝑄𝑖𝑖,  𝑑𝑑𝑖𝑖)  
𝑝𝑝𝑝𝑝𝑖𝑖𝑓𝑓𝑓𝑓(“𝐹𝐹𝑖𝑖") 
𝑝𝑝𝑝𝑝𝑖𝑖𝑓𝑓𝑓𝑓(𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 𝑓𝑓𝑖𝑖𝑠𝑠𝑠𝑠(𝑓𝑓3(𝐴𝐴,𝑑𝑑𝑖𝑖)) 
Arguments 
𝐴𝐴𝑖𝑖    coefficient matrix for years 𝑖𝑖 
𝑑𝑑𝑖𝑖    right-hand side vector 
𝑠𝑠𝑝𝑝(𝐼𝐼 − 𝐴𝐴𝑖𝑖)  the command for 𝑄𝑄𝑄𝑄 factorization of a matrix, show the rank of a matrix and the 

number of pivot 
𝑠𝑠𝑓𝑓𝑛𝑛𝑠𝑠𝑠𝑠. 𝑠𝑠𝑝𝑝(𝑄𝑄𝑄𝑄𝑖𝑖,  𝑑𝑑𝑖𝑖)  solve the solution with QR factorization 
𝑝𝑝𝑝𝑝𝑖𝑖𝑓𝑓𝑓𝑓(“𝐹𝐹𝑖𝑖")  we have the result 
𝑝𝑝𝑝𝑝𝑖𝑖𝑓𝑓𝑓𝑓(𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 𝑓𝑓𝑖𝑖𝑠𝑠𝑠𝑠(𝑓𝑓3(𝐴𝐴,𝑑𝑑𝑖𝑖)) execution time 
 
During the execution, we obtained the solution of the problem by using rounding with two digits after the 
decimal point. The equation had only one solution. The results are in the following table 
 

  Table 1 
  Agriculture Manufactory Services 
s1 367992.2 1489074 1085773 
s2 8933842.4 112219775 13259122 
s3 369654.6 1228977 1123156 
s4 411843.5 1820168 1264298 
s5 416756.4 1699840 1266099 
s6 435650 1725280 1321101 
s7 446297.1 1656657 1384092 
s8 452911.6 1888852 1448913 
s9 452911.6 1888852 1448913 

s10 454551 2043284 1655679 
 
The solutions obtained from algebraic methods in the following tables are interpreted in economy. 
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In table 2 its presented the product vector 𝑋𝑋 , and is obviously seen that in the first two years the 
manufacturing sector was more developed than the other two sectors. 
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In the table 3 is presented the relations between the demand vector and product vector for agriculture sector. 
As it is seen in the first two years the agriculture is sufficit related to the demand vector. 
 

  
 
In the table 4 is presented the relations between the demand vector and product vector for manufacturing 
sector. As it is seen in the first two years the graphic presents a closer proximity of the manufactory sector 
to the demand vector. 
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In the table 5 is presented the relations between the demand vector and product vector for services sector. 
As it is seen in the first two years the service is sufficit related to the demand vector. 
 

 
4. Results 

 
The results obtained in this work are rounded with two digits after the decimal point. Using 𝑄𝑄 programming 
language, we evaluate the time of execution for each algebraic method used, respectively the execution 
time is; Gaussian Elimination 0.1282439 secs, Inverse matrix 0.250715 secs and 𝑸𝑸𝑸𝑸-factorization 
0.576961 secs. The best method to use for finding the solution of Leontief model is Gaussian Elimination. 
In 𝑄𝑄 programing language there are two commands for Gaussian Elimination execution. The command 
gaussianElimination( 𝐼𝐼 − 𝐴𝐴1,𝑑𝑑1 ) execute the solution immediately( for 0.1282439 secs), while the 
command gaussianElimination(𝐼𝐼 − 𝐴𝐴1,𝑑𝑑1, verbose=TRUE, fractions=TRUE, latex=TRUE) execute the 
solution in detailed steps (0.4631231 secs). Consequently, is recommended the first command of Gaussian 
Elimination. 
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Abstract 

In this paper, we characterize integrable geometric Schrödinger flow with differential 

geometry properties of surfaces We give some new solutions by using Bäcklund  transformations. 

Finally, we obtain some solutions of mKdV system.    

 

Keywords: Schrödinger flow, 3E , extended Riccati mapping method, Bäcklund transformations. 

. 

 

1. Introduction  

 

Bäcklund transformations are a robust application to research numerous elements of integrable 

non linear partial differential equations [1,2]. They could be applied to obtain additional accurate 

solutions of integrable systems by a specific alternative. The common Bäcklund transformations are 

regional geometric transformations, which are accustomed to develop areas attached to continuous 

negative Gaussian curvature [1]. This gives a applied geometric development from different 

pseudospherical surfaces by a special solution of the integrable partial differential equation. Actually, 

solutions of the sine-Gordon equation explain pseudospherical areas. Making use of Bäcklund 

transformations n moments to a specific solution of sine-Gordon equation, you can get yourself a 

arranged category of solutions of sine-Gordon equation. All these solutions can be acquired applying the 

Bianchi's permutability method by using solely algebraic involves. [2]. 

In applied differential geometry, theory of curves in space is one of the significant study areas. In 

the theory of curves, helices, slant helices, and rectifying curves are the most fascinating curves. Flows of 

curves of a given curve are also widely studied, [7-9]. 

A particular nice feature of integrable systems is their relationship with invariant geometric flows 

of curves and surfaces in certain geometries. Those flows are invariant with respect to the symmetry 

groups of the geometries [13]. A number of integrable equations have been shown to be related to 

motions of curves in Euclidean geometry, centro-equiaffine geometry, affine geometry, homogeneous 

manifolds and other geometries etc., and many interesting results have been obtained. 
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 This study is organised as follows: Firstly, we present a new approach for computing the differential 

geometry properties of surfaces by using Bäcklund transformations of integrable geometric curve flows. 

We give some new solutions by using the extended Riccati mapping method. Finally, we obtain figures of 

this solutions. 

  2. Preliminaries 
  

In this paper, we are mainly concerned with Bäcklund transformations for integrable geometric 

curve flows in certain geometries. 

Let  )(s  be a smooth curve of constant torsion   in R 3 , parametrized by arclength s . Let T, N 

and B be a Frenet frame, and k(s) the curvature of  . For any constant C, suppose  =  (s; k(s);C) is a 

solution of the differential equation 

 kC
ds

d



sin=  

then 

 )sincos(
2

)(=)(~
22

NT 


 



C

C
ss  

is a curve of constant torsion  , also parametrized by arclength s. 

Note that this transformation can be obtained by restricting the classical Bäcklund transformation 

for pseudospherical surfaces to the asymptotic lines of the surfaces with constant torsion. 

We will restrict our attention to the geometric space curve flows 

 ,= BNT hgft   

where gf ,  and h  depend on the curvatures of the curves and their derivatives with respect to the 

arclength parameter, namely, these geometric flows are invariant with respect to the symmetry groups of 

the geometries. 

For a spacial curve ),( ts  in a given geometry, let ),(~ ts  be another curve related to  through the 

following Bäcklund transformation 

 BNT ),(),(),(),(=),(~ tststststs    
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Throughout the paper, we assume that both curve flows for   and ~  are governed by the same 

integrable system, that means the curvatures of the curves ~  determined by the flows (4) or (5) satisfy the 

integrable systems as for the curves 

3. Bäcklund Transformations for Space Curve Flows in R 3  

In this section, we consider the integrable flows for space curves in R 3  

 ,= tbn WVUt   

where t , n  and b  are the tangent, normal and binormal vectors of the space curve  , 

respectively. The velocities U , V  and W  depend on the curvature and torsion as well as their derivatives 

with respect to arclength s . It is well know that the vectors t , n  and b  satisfy the Serret-Frenet formulae 
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4. Bonnet surfaces as geometric space curve flows 

Let   be the standard unit normal vector field on a surface. Then, the first fundamental form I  

and the second fundamental form II  of a surface   are defined by, respectively, 

 
,2

,2

22

22

dtdsdtds

dtdsdtds

gfe=II

GFE=I




 

where GF,E,  are the coefficients of the first fundamental form of the surface and gf,e,  are the 

coefficients of the second fundamental form. 

Definition 4.1. A-net on a surface such that, when this net is parametrized, the conditions G=E , 

0=F , == cf const. 0 are satisfied, is called an A-net, where GF,E,  are the coefficients of the first 

fundamental form of the surface and gf,e,  are the coefficients of the second fundamental form. 

Theorem 4.2. Necessary and sufficient condition for a surface to be a Bonnet surface is that the 

surface can have an A-net. 

Lemma 4.3. Let   be geometric space curve flows .  Then, 
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Lemma 4.4. Let   be be geometric space curve flows .  If   is regular surface, then 

 0., VU  

Moreover, we have 

   .=, nb VUts   

Theorem 4.5. 
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Lemma 4.6. Let   be geometric space curve flows .  Then, 
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Theorem 4.7. Let   be geometric space curve flows .    is a Bonnet surface if and only if  
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5. The Schrödinger Flow 
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The Schrödinger flow is given by 

 bkt =  

In this case, the time evolution of frame vectors is governed by 
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We now construct Bäcklund transformation of the Schrödinger flow  

 B.NT ),(),(),(),(=),(~ tststststs    

Using above equations, a direct computation leads to 
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Normal vector of Bäcklund transformation of the Schrödinger flow  
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From above equations we have 
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Theorem 5.1. Let   be Bäcklund transformation of the Schrödinger flow .    is a Bonnet surface 

if and only if  
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Proof. First fundamental form of Bäcklund transformation of the Schrödinger flow 

 

 

 

.))((

))()(=,

))()(())(

)())((1=,

,)()()(1

22

222

22

222





















k

k
kk

k
k

k
kkg

k

k
kkk

k

k

kkkkg

kk

ss
st

ss
tsttt

ss
sts

ss

tsststs

sss

(=G

(=F

=E

 

On the other hand we have 
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Application to Mathematica 

The curvature k  and torsion  : 
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From above equations, using the following Hasimoto transformation 

 ]),([exp=,= dsstik   

Let ,= skU   .= kV   Then ,
2

1
= 2kW   and   satisfies the mKdV system 

 0.=
2

3 2

sssst    (6.1) 

Consider the traveling wave variable:  

 ,=),(=),( Qtsqts   (6.2) 

Then, using Eq. (6.2), Eq. (6.1) is changed into an ordinary differential equation for :)(q  
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 0.=)()()(
2

3
)(

2
 ''''' qqqQq   (6.3) 

We can give the extended generalized Riccati mapping method to obtain the solution of Eq.(6.1). 

By balancing )()(
2

 'qq  with )('''q  in Eq.(6.1), we yield 1=N . 

Then, the solution of Eq. (6.3) is as follows: 

 0.,)
)(

)(
(=)( 101  aa
G

G
aq

'




  (6.4) 

Eq. (6.4) can be rewritten as: 

   ,)()(=)( 0

1

1 agGfhGaq    (6.5) 

where hgf ,,  are arbitrary constants, 0g  and )()(=)( 2  gGfGhG'   is auxiliary equation. 

By substituting Eq. (6.5) into Eq. (6.4), we find a set of algebraic equations for ,0a  ,1a  ,f  ,g  h  

and Q  from coefficients of )(kG  and )(kG  0,1,2,...)=(k . Solving the system of algebraic equations 

by using software Mathematica, we find the following solution, 

 ).8(
2

1
=,2=,= 2

10 ghfQiaifa   (6.6) 

One of solutions of Eq.(6.5) is; 3,=( f  2,=g  1)=h   

 ,)

))
2

(tanh2(

)
2

(sec

(2=

2

if

f

h

iq 












 (6.7) 

where .4= 2 ghf   
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.Fig  Shape of solution for imaginary part of Eq.(6.7) ,(a) in 3D, (b) in 2D ( 0),=t  (c) its contour.
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Some properties of Finite Generalized Groups 
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Abstract 

Finite generalized groups is the special case of generalized groups, which it was introduced by 

M.R. Molaei in 1998, as an extension of the groups. It has a background in Unified Gauge Theory. We 

will review of Generalized groups. In this article, we consider the Generalized groups in finite state, we 

have some interesting properties. We give some example and results. 

 

          Keywords: Generalized group, group, Generalized Lagrange Theorem. 

 

1. Introduction 

 

According to Araujo and Konieczny [2], generalized groups are equivalent to the notion of completely 

simple semigroups. In fact, a semigroup G is called a completely simple semigroup if for all g ∈ G, GgG 

= G, and if a and b are idempotents in G such that ab = ba then a = b.  Here we call them as generalized 

groups. Generalized groups was introduced by Molaei in [3]. It is as an extension of groups. A 

generalized group is a non-empty set G admitting an operation called multiplication subject to the set of 

rules given below: 

1. x(yz) = (xy)z; for all x, y, z ∈ G; (associative low) 

2. For each x ∈ G, there exists a unique e(x) ∈ G such that xe(x) = e(x)x = x; 

3. For each x ∈ G, there exists 𝑥−1 ∈ 𝐺 such that 𝑥𝑥−1 = 𝑥−1𝑥 = 𝑒(𝑥). 

Some of the structures and properties of generalized groups have been studied by Vagner [6], Molaei [4], 

and Agboola [1]. Also, various applications of these algebraic structures are studied in some recent 

papers. In [5], Shajareh Poursalavati, introduced the concept of Molaeis generalized hyper- groups by 

using construction of the Rees matrix semigroup over a polygroup P and a matrix with entries in P. 

 

 

2. Main Results  

 

In this section, we recall some Definitions and Theorems, and we get some examples and we obtain some 

new Theorems and results.  

Definition 2.1. Let G be a non-empty set, and ”·” be a binary operation on G, then the couple (G, ·) is 

called a groupoid. If the equations g · x = h and y · g = h have an unique solutions relative to x and y 

respectively and for all g, h ∈ G, then the couple (G, ·) is called a quasigroup. If the couple (G, ·) be a 

groupoid, and for all g, h and k ∈ G, (g · h) · k = g · (h · k), then the couple (G, ·) is called a semigroup. 
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Definition 2.2. A generalized group (G, ·) is a semigroup, which is satisfy the following conditions: 

1. For each g ∈ G there exists a unique e(g) ∈ G such that g · e(g) = e(g) · g = g; 

2. For each g ∈ G, there exists g−1 ∈ G such that g · g−1 = g−1 · g = e(g). 

 

Definition 2.3. Let (G, ·) be a generalized group. If, for all g and h in G, e(g·h) = e(g) ·e(h), then (G, ·) is 

called normal generalized group. If, for every elements g and  h in G, g ·h = g · h;, then, G is called 

Abelian generalized group. If G be an Abelian generalized group, then G is an Abelian group. 

 

Example 2.4. Let G be a group, then G is a normal generalized group. 

 

Example 2.5. Assume that F be a field and let 

 
then by the ordinary matrices product, H is a generalized group with. We can obtain: 

 

and 

 

Then H is a normal generalized group. 

Example 2.6. Assume that Γ and  I be nonempty sets and G be a group with the identity element e.   Let 

M = (gγi) be a Γ × I matrix with entries in G. Define the operation ” · ” on the set I × G × Γ by 

 

for all, i, j ∈ I, and γ, µ ∈ Γ, and k, h ∈ G. Therefore, I × G × Γ is a generalized group. 

We can obtain: 

 

  

Then, in general, I × G × Γ may be not a normal generalized group. 
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Theorem 2.7. Let (G, ·) be a generalized group and g, h ∈ G. Then, e(g) is unique and e(e(g)) = e(g), 

 e(g)·e(g) = e(g) and 𝑔−1 is unique and for every integer number n, e(𝑔𝑛) = e(g). 

Theorem 2.8. Let (G, ·) be a normal finite generalized group then, for every elemnt g in G, there is a 

positive integer number k, such that, e(g) = 𝑔𝑘, and the set 𝐺𝑔 ≔ { 𝑡 ∈ 𝐺 | 𝑒(𝑡) = 𝑒(𝑔) }, with the 

induced binary operation on G is a group. 

Theorem 2.9. Let (G, ·) be a finite generalized group then, for every elemnt g in G, the cardinal number 

of the group 𝐺𝑔, divided the cardinal number of G. Also, we have: 

 
Where, A is a subset of G such that for all x and y in A, if 𝑥 ≠ 𝑦 then 𝐺𝑥 ≠ 𝐺𝑦. Then, the cardinal number 

of the set A divided the cardinal number of G. 

 

Theorem 2.10. Let (G, ·) be a finite generalized group and H be a generalized subgroup of G. Then the 

generalized Lagrang Theorem may be not true for cardinal number of H and G. 

and G, i.e., it may be card(H) not divided card(G). 

 

3. Conclusion 

 

In this study, we introduce and consider the Generalized groups in finite state, we have some 

interesting properties. We give some example and results. In special case, we demonstrate the generalized 

Lagrange Theorem not true for the finite generalized group. 
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